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THE BEHAVIOR-REALIZATION ADJUNCTION

AND GENERALIZED HOMOMORPHIC RELATIONS

Gary T. Leavens and Don Pigozzi

Iowa State University

July 30, 1996

Abstract. A model theory for proving correctness of abstract data types is de-

veloped within the framework of the behavior-realization adjunction. To allow for

incomplete speci�cations, proof-of-correctness is based on comparison to one of sev-
eral paradigmatic models. For making such comparisons, the notions of the behavior

and realization relations, and their duals are developed. These relations are used to
give the �rst exact algebraic characterization of behavioral reduction and equivalence

for algebras that are not term-generated.

Introduction

The main advantage of abstract data types (ADTs) in programming is that
they allow reasoning at an appropriate level. In reasoning about code that uses
an ADT, clients rely on the ADT's speci�cation, instead of using more complex
and overly speci�c reasoning about the ADT's implementation. The soundness of
such an abstract reasoning technique means that if an implementation is certi�ed
correct, then its visible behavior will not be surprising. By visible behavior we mean,
informally, the printed or returned results of programs. By surprising behavior we
mean visible behavior that would contradict the predictions of the speci�cation.
Completeness of an abstract reasoning technique means that if an implementation
cannot exhibit surprising behavior, then it can be certi�ed as correct.

We investigate sound and complete model-theoretic techniques for proving that
a candidate implementation of an ADT is correct. For reasons discussed below,
we are especially interested in speci�cations that are incomplete and not term-
generated. For us, a complete speci�cation is one for which all of its models are
behaviorally equivalent, and a speci�cation is term-generated if there are nonvisible
types that fail to have a complete system of constructors. We shall also assume that
a candidate implementation has already been adapted to the interface (signature)
required (\derived" in the sense of Section 5.5 of [8]).

What is known about the soundness and completeness of techniques for proving
that a candidate implementation of an ADT is correct? We shall restrict ourselves
here to model-theoretic methods. Previous model-theoretic work on this problem,
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like our work, is based on comparisons to paradigmatic models. In most work, there
is only one paradigmatic model mentioned, and so the ADT's speci�cation must
be complete. If the speci�cation is incomplete, there is no way to choose a single
paradigm, and the technique must be adapted somehow to deal with the choice of
an appropriate paradigm before the comparison. However, it is a simple matter to
adapt this technique to incomplete speci�cations by using a collection of paradigms.
These paradigms collectively span the permitted behaviors, and thus to prove the
correctness of a candidate implementation, one must �rst choose a paradigm and
then make the comparison.

This paper concentrates, therefore, on how to compare an implementation alge-
bra to a paradigm, once a paradigm is selected. Several authors have studied such
notions previously (including [4, 7, 17, 18] | see Section 8 of [23] for a survey).
For our purposes the most important technique is that of Schoett [18]. Schoett
casts the problem as one of showing that a partial algebra A can be used in place
of the paradigm, a partial algebra B, without exhibiting surprising behavior. He
argues that this will be assured if the two algebras are behaviorally equivalent in
the sense that any program that is run in the two algebras has the same output.
He makes the natural assumption that only visible data is legitimate input-output
for the program. He proves that the existence of a bisimulation between A and B,
i.e., a homomorphic relation that is the identity on visible types, is both necessary
and su�cient for the behavior of A to be equivalent to the behavior of B.

It can be argued however that Schoett's criterion for behavioral equivalence
is not restrictive enough. It fails to detect some behavioral di�erences that an
ADT implementor might care about. The main problem with his approach is that
programs can take only visible data as input and hence algebras can be compared
only with respect to the behavior of visible data. For example, in the context of
specifying a parameterized type (e.g., a parameterized priority-queue), consider the
speci�cation of its formal type parameter, PO. The only operation that would be
speci�ed for PO would be a comparison predicate, leq, taking two POs and returning
a Boolean; no constructors would be speci�ed for PO. In this example, the type PO
would not be a visible type (i.e., it could not be directly input or output). Hence
the only visible type in the example is the Booleans, and the type PO is hidden.
Because PO is hidden and there are no constructors for it, programs with visible
input-output cannot make any interesting observations. Hence, using Schoett's
criterion, even candidate implementations that, say, fail antisymmetry would be
certi�ed as correct. In this paper we adapt Schoett's technique by considering not
just observations with visible inputs, but \procedures" with nonvisible inputs. For
example, this allows us to make behavioral distinctions in the PO example. That is,
we allow the behavior of nonvisible data to be compared in di�erent models, leading
to a stronger notion of implementation which is important in situations where the
speci�cation is not term-generated.

ADTs that are not term-generated are even more important for object-oriented
programming than they are in more conventional programming with ADTs. For
example, a library of object-oriented ADTs typically includes a type Collection

that is \abstract" in the sense that it has no constructors. Such a type will have
subtypes such as Set, Bag, List, and Array. Existing objects of one of these
subtypes can be treated as if they were collections. This is analogous to the way
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that objects having the type of a formal type parameter, such as PO, are treated in
parameterized code [21]. It is also apparent from this example why it is important
to be able to compare nonvisible data. It is natural to want to compare the behavior
of a bag constructed from the integers 1, 2, and 3, for instance, with that of a set
constructed from the same integers. But this cannot always be achieved by simply
comparing the behavior of the visible data, such as the integers 1, 2, and 3 in two
di�erent models, because a (deterministic) program with only visible input would
construct either a set in both A and B or a bag in both A and B, but not a set
in A and a bag in B. This problem is the original motivation for our study of
\procedures" with nonvisible inputs.

In this paper, we give a sound and complete algebraic technique for proving
the correctness of an implementation, which need not be term-generated. The
technique uses a general notion of simulation, which in turn uses a generalization
of the notion of homomorphic relation; such a generalization is necessary because
standard homomorphic relations do not give a complete characterization technique
for speci�cations that are not term-generated.

The idea that motivates the de�nition of a generalized homomorphic relation
is simple. We want to capture exactly those distinctions procedures can make so
that, if no surprises arise from the use of data elements, because of the incomplete-
ness of a speci�cation, then there is a generalized simulation. Put another way, if
the di�erences that may exist between the string ~a = a0 � � �an�1 of elements of A

and a corresponding string ~b = b0 � � �bn�1 of elements of the paradigm B cannot
be detected by any program, then a generalized simulation of B by A exists that

correlates, not only ~a with ~b, but also any pair of strings with the same property.
It might be surprising to learn that there may exist no standard simulation of this
kind in this situation; an example of this phenomenon can be found in the Appen-
dix. A standard simulation, by de�nition, correlates single pairs of elements and
consequently can correlate two strings a0 � � �an�1 and b0 � � �bn�1 only by correlating
ai with bi, for each i < n. This means that correlations determined by a standard
simulation are additive in the following sense: if a1 � � �an and a01 � � �a

0
n0 are corre-

lated respectively with b1 � � �bn and b01 � � �b
0
n0 , then by necessity a1 � � �ana

0
1 � � �a

0
n0

and b1 � � �bnb01 � � �b
0
n0 must be correlated. The problem is that, while there may

be no observation that behaves di�erently when given a1 � � �an as inputs as when
given b1 � � � bn as inputs, and similarly for a01 � � �a

0
n0 and b01 � � �b

0
n0 , it is quite pos-

sible that there is a program that behaves di�erently with a1 � � �ana
0
1 � � �a

0
n0 and

b1 � � � bnb01 � � �b
0
n0 as inputs. Therefore, generalized relations correlate whole strings

of inputs rather than the individual members of the strings. Actually, it is more
convenient from a technical point of view to think of generalized relations as cor-
relating environments, that is, assignments of variables to elements, rather than
strings. Consequently, while standard homomorphic relations are indexed by types,
a generalized homomorphic relation is a family of relations indexed by type con-
texts. This is analogous to the standard kind of relation indexed by types if one
thinks of a type context as the \type" of an environment; more formally, a type

context gives the type of each variable in an environment, and is thought of as a
map from variables to types.

One way to see the power of generalized relations is by using an analogy between
an environment and an algebra extended with new constants. The new constants
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are analogous to the variables in the domain of the environment. Comparing en-
vironments is thus akin to comparing such extended algebras, and the extended
algebras allow what were formerly unnamed elements of the algebra's carrier set
to be named. Taken to the extreme, such an extension of an algebra that is not
term-generated would be term-generated, but would, in general, require in�nitely
many new constants. Instead of using in�nitely many new constants added to an
algebra, one can consider in�nitely many such �nite extensions; that is, one can
consider all environments over such algebras. Because standard relations give a
complete characterization technique for term-generated algebras, one can see by
this analogy how generalized relations should give (and as we will show, do give) a
complete characterization technique for algebras that are not term-generated.

We have found it useful to adapt the concepts of \behavior" and \realization"
as they are developed in Goguen and Meseguer [5, 6] for the formalism in which
to present our results. Formally we think of standard relations as the \behavior"
of generalized relations and generalized relations as the \realization" of standard
ones. To explain, suppose A and B are algebras, a is an element of A and b and
element of B of the same type. Suppose, in addition, that � is an environment
over A and � is a similar environment over B. The pairs ha; bi and h�; �i are
\behavior-and-realization" related if there is a procedure P in the observational
language such that P , when run in the environment �, has output a, and when P is
run in the environment � it has output b. The pair ha; bi is thought of as a part of
the \behavior" of h�; �i, and h�; �i in turn is thought of as a partial \realization" of
the behavior ha; bi. (Returning to the analogy between environments and extended
algebras, a realization can be thought of as an extension of the algebra which gives
the speci�ed output for P .) This gives two maps, one from the lattice of generalized
relations (under set-theoretic inclusion) to the lattice of standard relations, and one
in the opposite direction, that form a Galois connection, i.e., an adjunctive pair of
functors between the two lattices viewed as simple categories. This adjunction is
the basis of our model-theoretic approach to implementation correctness.

By a behavior we mean a standard relation between two models A and B of the
speci�cation that is the behavior of some generalized relation and a realization is the
realization of some standard relation.1 At the center of the theory are the following
questions: under what circumstances is a behavior a standard homomorphic rela-
tion (and vice-versa), and under what circumstances is a realization a generalized
homomorphic relation (and vice-versa)? The main results presented in this paper
are the following: every standard homomorphic relation is a behavior (Thm. 4.3)
and without quali�cation, every realization is a generalized homomorphic relation
(Thm. 4.10).

We also give a new proof of Schoett's theorem that �rmly places it within our
general framework (Thm. 4.9). Finally, we extend Schoett's technique to deal with
a more re�ned notion of behavioral equivalence in which the behavior of nonvisible
data is considered (Thm. 4.13).

The rest of the paper is organized as follows. Sec. 1 quickly reviews basic ter-

1The term realization is intended to suggest the realization of a speci�cation in the sense of a

correct implementation of the speci�cation [5, 6]. We think of a standard relation as specifying

the behavior of a pair of environments and the environment pairs realizing the behavior as the

correct implementation of the speci�cation.



BEHAVIOR-REALIZATION ADJUNCTION 5

minology. Sec. 2 de�nes relations between environments (generalized relations). In
Sec. 3 the behavior-realization adjunction is developed. Homomorphic relations,
both standard and generalized are discussed in Sec. 4; the principal results of the
paper are included in this section. Sec. 5 contains some conclusions and a discus-
sion of future and related work. Finally, in the Appendix we show by example that
standard simulations, of the type used by Schoett, cannot be used to characterize
our stronger notion of behavioral equivalence. In the latter part of the Appendix
we explore in some detail the exact connection between standard homomorphic
relations and generalized homomorphic relations.

1 Preliminaries

In this section we review the notation and terms needed in the rest of the paper.
Signatures are hierarchical over a set of visible types and allow for the overloading

of operations [16]. Let N = f 0; 1; 2; 3; : : :g be the set of natural numbers.

De�nition 1.1 (signature). A signature � = hTYPE ;VIS;VAR ;OP ;ResTypei
consists of:

(i) A set TYPE of types together with a subset VIS of visible types .

(ii) A countably in�nite set VAR of variable symbols.

(iii) A N-indexed family OP = hOPn : n 2 Ni of operation symbols, where
OP0 is nonempty.

(iv) A N-indexed family ResType = hResTypen : n 2 Ni of partial functions
with ResTypen : OPn � TYPEn ! TYPE for each n 2 N. �

Example 1.2. A signature, �PO , for algebras with the partial order type, PO, is
de�ned as follows:

TYPEPO := fBool; POg;

VARPO := fx1; x2; : : :g;

VISPO := fBoolg;

OP0 := ftrue; falseg;

OP1 := fnotg;

OP2 := fand; or; leqg;

OPn := fg; for n > 2;

ResType0(true; hi) = Bool;

ResType0(false; hi) = Bool;

ResType1(not; hBooli) = Bool;

ResType2(and; hBool; Booli) = Bool;

ResType2(or; hBool; Booli) = Bool;

ResType2(leq; hPO; POi) = Bool:

�PO is the signature of a class of algebras for which PO can be viewed as a formal
parameter type of the kind mentioned in the Introduction. �

Suppose n is the rank of g, ~T 2 TYPEn, and ResType(g; ~T) = S. The pair

h~T; Si is called a type of g and will be written ~T ! S; ~T is called a type domain

of g and S the result type of g for ~T . Due to operation overloading, an operation
symbol may have many types but at most one result type for each type domain.
Let " denote the empty string. If g is a constant, we identify " ! S with S and
type with result type. The operation g is trivial if its set of types is empty, i.e., if
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ResType(g; ~T) is unde�ned for all ~T 2 TYPEn. We assume � contains no trivial
operations.

With each signature we associate a unique subsignature of visible types for the
purpose of de�ning observations over �.

De�nition 1.3 (visible subsignature). Assume � = hTYPE;VIS;VAR ;OP ;
ResTypei is a signature. The visible subsignature of �,

�VIS = hTYPEjVIS ;VIS;VAR ;OP jVIS ;ResTypejVIS i;

is de�ned as follows. TYPE jVIS = VIS and OP jVIS is the set of all operations in

OP whose restriction to VIS is nontrivial. For g 2 OPn and ~V 2 VISn,

ResTypejVIS (g; ~V ) =

�
ResType(g; ~V ); if ResType(g; ~V ) 2 VIS

unde�ned; otherwise: �

For the signature of Ex. 1.2, TYPEPOjVIS = fBoolg, OP2jVIS = fand; org, and
ResTypejVIS di�ers from ResType only in being unde�ned when leq is the �rst
argument.
�-terms are formed from a signature in the usual way. That is, every variable

and constant is a term, and, if g 2 OPn (with n � 1) and t1; : : : ; tn are terms,
then g(t1; : : : ; tn) is a term. A term is ground if it contains no variables. By
assumption the set of ground �-terms is nonempty. We write t(x1; : : : ; xn) for a
term t when we want to indicate that the variables actually occurring in t must be in
the list x1; : : : ; xn. In this context t(s1; : : : ; sn) denotes the result of simultaneously
substituting the terms s1; : : : ; sn respectively for x1; : : : ; xn.

De�nition 1.4 (type context). A �nite setH of the form f hx1; T1i; : : : ; hxn; Tni g,
where x1; : : : ; xn are distinct variables and T1; : : : ; Tn 2 TYPE is called a type con-
text; i.e., a type context is a �nite function from variables to types. The set of
variables f x1; : : : ; xn g of H is denoted by Dom (H) and Ti is denoted by H(xi). H
is visible if the type of every variable in H is visible. The set of all type contexts is
denoted by TCON and the set of all visible type contexts by TCON jVIS . K is a
subcontext of H if Dom(K) � Dom (H) and K(x) = H(x) for all x 2 Dom (K). �

The type inference rules for this grammar are given below.

�;H ` x : T; if H(x) = T;(ident)

�;H ` ~t : ~T ;

�;H ` g(~t) : S
; if ResType(g; ~T) = S 2 TYPE :(op-call)

When we write �;H ` t :T we mean that this sequent can be proved by applying
the above rules. In this case T is unique and is called the H-type of t.

We say that t is well H-typed if it has a H-type. When � is clear from context
we write H ` t : T . When the type context H is also clear we may speak of
\the type" of t and of t being \well-typed". We often identify the type-expression
\x :T" with the ordered pair hx; T i. Thus we will denote the extended type context
H [ fhx; T ig by H; x : T . We further streamline notation by using the expression
\t : T" when referring to a term t, with the understanding that this automatically

entails the assumption t is well-typed and of type T . We write ` ~t : ~T as shorthand
for � ` t1 : T1; : : : ; � ` tn : Tn. Similar vector abbreviations will be used below
without further explanation.
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De�nition 1.5 (context homomorphism, homomorphic pre-image). Let
H and K be type contexts. A mapping h : Dom(K) ! Dom(H) is said to be a
context homomorphism from K to H if K ` x : T implies H ` h(x) : T for every
x 2 VAR . K is called a homomorphic pre-image (or simply a pre-image) of H
under h. �

If h is a context homomorphism from K to H and x1; : : : ; xn 2 Dom (K), then
for every term t(xi; : : : ; xn) and type T

K ` t(x1; : : : ; xn) : T i� H ` t
�
h(x1); : : : ; h(xn)

�
: T:

�-algebras. Models of abstract data types with signature � are called �-algebras.
These models have interpretations for operations that are polymorphic in that they
directly model overloaded operations.

De�nition 1.6 (�-algebra). A �-algebra A =


A; f gA : g 2 OP g

�
consists of:

(i) A TYPE-indexed family of sets, A = hAT : T 2 TYPEi, called the carrier
of A.

(ii) A partial function, gA :
�S

S2TYPE AS

�n
!
S
S2TYPE AS , for each n 2 N

and g 2 OPn, called the interpretation of g, with the property that, for
every type T1 � � �Tn ! S of g and every a1 � � �an 2 AT1 � � � � � ATn ,
gA(a1; : : : ; an) is de�ned and contained in AS . �

Example 1.7. Let �PO be the signature of Ex. 1.2. The �PO-algebra INT is
de�ned as follows.

INTBool := ftt;�g;

INTPO :=Z= f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g;

trueINT(hi) = tt;

falseINT(hi) = �;

notINT(hbi) = :b;

andINT(hb1; b2i) = b1 ^ b2;

orINT(hb1; b2i) = b1 _ b2;

leqINT(hn1; n2i) = n1 � n2: �

Example 1.8. The �PO-algebra NAT is the same as INT, except that it has a
di�erent carrier for the type PO:

NATPO := N = f0; 1; 2; 3; : : :g: �
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De�nition 1.9 (VIS-reduct). The VIS-reduct of a �-algebra A is the �VIS -
algebra

AjVIS =


AjVIS ; f g

Aj
VIS : g 2 OPVIS g

�
;

where AjVIS = hAV : V 2 VISi and gAjVIS (~a) = gA(~a) for every type domain ~V
of g consisting only of visible types and every ~a 2 A~V . �

De�nition 1.10 (H-environment). LetA be a �-algebra and H a type context.
An H-environment � over A is a mapping of the variables of the domain of H intoS
S2TYPE AS such that �(x) 2 AT i� H ` x : T . The set of all H-environments in

A is denoted by ENVAH . An H-environment is visible if H is visible. �

When H is clear from context we simply call these \environments".
Let � be an H-environment and assume y 2 VAR n Dom(H). Let T 2 TYPE

and a 2 AT . The (H; y : T )-environment that assigns a to y and �(x) to each
variable x of H will be denoted by [y 7! a]�.

The notions of a subenvironment and pre-image of an environment under a
context homomorphism are de�ned in the obvious way. In particular, if � is a H-
environment and h :K ! H is a context homomorphism, then pre-image of � is
the K-environment � � h.

De�nition 1.11 (meaning). Let H be a type context, t :T a well H-typed term,
and � an H-environment. Then the meaning [[ t : T ]]A� of t under � is de�ned by
recursion on the structure of t in the usual way:

[[ x : T ]]A� = �(x); for each variable x : T:

[[ g(s1; : : : ; sn) : T ]]A� = gA
�
[[ s1 : S1 ]]

A�; : : : ; [[ sn : Sn ]]
A�
�
;

for all g 2 OPn and all terms s1; : : : ; sn: �

If H ` t(x1; : : : ; xn) : T , � 2 ENVAH , and �(x1) = a1; : : : ; �(xn) = an, then we
write tA(a1; : : : ; an) in place of [[ t : T ]]A�.

A �-algebra is term-generated if every element is denoted by tA for some ground
term t.

We are not concerned in this paper with formal speci�cations, but only with com-
paring a candidate implementation (an algebra) with a paradigm (another algebra).
The following de�nition speci�es those algebras that can be sensibly compared in
the context of this paper.

De�nition 1.12 (comparable algebras). Algebras A and B are comparable if

(i) A and B are both �-algebras, for some �.
(ii) AjVIS = BjVIS .
(iii) AjVIS is term-generated. �

Requiring the visible reducts of both algebras to be equal results in a slight
loss of generality|it is enough to have the visible reducts be isomorphic. But the
requirement simpli�es the following discussion, as the isomorphism can be ignored.

In what follows all pairs of algebras mentioned in the same context are assumed
to be comparable unless explicitly indicated otherwise.
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2 Relations Between Algebras

Simulation between comparable algebras is formalized as a binary relation be-
tween the carriers of the two algebras with certain properties. We consider two
kinds of relations between algebras, and thus two kinds of simulation. A standard
relation relates individual elements of the algebras. The new results in this paper
use a generalized relation that relates environments.

De�nition 2.1 (standard and generalized relations). Let A and B be (not
necessarily comparable) �-algebras.

(i) By a standard relation between A and B we mean a TYPE-indexed family
of binary relations R := hRT : T 2 TYPEi such that RT � AT � BT for
every T 2 TYPE .

(ii) By a generalized relation between A and B we mean a TCON-indexed

family of binary relations G := hGH : H 2 TCONi such that GH � ENVAH�
ENVBH for every H 2 TCON . �

We sometimes shorten \standard relation" to just \relation".

Recall that the Cartesian product of A�B is the �-algebra whose carrier is the
TYPE-indexed set A �B = hAT � BT : T 2 TYPEi. Thus (A� B)T = AT �BT

by de�nition and the standard relations between A and B can be identi�ed with
the indexed subsets of A�B. Although ENVAH�ENVBH is not equal to ENVA�BH ,
there is a natural correspondence between these two sets, given by h�; �i 7! � � �
where (� � �)(x) = h�(x); �(x)i for every x 2 Dom (H). In the sequel we will
identify the H-indexed sets ENVA � ENVB and ENVA�BH . Thus the generalized

relations between A and B are identi�ed with the indexed subsets of ENVA�B .

Let R and S be standard relations between A and B and between B and C,
respectively. The composition, R ; S, is the standard relation between A and C
such that, for each T 2 TYPE ,

a (R ; S)T c i� there is some b 2 BT such that a RT b and b ST c, for
all a 2 AT , c 2 CT .

Let R be a standard relation between A and B. The converse
`

R is the relation
between B and A such that, for each T 2 TYPE ,

b
`

R a i� a R b, for all a 2 AT , b 2 BT .

The composition and converse of generalized relations are de�ned similarly

By a standard visible relation between A and B we mean a standard relation
between AjVIS and BjVIS . Given any standard relation R between A and B, by
the visible part of R we mean the visible relation RjVIS = hRV : V 2 VISi. The
corresponding notions for generalized relations are de�ned in the obvious way. The
special standard and generalized relations given in the following de�nitions will be
especially useful in the sequel.
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De�nition 2.2 (visible identity relations). Let A and B be comparable �-
algebras.

(i) The visible standard identity relation, I � (A�B)VIS , is de�ned by I :=
hIV : V 2 TYPE jVIS i, where IV = f ha; ai : a 2 AV g for all V 2 VIS .

(ii) The visible generalized identity relation, I+ � ENV (A�B)jVIS , is de�ned

by I+ = hI+H : H 2 TCON jVIS i, where I
+
H = f h�; �i : � 2 ENV

Aj
VIS

H g. �

Note that I and I+ can also be considered as relations between A and B under
the assumption that IT= ; when T =2 VIS and IH= ; when H =2 TCONjVIS .

The passage from I to I+ is a special case of the following general method of
constructing a generalized relation from a standard one.

De�nition 2.3 (pointwise extension). Let R be a standard between A and
B. For each type context H = f x1 : T1; : : : ; xn : Tn g, de�ne R

+
H � ENVA�BH by

the condition

� R+
H � i� �(xi) RTi �(xi) for all i = 1; : : : ; n;

and set R+:= hR+
H : H 2 TCONi. R+ is called the pointwise extension of R. �

Conversely, every generalized relation G restricts to a standard relation G� in
the following way.

De�nition 2.4 (projective restriction). Let G be a generalized relation between
A and B. For each type T , de�ne G�T � A �B by the condition

a G�T b i� there exist H 2 TCON , �; � 2 ENVA�BH , and x with H `
x : T such that �(x) = a, �(x) = b, and � GH �.

Set G�:= hG�T : T 2 TYPEi. G� is called the projective restriction of G. �

The following useful result is easily veri�ed on the basis of the above de�nitions.

Lemma 2.5. R+� = R for every standard relation R and G�+ � G for every

generalized relation. �

In the next section we show how the behavior of an environment gives rise to
a di�erent way of associating standard and generalized relations that will prove to
be even more useful.

Homomorphic relations.

Standard or generalized relations between �-algebras that are preserved under
the operations of an algebra, in a sense made precise in the following de�nitions, are
called homomorphic relations.2 The various notions of one data structure simulating
another are de�ned in terms of relations of this kind.

2Homomorphic relations are called logical relations when extended to higher types [20]. An

independent generalization of logical relations that appears to be closely related to our notion of

homomorphic generalized relations is considered in [10].
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De�nition 2.6 (standard homomorphic relation). Let A and B be (not
necessarily comparable) �-algebras and let R be a standard relation between A
andB. R is a standard homomorphic relation, or simply homomorphic, if it satis�es
the following condition:

(SHR1) For every g 2 OPn and type ~T ! S of g,

a1 RT1 b1; : : : ; an RTn bn implies gA(a1; : : : ; an) RS gB(b1; : : : ; bn). �

De�nition 2.7 (generalized homomorphic relation). Let A and B be �-
algebras and let G be a generalized relation between A and B. G is a generalized

homomorphic relation, or simply homomorphic, if the following conditions hold:

(GHR1) Let H be a type context and let ~x 2 Dom (H)n and ~T 2 TYPEn be

such that H ` ~x : ~T . Let g 2 OPn and let type ~T ! S be a type of g.
Then for any y 2 VAR nDom (H) and any pair of H-environments �
and � in A and B, respectively,

(2.1) � GH � implies [y 7! gA(�(~x))]� GH;y:S [y 7! gB(�(~x))]�:

(GHR2) For all type contexts H and K and every context homomorphism h
from K to H ,

� GH � implies � � h GK � � h. �

The following property of generalized homomorphic relations is an immediate
consequence of (GHR2).

(GHR3) � RH � implies �jK RK �jK for all type contexts H and K such
that K is a subcontext of H .

Both properties (SHR1) and (GHR1) are called the substitution property. Prop-
erties (GHR2) and (GHR3) are respectively called the pre-image and the subcontext
properties.

Simple examples of generalized homomorphic relations are easy to construct.
The following rather complicated example will be used later to illustrate some
important concepts.

Example 2.8. Recall the �PO-algebras INT and NAT from Exs. 1.7 and 1.8.
Let H 2 TCON and h�; �i 2 ENV INT�NATH be given. We say that h�; �i is a

�nite partial order isomorphism if the following holds: for all x; y 2 Dom (H) such
that H ` x : PO and H ` y : PO, �(x) � �(y) i� �(x) � �(y). By a pre-image of
h�; �i we mean a pair of K-environments of the form h� � h; � � hi for some context
homomorphism h :K ! H . It is clear that the set of all �nite partial isomorphisms
is closed under the formation of pre-images.

Let GPO be the generalized relation between INT and NAT such that

GPOH := f h�; �i : h�; �i is a �nite partial order isomorphism

and �(x) = �(x) whenever H ` x : Boolg
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Then GPO is a generalized homomorphic relation.

Proof. To show that GPO has property (GHR1), let H be a type context and let

~x 2 Dom (H)n and ~T 2 TYPEn such that H ` ~x : ~T . Let g 2 OPn and let type
~T ! S be a type of g. Let y 2 VAR n Dom (H), and let � and � be any pair
of H-environments in INT and NAT, respectively, such that � GPOH �. If g is a
Boolean operation, the conclusion of (2.1) is obvious, so suppose g is leq. Let
leqINT(�(x1); �(x2)) = a, and leqNAT(�(x1); �(x2)) = b. If a = tt, then �(x1) �
�(x2), and so by the de�nition of a �nite partial order isomorphism, �(x1) � �(x2),
and thus b = tt. Similarly, if a = �, then b = �. So by de�nition of GPOH;y:Bool ,

[y 7! a]� GPOH;y:Bool [y 7! b]�:

To show that GPO has property (GHR2), let type contextsH and K and a context
homomorphism h fromK toH be given. Suppose � GPOH �. By the de�nition of GPOK ,
we must show that: (i) the pair h� � h; � � hi is a �nite partial order isomorphism,
i.e., for all x; y 2 Dom (K) such that K ` x : PO and K ` y : PO, �(h(x)) � �(h(y))
i� �(h(x)) � �(h(y)); (ii) (� � h)(x) = (� � h)(x) whenever K ` x : Bool, i.e.,
(h(x)) = �(h(x)) whenever K ` x : Bool. But (i) follows immediately from the
assumption that h�; �i is a �nite partial order isomorphism, and (ii) follows from
the assumption that �(x) = �(x) whenever H ` x : Bool. �

GPO is the union of pointwise extensions of standard homomorphic relations. To
see this, consider any h�; �i 2 GPOH . It is easy to check that f h�(x); �(x)i : x 2
Dom (H) g is a standard homomorphic relation whose pointwise extension consists
of all pre-images of h�; �i. Since GPO is closed under the formation of pre-images,
it must coincide with the union of all the point-wise extensions of standard homo-
morphic relations associated in the above way with its members.

It turns out that every generalized homomorphic relation is the union of point-
wise extensions of standard homomorphic relations (see Thm. A.4 in the Appendix).
It is not the case however that every generalized homomorphic relation is the point-
wise extension of a single standard homomorphic relation; in fact we shall also see
in the Appendix (Ex. A.5) that GPO itself is not of this form. This and other rela-
tionships between standard and generalized homomorphic relations will be studied
in the Appendix

According to the substitution property, homomorphic relations are preserved in
some sense by the operations of an algebra. The following lemma, whose proof is
straightforward, shows that this extends to the process of forming the meanings of
terms.

Lemma 2.9. Let G be a generalized homomorphic relation between A and B.

Then for every type contextH , for all h�; �i 2 ENVA�B , for all y 2 VARnDom (H),
if � GH �, then

[y 7! [[ t : S ]]A�]� GH;y:S [y 7! [[ t : S ]]B�]�: �

Corollary 2.10. Let G be a generalized homomorphic relation between A and

B. Then for every type context H , every h�; �i 2 ENVA�B , and for every well

H-typed term t : S, if � GH �, then [[ t : S ]]A� G�S [[ t : S ]]B�. �



BEHAVIOR-REALIZATION ADJUNCTION 13

Simulation.

Simulation is naturally homomorphic. If the action of A is to simulate that of
B, then elements of B have to be correlated with elements of A in such a way that
if b0; : : : ; bn�1 are correlated respectively with a0; : : : ; an�1, then the action of B
on the b0; : : : ; bn�1, via a g 2 OPn for instance, must be the same that of A on
a0; : : : ; an�1 via the same g. This means that gB(b0; : : : ; bn�1) must be correlated
with gA(a0; : : : ; an�1). Note that simulation does not depend on particular pairs
bi and ai considered in isolation from other pairs, but on the way B and A act
on other elements with regard to ai and bi. For the notion of simulation to be
reasonable, we require that every visible data element simulate only itself. If we
are interested only in how visible data behave, this weak notion of simulation is
su�cient. But if we are also concerned about the behavior of nonvisible data, then
a stronger notion of simulation is necessary. We now make the necessary de�nitions.

De�nition 2.11 (VIS-identical relations). Let R � A �B and G � ENVA�B .

(i) R is VIS-identical if RjVIS = I.
(ii) G is VIS-identical if GjVIS = I+. �

Example 2.12. The generalized homomorphic relation GPO of Ex. 2.8, is VIS-
identical, because when restricted to environments that have only variables of type
Bool, it is the identity relation. �

De�nition 2.13 (standard simulation). By a standard simulation of B by A

we mean a relation R � A� B that is VIS-identical, homomorphic and satis�es
the following condition:

(i) for every T 2 TYPE and a 2 AT , there exists a b 2 BT such that a RT b.

R is a standard bisimulation between A and B if both R and its converse,
`

R,
are standard simulations. �

We say that a simulates b under R if ha; bi 2 R. Note that the requirement that
R be VIS-identical (R jVIS = I) means that each visible element of A simulates
itself and only itself in B. We obtain a weaker notion of simulation by requiring
only this property and omitting the condition (i) in Def. 2.13; this weaker notion
is inherently symmetric and thus gives only a bisimulation.

De�nition 2.14 (weak standard bisimulation). By a weak standard bisimu-

lation between A and B we mean a relation R � A�B that is VIS-identical and
homomorphic. �

In a generalized simulation whole environments simulate environments. This
leads to a more powerful notion of simulation by taking the contexts in which
elements appear into account.

De�nition 2.15 (generalized simulation). By a generalized simulation of B

by A we mean a relation G � ENVA�B that is VIS-identical, homomorphic, and
such that for every H 2 TCON and � 2 ENVAH , there exists a � 2 ENVBH such
that � GH �.
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G is a generalized bisimulation between A and B if both G and its converse,
`

G,
are generalized simulations. �

We will see below in Thm. 4.3 that, if a standard relation R is homomorphic,
then so is its pointwise extension R+. It follows easily from the de�nitions involved
that, if R is a standard simulation of B by A, then R+ must be a generalized
simulation of B by A. So standard (bi)simulation is at least as strong a notion as
generalized (bi)simulation. We shall see shortly that it is in fact strictly stronger.

Example 2.16. The generalized relation GPO from Ex. 2.8 is a generalized bisim-
ulation between INT and NAT.

Proof. We have already seen that it is VIS-identical and homomorphic. To show
that it is a generalized simulation of NAT by INT, we must show that, for every
H 2 TCON and � 2 ENV INTH , there is a � 2 ENVNATH such that, in particular,
the pair h�; �i is a �nite partial isomorphism. Let x0; : : : ; xn�1 be an arrangement
of the variables in Dom (H) such that �(x0) � �(x1) � � � � � �(xn�1). If �(x0), and
hence all the �(xi), are nonnegative, then we can take � = �; otherwise, we can
shift each �(xi) to the right by the same amount j�(x0)j. The formal de�nition of

� is as follows. Let m := maxf j�(x)j :H ` x : PO; �(x)� 0 g. De�ne � 2 ENVNATH

such that:

�(x) = �(x) +m; if H ` x : PO

�(x) = �(x); if H ` x : Bool:

Then by de�nition � GPOH �. It is even easier to see that the converse of GPO is a
generalized simulation of INT by NAT. �

We shall see in the Appendix (Ex. A.1) that there is no standard bisimulation
between INT and NAT. Thus standard bisimulation is strictly stronger than
generalized bisimulation.

3 Behavior and Realization

In this section we formalize the central notions of behavior and realization. They
are similar to notions considered by Goguen and Mesequer in [5,6], and we follow
the latter's terminology.

In model theory, a speci�cation can be formalized as an observation together
with an expected result. The free variables of such an observation constitute its
parameters. For example, one might specify that leq(x; x) should have tt as its
expected result. An environment � over a PO-algebra NAT \realizes" this speci�-
cation if the value of [[ leq(x; x) : Bool ]]NAT� = tt.

Conversely, one can ask about the behavior of implementations, i.e., about the
behavior of environments over algebras. A \behavior" of an environment is the
meaning of some observation in that environment. For example, tt is a behavior of
�, for the observation leq(x; x), if [[ leq(x; x) : Bool ]]NAT� = tt.

Since we are concerned with the behavior of nonvisible data, it is technically
simpler to deal with \procedures." Let H be a type context; formally, any well
H-typed term t is called an H-procedure; a procedure need not return a result of



BEHAVIOR-REALIZATION ADJUNCTION 15

visible type. We reserve the term observation for procedures that output visible
data. Both may have free variables that are of nonvisible types. Finally, by a
program we mean an observation whose free variables are all of visible type.

De�nition 3.1 (behavior and realization). Let A be a �-algebra, and let
H 2 TCON and T 2 TYPE . Let � 2 ENVAH , a 2 AT , and let t be an H-
procedure of type T . Then � realizes a under t and a is the behavior of � under t
if [[ t : T ]]A� = a. Also, a is a visible behavior of � if a 2 AT for some T 2 VIS . �

To prove correctness of an ADT implementation, one cannot focus on the behav-
ior of a particular data element but must consider the contexts in which it can be
used. Consequently, one way to specify ADTs is to focus on the behavior-function
of environments, �, that is, the function that maps each H-procedure t to the be-
havior [[ t :T ]]A� of � under t, and then to specify the family of acceptable functions
of this kind, say, by some formal speci�cation language.

Alternatively, in the model-theoretic approach, which we follow, the behavior
of � in A is compared with the behavior of a paradigm environment � in some
paradigm B (selected from some class of such paradigms). We shift the focus
therefore from the behavior-function to the comparative behavior relation, which is
a standard relation between A and B that associates, for each H-procedure t, the
behavior of � under t in A with the behavior of � under t in B.

De�nition 3.2 (comparative behavior and realization). Let A and B be
comparable �-algebras.

(i) Let H 2 TCON and h�; �i 2 ENVA�BH . The comparative behavior of �
and � is the standard relation, BE(�; �), de�ned by

BE(�; �)T :=
�
ha; bi : for some H-procedure t of type T ,

a = [[ t : T ]]A� and b = [[ t : T ]]B�
	

(ii) Let T 2 TYPE and ha; bi 2 (A � B)T . The comparative realization of a
and b is the generalized relation, RE(a; b), de�ned by

RE(a; b)H :=
�
h�; �i : for some H-procedure t of type T;

[[ t : T ]]A� = a and [[ t : T ]]B� = b
	
: �

Note that for all ha; bi 2 (A�B)T and h�; �i 2 ENVA�BH ,

(3.1) h�; �i 2 RE(a; b)H i� ha; bi 2 BE(�; �)T .

Example 3.3. Recall the �PO-algebras INT and NAT from Examples 1.7 and
1.8. Let H = fx : PO; y : POg, and let the H-environments � 2 ENV INTH and

� 2 ENVNATH be de�ned by � = fhx;�3i; hy; 5ig and � = fhx; 7i; hy; 8ig. Note
that h�; �i is a �nite partial isomorphism as de�ned in Ex. 2.8. So by de�nition,
h�; �i 2 GPO, where GPO is the generalized homomorphic relation between INT and
NAT from Ex. 2.8.
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The only H-procedures of type PO are x and y, and the only H-procedures of
type Bool are true, false, leq(x; x), leq(x; y), leq(y; x), and leq(y; y). Hence
BE(�; �)

PO
= fh�3; 7i; h5; 8ig, and BE(�; �)

Bool
is the identity relation on the Boole-

ans, i.e. BE(�; �)
Bool

= I, where I is the visible standard identity relation between

INT andNAT (see Def. 2.2). RE(�3; 7)H is the set of all pairs h�; �i 2 ENVA�BH g
such that either �(x) = �3 and �(x) = 7 or �(y) = �3 and �(y) = 7. RE(tt; tt)H =

ENVA�BH .
For future reference, note that GPO consists precisely of those pairs of environ-

ments h�; �i such that BE(�; �)
Bool

= I. �

In the sequel we often speak simply of the behavior of a pair of environments
instead of their comparative behavior.

The following de�nition extends the notion of comparative behavior to a family
of pairs of environments in the natural way; that is, it associates a standard relation
with each generalized relation between A and B. Comparative realization can be
similarly extended, but we consider the dual notion instead, which turns out to be
much more useful for our purposes.

De�nition 3.4 (behavior and dual realization operators). Let A and B be
comparable �-algebras.

(i) Let G � ENVA�B . De�ne BE(G) := hBE(G)T : T 2 TYPEi, where

ha; bi 2 BE(G)T i� 9H2TCON9h�;�i2GH
�
ha; bi 2 BE(�; �)T

�
.

BE(G) is called the behavior of G and BE(G)jVIS is the visible behavior of
G. BE as a function from the generalized to standard relations between A
and B is called the behavior operator on A�B.

(ii) Let R � A�B. De�ne RE@(R) := hRE@(R)H : H 2 TCONi, where

h�; �i 2 RE@(R)H i� 8T2TYPE8ha;bi=2RT

�
h�; �i =2 RE(a; b)H

�
.

RE@(R) is called the dual realization of R. RE@ as a function from the
standard to generalized relations between A and B is called the dual re-
alization operator on A�B. �

Note that for all H 2 TCON and h�; �i 2 ENVA�BH ,

(3.2) h�; �i 2 RE@(R)H� i� 8T2TYPEBE(�; �)T � RT .

Example 3.5. Let GPO be the generalized relation of Ex. 2.8. As we have already
observed in Ex. 3.3, BE(GPO)

Bool
is the identity relation, and it is easy to see that

BE(GPO)
PO
=Z� N. �

Before giving an example of the dual realization operator, we de�ne the notion
of an extended visible identity relation. The standard relation BE(GPO), which
as we have observed above is the identity relation on the visible type of �PO and
the universal relation on the nonvisible type, is a special case of general class of
extended visible identity relations that proves to be quite useful in the sequel.
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De�nition 3.6 (extended visible standard identity relation). For each pair
of comparable algebras A and B, the extended visible standard identity relation I�

is de�ned by

I�T=

�
IT (= f ha; ai : a 2 AT g); if T 2 VIS

AT � BT ; if T 2 TYPE nVIS . �
:

Example 3.7. Consider the extended visible standard identity relation I� between
INT and NAT. Its dual realization, RE@(I�) is the generalized relation GPO of
Example 2.8. This follows easily from (3.2) and the observation made in Ex. 3.5. �

The next in the next Theorem collects the basic properties of the behavior and
dual realizations operators. Its proof is straightforward.

Theorem 3.8. For all R;S � A� B and all G;H � ENVA�B :

(i) G � H implies BE(G) � BE(H);
(ii) R � S implies RE@(R) � RE@(S);
(iii) BE

�
RE@(R)

�
� R;

(iv) G � RE@
�
BE(G)

�
. �

The sets of standard and generalized relations between �xed A and B are par-
tially ordered sets (posets) by set-theoretical inclusion, and the operators BE and
RE@ are mappings between these two posets. Thm. 3.8 says that BE and RE@

form a Galois connection when viewed as mappings between the poset of standard
relations and the dual poset of generalized relations (see e.g. Birkho� [2], p.124).

The basic adjunction. Like all posets, the standard and generalized relations
between A and B can be viewed as simple categories, i.e., categories in which
there is at most one arrow between any pair of objects. BE and RE@ and their
duals preserve inclusion and thus are functors between the two categories. In the
following corollary we give the well-known alternative characterization of the Galois
connection as an adjunction between simple categories. We will use this adjunction
repeatedly in the sequel.

Corollary 3.9 (Basic Adjunction). Then for every R � A � B and every G �
ENVA�B :

BE(G) � R i� G � RE@(R):

Proof. If BE(G) � R, then by Thm. 3.8(ii)(iv), G � RE@
�
BE(G)

�
� RE@(R).

Conversely, if G � RE@(R), then by Thm. 3.8(i)(iii), BE(G) � BE
�
RE@(R

�
) �

R. �

The basic adjunction can be paraphrased in the following way. For every stan-
dard relation R, its dual realization RE@(R) is the largest generalized relation
whose behavior is included in R, and for every generalized relation G, its behavior
BE(G) is the smallest standard relation whose dual realization includes G.

By specializing to the behaviors of generalized relations of the form fh�; �ig we
get the following useful local version of the basic adjunction.
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Corollary 3.10. LetA;B be comparable andH 2 TCON . Then for every h�; �i 2
ENVA�BH and every R � A� B:

BE(�; �)� R i� � RE@(R)H �: �

We now identify certain relations as behaviors and dual realizations.

De�nition 3.11 (behavior and dual realization).

(i) R � A� B is a behavior if BE
�
RE@(R)

�
= R.

(ii) G � ENVA�B is a dual realization if RE@
�
BE(G)

�
= G. �

It follows from the fact that BE and RE@ form a Galois connection that R is a
behavior i� R = BE(G) for some G � ENVA�B and that G is a dual realization
i� G = RE@(R) for some R � A �B. The sets of behaviors and dual realizations
form isomorphic complete lattices under set-theoretic inclusion.

Lemma 3.12. Let A and B be comparable and let I be the visible standard

identity relation between them. Then I � R for every nonempty behavior R. It

follows immediately that

(i) for every nonempty G � ENVA�B , I � BE(G);
(ii) for every H 2 TCON and h�; �i 2 ENVA�BH , I � BE(�; �).

Proof. Let R be any nonempty behavior. Then R = BE(G) for some nonempty
G (G is nonempty since the empty generalized relation has empty behavior). Let
H 2 TCON be such that GH is nonempty and let �; � be H-environments such that
� GH �. Every ground term t : T is an H-procedure. Thus tA = [[ t : T ]]A� BE(G)T
[[ t :T ]]B� = tB . Since AjVIS = BjVIS is term-generated, every visible data element
is the value of a ground term. Hence, I � BE(G). �

Recall that the extended visible standard identity relation I� between A and
B is the identity on visible types and the universal relation on nonvisible types
(Def. 3.6). I� is useful because of the following property:

(3.3) R jVIS � I i� R � I�, for every R � A� B.

We have the following consequence of the basic adjunction and its local version.
Recall that R � A �B is VIS-identical if RjVIS = I (Def. 2.11).

Corollary 3.13.

(i) RE@(I�) is the largest generalized relation between A and B whose be-

havior is VIS-identical, i.e.,

for all nonempty G � ENVA�B , BE(G) jVIS = I i� G � RE@(I�).

(ii) Let H 2 TCON.

for all h�; �i 2 ENVA�BH , BE(�; �)jVIS = I i� � RE@(I�) �.
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Proof. (i). Let G � ENVA�B with G 6= ;. Since I � BE(G) jVIS by Lem. 3.12, we
have BE(G) jVIS = I i� BE(G) jVIS � I. Now applying �rst the equivalence (3.3)
and then the basic adjunction we get

BE(G) jVIS = I i� BE(G) � I� i� G � RE@(I�):

(ii) follows similarly from the local version of the basic adjunction. �

VIS-behavioral reducibility and equivalence. We now apply this machinery
to visible behavior. In most practical situations one is interested in the visible
behavior of H-environments, that is, the function that assigns to each (visible) H-
observation t :V the value [[ t :V ]]A�. We re�ne the notion of comparable behavior
accordingly.

De�nition 3.14 (VIS-behavioral equivalence). Let H 2 TCON and h�; �i 2
ENVA�BH . Then � and � are VIS-behaviorally equivalent i� BE(�; �) is VIS-
identical, i.e., BE(�; �)jVIS = I. �

By Cor. 3.13, � and � are VIS-behaviorally equivalent i� �RE@(I�) �.
According Schoett [18], comparable algebras A and B are behaviorally equiva-

lent if every visible environment is VIS-behaviorally equivalent to itself when viewed
as an environment of A and then of B; that is, if for every visible type context H
(see Def. 1.4) the following holds for every H-environment � of AjVIS = BjVIS :

[[ t : V ]]A� = [[ t : V ]]B�, every H-observation t : V .

We consider a stronger notion of behavioral equivalence that takes into account
all environments, not just visible ones. Since there is no reasonable way to identity
the nonvisible environments of A with those of B, we �rst de�ne the asymmetric
notion of behavioral reducibility. We say thatA is VIS-behaviorally reducible to B
if, for every environment � in A (visible or nonvisible), we can �nd an environment
� in B that is VIS-behaviorally equivalent to it. Furthermore, if � is visible, �
must equal �; i.e., � must have the same visible behavior in both algebras. Recall
the de�nition of the visible generalized identity relation given in Def. 2.2.

De�nition 3.15 (VIS-behavioral reducibility and equivalence). Let A
and B be comparable algebras. A is VIS-behaviorally reducible to B if both the
following conditions hold:

(i) for every H 2 TCON and � 2 ENVAH , there exists a � 2 ENVBH such that
BE(�; �)jVIS = I, or equivalently, � RE@(I�)H �;

(ii) the behavior of I+ is VIS-identical, i.e., BE(I+)jVIS = I.

The �-algebras A and B are VIS-behaviorally equivalent if each of A and B is
VIS-behaviorally reducible to the other. �

The equivalence of the two conditions in part (i) is Cor. 3.13. We note that
the condition (ii) of Def. 3.15 is essentially identical to Schoett's weaker notion of
behavioral equivalence. We formalize it as follows.
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De�nition 3.16 (weak VIS-behavioral equivalence [18]). Algebras A and B
are weakly VIS-behaviorally equivalent i� the behavior of I+ is VIS-identical, i.e.,
BE(I+)jVIS = I. �

Weak VIS-behavioral equivalence refers only to the behavior of visible environ-
ments. It is not di�cult to �nd examples of comparable algebras that are not
weakly VIS-behaviorally equivalent. In fact, since the visible parts of all algebras
are assumed to be term-generated, it is not hard to see that A and B fail to be
weakly VIS-behaviorally equivalent i� there exists a ground �-term t of visible
type such that tA 6= tB . Note however, that if A and B are both models of a
su�ciently complete speci�cation ([9]), then by de�nition every ground visible �-
term is logically equivalent to some ground �VIS -term, and hence A and B are
automatically weakly VIS-behaviorally equivalent.

We now turn to the study of a stronger notion of VIS-behavioral equivalence.

Proposition 3.17. A and B are VIS-behaviorally equivalent i� the dual realiza-

tion of I� is VIS-identical, i.e., I+ = RE@(I�) jVIS .

Proof. Applying the adjunction of Cor. 3.13(i) with G = I+, we get BE(I+)jVIS =
I i� I+ � RE@(I�). Thus A and B are weakly VIS-behaviorally equivalent i�
I+ � RE@(I�) jVIS . It remains to verify the inclusion RE@(I�) jVIS � I+.

Let H 2 TCON jVIS and assume � RE@(I�)H �. Then by Cor. 3.10 BE(�; �) �
I�, and hence

(3.4) BE(�; �)jVIS � I:

Consider any x 2 Dom (H). Then H ` x : V with V 2 VIS . So x : V is a visible
H-observation and hence (3.4) implies �(x) = [[ x :T ]]A� = [[ x :T ]]B� = �(x). Thus
�(x) = �(x) for all x 2 Dom(H), i.e., � = �. �

4 Homomorphic Behavior and Dual Realization

In this section we answer the following question: when are behavior and dual re-
alization homomorphic, and thus candidates for simulations? It turns out that dual
realization is always homomorphic (Thm. 4.10), but that behavior is homomorphic
only under certain special circumstances (Cor. 4.4 and Thm. 4.7). These results
will then be used to specify the exact correlation between simulation and VIS-
behavioral equivalence in Thms. 4.9 and 4.13. As a start towards these results, we
show that the projective restriction of a generalized homomorphic relation is always
a behavior.

Proposition 4.1. Let G � ENVA�B . If G is homomorphic, then G� = BE(G).

Proof. We �rst show that, for any generalized relation G, G� � BE(G). Let T 2
TYPE and ha; bi 2 (A�B)T . Then, by the de�nition of G�, a G� b i� there is a
H 2 TCON and a h�; �i 2 GH such that ha; bi = h�(x); �(x)i for some x 2 Dom(H)
such that H ` x :T . Applying the de�nition of BE(G) to the H-procedure x :T , we
get that a G� b implies a = [[ x :T ]]A� BE(G)T [[ x : T ]]B� = b. Hence G� � BE(G).

Now assume G is homomorphic. Let a 2 AT and b 2 BT be given and suppose
a BE(G)T b. Then by de�nition of BE(G) there exist H 2 TCON, an H-procedure
t:T , andH-environments � and � inA andB, respectively, such that a = [[ t:T ]]A�,
b = [[ t : T ]]B�, and � GH �. By Cor. 2.10 we have a G�T b. �
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Corollary 4.2. Let G � ENVA�B . Assume G is homomorphic. Then if G is

VIS-identical, so is its behavior. �

Theorem 4.3. Let R be a standard relation. The following are equivalent.

(i) R is homomorphic;

(ii) R+ is homomorphic;

(iii) R = BE(R+).

Proof. (i) implies (ii): Assume R is homomorphic. Let H be a type context and
� and � H-environments such that � R+

H �. By de�nition of R+, we have

(4.1) �(x)RH(x) �(x), for all x 2 Dom (H).

To show that R+ has the pre-image property, let K 2 TCON and let h : K ! H .
We must show that � � h R+

K � � h. This follows from

�
� � h

�
(y)RK(y)

�
� � h

�
(y), for all y 2 Dom (K).

But this in turn follows immediately from formula (4.1) and the fact that K(y) =
H
�
h(y)

�
and

�
� � h

�
(y) = �(h(y)).

To verify the substitution property, let g 2 OPn and ~x 2 Dom (H)n. Let ~T ! S

be a type of g such that H ` ~x : ~T . We must show, for all variables y =2 Dom (H),

(4.2) [y 7! gA(�(~x))]�R+
H;y:S [y 7! gB(�(~x))]�:

But �(~x) R~T �(~x) by formula (4.1), and hence gA(�(~x)) RS gB(�(~x)) since R is
homomorphic. Formula (4.2) now follows immediately from formula (4.1).

(ii) implies (iii): If R+ is homomorphic, then R = R+� = BE(R+); The
�rst equality holds for any standard relation (Lem. 2.5), and the second follows by
Prop. 4.1.

(iii) implies (i): Assume R = BE(R+). To verify that R has the substitution

property, let g 2 OPn and ~T ! S be a type of g. Let ~a 2 An, ~b 2 Bn be such that

~a R~T
~b. We must show

(4.3) gA(~a) RS g
B(~b):

Choose any ~x 2 VARn and let H := ~x : ~T . Let � and � be the H-environments

such that �(~x) = ~a and �(~x) = ~b. Then � R+ �, and hence

gA(~a) = [[ g(~x) : S ]]A� BE(R+)S [[ g(~x) : S ]]B� = gB(~a):

This gives formula (4.3). �

Corollary 4.4. If R is homomorphic standard relation, then so is BE(R+). �

Homomorphic behavior. The last theorem gives one condition for a generalized
relation to have homomorphic behavior. Theorem 4.7 below describes a much larger
class with this property. We �rst note that the comparative behavior of any pair
of environments is homomorphic.
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Proposition 4.5. For every H 2 TCON and h�; �i 2 ENVA�BH , BE(�; �) is a

standard homomorphic relation.

Proof. Let g 2 OPn and ~T ! S be a type of g. Suppose ~a 2 A~T and ~b 2 B~T is

such that ~a BE(�; �)~T
~b. Then by de�nition of BE(�; �), there exists, for each i, an

H-procedure ti : Ti such that [[ ti : Ti ]]
A� = ai and [[ ti : Ti ]]

B� = bi. Thus

gA(~a) = [[ g(t1; : : : ; tn) : S ]]
A� BE(�; �)S [[ g(t1; : : : ; tn) : S ]]

B� = gB(~b): �

We now develop the mechanism for isolating the property of an arbitrary gener-
alized relation that will allow us to infer the homomorphic character of its behavior
from that of its component pairs of environments.

Let H = f x1 :T1; : : : ; xn :Tn g and K = f y1 :S1; : : : ; ym :Sm g be type contexts.
By the disjoint union of H and K, in symbols H t K, we mean the type context
f x1 : T1; : : : ; xn : Tn; y01 : S1; : : : ; y

0
m : Sm g, where, for each i = 1; : : : ; m, y0i = yi

if yi =2 f x1; : : : ; xn g, and otherwise, y0i is the �rst variable z (in a �xed standard
ordering of the variables) such that z =2 f x1; : : : ; xn; y

0
1; : : : ; y

0
i�1 g. Note that H is

a subcontext of H tK and K is obtained from a subcontext of H tK by a change
of variables.

Let � and � be H- and K-environments, respectively. The disjoint union � t �
of � and �, a H tK-environment, is de�ned in the obvious way: (�t �)(x) = �(x)
for each x 2 Dom (H) and (� t �)(y0) = �(y) for each y 2 Dom (K). The following
lemma characterizes the behavior of the disjoint union of pairs of environments.

Lemma 4.6. Let H;K 2 TCON , h�; �i 2 ENVA�BH , and h�; �i 2 ENVA�BK .

Then

BE(�; �)[ BE(�; �) � BE(� t �; � t �):

Proof. Suppose a BE(�; �)T b. Then there is an K-procedure t : T such that a =
[[ t : T ]]A� and b = [[ t : T ]]B�. Let �0 , �0, t0, and T 0 be obtained respectively from
�, �, t, and T by the appropriate change of variables. Then t0 : T is a (H t K)-
procedure and a = [[ t0 : T ]]A�0 and b = [[ t0 : T ]]B�0. Hence a BE(� t �; � t �)T b.
In a similar way we get BE(�; �)� BE(� t �; � t �): �

The next theorem says that if a generalized relation preserves disjoint unions,
then it has homomorphic behavior.

Theorem 4.7. Let G be a generalized relation between A and B. Assume that G
is closed under disjoint union in the following sense: for all H , K, �, �, �, and �
such that H;K 2 TCON , � 2 ENVAH , � 2 ENVBH , � 2 ENVAK , and � 2 ENVBK ,

we have that

� GH � and � GK � imply (� t �) GHtK (� t �):

Then BE(G) is homomorphic.

Proof. Let g 2 OPn. Let ~T = T1 � � �Tn be a type domain of g and S the correspond-

ing result type. Let ~a 2 A~T and ~b 2 B~T such that ~a BE(G)~T
~b. For each i there is a

Hi 2 TCON and Hi-environments �i; �i such that �i GHi
�i and ai BE(�i; �i)Ti bi.
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By Lem. 4.6 we have ai BE(�1 t � � � t �n; �1 t � � � t �n)Ti bi for all i. Thus by

Prop. 4.5 gA(~a) BE(�1 t � � � t �n; �1 t � � � t �n)S g
B(~b). But by hypothesis

(�1 t � � � t �n) GH1t���tHn
(�1 t � � � t �n):

So by de�nition gA(~a) BE(G)S g
B(~b). �

Corollary 4.8. BE(I+) is homomorphic.

Proof. Let H;K 2 TCON and let � I+H � and � I+K �. Then H and K are both
visible and � = � and � = �. But then �t� = �t� and hence (�t�) I+HtK (�t�).
Thus BE(I+) is homomorphic by Thm. 4.7. �

By the basic adjunction, BE(I+) is the smallest standard homomorphic relation
whose dual realization includes I+.

We now have the machinery in place to prove Schoett's algebraic characterization
of weak VIS-behavioral equivalence (Def. 3.16).

Theorem 4.9 (Schoett [18]). Algebras A and B are weakly VIS-behaviorally

equivalent i� there exists a weak bisimulation between A and B.

Proof. Assume A and B are weakly VIS-behaviorally equivalent, i.e., assume that
BE(I+) jVIS = I. Since BE(I+) is also homomorphic by Cor 4.8, BE(I+) itself is
the desired weak bisimulation (Def. 2.14). Assume now that there exists a weak
bisimulation R between A and B. Then R is VIS-identical by de�nition, i.e.,
RjVIS = I. Thus I � R and hence BE(I+) � BE(R+) since + and BE are both
monotonic operators. But R is homomorphic so BE(R+) = R by Thm. 4.3(iii);
hence BE(I+)jVIS � RjVIS = I. Thus A and B are weakly VIS-behaviorally
equivalent by de�nition. �

Note that, if any homomorphic VIS-identical standard relation betweenA andB
exists, then BE(I+) is the smallest. Hence checking that BE(I+) is homomorphic is
necessary and su�cient for establishing a weak-bisimulation. This might be useful
in devising algorithms to perform such checks.

Extension of Schoett's theorem. Schoett's theorem provides an algebraic char-
acterization of weak VIS-behavioral equivalence, but it deals only with the behavior
of the same visible environment in two di�erent algebras. Although standard rela-
tions provide an algebraic characterization of weak VIS-behavioral equivalence, we
will see in the Appendix that they are incapable of characterizing VIS-behavioral
equivalence in general. For this purpose one has to be able to compare the behavior
of di�erent, nonvisible environments, i.e., one has to turn to generalized relations.
Thus we use dual realization as our main tool in our extension of Schoett's theorem.
We begin our study of by showing that, in contrast to the situation for behavior,
the dual realization of every standard relation is homomorphic.

Theorem 4.10. Let R be a standard relation. Then RE@(R) is a generalized

homomorphic relation.

Proof. We verify that RE@(R) has the properties (GHR1) and (GHR2). Let H be

a type context and let ~y 2 Dom (H)n and ~T 2 TYPEn such that H ` ~y : ~T . Let
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g 2 OPn and ~T ! S be a type of g. Let z 2 VAR n Dom (H) and let � and � be
H-environments in A and B, respectively. Assume

(4.4.) � RE@(R)H �

To verify (GHR1) we must show

(4.5) [z 7! gA(�(~y))]�RE@(R)H;z:S [z 7! gB(�(~y))]�:

Let t(z; ~x) : U be a (H; z : S)-procedure, where ~x is a list of the variables in
Dom (H). Let s = t(g(~y); ~x). Then s : U is a H-procedure and

[[ t:U ]]A
�
[z 7! gA(�(~y))]�

�
= [[ s:U ]]A� RU [[ s:U ]]B� = [[ t:U ]]B

�
[z 7! gB(�(~y))]�

�
:

Since this holds for every (H; z :S)-procedure t, (4.5) holds by de�nition of RE@(R).
Hence RE@(R) has the substitution property.

To verify it has pre-image property, let H;K 2 TCON and let h be a context
homomorphism from K to H . Let ~x be a list of the variables of K. Let � and � be
H-environments in A and B, respectively, such that (4.4) holds. We have to show
that ��h RE@(R)K � �h. Let t(~x) :T be a K-procedure, and let s = t(h(~x)). Then
s : T is an H-procedure and

[[ t : T ]]A� � h = [[ s : T ]]A� RT [[ s : T ]]B� = [[ t : T ]]B� � h:

This holds for every K-procedure t : T . So � � h RE@(R)K � � h, and RE@(R) has
the pre-image property. �

An interesting side bene�t of this theorem is a completely algebraic characteri-
zation of RE@(R) (involving neither the notions of behavior nor realization) as the
largest generalized relation whose projective restriction is included in R.

Corollary 4.11. Let R � A�B.

RE@(R) =
[
f G : G � ENVA�B , G homomorphic, and G� � Rg:

Proof. Let H =
T
f G : G � ENVA�B , G homomorphic, and G� � Rg. The gen-

eralized relation RE@(R) itself is homomorphic by the theorem, and RE@(R)� =
BE
�
RE@(R)

�
� R by Prop. 4.1. Thus RE@(R) � H. Conversely, suppose G is

a generalized homomorphic relation such that G� � R. Then G� = BE(G) by
Prop. 4.1, so BE(G) � R and hence G � RE@(R) by the basic adjunction. Thus
H � RE@(R). �

The following local analogue of Schoett's theorem (Thm. 4.9) applies to a pair
of possibly nonvisible environments.
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Theorem 4.12. Let and H 2 TCON . H-environments � and � overA and B are

VIS-behaviorally equivalent i� there exists a VIS-identical generalized homomor-

phic relation G between A and B such that � G �.

Proof. Let � and � be H-environments in A and B, respectively. By the local
version of the basic adjunction (Cor. 3.10) we have

BE(�; �)jVIS � I i� � RE@(I�)H �.

Thus RE@(I�) is the set of all VIS-behaviorally equivalent pairs of environments.
RE@(I�) is homomorphic by Thm. 4.10. �

The following extends the local analogue of Schoett's theorem to algebras. It
is the promised exact characterization of VIS-behavioral reducibility and equiva-
lence. The essential idea of the proof is that RE@(I�) is the largest homomorphic
generalized relation between A and B whose behavior is VIS-identical.

Theorem 4.13. Let A and B be comparable algebras. A is VIS-behaviorally

reducible to B i� there exists a generalized simulation of B by A. The algebras

A and B are VIS-behaviorally equivalent i� there is a generalized bisimulation

between A and B.

Proof. Assume A is VIS-behaviorally reducible to B. Then by Def. 3.15(i), for ev-
eryH 2 TCON and � 2 ENVAH , there is a � 2 ENVBH such that � RE@(I�)H �. We
also have RE@(I�) homomorphic by Thm. 4.10 and VIS-identical by Cor. 3.13(i).
Hence by de�nition RE@(I�) is a generalized simulation of B by A.

Suppose that G is a generalized simulation of B by A. Then by de�nition, G
is homomorphic and VIS-identical. So its behavior is VIS-identical by Cor. 4.2.
Thus G � RE@(I�) by Cor. 3.13(i). That A is VIS-behaviorally reducible to B

now follows easily. For suppose � 2 ENVAH . Then by the assumption that G is a
generalized simulation, there is a � 2 ENVBH such that � GH �. Thus � RE@(I�) �,
and hence BE(�; �)jVIS = I by Cor. 3.13(ii).

The second part of the theorem follows immediately from the �rst. �

Term-generated speci�cations. The previous theorem algebraically character-
izes VIS-behavioral equivalence of algebras in terms of generalized homomorphic
relations. But it would be preferable to characterize them in terms of standard
homomorphic relations. This is not always possible, by Ex. A.1. However, for
term-generated algebras we do get such a characterization.

Theorem 4.14. AssumeA andB are term-generated. ThenA isVIS-behaviorally

reducible to B i� there exists a standard simulation of A by B. Also A and B are

VIS-behaviorally equivalent i� there is a standard bisimulation between A and B.

Proof Sketch. Assume A is VIS-behaviorally reducible to B. We will show that
the desired simulation of A by B is BE

�
RE@(I�)

�
. By using properties of I�,

one can show that BE
�
RE@(I�)

�
is homomorphic (this is the sketchy part). By

Thm 4.10 and Prop. 4.1 BE
�
RE@(I�)

�
=RE@(I�)

�
. The behavior BE

�
RE@(I�)

�
is VIS-identical by Cor. 4.2. It remains only to verify that BE

�
RE@(I�)

�
satis�es

condition (i) of Def. 2.13. Let T 2 TYPE and a 2 AT . Let x 2 VAR and H = x :T .
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Let �a = fhx; aig. By assumption there is an H-environment �b = fhx; big of B

such that �a RE@(I�) �b. Then a RE@(I�)
�
b, and hence a BE

�
RE@(I�)

�
b. So

BE
�
RE@(I�)

�
is a standard simulation of A by B.

Assume now that there exists a standard simulation R of A by B. R is VIS-
identical, so R � I�. R is homomorphic, so R+ is homomorphic and R = BE(R+)
by Thm. 4.3. Thus by the basic adjunction,

(4.6) R+ � RE@(I�):

Let H 2 TCON and � 2 ENVAH . Let H = f x1 :T1; : : : ; xn :Tn g and let � 2 ENVBH
such that, for each i = 1; : : : ; n, �(xi) RTi �(xi); such a � exists because R satis�es
condition (i) of Def. 2.13. Thus � R+

H � and hence � RE@(I�) � by (4.6). So A
VIS-behaviorally reduces to B.

The second part of the theorem is an immediate consequence of the �rst part. �

5. Discussion

In this section we discuss related work, future work, and o�er some conclusions.

Related work. In the main body of the paper we have discussed in some detail
how our work relates to the work of Schoett [18]. Here we want to make some brief
remarks about its connection with the more distantly related, but nevertheless
inuential, work of Goguen and Meseguer.

The decision to formulate our results as a behavior-realization adjunction was
inspired by Goguen's [5] categorical theory of automata [5] and its subsequent
extension to general modules by Goguen and Meseguer [6, 7]. But the relationship
between our theory of behavior, realization, and the associated adjunction and the
corresponding theory of Goguen and Meseguer is not straightforward. Roughly
speaking, in [6, 7] the behavior of an algebra A is de�ned pretty much the way
Schoett does, namely, as the abstract function from the set of ground programs
to the set of visible data elements that maps each program to its output, when
run in A. (By a ground program we mean a program that has no input variables.
There is no loss of generality by restricting to programs of this kind because, since
programs can take only visible data as input, and the visible part of A is term-
generated, we can assume the input data is actually part of the program's code.)
The realization of an abstract behavior is de�ned to be any algebra whose concrete
behavior coincides with the given abstract one. Let PROG stand for the set of all
ground programs and ALG the class of all �-algebras under consideration. The
members of ALG are assumed to be pairwise comparable in the sense of Def. 1.12.
Fix one of them, say B, so that we can use BjVIS to represent the visible part
of every algebra in ALG. The core of the behavior-realization relationship can be
thought of as a function of type

(5.1) ALG� PROG! BjVIS :

Providing ALG and PROG ! BjVIS with the structure of categories in a natural
way, and then Currying, Goguen and Meseguer get the behavior functor

(5.2) E : ALG! (PROG! BjVIS ):
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This functor turns out to have right adjoint,

(5.3) N : (PROG! BjVIS )! ALG;

a generalization of the construction of the minimal machine from the theory of �nite
automata.

The view of behavior and realization in this paper is very di�erent, but it is
possible to put it into the same context as that of Goguen and Meseguer's so
that we can make some comparisons that might prove useful for �nding a common
generalization. Let PROC = hPROCH : H 2 TCONi where PROCH is the set
of all H-procedures. (Note that PROC is much wider than the class of ground
programs because, not only can a procedure return a nonvisible data element, but
nonvisible input variables are admitted.) While the algebra A is treated as a
variable in [6, 7], in e�ect we �x two comparable algebras A and B and consider
their Cartesian product A�B. We have de�ned a behavior as a special subset of
the carrier A�B of A�B, but we could just as well de�ne it as a function of type

PROC� G ! A� B;

where G is a generalized relation and PROC� G = hPROCH � GH : H 2 TCONi.
In order to put our notion of the behavior-dual-realization relationship into a form
similar to that of (5.1) a technical transformation is required. In the present context

the class of dual realizations can be identi�ed with special subsets of ENVA�B ,
i.e., members of the powerset P(ENVA�B). Consider the partial function of type

P(ENVA�B)� PROC � ENVA�B ! A� B

that, for any G 2 P(ENVA�B), type context H , and


t : T; h�; �i

�
2 PROCH �

ENVA�BH , takes the value


[[ t :T ]]A�; [[ t :T ]]B�

�
2 AT �BT if h�; �i 2 GH ; and is

unde�ned otherwise. Currying once we get a representation of the behavior-dual-
realization relationship as a function of type

P(ENVA�B)� PROC! (ENVA�B ! A�B);

corresponding to (5.1), and Currying once more we get �nally the behavior functor

BE : P(ENVA�B)!
�
PROC! (ENVA�B ! A� B)

�
;

which corresponds to (5.2). This functor also turns out to have a right adjoint

(5.4) RE@ :
�
PROC! (ENVA�B ! A�B)

�
! P(ENVA�B):

The adjunction of course is just the basic adjunction Cor. 3.9 in another form.

Future work. The main work we plan to do in the future is to use our results to
study behavioral subtyping [1, 11]. In earlier work [12] we gave a su�cient algebraic
condition for legal behavioral subtyping by using standard homomorphic relations.
Using the techniques in this paper, we believe that we can prove a necessary and
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su�cient condition for there to be \no surprises" when values of subtypes are used
in place of corresponding values of their supertypes. We should also be able to
characterize the exact circumstances under which our earlier de�nition of legal
behavioral subtyping is necessary and su�cient.

It should be relatively straightforward to extend the results in this paper to
higher-order terms using the appropriate notion of generalized logical relation. Jung
and Tiuryn [10] use what appears to be a closely related notion they call \Kripke
logical relations of varying arity" to study lambda de�nabilty in Henkin models of
the simply typed lambda calculus; the idea of such logical relations originated with
Sieber [19].

We also plan to consider higher-order terms in the presence of nondeterminism
and subtyping, as was done in [12].

Another extension planned is to adapt our results to the study of ADTs with mu-
table objects (i.e., objects with time-varying state) [3, 13]. Additional questions to
investigate are proof-theoretic conditions for behavioral reduction and equivalence,
especially for subtyping.

The results of this paper suggest that the general categorical theory of mod-
ules presented in [6, 7] might have a useful generalization. It is not clear at this
point however what form it should take. As a generalization of the construction
of the minimal automata, the functor N of (5.3) gives in some sense the sim-
plest algebra that realizes a given visible behavior. In contrast, if the behavior in
(5.4) is speci�ed by �xing the paradigm B and taking the partial function of type�
PROC ! (ENVA�B ! A � B)

�
to be the one corresponding to the extended

visible standard identity relation, then the functor RE@ of (5.4) will give RE@(I�),
which may be viewed as the \largest part" of B that \partially realizes" the given
behavior. So dual realization in our sense is local in that it can be used to investigate
how a particular algebra behaves with respect to any number of given behaviors.
This suggests that our theory may be viewed in terms of a comma category formed
from the categories ALG and PROG! AjVIS . We hope to explore this possibility
in future work.

Conclusions. We have presented a sound and complete model-theoretic technique
for proving the correctness of an implementation of a speci�cation. Since we have
generalized the notion of observation to allow nonvisible data to be compared,
our techniques are broadly applicable. They apply not only to the situation of
term-generated and complete speci�cations, but also to non term-generated and
incomplete speci�cations, such as type parameters.

We have developed the theory of behavior and the notion of dual realization,
and studied their properties using their adjunction as our main tool. Behavior spe-
cializes to visible behavior, and thus our results include results such as Schoett's
theorem as a special case. Dual realization is a measure of the fragments of algebras
that realize a certain behavior, and the dual realization of the generalized identity
relation provides the generalized bisimulation that characterizes behavioral equiv-
alence. We developed the theory of generalized relations, because, as we showed,
behavioral equivalence cannot be characterized by standard homomorphic relations
for incomplete and non-term-generated speci�cations.
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Appendix A

Inadequacy of Standard Bisimulation for

Characterizing Behavioral Equivalence

Schoett's theorem (Thm. 4.9) shows that the existence of a weak standard bisim-
ulation between A and B is both necessary and su�cient for weak VIS-behavioral
equivalence. The following example shows that this fails to hold when the quali�er
\weak" is omitted at both places. We then go on to explore in some detail the con-
nection between homomorphic standard and homomorphic generalized relations.
Finally, we show by example that not every homomorphic generalized relation is a
pointwise extension of a homomorphic standard relation.

Example A.1. The algebras INT and NAT, of Examples 1.7 and 1.8, are VIS-
behaviorally equivalent. However, there is no standard bisimulation between them.

Proof. Recall the generalized homomorphic relation GPO of Ex. 2.8. It was shown
in Ex. 2.16 that GPO is a generalized bisimulation between INT and NAT. Hence,
these algebras are VIS-behaviorally equivalent by Thm. 4.13.

Now suppose, for the sake of contradiction, that R is a standard bisimulation
between INT and NAT. Then by de�nition (2.13), there is a z 2 INTPO, such
that z RPO 0, and there is an n 2 NATPO which the integer z � 1 simulates:
(z � 1) RPO n. By hypothesis, R is homomorphic, so

� = leqINT(z; z � 1) RBool leqNAT(0; n) = tt:

But then R is not VIS-identical, and so cannot be a bisimulation. �

It might be thought that, even if generalized relations are needed to study VIS-
behavioral equivalence, perhaps one only needs to use pointwise extensions of stan-
dard simulation relations (i.e., relations of the form R+). However it is easy to see
(with the help of Thm. 4.3) that, if R+ is a generalized simulation, then R must
be a standard simulation. So, by the above example, there can be no generalized
bisimulation between INT and NAT that is the pointwise extension of a standard
relation.

In spite of this, there is a close relation between the two notions. Indeed, we
show in Thm. A.4 below that every homomorphic generalized relation is the union
of the pointwise extensions of homomorphic standard relations. To prove this we
need the notion of generated homomorphic generalized relation.

The sets of standard and generalized homomorphic relations between A and B
are both closed under arbitrary intersection. Moreover, since the total standard
relation A � B = hAT � BT : T 2 TYPE i and the total generalized relation

ENVA�B = hENVAH ; ENV
B

H : H 2 TCON i are both homomorphic, every stan-
dard and every generalized relation between A and B is included in a smallest
homomorphic relation.

De�nition A.2 (generated homomorphic relation). Let G � ENVA�B be a
generalized relation. The generalized homomorphic relation generated by G, denoted
H(G), is de�ned by:

H(G) :=
\
fG0: G � G0 � ENVA�B ;G0 is homomorphicg: �

We write H(�; �) as a shorthand for H(fh�; �ig).
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Lemma A.3. Let K 2 TCON and h�; �i 2 ENVA�BK be given. Then

H(�; �) = BE(�; �)+:

Proof. By Prop. 4.5, BE(�; �) is homomorphic. So BE(�; �)+ is homomorphic by

Thm. 4.3. Since by de�nition h�; �i 2BE(�; �)+, it follows thatH(�; �) �BE(�; �)+.
For the opposite inclusion, suppose for some L 2 TCON , and h�; �i 2 ENVA�BL ,

h�; �i 2 BE(�; �)+. We show that h�; �i 2 H(�; �) by induction on the size of
Dom (L). To have a stronger inductive hypothesis available for use in the proof, we
prove something stronger:

(5.5) (� t �)H(�; �)KtL (� t �):

Since H(�; �) is a generalized homomorphic relation, if (5.5) holds, then an appli-
cation of (GHR2) gives the desired inclusion: h�; �i 2 H(�; �).

It remains to verify (5.5). For the base case, suppose L is empty. ThenKtL = K
and so h� t �; � t �i = h�; �i 2 H(�; �)KtL. For the inductive case, suppose L is
nonempty. Let x 2 Dom (L) and denote K(x) by T . Let L0 = L n fx : Tg, and let
the restrictions of the environments � and � to this domain be denoted respectively
by �0 and �0. From the hypothesis h�; �i 2 BE(�; �)+ it follows (by de�nition of

pointwise extension) that h�0; �0i 2 BE(�; �)+, and so by the induction hypothesis:

(5.6) (� t �0)H(�; �)KtL0 (� t �0):

Using the hypothesis h�; �i 2 BE(�; �)+ again we get h�(x); �(x)i 2 BE(�; �). So
there is a K-procedure t : T such that [[ t :T ]]A� = �(x) and [[ t :T ]]B� = �(x). But t
is also a (KtL0)-procedure, and so [[ t:T ]]A(�t�0) = �(x) and [[ t:T ]]B(�t�0) = �(x).
Since H(�; �) is homomorphic, and � t �0 and � t �0 are H(�; �)-related by (5.6),
it follows from Lem. 2.9 that

�t � = [x 7! ([[ t : T ]]A�t �0)](�t �0)

H(�; �)KtL [x 7! ([[ t : T ]]B� t �0)](� t �0)

= � t �:

Thus (5.5) holds, which completes the proof. �

Theorem A.4. Let G � ENVA�B be given. Then the following are equivalent.

(i) G is homomorphic;

(ii) G =
S
h�;�i2G BE(�; �)

+
;

(iii) G =
S
fR+ :R 2 Xg, for some set X of homomorphic standard relations.

Proof. (i) implies (ii): Assume G is homomorphic. Then for each h�; �i 2 G,

H(�; �) � G. By Lem. A.3, BE(�; �)+� G. So
S
h��i2G BE(�; �)

+ � G. The reverse

inclusion holds since h�; �i 2 BE(�; �)+ for all h�; �i 2 G.
(ii) implies (iii): By Prop. 4.5, BE(�; �), is a homomorphic standard relation.
(iii) implies (i): Assume that (iii) holds. It follows almost immediately from

the de�nition of generalized homomorphic relations that G is homomorphic. To
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verify (GHR1), suppose that H 2 TCON and � GH �. Then � R+
H � for some

R 2 X . Let g 2 OPn and ~T ! S be a type of g such that H ` ~x : ~T .
Thus �(~x) R~T �(~x). Since R is homomorphic,

gA(�(~x)) RS gB(�(~x));

and hence, for any y 2 VAR nDom (H),

[y 7!
�
gA(�(~x))

�
]� R+

H;y:S [y 7!
�
gB(�(~x))

�
]�:

Thus, since R+ � G, we get

[y 7!
�
gA(�(~x))

�
]� GH;y:S [y 7!

�
gB(�(~x))

�
]�:

Property (GHR2) is established similarly. Thus G is a generalized homomorphic
relation. �

This theorem does not automatically exclude the possibility that every general-
ized homomorphic relation is the pointwise extension of a standard relation, but
the next example shows this in fact is not the case.

Example A.5. The generalized relation GPO between INT and NAT of Ex. 2.8
is a homomorphic generalized relation that is not the pointwise extension of any
standard relation.

Proof. GPO is homomorphic and in fact a generalized bisimulation between INT
and NAT (Exs. 2.8 and 2.16). But it cannot be of the form R+ for any standard
relation, because, as was observed in the remarks following Ex. A.1, if this were
the case, then R itself would be a standard bisimulation between INT and NAT,
which is impossible by Ex. A.1. �
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