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Abstract

We discuss the module system of the Cecil language, which has a flexible means of customizing views of
objects. Multi-methods with invocation based on static scoping, a module system, and extension modules
are used to allow object extension while preserving type safety.

1 Introduction

In traditional object-oriented languages, an object is defined as a single monolithic unit. An object exports

exactly one interface to its clients, specified when the object was defined. A common design issue

encountered in such languages is whether to specify an operation as a method of the object’s class
(complicating the object’s interface) or as an external operation that takes the object as an argument
(sacrificing the ability to do dynamic dispatching and to gain direct access to the object’s representation).

Defining specialized subclasses of an existing class is not always an acceptable alternative, since
subclassing does not allow existing objects to be extended with specialized behavior nor does it support
sharing of objects that have different capabilities when viewed by different clients.

In the Cecil language [Chambers 92, Chambers 93] we are exploring a more flexible alternative that allows
each individual client (embodied in the program by a scope, which is usually a module or group of nested
modules) to customize its view of an object [Chambers & Leavens 94]. Each module can add new multi-
methods, instance variables, and even inheritance and subtyping relationships to objects defined in lexically
enclosing or imported modules. Moreover, extensions inside a module are encapsulated so that
modifications to the shared objects are not visible to other modules and thus do not affect the general
interface of the object as seen by other modules.

For example, the standa@iring class could be defined in the standard library module with a minimal
interface. Individual client modules @&tring could then augment this interface with their own
specialized behavior. For instance, a text editor application could add a tab-expansion method to the
String  class, inside th&extEditor module. Within thel'extEditor module, its extensions to the

String  class are first-class operations of$tieng  class; there is no difference between calling the tab-
expansion method and a built-in method that applies to strings. However, by making such extensions inside
modules, other modules do not have their view oftineg  class polluted by the text editor’s specialized
extensions, and vice versa.

Our original motivation for studying extensible objects was our work on modular typechecking of multi-

methods. A multi-method is a method that can dispatch on the dynamic class of any of its arguments, not
just the first receiver argument. When defining a method that dispatches on two or more arguments,
potentially of different classes, the method most naturally is viewed as an extension of the objects on which
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it dispatches. By placing multi-methods inside modules, they can be isolated from multi-methods in other
modules and typechecked independently. One complexity of multi-methods not shared by other kinds of
object extensions is that modules containing multi-methods that are correct in isolation can fail when
combined in a single program. For instance, two independently-developed multi-methods could both be
applicable to handle some message, e.g. “+"(complex,num) and “+”(num,fraction) when adding a complex
number and a fraction, but neither multi-method would override the other, thereby leading to a ambiguous
message lookup error. Our module system includes a well-formedness requirement on the modules included
in a program to ensure that such ambiguities are detected statically.

Given this intuitive idea of the potential advantages and pitfalls of this more flexible object model, our
current work is directed towards understanding its precise semantics. In particular, the semantics of method
lookup needs to consider not only the dynamic classes of the message’s arguments, but also the module from
which the message is being sent. Additionally, we are investigating static type systems that can guarantee
that no message lookup errors will occur at run-time. An initial informal semantics and a typechecking
algorithm for languages containing modules and multi-methods is being presented in the main OOPSLA
conference [Chambers & Leavens 94]. We are currently continuing this work to address fully extensible
objects, to formally specify the run-time semantics and the static typechecking rules, and to prove that the
static typechecking restrictions are sufficient to guarantee that no type errors occur at run-time.
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