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Abstract

This paper studies the question of when one abstract data type (ADT) is a behavioral
subtype of another, and proposes a model-theoretic notion of weak behavioral subtyping.
Weak behavioral subtyping permits supertype abstraction to be a sound and modular
reasoning principle in a language with mutation and limited forms of aliasing. The
necessary restrictions on aliasing can be statically checked.

1 Introduction

Subtyping is a fundamental semantic concept in object-oriented (OO) languages. In this
paper we study behavioral subtyping : when one ADT’s objects act like those of another.
Knowing the conditions on behavioral subtyping is important for guiding the design of
ADTs. It is also critical for proving the soundness of logics for OO program verification.

Previous work on the model theory of behavioral subtyping has not allowed mutation
and aliasing [2] [9] [8] [10]. But mutation and aliasing are important in practical OO pro-
gramming, and many types occurring in practice have objects with mutable (time-varying)
state. Although it is possible to imagine an OO language where aliasing is eliminated en-
tirely, existing OO languages do permit aliasing. Unlike Liskov and Wing [11] [12], we do
not allow arbitrary aliasing, but instead seek a middle ground that permits more useful
behavioral subtype relationships.

The purpose of our study is ultimately to show how to reason in a modular fashion
about OO programs. By modular reasoning , we mean reasoning such that conclusions
about unchanged code remain valid when new behavioral subtypes are added to a program.
One modular reasoning technique is supertype abstraction, in which one reasons about the
effects of method sends using the properties of the static types of the subexpressions [9]
[6]. The purpose and justification of a definition of behavioral subtyping is that it makes
supertype abstraction sound.

Our technical approach showing that a definition of behavioral subtyping makes super-
type abstraction sound is to capture the conclusions of reasoning via supertype abstraction
in a set of expected behaviors. Behaviors that might occur because of subtyping are called
surprising if they fall outside this set. Thus showing that a definition of “behavioral sub-
type” is adequate means showing that no surprising behavior is possible when subtyping
relationships are required to satisfy the definition.

∗This work was supported in part by the National Science Foundation under Grant CCR-9108654.
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In this paper we define “weak behavioral subtyping.” It is a weaker definition than
either of Liskov and Wing’s definitions [12] because it allows types with mutable objects
(hereinafter mutable types) to be subtypes of immutable types. We sketch the semantics of
a programming language with the necessary aliasing control, and show that weak behavioral
subtyping is adequate in the sense described above. Finally we discuss related work and
present some conclusions. Due to space limitations, we do not treat stronger definitions of
behavioral subtyping.

2 A Motivating Example for the Problem

An example that motivates the problem is the following. Consider two types: BoolSeq and
StoreBool. The type BoolSeq is a type of boolean sequences, which has only immutable
objects. The messages one can send to a BoolSeq object are the following.

method fetch(s: BoolSeq, i: Int): Bool

method update(s: BoolSeq, i: Int, v: Bool): BoolSeq

The update method produces a new object, which has the same state as the argument s,
except that in the ith position it contains v.

The type StoreBool has mutable objects. It has the following methods.

method fetch(s: StoreBool, i: Int): Bool

method store(s: StoreBool, i: Int, v: Bool): Void

There is no subtype relationship between BoolSeq and StoreBool. Suppose we wish to
reason about part of a program in which we have the following identifiers available, where
the type BoolVar is a type of boolean variable cells, which is like Bool ref in SML.

bseq: BoolSeq, storb: StoreBool, b: BoolVar

Now consider the following observation of a program state with such an environment. The
observation consists of two commands and a constant declaration; the constant declaration
gives the “output” of the observation. The messages not and equal have their standard
meaning for Bool arguments. The messages assign and value mimic assignment and value
access for program variables.

assign(b, fetch(bseq, 3));

store(storb, 3, not(value(b)));

const output:Bool = equal(value(b), fetch(bseq, 3))

What is the expected set of possible values for output in the above observation? The
expected set depends on three points:

• Whether one’s reasoning technique permits one to assume that identifiers of unrelated
types (such as BoolSeq and StoreBool) cannot be directly aliased.

• Whether bseq and storb can be aliases for the same object.

• The notion of behavioral subtyping allowed.
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These three points are not completely independent. Using Liskov and Wing’s definitions
of behavioral subtype [11] [12], BoolSeq and StoreBool cannot have a common subtype,
because BoolSeq objects are immutable (and thus a common subtype would have to violate
a history constraint, or would have a mutator corresponding to store that could not be
explained). So using Liskov and Wing’s definition prohibits bseq and storb from being
directly aliased. If bseq and storb cannot be directly aliased, the set of expected results
would be {true}.

If one’s reasoning technique forces one to think about a case where bseq and storb

might be directly aliased, then the set of expected results depends on the notion of behavioral
subtyping used. If one had a weaker notion of behavioral subtyping than Liskov and Wing’s,
then it might be possible for BoolSeq and StoreBool to have a common subtype with
mutable objects. Then bseq and storb could be directly aliased, and so presumably the
set of expected results for the observation above would be {true, false}. We have not
explored such reasoning techniques (which were suggested to us by Ian Maung). However,
because objects of type BoolSeq are immutable, and the call of a mutator (store) is used in
the program, it is difficult to imagine the specification of a (most general) common subtype
of BoolSeq and StoreBool. Another problem we see is that, psychologically, programmers
would tend to think that because bseq is immutable, the only possible result would be true,
without considering aliasing. Thus such a reasoning technique might be error-prone if used
informally. We leave the investigation of such a reasoning technique, and adequate notions
of behavioral subtyping for it, as an open problem.

The remaining case is where one’s reasoning technique permits one to assume that
identifiers of unrelated types cannot be directly aliased. Clearly in this case, such an
assumption has to be enforced. If it is, then set of expected results of the observation above
is {true}. However, in this case there is still the possibility that BoolSeq and StoreBool

have a common subtype. Allowing common subtypes, such as BoolArray, would have a
great practical benefit. (That benefit, however, should be weighed against any restrictions
on aliasing.)

Thus our problem is twofold: to define a notion of behavioral subtyping that is weaker
than Liskov and Wing’s, and to state restrictions on aliasing such that it is adequate for
reasoning. Here, by “reasoning” we mean model-based reasoning with supertype abstraction
and the assumption that identifiers of unrelated types cannot be directly aliased. We refer
to our notion of subtyping as “weak behavioral subtyping.”

3 The Language INST and its Semantics

Our model-theoretic approach to solving the problem was described above. To carry out
this approach, and to give the reader a concrete picture of the kind of languages to which
our results apply, we need to define an OO programming language. The language used in
this paper, INST, is a multimethod language, with an abstract syntax given in Figure 1.
The instance variable assignment command (“I1.I2 := E”), and the object creation (“new
I(E*)”) and the instance variable access (“I1.I2”) expressions can only be used directly
within methods; they cannot be written in the main procedure (M). This provides a simple
form of information hiding.
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Abstract syntax:
P ∈ Program TD ∈ TypeDecl T ∈ TypeName V ∈ VarDecl MD ∈ MethDecl
F ∈ Formal B ∈ Body M ∈ MainProc D ∈ Decl E ∈ Expression
C ∈ Command

P ::= TD* MD* M
TD ::= type I subtype of T* instance variables V* end

T ::= I
V ::= I : T
MD ::= method I0 ( F* ) : Tr alias types I* plus { T* } is B
F ::= I1 : T alias types I2

B ::= D C return E
M ::= main observe D1 C1 by C2 D2

D ::= const I : T = E | D1 ; D2

E ::= N | nothing | true | false | I | I ( E* ) | new I E* | E . I2

C ::= E | if E1 then C1 else C2 fi | C1 ; C2 | I1 . I2 := E

Figure 1: Abstract Syntax of INST. The nonterminal “I” is an identifier, and “N” a number.
“TD*” is a sequence of zero or more “TD”s (with separators in concrete examples).

3.1 Denotational Semantics

The denotational semantics of INST is given in two parts [7]: the type and method decla-
rations are compiled into a signature and an algebra over that signature. The semantics of
expressions, declarations, and commands are parameterized by an algebra. For purposes of
this paper, in which we wish to define observations that may observe states over algebras,
the main procedure (M) consists of two sequences of declarations and commands. The first
of which defines a state, and the second a function from algebras to observation of states
over algebras. To run the program, one passes the algebra and state to the observation. The
reason for splitting the semantics of the main procedure in this way is to indicate in what
part supertype abstraction is used. Supertype abstraction would be used to reason about
the part of the main procedure following the keyword by, which thus defines an observation.

The semantics of a program is shown formally below. Most of the notation has not been
discussed yet, but it seemed helpful to show the valuation function for programs before
launching into the details. Nonstandard notations not explained in this paragraph will be
explained further below. The type of P is a dependent type. The signature ΣINST and the
ΣINST-algebra AINST give the signature and semantics of the visible types (see Figures 4
and 6 in [7]). The valuation function for type declaration sequences, T D∗, adds to the sig-
nature and algebra primitive operations for each type declared; these primitive operations
are used by the semantics of expressions and commands for creating objects and for access-
ing their instance variables. Once MD∗ has processed all the method declarations, these
primitive methods are suppressed. A signature without the primitive operation symbols is
produced by hideInternalMessages. The notation A′|(hideInternalMessages Σ′) is the reduct of
A′ without these primitives.

P : Program→ ((Σ′′ : SIGS )× (A′′ : Alg(Σ′′))× (H : TENV (Σ′′))× STATEH [A′′]
×((B : Alg(Σ′′))→ OBSERVATION H [B]))⊥

P[[TD* MD* M]] =

let (Σ,A) = T D∗[[TD*]] ΣINST AINST in
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let (Σ′,A′) =MD∗[[MD*]] Σ A in
let (Σ′′,A′′) = (hideInternalMessages Σ′, A′|(hideInternalMessages Σ′)) in

let (H, s1, f) =M′′Σ[[M]] A′′ in (Σ′′,A′′, H, s1, f)

Due to lack of space we do not give the details of the semantics of type and method
declarations. Instead, we define the signatures and algebras that they denote, and then
turn to the semantics of expressions, declarations, commands, and the main procedure.

To define observations, we fix a set of the visible (or built-in) types, VIS = {Int, Bool}.
The externally visible values of these types are: EXTERNALS Int

def
= {0, 1,−1, 2,−2, · · ·},

and EXTERNALS Bool
def
= {true, false}.

Signatures are roughly as in Reynolds’s category sorted algebras [13], with the addition
of information about aliasing that is used in our static restrictions on aliasing.

Definition 3.1 (SIGS , signature) The set SIGS, consists of all signatures, Σ, which are
tuples (TYPES ,≤,OPS ,ResType,RetAliasRel) such that:

• TYPES is a set of type symbols such that VIS ⊆ TYPES and Void ∈ TYPES.

• ≤ is a preorder on TYPES, such that if S ≤ T and T ∈ VIS, then S = T .

• OPS is a family of sets of operation symbols, indexed by natural numbers,

• ResType is a family of partial functions indexed by the natural numbers, such that for
each natural number n, ResTypen : OPSn × TYPESn → TYPES⊥, and ResType
is monotone. That is, for all g ∈ OPS, and for all tuples of types ~S ≤ ~T , if
ResType(g, ~T ) 6= ⊥ then ResType(g, ~S) 6= ⊥ and ResType(g, ~S) ≤ ResType(g, ~T ).

• RetAliasRel limits the types of identifiers that may be directly aliased to the result of a
method (based on the types of identifiers aliased to the actuals). RetAliasRel is a family
of partial functions indexed by the natural numbers, such that for each natural number
n, RetAliasReln : OPSn × TYPESn × PowerSet(TYPES )n → PowerSet(TYPES )⊥.

Our models of abstract types with mutable objects are algebraic [14] [4] [7]. Objects
are modeled by typed locations containing values, which may in turn contain locations. We
define algebras and stores simultaneously, because the operations of an algebra take and
return a store [7].

Definition 3.2 (Alg(Σ), Σ-algebra, STORE) The set Alg(Σ), consists of all Σ-algebras,
A = (SORTSA,ObjectTypesA,LOCSA,VALSA,TtoSA,OPSA, externValA), such that:

• SORTSA ⊇ TYPES is a set of sort symbols,

• ObjectTypesA ⊆ TYPES is a set of object type symbols,

• LOCSA is a family of sets, indexed by ObjectTypesA, representing typed locations,

• VALSA is a family of abstract values indexed by SORTSA, such that for each T ∈
ObjectTypesA, VALSA

T = LOCSA
T

• TtoSA : ObjectTypesA → SORTSA is a function that gives a sort symbol for each
object type symbol,
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• OPSA is a family of operation interpretations indexed by the natural numbers, such
that for each n ∈ Nat and g ∈ OPSn, there is a polymorphic partial function gA ∈
OPSA

n where for each ~S ∈ TYPESn and T ∈ TYPES, if ResType(g, ~S) = T then gA

satisfies gA : (VALSA
~S
× STORE [A])→ ((∪U≤TVALSA

T )× STORE [A])⊥,

• externValA is a family of functions indexed by VIS, such that for each T ∈ VIS,
externValAT : VALSA

T × STORE [A]→ (EXTERNALST )⊥,

and STORE [A]
def
= LOCSA fin→ VALSA is such that if σ : STORE [A] and l ∈ LOCSA

T ∩
dom(σ), then σ(l) ∈ ∪U≤TVALSA

TtoSA[U ]
.

We write l : T as an abbreviation for l ∈ LOCSA
T . A store σ ∈ STORE [A] is nominal

if and only if for all locations l : T ∈ dom(σ), σ(l) ∈ VALSA
T .

The set TENV (Σ) of type environments over a signature Σ is defined by TENV (Σ) =

Identifier
fin→ TYPES . Let H stand for a type environment below.

A state consists of an environment and a store. The set ENV H [A] of H-environments

over A is the set of all mappings, η : Identifier
fin→ VALSA, such that for every T ∈ TYPES ,

if H(x) = T then x ∈ dom(η) and η(x) ∈ ∪S≤TVALSA
S . A H-environment η ∈ ENV H [A]

is nominal if and only if for every type T ∈ TYPES , if H(x) = T then η(x) ∈ VALSA
T . The

set, STATEH [A], of H-states over A is defined by STATEH [A]
def
= ENV H [A]×STORE [A].

A H-state (η, σ) is nominal if and only if both η and σ are nominal. We write ENV [A] for
∪H∈TENV (Σ)ENV [A], and STATE [A] for ENV [A]× STORE [A].

The main procedure (M) returns a type environment, a state, and a function from alge-
bras to observations. This function is defined by the second half of the main procedure. An
observation takes a state, such as the one produced by the first half of the main procedure,
and “prints” the values of the identifiers in D2. H-observations are defined as follows.

OBSERVATION H [A]
def
= (∪H′⊇HSTATEH′ [A])→ ANSWERS⊥ (1)

ANSWERS
def
= Identifier

fin→ EXTERNALS (2)

The identifiers declared in D2 must have visible type. This condition is checked by typeEn-
vAndCheckVisible, which produces a type environment if they are visible (and ⊥ otherwise).

M : (Σ : SIGS)→ MainProc→ (A : Alg(Σ))
→ ((H : TENV (Σ))× STATEH [A]× ((B : Alg(Σ))→ OBSERVATION H [B]))⊥

MΣ[[ main observe D1 C1 by C2 D2]] A =
let H = typeEnv [[D1]] in
let (η, σ) = DΣ[[D1]] A (emptyEnviron, emptyStore) in
let σ′ = CΣ[[C1]] A (η, σ) in
let H ′ = typeEnvAndCheckVisible[[D2]] in
let f = (λB . λ(ηB, σB) .

let σ′B = CΣ[[C2]] B (ηB, σB) in
let η′′B, σ

′′
B = DΣ[[D2]] B (ηB, σ

′
B) in

λ[[I]] . let T = H ′[[I]] in externValBT (η′′B[[I]], σ′′B))
in (H, (η, σ′), f)

For a given signature, Σ, an expression has a meaning which depends on a Σ-algebra. We
do not show the semantics for the expressions of the form “new I(E*)” or “I1.I2”, because
these cannot occur in the main procedure, and so play no role in defining observations.

E : (Σ : SIGS )→ Expression→ (A : Alg(Σ))→ STATE [A]→ (VALSA × STORE [A])⊥
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EΣ[[N]] A (η, σ) = NΣ[[N]] A σ
EΣ[[nothing]] A (η, σ) = nothingA((), σ)
EΣ[[true]] A (η, σ) = trueA((), σ)
EΣ[[false]] A (η, σ) = falseA((), σ)
EΣ[[I]] A (η, σ) = (let v = η[[I]] in (v, σ))

EΣ[[I(Ê)]] A (η, σ) = let (v̂, σ′) = E∗Σ[[Ê]] A (η, σ) in IA(productize v̂, σ′)
E∗ : (Σ : SIGS )→ Expression-List→ (A : Alg(Σ))→ STATE [A]

→ (List(VALSA)× STORE [A])⊥
E∗Σ[[]] A (η, σ) = (nil , σ)

E∗Σ[[Ê En]] A (η, σ) = let (v̂, σ′) = E∗Σ[[Ê]] A (η, σ) in
let (vn, σn) = EΣ[[En]] A (η, σ′) in ((addToEnd v̂ vn), σn)

The semantics of commands is straightforward. Declarations bind identifiers to objects.

C : (Σ : SIGS )→ Command→ (A : Alg(Σ))→ STATE [A]→ STORE [A]⊥
CΣ[[E]] A (η, σ) = let (v, σ′) = EΣ[[E]] A (η, σ) in σ′

CΣ[[C1; C2]] A (η, σ) = let σ1 = CΣ[[C1]] A (η, σ) in CΣ[[C2]] A (η, σ1)
CΣ[[if E1 then C1 else C2 fi]] A (η, σ) =

let (v, σ′) = EΣ[[E1]] A (η, σ) in

if externValABool(v, σ
′) then (CΣ[[C1]] A (η, σ′)) else (CΣ[[C2]] A (η, σ′))

D : (Σ : SIGS )→ Decl→ (A : Alg(Σ))→ STATE [A]→ STATE [A]⊥
DΣ[[]] A s = s
DΣ[[const I:T = E]] A (η, σ) = let T ′ = TΣ[[T]] in

let (v, σ′) = EΣ[[E]] A (η, σ) in

if v 6∈ ∪U≤T ′VALSA
T ′ then ⊥ else ([I 7→ v]η, σ′)

DΣ[[D1 ; D2]] A s = DΣ[[D2]] A (DΣ[[D1]] A s)

The semantics of bodies (of methods) will also be used to help define the restrictions on
aliasing. The type of a body B is the type of the return expression.

B : (Σ : SIGS )→ Body→ (A : Alg(Σ))→ STATE [A]→ (VALSA × STORE [A])⊥
BΣ[[D C return E]] A s = let (η1, σ1) = DΣ[[D]] A s in

let σ2 = CΣ[[C]] A (η1, σ1) in EΣ[[E]] A (η1, σ2)

3.2 Enforcing Restrictions on Aliasing

For our notion of weak behavioral subtyping to be adequate, we need to prevent direct
aliasing between related, but distinct, types. Since we also want to be able to reason
modularly, we need to also prevent direct aliasing between identifiers of unrelated types,
because two unrelated types might, at some later time, have a common subtype. Thus, in
this section, we define restrictions on aliasing such that identifiers of different types cannot
be directly aliased. We do this by an abstract interpretation of INST programs, which
tracks the set of types that may be aliased to each expression result. This set of types is
called an alias type set.

The definitions below rely on results of a sequence of declarations, commands, and an
expression that could be executed in the main procedure. For this purpose we define the set
“MBody” as the subset of Body that includes only declarations, commands, and expressions
that can be written in the main procedure.
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A location l is reachable in a H-state s over an Σ-algebra A if and only if there exists
a type T , and a body B ∈ MBody such that Σ;H ` B : T and (l, σ) = BΣ[[B]] A s. The
notation Σ;H ` B : T means that B has type T (see Figure 2).

The alias type set of a location in a H-state over an algebra is defined by the following.

aliasTypeSetΣ(H,A, l, s)
def
= {T | T ∈ TYPES , B ∈ MBody, Σ;H ` B : T, (l, σ) = BΣ[[B]] A s}.

(3)

If a location’s alias type set contains at most one type, then it can only be aliased by
identifiers of the same type.

atMostOneType(r)
def
= (S ∈ r ∧ T ∈ r)⇒ S = T (4)

Alias legality means that every reachable location has this property.

Definition 3.3 (alias legality, stAliasOkΣ) Let A be a Σ-algebra and s ∈ STATEH [A].
Then s is alias legal, written stAliasOkΣ(H,A, s), if and only if for all reachable locations
l in s, atMostOneType(aliasTypeSetΣ(H,A, l, s)).

Figure 2 gives the type and alias checking rules for expressions, declarations, commands
that can appear in the main procedure, and for bodies containing such (i.e., M ∈ MBody).
For expressions, the notation Σ;H ` E : T :: r means E has static type T and r is an upper
bound on the alias type set of the result of E. For declarations, Σ;H ` D =⇒ H ′ means H ′

is the type environment after elaborating D, and that the binding does not produce illegal
aliasing. For bodies in MBody, we do not give the alias type set of the result, because it is
not needed in this paper.

To see the practical implications of our technique for restricting aliasing, it is useful to
consider how the property that identifiers of distinct types are not directly aliased would
be established in the body of a method, after binding actuals to formals. One option would
be to prohibit any direct aliasing among the actuals in a call. This is more restrictive than
we need, because aliasing between formals of the same type is not a problem. Instead, we
require that the programmer write enough methods so that any call with directly aliased
actuals will be handled by a method implementation where the formals corresponding to
those actuals have the same type. For example, consider a method foo with two arguments,
S and T , and suppose that U is the greatest lower bound of S and T in the subtype ordering;
then the program would also need a method named foo with both arguments of type U .

Because we do not work with methods in this paper, and because we work with alge-
bras that may not result from INST programs, we need to impose an equivalent condition
that calling an operation in an algebra cannot result in illegal aliases. To prevent ille-
gal aliases in the result state, the H-state, s, that results from a call to gA must satisfy
stAliasOkΣ(H,A, s). To prevent the result itself from being directly aliased with identifiers
of different types, the actual alias type set of the result must be smaller than that declared.

Definition 3.4 (preserves alias legality) Let A be a Σ-algebra. Let H be a type en-
vironment. Then A preserves alias legality if and only if for each H-state (η, σ) such
that stAliasOkΣ(H,A, (η, σ)), for each operation g ∈ OPS, for each tuple of types ~S, if
RetAliasRel(g, ~S,~r) = r̂, ~v ∈ VALSA

~S
, and (l, σ′) = gA(~v, σ), then:

stAliasOkΣ(H,A, (η, σ′)) ∧ (l ∈ LOCSA ⇒ aliasTypeSetΣ(H,A, l, (η, σ′)) ⊆ r̂).
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[Num] Σ;H ` N : Int :: {} [nothing] Σ;H ` nothing : Void :: {}
[true] Σ;H ` true : Bool :: {} [false] Σ;H ` false : Bool :: {}
[ident] Σ;H ` I : H(I) :: H(I) if I ∈ dom(H)

[call]
Σ;H ` ~E : ~S :: ~r, Σ.ResType(I, ~S) = T, Σ.RetAliasRel(I, ~S, ~r) = r′

Σ;H ` I(~E) : T :: r′

[decl]
Σ;H ` E : S :: r, S ≤ T, r ⊆ {T}

Σ;H ` const I :T = E =⇒ [I 7→ T]H

[decl list]
Σ;H ` D1 =⇒ H ′, Σ;H ′ ` D2 =⇒ H ′′

Σ;H ` D1; D2 =⇒ H ′′

[ExpCom]
Σ;H ` E : S :: r

Σ;H ` E
√

[Cond]
Σ;H ` E : Bool :: r, Σ;H ` C1

√
, Σ;H ` C2

√

Σ;H ` if E then C1 else C2 fi
√

[Seq]
Σ;H ` C1

√
, Σ;H ` C2

√

Σ;H ` C1 ; C2
√

[MBody]
Σ;H ` D =⇒ H ′, Σ;H ′ ` C

√
, Σ;H ′ ` E : T :: r

Σ;H ` D C return E : T

[Main]

Σ; {} ` D1 =⇒ H ′, Σ;H ′ ` C1
√
,

Σ;H ′ ` C2
√
, Σ;H ′ ` D2 =⇒ H ′′, checkVisible(D2)

Σ ` main observe D1 C1 by C2 D2
√

Figure 2: Type and alias checking rules for the main procedure part of INST.

For algebras that preserve alias legality, the alias checking rules are sound.

Lemma 3.5 Let M be a main procedure of INST. Let A be a Σ-algebra. If A preserves
alias legality and (H, s, f) = MΣ[[M ]]A, then (Σ `M

√
) ⇒ stAliasOkΣ(H,A, s).

4 Weak Behavioral Subtyping

The intuitive idea of behavioral subtyping is that each object of a subtype should behave
like some object of its supertypes. One might think to express “behaves like” it would be
enough to simply relate abstract values. However, this would not take locations and hence
aliasing into consideration. One cannot relate just locations either, because the abstract
values stored in locations also determine behavior. Relating locations along with the store
does not account for aliasing between identifiers in the environment. So one must relate
whole states. This idea is captured by the definition of simulation relations below.

4.1 Simulation Relations

The following formulation of simulation relations uses techniques from [?].

Definition 4.1 (simulation relation) Let C and A be Σ-algebras. A Σ-simulation re-
lation R from C to A is a family of binary relations on states, 〈RH : H ∈ TENV (Σ)〉,
such that RH ⊆ STATEH [C]⊥ × STATEH [A]⊥ and for each type environment H each
(ηC, σC) ∈ STATEH [C], and each (ηA, σA) ∈ STATEH [A], the following properties hold:
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bindable: for each identifier x, for each type T , and for each identifier y such that H(y) =
T , (ηC, σC)RH (ηA, σA)⇒ ([x 7→ (ηC y)]ηC, σC)R[x 7→T ]H ([x 7→ (ηA y)]ηA, σA),

substitution: for each tuple of types ~S, for each type T , for each operation symbol g : ~S →
T , for each tuple of identifiers ~y such that H(~y) = ~S, and for each identifier x,

(ηC, σC)RH (ηA, σA)⇒
(let (rC, σ

′
C) = gC((ηC ~y), σC) in ([x 7→ rC]ηC, σ

′
C)) (5)

R[x 7→T ]H (let (rA, σ
′
A) = gA((ηA ~y), σA) in ([x 7→ rA]ηA, σ

′
A)),

coercion: there is a nominal state (η′A, σ
′
A) ∈ STATEH [A], such that (ηC , σC)RH (η′A, σ

′
A),

EXTERNALS -identical: for each type T ∈ VIS, for each identifier x such that H(x) = T ,
if (ηC, σC)RH (ηA, σA), then externValC((ηC x), σC) = externValA((ηA x), σA),

shrinkable: if H ′ ⊆ H, (η′C, σ
′
C) and (η′A, σ

′
A) are H ′-states, (η′C, σ

′
C) ⊆ (ηC, σC), and

(η′A, σ
′
A) ⊆ (ηA, σA), then (ηC, σC)RH (ηA, σA)⇒ (η′C, σ

′
C)RH′ (η

′
A, σ

′
A), and

bistrict: ⊥RH ⊥, and whenever sRH s′ and either s or s′ is ⊥, then so is the other.

The substitution property says that simulation relationships between states are pre-
served by operations. It is expressed by binding an identifier to the value returned by the
operation in each algebra, and then requiring that the resulting extended states be related.
The coercion property is similar to the requirement that each object of a subtype should
simulate some object of its supertypes. It ensures that each state simulates a state that does
not use subtyping. The EXTERNALS -identical property says that a simulation relation is
identity on values of visible types. This is used to compare the outputs of observations.

Simulation relations preserve aliasing. That is, if two identifiers, x and y, are directly
aliased in a state sC, and if sCRH sA, then x and y must be directly aliased in sA. If this
were not the case, then one could observe changes in x by using operations on y in sC, while
in sA the same changes to y would not be observable through x. But this would violate the
substitution property.

A careful reader might observe that the requirement that every state should be simulated
by a nominal state in the “coercion” property eliminates certain kinds of direct aliasing.
More precisely, it eliminates direct aliasing between identifiers of different types. The reason
for this is the following. Suppose S 6= T , and consider a state in which and x : T and y : S
were directly aliased. Then to satisfy the coercion property, such a state would have to be
related to one where x and y both denoted objects of their types, and thus could not be
directly aliased. This motivates the alias restrictions we impose on INST. These restrictions
do allow a weaker form of behavioral subtyping than Liskov and Wing’s.

4.2 Weak Behavioral Subtypes

The following definition of a weak behavioral subtype relation characterizes when a specifi-
cation of several ADTs has a subtype relation (≤) that is adequate for modular reasoning.
Since we do not discuss the forms of type specifications, we use their denotations, which
are sets of algebras that preserve alias legality.
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Definition 4.2 (weak behavioral subtyping) Let SPEC be a set of Σ-algebras such
that each A in SPEC preserves alias legality. The presumed subtype relationship ≤ on types
(of Σ) is a weak behavioral subtype relation for SPEC if and only if for each B ∈ SPEC
there is some A ∈ SPEC such that there is a Σ-simulation from B to A.

This definition, for example, permits the types BoolSeq and StoreBool to have a com-
mon subtype. Hence it allows types with immutable objects to have subtypes that have
mutable objects. One can even have a hierarchy of weak behavioral subtypes, with increas-
ing degrees of mutability. As an example, a completely mutable array is a weak behavioral
subtype of partially mutable array, which in turn is a weak behavioral subtype of an im-
mutable array. The subtype relationships between the various collection types in Cook’s
hierarchy [5] are weak behavioral subtypes in our sense. For immutable tuple types, our
definition matches Cardelli’s rules [3].

Because this definition permits B and A to be different algebras, it works for incom-
plete specifications: those with observably different models. Such incomplete specifications
are important in practice, so that a subtype can be more completely specified than its
supertypes.

Not every presumed subtype relation is a weak behavioral subtype relation, because of
the coercion and substitution properties of simulation relations.

4.3 Weak Behavioral Subtyping means No Surprises

We now show that the definition of weak behavioral subtyping is adequate for modular
reasoning with supertype abstraction. We do this in a model-theoretic fashion, by first
defining the set of expected results of an observation, or rather of a function from algebras
to observations.

Definition 4.3 (expected results) Let SPEC be a set of Σ-algebras that preserve alias
legality. Let H be a type environment. Let f be a function from Σ-algebras to H-observations.
Then the set of expected results of f for SPEC is the union over all A ∈ SPEC and all
sA ∈ STATEH [A], such that sA is nominal, of (f A sA).

A result is surprising if it is not expected. Surprising results can occur if one uses a
presumed subtype relation that does not satisfy the definition of weak behavioral subtyping,
and observes a state that is not nominal.

Theorem 4.4 (no surprises) Let SPEC be a set of Σ-algebras that preserve alias legality.
Let H be a type environment. Let f : (B : Alg(Σ)) → OBSERVATION H [B] be such that
there is some A ∈ SPEC and some main procedure M in INST such that (H, s, f) =
MΣ[[M ]] A.

Then for all C ∈ SPEC , and for all sC ∈ STATEH [C], if ≤ is weak behavioral subtype
relationship for SPEC , then (f C sC) is an expected result for SPEC .

Proof Sketch: Because ≤ is a weak behavioral subtype relation for SPEC , there is an
A′ ∈ SPEC and a Σ-simulation relation, R, from C to A′. Using structural induction, show
that simulations are preserved by commands and declarations. Then in the semantics of the
main procedure, the resulting states in the observation part ((η′′B, σ

′′
B) in the semantics of

the main procedure) are related. So by the EXTERNALS -identical property, the resulting
answer functions must give the same result for each identifier (namely for those in D2 of
the main procedure M).
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5 Discussion and Related Work

The main contribution of our work is a new definition of subtyping for arbitrary determin-
istic abstract data types in the presence of mutation and aliasing. This definition is weaker
than Liskov and Wing’s definitions [11] [12], because it allows types with immutable objects
to have subtypes with mutable objects. This flexibility seems to be important in practice.
The price to be paid, however, is that the language must restrict aliasing. We have given
suitable aliasing restrictions, which disallow direct aliasing between identifiers of different
types. We believe that such aliasing restrictions may actually be of some practical benefit,
as they allow naive reasoning to be sound.

Most other model-theoretic approaches [2], [9] [8] [10] do not deal with mutation and
aliasing. In contrast to our approach, America [1] and Liskov and Wing [11] [12] give proof-
theoretic definitions of behavioral subtyping. We leave for future work a direct comparison
between our definition and such proof-theoretic definitions, and formulating the model-
theoretic equivalent of Liskov and Wing’s definitions.
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