IOWA STATE UNIVERSITY

Digital Repository

Computer Science Technical Reports Computer Science

9-1994

Towards Safe Modular Extensible Objects

Gary T. Leavens
Towa State University

Craig Chambers
University of Washington

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

b Part of the Programming Languages and Compilers Commons

Recommended Citation

Leavens, Gary T. and Chambers, Craig, "Towards Safe Modular Extensible Objects" (1994). Computer Science Technical Reports. Paper
13s.
http://lib.dr.iastate.edu/cs_techreports/135

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,

please contact digirep@iastate.edu.


http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/135?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Chambers & Leavens

Towards Safe Modular Extensible Objects

Craig Chambers and Gary T. Leavens
TR #94-17a
August 1994, revised September 1994

To appear in the proceedings of MOPSLA '94 Workshop on Subijectivity in Object-Oriented Systems
October 1994.

Keywords: Multi-methods, object-oriented programming, subjectivity, encapsulation, modules, packages,
Cecil language.

1994 CR Categories:D.3.2 [Programming Languagéd.anguage Classifications— Object-oriented
languages; D.3.3rogramming Languagd.anguage Constructs and FeaturesModules, packages.
© 1994 Craig Chambers and Gary T. Leavens, 1994.

Department of Computer Science
226 Atanasoff Hall
lowa State University
Ames, lowa 50011-1040, USA



Towards Safe Modular Extensible Objects

Craig Chambers Gary T. Leavens
Department of Computer Science and Engineerin Department of Computer Science
309 Sieg Hall, FR-35 229 Atanasoff Hall
University of Washington lowa State University
Seattle, Washington 98195 Ames, lowa 50011-1040
(206) 685-2094; fax: (206) 543-2969 (515) 294-1580
chambers@cs.washington.edu leavens@cs.iastate.edu
Abstract

We discuss the module system of the Cecil language, which has a flexible means of customizing views of
objects. Multi-methods with invocation based on static scoping, a module system, and extension modules
are used to allow object extension while preserving type safety.

1 Introduction

In traditional object-oriented languages, an object is defined as a single monolithic unit. An object exports

exactly one interface to its clients, specified when the object was defined. A common design issue

encountered in such languages is whether to specify an operation as a method of the object’s class
(complicating the object’s interface) or as an external operation that takes the object as an argument
(sacrificing the ability to do dynamic dispatching and to gain direct access to the object’s representation).

Defining specialized subclasses of an existing class is not always an acceptable alternative, since
subclassing does not allow existing objects to be extended with specialized behavior nor does it support
sharing of objects that have different capabilities when viewed by different clients.

In the Cecil language [Chambers 92, Chambers 93] we are exploring a more flexible alternative that allows
each individual client (embodied in the program by a scope, which is usually a module or group of nested
modules) to customize its view of an object [Chambers & Leavens 94]. Each module can add new multi-
methods, instance variables, and even inheritance and subtyping relationships to objects defined in lexically
enclosing or imported modules. Moreover, extensions inside a module are encapsulated so that
modifications to the shared objects are not visible to other modules and thus do not affect the general
interface of the object as seen by other modules.

For example, the standa@iring class could be defined in the standard library module with a minimal
interface. Individual client modules @&tring could then augment this interface with their own
specialized behavior. For instance, a text editor application could add a tab-expansion method to the
String  class, inside th&extEditor module. Within thel'extEditor module, its extensions to the

String  class are first-class operations of$tieng  class; there is no difference between calling the tab-
expansion method and a built-in method that applies to strings. However, by making such extensions inside
modules, other modules do not have their view oftineg  class polluted by the text editor’s specialized
extensions, and vice versa.

Our original motivation for studying extensible objects was our work on modular typechecking of multi-

methods. A multi-method is a method that can dispatch on the dynamic class of any of its arguments, not
just the first receiver argument. When defining a method that dispatches on two or more arguments,
potentially of different classes, the method most naturally is viewed as an extension of the objects on which



Towards Safe Modular Extensible Objects Chambers & Leavens

it dispatches. By placing multi-methods inside modules, they can be isolated from multi-methods in other
modules and typechecked independently. One complexity of multi-methods not shared by other kinds of
object extensions is that modules containing multi-methods that are correct in isolation can fail when
combined in a single program. For instance, two independently-developed multi-methods could both be
applicable to handle some message, e.g. “+"(complex,num) and “+”(num,fraction) when adding a complex
number and a fraction, but neither multi-method would override the other, thereby leading to a ambiguous
message lookup error. Our module system includes a well-formedness requirement on the modules included
in a program to ensure that such ambiguities are detected statically.

Given this intuitive idea of the potential advantages and pitfalls of this more flexible object model, our
current work is directed towards understanding its precise semantics. In particular, the semantics of method
lookup needs to consider not only the dynamic classes of the message’s arguments, but also the module from
which the message is being sent. Additionally, we are investigating static type systems that can guarantee
that no message lookup errors will occur at run-time. An initial informal semantics and a typechecking
algorithm for languages containing modules and multi-methods is being presented in the main OOPSLA
conference [Chambers & Leavens 94]. We are currently continuing this work to address fully extensible
objects, to formally specify the run-time semantics and the static typechecking rules, and to prove that the
static typechecking restrictions are sufficient to guarantee that no type errors occur at run-time.

Acknowledgments

Chambers’s work is supported in part by a National Science Foundation Research Initiation Award (contract
number CCR-9210990) and several gifts from Sun Microsystems. Leavens’s work is supported in part by a
National Science Foundation grant (contract number CCR-9108654).

More information on the Cecil language and implementation project can be found through the World Wide
Web under http://www.cs.washington.edu/research/projects/cecil/www/cecil-home.html and via
anonymoustp from cs.washington.edu:/pub/chambers.

References

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in Ce&CIROP '92 Conference Proceedings
pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Publishedtase Notes in Computer Science 83pringer-
Verlag, Berlin, 1992.

[Chambers 93] Craig Chambers. The Cecil Language: Specification and Rationale. Technical report #93-03-05,
Department of Computer Science and Engineering, University of Washington, March, 1993.

[Chambers & Leavens 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods. To
appear in ProdOOPSLA '94 ACM. (The extended version of this paper is TR94-03a, Department of Computer
Science, lowa State University, Ames, IA, August 1994. It can be obtained by e-mail from
almanac@cs.iastate.edu or by anonymouftp to ftp.cs.iastate.edu in directorypub/techreports/TR94-03)



	9-1994
	Towards Safe Modular Extensible Objects
	Gary T. Leavens
	Craig Chambers
	Recommended Citation


	tmp.1394822461.pdf.jC_KE

