
Computer Science Technical Reports Computer Science

8-1994

Introduction to the Literature on Semantics
Gary T. Leavens
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T., "Introduction to the Literature on Semantics" (1994). Computer Science Technical Reports. Paper 96.
http://lib.dr.iastate.edu/cs_techreports/96

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/96?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Introduction to the Literature
On Semantics

Gary T. Leavens

TR #94-15
August 1994

Keywords: programming languages, axiomatic sematics, denotational semantics, operational se-
mantics, type systems, polymorphism, type theory, data abstraction.
1992 CR Categories: D.2.4 [Software Engineering] Program Veri�cation; D.3.1 [Programming
Languages] Formal De�nitions and Theory; F.3.1 [Logics and Meaning of Programs] Specifying
and verifying and reasoning about programs; F.3.2 [Logics and Meaning of Programs] Semantics of
Programming Languages; F.3.3 [Logics and Meaning of Programs] Studies of Program Constructs.

c
 Gary T. Leavens. Permission is granted for you to make copies for educational and scholarly
purposes, but not for direct commercial advantage, provided this notice appears on all copies. All
other rights reserved.

Department of Computer Science
226 Atanaso� Hall
Iowa Sate University

Ames, Iowa 50011-1040, USA

Introduction to the Literature on Semantics

Gary T. Leavens

Department of Computer Science, Iowa State University

Ames, IA, 50011-1040 USA

leavens@cs.iastate.edu

August 16, 1994

Abstract

An introduction to the literature on semantics. Included are pointers to the literature on

axiomatic semantics, denotational semantics, operational semantics, and type theory.

The following is an selective introduction to the literature on programming language semantics.
Since this is an introduction, only a small fraction of the literature can be mentioned here. Refer-
ences are included because they have intrinsic interest, although some are included simply because
they are the original sources and are likely to be referenced by others doing related work (e.g.
[Chu41]). If you wish to probe an area more deeply, you might start with the papers mentioned,
follow their references, and also use the Science Citation Index to see what papers have referenced
the ones mentioned.

1 General Sources

Two recent texts that cover many di�erent approaches to semantics are: [NN92] [Win93].
Articles discussing principal topics in semantics, containing many references, appear in volume

B of the Handbook of Theoretical Computer Science [vL90].
Journals that include a substantial coverage of semantics include ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), ACM SIGPLAN Notices, IEEE Transactions on
Software Engineering, Information and Computation (formerly Information and Control, Academic
Press), and Acta Informatica (Springer-Verlag). Related areas, such as speci�cation and veri�ca-
tion have their own journals (e.g., ACM Transactions on Software Engineering and Methodology,
Science of Computer Programming, and Formal Aspects of Computing).

Conferences devoted to topics related to semantics include the IEEE Annual Symposium on
Logic in Computer Science (LICS), the Annual ACM Symposium on Principles of Programming
Languages (POPL), Mathematical Foundations of Programming Semantics (MFPS), the European
Symposium on Programming (ESOP), the ACM Symposium on LISP and Functional Programming
(LFP), the International Colloquium on Automata, Languages, and Programming (ICALP), and
the International Symposium on Mathematical Foundations of Computer Science. Conferences
not sponsored by the ACM or IEEE are often available in the Springer-Verlag series of Lecture
Notes in Computer Science (LNCS), and workshops are often available in the series Workshops
in Computing. The above list does not include conferences devoted to software engineering (e.g.
TAPSOFT) or particular methods (e.g., category theory) where some important work is also found.

1

2 Mathematical Background

The basics of universal algebra underly much of the work in semantics. Gratzer's monumental
book [Gra79] is a standard reference. A generalized notion of homomorphism that is often used in
semantics is Statman's logical relations [Sta85], explained in [Mit90].

Another foundation is the area of mathematical logic. A classic approach, using proof theory
and model theory is [End72]. More recent approaches, favoring proof theory (especially predicate
logic) at the expense of model theory and mathematical depth and emphasizing calculation, include
[DS90] [GS94] [MW93].

2.1 �-Calculus

A standard reference on Church's (untyped) �-calculus [Chu41] is Barendregt's book [Bar84]. This
book is at times highly technical, but also has sensible de�nitions and introductory material. A
shorter account, with a reasonable introduction to the �-calculus is found in [Bar90]. Other intro-
ductions include [Gor88] [Sch94, Sections 6.1{6.2].

The use of �-calculus for describing programming languages and as the inspiration for program-
ming language design has been investigated by Landin [Lan65] [Lan66] and many others.

For the typed �-calculus, a standard reference is [GLT89]. A good introduction can be found
in [Gun92, Chapter 2] and [Sch94, Sections 6.4]; both of these texts discuss the semantics of the
typed lambda calculus in detail. Schmidt's book [Sch94] is also a good introduction to higher-order
typed lambda calculi, and contains references to work on such higher-order extensions.

2.2 Category Theory

Increasingly, especially in denotational semantics, category theory [Lan71] [LS91] is used in research
and for the elegant presentation of results. For example, categorical logic and the semantics of the
typed lambda calculus are discussed in [LS86].

For me, the best introduction seems to be the �rst 5 chapters of [Gol84]. There are now several
articles [Hoa89] and books [BW90] [AL91b] [Pie91] [Wal91] explaining category theory to computer
scientists. For those familiar with (or needing) background in the semantics of abstract data type
speci�cations, a good introduction is Burstall and Goguen's paper [BG82].

3 Axiomatic Semantics

Hoare pointed out, in his seminal paper [Hoa69, Section 6], that one could de�ne a programming
language by insisting \that all implementations of the language shall `satisfy' the axioms and rules
of inference which underlie proofs of the properties of the programs expressed in the language."
(However, Hoare attributes this idea to Floyd [Flo67].) Such a semantics is useful because it directly
aims to support program veri�cation.

Because a logic for program veri�cation can be used to de�ne a programming language, it is
di�cult to disentangle work on program veri�cation from work on semantics. Even if program
veri�cation is not itself a form of semantics (rather, it is an application), it still provides important
motivation for axiomatic semantics. Therefore, veri�cation is also discussed in this section.

3.1 Program Veri�cation

Program veri�cation is concerned with showing that a particular program meets its speci�cation.
This may be accomplished in several ways; for example, reasoning from the denotational semantics

2

of the program. However, the term \program veri�cation" is usually implies a syntactic proof in a
specially constructed logic.

Floyd introduced the inductive assertions and well-founded sets methods for program veri�ca-
tion in 1967 [Flo67] (see also [LS87, Chapter 8]). (See [Cou90] for historical references to the work
of Naur, Von Neumann, and Turing, who anticipated this work.) The term inductive assertions
refers to the assertions that are put at every branch point in the program's
ow graph; these give
rise to veri�cation conditions, which state that along every path, the correctness of the assertions
is preserved. This shows partial correctness (that the program is correct if it terminates). The
well-founded sets method allows proofs of termination.

Hoare [Hoa69] was the �rst to present veri�cation in terms of a logic for partial correctness that
was compositional, so that program proofs are done by induction on the syntax of programs. This
paper sparked a wealth of research in program veri�cation. Some surveys of results of this research
are [Apt81], [FB86], and [Cou90], the latter of which also cites other surveys. A technical reference
is [LS87, Chapter 9].

A very introductory tutorial on veri�cation from the software engineering perspective is [LG86,
chapter 11]. The idea of developing a proof of a program at the same time the program is being
developed has been eloquently advocated by Dijkstra and Gries [Dij76] [Gri81]. See [Gor88] for a
more theoretical introduction that treats some aspects of theorem proving.

Concurrency has always been a prime application area, because concurrent programs are so dif-
�cult to debug. Veri�cation of concurrent programs may be handled with the Owicki-Gries method
[OG76]. Other techniques use temporal logic (e.g., [OL82]) and \transition axioms" [Lam89].
An introduction to Hoare-style veri�cation that discusses concurrent and distributed programs is
[Al91a].

3.1.1 Abstract Data Types

Hoare also was the �rst to consider how veri�cation and abstract data types interact [Hoa72]. His
technique allows one to separately verify the correctness of a type's implementation and programs
that use that type, and is based on the use of representation invariants and abstraction functions.
A practical implementation of these ideas is found in [NHN80]. VDM also uses these techniques
[Jon90]. More recent work in this area is found in [Sch90] and [Nip89].

Abstract data types (ADTs) can be speci�ed algebraically [GHM78] [EM85] or by using pre-
and post-conditions [BJ82] [Jon86] [Win87]. See [LG86, chapter 11] for a tutorial on program
veri�cation using abstract data types.

A related aspect is how the structure of a proof of correctness may help follow the hierarchical
(i.e., layered) structure of the implementation design [RL77] [GMP90] [Sch82].

3.1.2 Transformational Programming

Hoare's original paper [Hoa69], treated veri�cation as something to be done after a program was
written. However, Hoare [Hoa71] and others were soon advocating the development of proofs at
the same time as programs. Dijkstra and Gries became prime advocates of this technique [Dij76]
[Gri81]. More recent treatments in this style advocate a calculational approach [Coh90] [GS94]. One
formalization of this approach is the re�nement calculus [Bv89a][Bv89b] [Mor90] [MG90] [MV94].

The idea of formal development of program and proof has found favor in the functional pro-
gramming community as well. The idea behind transformational programming is to transform the
speci�cation of a program into an e�cient version [BD77] [MW80] [Bal81] [CHT81]; these references
are characterized by their work with equational logic (instead of predicate transformers or a Hoare

3

logic), their use of algebraic techniques, and the general focus on functional languages. Some recent
work in this area can be found in [Mee87] [Bir89a] [Bir89b] [Tal88]. Transformational (or algebraic)
techniques also underly the work on Backus's FP [Bac78] and Hoare's \Laws of Programming" for
CSP [HHJ+87].

Contrary to popular belief, it is also possible to reason \equationally" about programs with
side-e�ects and even continuations [Boe85] [FF86] [FH89].

3.2 Axiomatic Semantics of Programming Languages

A classic text on the semantics of programming languages which treats axiomatic semantics is
[dB80a]. Predicte transformer semantics, using the \weakest precondition" operator were advo-
cated by Dijkstra for the de�nition of his guarded command language [Dij75]. A monograph on
predicate transformer semantics is [DS90] which goes over notational issues as well as the underlying
mathematics. A recent monograph that updates [dB80a] using predicate transformers is [Hes92].

An example of the use of the axiomatic semantics to describe a programming language is Hoare
and Wirth's axiomatic de�nition of Pascal [HW73].

The use of an axiomatic semantics as a metric for the \goodness" of a language led to two
language designs in the 1970s. Although never implemented fully, Alphard [SWL77] [Sha81] was
interesting, and focused on support for both data abstraction and veri�cation. The language Euclid
[LGH+78] [PHL+77] was implemented, and has been used for various large projects.

3.3 Algebraic Semantics

While most axiomatic approaches use Hoare logic or variations on Hoare logic, there have been a
few attempts to use the techniques of algebra and equational speci�cation to de�ne programming
languages. Examples include [MA86] [BWP87].

4 Denotational Semantics

In contrast to axiomatic semantics, denotational semantics [Str66] [SS71] [MS76] [Sto77] [Sco81]
[Sch86] explicitly constructs mathematical models of programming languages. A short summary
of the denotational approach can be found in Tennent's article \The Denotational Semantics of
Programming Languages" [Ten76]. A recent survey is found in [Mos90].

Introductory texts include [Gor79], [All86], [Wat91], [Sch94]. An excellent new graduate text
with more mathematical depth is [Gun92]. Standard works on denotational semantics are the
books by Stoy [Sto77] and Schmidt [Sch86], both of which o�er a comprehensive and mathematical
treatment. Schmidt's book [Sch86] has an excellent discussion of domain theory (see also [GS90])
and can be consulted for references to denotational descriptions of real languages.

One can use a typed functional programming language, such as Standard ML, to implement a
denotational semantics. Two descriptions of this idea are [Wat86] [MA89].

Action semantics, an o�shoot of denotational semantics, is described in [Wat91] and more fully
in [Mos92].

Schmidt's book [Sch86] also has a discussion of denotational semantics for concurrent systems.
Hennessy's book has a discussion of more recent work in this area [Hen88]. However, denotational
approaches to concurrency have not been as successful as operational semantics.

4

5 Operational Semantics

A compiler or interpreter gives an operational semantics to a programming language. This style of
semantics dates back to the earliest programming languages, and was �rst formalized in the idea
of a meta-circular interpreter for LISP [McC60].

Meta-circular interpreters are still useful for teaching purposes, and for prototyping program-
ming language designs. Several meta-circular interpreters for variants of LISP are discussed in
Steele and Sussman's paper The Art of the Interpreter [SS78]. An excellent and more readily ac-
cessible discussion is found in Abelson and Sussman's book [ASS85], which uses Scheme. A more
detailed treatment of interpreters is found in [Kam90] [FWH92]. See [KdRB91] for an approach
using the CLOS meta-object protocol.

However, for mathematical convenience, one wants something more abstract than an interpreter
or complier. Landin overcame the circularity problem by the use of an abstract machine called the
\SECD machine" [Lan64] (see also [Hen80]).

A more systematic style of operational semantics based on rewrite rules is found in Plotkin's
terminal transition systems [Plo77] also known as \structural operational semantics" [Plo81] [Hen90]
or a \labeled transition system" [Ast91]. Hennessy's book is an elementary introduction [Hen90].
This style of semantics has the advantage that it extends naturally to studies of concurrency [Mil90].
A classic reference for the operational semantics of concurrent processes is Milner's book on CCS
[Mil80]. See [Hen88] and [Mil90] for more recent work in this area.

6 Type Systems

Much of the modern study of semantics concerns type systems, which describe many aspects of the
static semantics of programming languages. In contrast, axiomatic, denotational, and operational
semantics describe the dynamic semantics of programming languages.

The purpose of type checking is nicely summarized by Morris as a mechanism that allows
program modules to protect objects from unwanted discovery, modi�cation, and impersonation
[Mor73]. Wegbreit's discussion of the extensible language EL1, is also good background [Weg74].

Schmidt's recent book [Sch94] starts treats type systems in the context of programming language
semantics. It also goes deeply into more advanced topics such as higher-order type systems and
predicate-logic typing.

6.1 Polymorphism

An introductory survey of modern polymorphic type systems and research results is Cardelli and
Wegner's paper \On Understanding Types, Data Abstraction and Polymorphism" [CW85]. See also
[Har84] [Car91] [DT88]; the latter two have much material related to object-oriented programming.
A still more recent survey is [Mit90].

Standard references include Girard's system F! [Gir71] (see also [Gir86] [GLT89]), and Reynolds
independent work [Rey74], sometimes called the Girard-Reynolds second order lambda calculus (or
SOL). Modern expositions are found in [MP85] [MH88] [Rey85] [Mit90] [Car91].

Other kinds of type information may be incorporated into a type system and checked at the
same time as types [GL86] [LG88] [OG89].

5

6.2 Type Theory

Type theory, narrowly de�ned, uses the tools of constructive logic to study polymorphic type
systems. A good introduction can be found in [Sch94, Chapters 8{10]. Logical inference systems
can often be translated directly into type systems due to the \Formula as Types" notion or the
\Curry-Howard isomorphism" [How80] [GLT89, Chapter 3] [Con89]. Thus much research in type
theory lies on the border of mathematics and computer science. Another motivation is to use type
information to capture behavioral speci�cations, thus allowing one to reason about programs in the
programming language [NP83] [Dyb90].

The principal groups working on type theory include deBruijn and others working on AU-
TOMATH [dB80b], Martin-L�of's and followers [ML75] [ML82] [Bac89], Constable's group at Cor-
nell has been very active in this area. Their language PRL which uses constructive mathematics,
is described in the paper \Proofs as Programs" [BC85]. A related language is PL/CV3 [CZ84].
Coquand and Huet's group is responsible for the \calculus of constructions" [CH88]. A recent
survey with more references is [BH90a].

6.3 Data Abstraction: ADTs and OOP

Reynolds [Rey75] [Rey78] (see also [Coo91]) distinguished two ways in which a type system could
support data abstraction. The �rst way is to have the language give an object di�erent types outside
and inside a de�ning module; this Reynolds called \user de�ned types". User de�ned types also go
by the name of \abstract data types" (ADTs), and their support in a type system is exempli�ed
by the language CLU [LSAS77] [LG86].

Mitchell and Plotkin connected this approach, ADTs, to the second-order lambda calculus
[MP85]. This idea has been used to show some representation independence results [Mit86]. For
other work along these lines, see for example, [Mac86] [CL90] [Mit90].

The second approach to supporting data abstraction Reynolds called \procedural data abstrac-
tion". Today it goes under the more common name of \object-oriented programming" (OOP)
[DMN70] [BDMN73] [GR83]. Some languages exemplifying typed support for OOP include SIM-
ULA [BDMN73], and Ei�el [Mey88] [Mey92], both of which have insecure type systems [Coo89].
The language Trellis/Owl [SCB+86] features by-name type checking and subtyping. By con-
trast,Emerald [BHJL86] [BHJ+87] [BH90b] [BH91] and Quest [Car91] feature structural subtyping.

Some seminal references on types and OOP are reprinted in [GM94]. Recent theoretical work
on types for OOP includes the following [Car88b] [Car88a] [CM89] [AC90] [CMMS91] [Car93]
[CCH+89] [CHC90] [Coo89] [BTGS90] [HP90] [MMM91] [BCM+93] [BL90] [BM92] [Aba93] [Bru93].
(Cardelli is one of the most active in this area, and most of the literature will cite one of his papers.)
For work that directly bears on multimethods (as in CLOS), see [Rey80] [Ghe91a] [Ghe91b] [CGL92]
[Cha92] [CGL93] [Cas93] [CL94].

6.4 Type Reconstruction

Type reconstruction (or type inference) is the process of reconstructing types for a program that has
no type declarations. A practical and sound algorithm is described in Milner's paper \A Theory of
Type Polymorphism in Programming" [Mil78]. Another exposition of this material, incorporating
re�nements found in [DM82], is found in [Car87].

Milner-style type inference system is used in the programming language ML [GMW79] [Mil84]
[Har86] [HMM86]. The ideal model has been used to give a semantics to the ML type system
[MPS86].

6

The question of whether one can do type inference for more powerful type systems has been
an active area of research (e.g., [McC84] [Wan89]). A recent survey of what is known about such
problems is found in [Tiu90].

See Knight's survey [Kni89] for a discussion of the central role that uni�cation plays in type
inference and more details on uni�cation itself.

6.5 Research Languages

The language Russell was developed at Cornell to investigate how types can be treated as values.
There are many papers that have appeared about Russell, but perhaps the best introduction to the
language is the paper \Data Types are Values" [DD85], which can be consulted for other references.
Russell has separate mechanisms for building types and for information hiding; the same idea is
found in Haskell [Hud89, Pages 387-388]. Interesting variations are found in Miranda [Tur85].

Much recent work has centered around the language ML and its modern variant Standard ML
[Mil84] [MTH90] [MT91]. Besides the type inference in its type system mentioned above, Standard
ML has an interesting module system [Mac84] [Har85] [HMT87].

References

[Aba93] Martin Abadi. Baby Modula-3 and a Theory of Objects. Technical Report 95, Digital
Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301, February 1993. Order from src-report@src.dec.com.

[AC90] Roberto M. Amadio and Luca Cardelli. Subtyping Recursive Types. Technical Re-
port 62, Digital Systems Research Center, Palo Alto, Ca 94301, August 1990. See also
the 1991 POPL proceedings.

[Al91a] Krzysztof R. Apt and Ernst-Rudiger 0lderog. Introduction to Program Veri�cation.
In E. J. Neuhold and M. Paul, editors, Formal Description of Programming Concepts,
IFIP State-of-the-Art Reports, pages 363{429. Springer-Verlag, New York, N.Y., 1991.

[AL91b] Andrea Asperti and Guiseppe Longo. Categories, Types and Structures. The MIT
Press, Cambridge, Mass, 1991.

[All86] Lloyd Allison. A Practical Introduction to Denotational Semantics. Cambridge Uni-
versity Press, New York, N.Y., 1986.

[Apt81] Krzystof R. Apt. Ten Years of Hoare's Logic: A Survey|Part I. ACM Transactions
on Programming Languages and Systems, 3(4):431{483, October 1981.

[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation
of Computer Programs. The MIT Press, Cambridge, Mass., 1985.

[Ast91] Edigio Astesiano. Inductive and Operational Semantics. In E. J. Neuhold and M. Paul,
editors, Formal Description of Programming Concepts, IFIP State-of-the-Art Reports,
pages 51{136. Springer-Verlag, New York, N.Y., 1991.

[Bac78] John Backus. Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs. Communications of the ACM, 21(8):613{641,
August 1978.

7

[Bac89] R. C. Backhouse. Constructive Type Theory { An Introduction. In Manfred Broy,
editor, Constructive Methods in Computing Science, volume F55 of NATO ASI Series,
pages 9{60. Springer-Verlag, New York, N.Y., 1989.

[Bal81] Robert Balzer. Transformational Implementation: an Example. IEEE Transactions on
Software Engineering, SE-7(1), January 1981.

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland
Publishing Co., New York, N.Y., 1984. Revised Edition.

[Bar90] H. P. Barendregt. Functional Programming and Lambda Calculus. In J. van Leewen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Se-
mantics, chapter 7, pages 321{363. The MIT Press, New York, N.Y., 1990.

[BC85] Joseph L. Bates and Robert L. Constable. Proofs as Programs. ACM Transactions on
Programming Languages and Systems, 7(1):113{136, January 1985.

[BCM+93] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Allyn Dimock, and
Robert Muller. Safe and decidable type checking in an object-oriented language. ACM
SIGPLAN Notices, 28(10):29{46, October 1993. OOPSLA '93 Proceedings, Andreas
Paepcke (editor).

[BD77] R. M. Burstall and J. L. Darlington. A Transformation System for Developing Recursive
Programs. Journal of the ACM, 24(1):44{67, January 1977.

[BDMN73] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. SIM-
ULA Begin. Auerbach Publishers, Philadelphia, Penn., 1973.

[BG82] R. M. Burstall and J. A. Goguen. Algebras, Theories and Freeness: An Introduction
for Computer Scientists. In Manfred Broy and Gunther Schmidt, editors, Theoretical
Foundations of Programming Methodology: Lecture Notes of an International Summer
School directed by F. L. Bauer, E. W. Dijkstra and C. A. R. Hoare, volume 91 of series
C, pages 329{348. D. Ridel, Dordrecht, Holland, 1982.

[BH90a] Henk Barendregt and Kees Hemerik. Types in Lambda Calculi and Programming
Languages. In N. Jones, editor, ESOP '90 3rd European Symposium on Programming,
Copenhagen, Denmark, volume 432 of Lecture Notes in Computer Science, pages 1{35.
Springer-Verlag, New York, N.Y., May 1990.

[BH90b] Andrew P. Black and Norman C. Hutchinson. Typechecking Polymorphism in Emer-
ald. Technical Report TR 90-34, Department of Computer Science; The University of
Arizona, Tucson, AZ 85721, December 1990.

[BH91] Andrew P. Black and Norman Hutchinson. Typechecking Polymorphism in Emerald.
Technical Report CRL 91/1 (Revised), Digital Equipment Corporation, Cambridge
Research Lab, Cambridge, Mass., July 1991.

[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distri-
bution and Abstract Types in Emerald. IEEE Transactions on Software Engineering,
SE-13(1):65{76, January 1987.

8

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the
Emerald System. ACM SIGPLAN Notices, 21(11):78{86, November 1986. OOPSLA
'86 Conference Proceedings, Norman Meyrowitz (editor), September 1986, Portland,
Oregon.

[Bir89a] R. S. Bird. Algebraic Identities for Program Calculation. The Computer Journal,
32(2):122{126, April 1989.

[Bir89b] Richard S. Bird. Lectures on Constructive Functional Programming. In Manfred Broy,
editor, Constructive Methods in Computing Science, volume F55 of NATO ASI Series,
pages 151{216. Springer-Verlag, New York, N.Y., 1989.

[BJ82] Dines Bjorner and Cli� B. Jones. Formal Speci�cation and Software Development.
International Series in Computer Science. Prentice-Hall, Inc., London, 1982.

[BL90] K. Bruce and G. Longo. A modest model of records, inheritance and bounded quan-
ti�cation. Information and Computation, 87(1/2):196{240, 1990.

[BM92] Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types and higher-
order polymorphism. In Conference Record of the Nineteenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 316{327. ACM,
January 1992.

[Boe85] Hans-Juergen Boehm. Side E�ects and Aliasing Can Have Simple Axiomatic Descrip-
tions. ACM Transactions on Programming Languages and Systems, 7(4):637{655, Oc-
tober 1985.

[Bru93] K. Bruce. Safe Type Checking in a Statically Typed Object-Oriented Programming
Language. In Proc. ACM Symp. on Principles of Programming Languages, pages 285{
298, 1993.

[BTGS90] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with Coercions. In
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice,
France, pages 44{60. ACM, June 1990.

[Bv89a] R. J. R. Back and J. von Wright. Re�nement Calculus, Part I: Sequential Nondetermin-
istic Programs. Technical Report Ser. A, No 92, Abo Akademi University, Department
of Computer Science, Lemmink�ainengatan 14, 20520 Abo, Finland, 1989. Appears in
Stepwise Re�nement of Distributed Systems, Models, Formalisms, Correctness, REX
Workshop, Mook, The Netherlands, May/June 1989, Spring-Verlag, LNCS 430, J. W.
de Bakker, et al, (eds.), pages 42{66.

[Bv89b] R. J. R. Back and J. von Wright. Re�nement Calculus, Part II: Parallel and Reactive
Programs. Technical Report Ser. A, No 93(?), Abo Akademi University, Department
of Computer Science, Lemmink�ainengatan 14, 20520 Abo, Finland, 1989. Appears in
Stepwise Re�nement of Distributed Systems, Models, Formalisms, Correctness, REX
Workshop, Mook, The Netherlands, May/June 1989, Spring-Verlag, LNCS 430, J. W.
de Bakker, et al, (eds.), pages 67{93.

[BW90] Michael Barr and Charles Wells. Category Theory for Computing Science. International
Series in Computer Science. Prentice-Hall, Inc., Englewood Cli�s, N.J., 1990. ISBN 0-
13-120486-6.

9

[BWP87] Manfred Broy, Martin Wirsing, and Petter Pepper. On the Algebraic De�nition of
Programming Languages. ACM Transactions on Programming Languages and Systems,
9(1):54{99, January 1987.

[Car87] Luca Cardelli. Basic Polymorphic Typechecking. Science of Computer Programming,
8(2), April 1987.

[Car88a] Luca Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76(2/3):138{164, February/March 1988. A revised version of the paper that appeared
in the 1984 Semantics of Data Types Symposium, LNCS 173, pages 51{66.

[Car88b] Luca Cardelli. Structural Subtyping and the Notion of Power Type. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming Lan-
guages, San Diego, Calif., pages 70{79. ACM, January 1988.

[Car91] Luca Cardelli. Typeful Programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 431{507.
Springer-Verlag, New York, N.Y., 1991.

[Car93] Luca Cardelli. An Implementation of F<:. Technical Report 97, Digital Equipment Cor-
poration, Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301,
February 1993. Order from src-report@src.dec.com.

[Cas93] G. Castagna. A Meta-Language for Typed Object-Oriented Languages. In R. K.
Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer
Science, volume 761 of Lecture Notes in Computer Science, pages 52{71. Springer-
Verlag, October 1993.

[CCH+89] Peter Canning, William Cook, Walter Hill, John Mitchell, and Walter Oltho�. F-
Bounded Polymorphism for Object-Oriented Programming. In Fourth International
Conference on Functional Programming and Computer Architecture. ACM, September
1989. Also technical report STL-89-5, from Software Technology Laboratory, Hewlett-
Packard Laboratories.

[CGL92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded
Functions with Subtyping. In ACM Conference on LISP and Functional Programming,
pages 182{192. ACM, June 1992. To appear in Information and Computation.

[CGL93] G. Castagna, G. Ghelli, and G. Longo. A semantics for �&-early: a calculus with
overloading and early binding. In M. Bezem and J.F. Groote, editors, International
Conference on Typed Lambda Calculi and Applications, number 664 in Lecture Notes
in Computer Science, pages 107{123, Utrecht, The Netherlands, March 1993. Springer-
Verlag. TLCA'93.

[CH88] Thierry Coquand and G�erard Huet. The Calculus of Constructions. Information and
Computation, 76(2/3):95{120, February/March 1988.

[Cha92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In Ole Lehrmann Madsen,
editor, ECOOP '92, European Conference on Object-Oriented Programming, Utrecht,
The Netherlands, volume 615 of Lecture Notes in Computer Science, pages 33{56.
Springer-Verlag, New York, N.Y., 1992.

10

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is Not Subtyping.
In Conference Record of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, San Francisco, California, pages 125{135, January 1990. Also
STL-89-17, Software Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto,
Calif., July 1989.

[CHT81] T. E. Cheatham, G. H. Holloway, and J. A. Townley. Program Re�nement by Trans-
formation. In Fifth International Conference on Software Engineering, pages 430{437.
IEEE, 1981.

[Chu41] A. Church. The Calculi of Lambda Conversion, volume 6 of Annals of Mathematics
Studies. Princeton University Press, Princeton, N.J., 1941. Reprinted by Klaus Reprint
Corp., New York in 1965.

[CL90] Luca Cardelli and Xavier Leroy. Abstract Types and the Dot Notation. Technical Re-
port 56, Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, March 1990. Order from src-report@src.dec.com.

[CL94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Method.
Technical Report 94-03, Department of Computer Science, Iowa State University, 226
Atanaso� Hall, Ames, Iowa 50011, March 1994. Also University of Washington De-
partment of Computer Science and Engineering TR number 94-03-01. To appear in
OOPSLA '94.

[CM89] Luca Cardelli and John C. Mitchell. Operations on Records (Summary). In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Pro-
gramming Semantics, 5th International Conference, Tulane University, volume 442 of
Lecture Notes in Computer Science, pages 22{52. Springer-Verlag, New York, N.Y.,
March 1989.

[CMMS91] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An Extension
of System F with Subtyping. Technical Report 80, Digital Equipment Corporation,
Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1991.
Extended abstract in Theoretical Aspects of Computer Software, T. Ito and A. R.
Meyer (editors), LNCS Vol 526. To appear in Information and Control.

[Coh90] Edward Cohen. Programming in the 1990s: An Introduction to the Calculation of
Programs. Springer-Verlag, New York, N.Y., 1990.

[Con89] Robert L. Constable. Assigning Meaing to Proofs: a semantic basis for problem solving
environments. In Manfred Broy, editor, Constructive Methods in Computing Science,
volume F55 of NATO ASI Series, pages 63{91. Springer-Verlag, New York, N.Y., 1989.

[Coo89] W. R. Cook. A Proposal forMaking Ei�el Type-safe. The Computer Journal, 32(4):305{
311, August 1989.

[Coo91] William R. Cook. Object-Oriented Programming Versus Abstract Data Types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of Lecture Notes in Computer Science, pages 151{178. Springer-
Verlag, New York, N.Y., 1991.

11

[Cou90] Patrick Cousot. Methods and Logics for Proving Programs. In J. van Leewen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 15, pages 841{993. The MIT Press, New York, N.Y., 1990.

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys, 17(4):471{522, December 1985.

[CZ84] Robert L. Constable and Daniel R. Zlatin. The Type Theory of PL/CV3. ACM
Transactions on Programming Languages and Systems, 6(1):94{117, January 1984.

[dB80a] Jaco de Bakker. Mathematical Theory of Program Correctness. International Series in
Computer Science. Prentice-Hall, Inc., Englewood Cli�s, N.J., 1980.

[dB80b] N. G. de Bruijn. A Survey of the Project AUTOMATH. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 579{606. Academic Press, Inc., New York, N.Y., 1980.

[DD85] James Donahue and Alan Demers. Data Types are Values. ACM Transactions on
Programming Languages and Systems, 7(3):426{445, July 1985.

[Dij75] E. W. Dijkstra. Guarded Commands, Nondeterminancy and Formal Derivation of
Programs. Communications of the ACM, 18(8):453{457, August 1975.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cli�s, N.J., 1976.

[DM82] L. Damas and R. Milner. Principal Type-Schemes for Functional Programs. In Con-
ference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, pages 207{212. ACM, January 1982.

[DMN70] Ole-Johan Dahl, B. Myhraug, and K. Nygaard. The Simula 67 common base language.
Publication S-22, Norwegian Computing Center, Oslo, Norway, 1970.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program semantics.
Springer-Verlag, NY, 1990.

[DT88] Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented Program-
ming. ACM Computing Surveys, 20(1):29{72, March 1988.

[Dyb90] Peter Dybjer. Comparing Integrated and External Logics of Functional Programs.
Science of Computer Programming, 14(1):59{79, June 1990.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Speci�cation 1: Equations
and Initial Semantics. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, New York, N.Y., 1985.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc.,
Orlando, Florida, 1972.

[FB86] Michael Fisher and Howard Barringer. Program Logics { A Short Survey. Technical
Report UMCS-86-11-1, Department of Computer Science, University of Manchester,
Manchester M13 9PL, England, November 1986. Revised June 1987.

12

[FF86] Matthias Felleisen and Daniel P. Friedman. Control Operators, the SECD-Machine,
and the �-Calculus. Technical Report 197, Computer Science Department, Indiana
University, June 1986.

[FH89] Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic Theories
of Sequential Control and State. Technical Report COMP TR89-100, Department of
Computer Science, Rice University, December 1989.

[Flo67] R. W. Floyd. Assigning Meanings to Programs. Proceedings Symposium on Applied
Mathematics, 19:19{31, 1967.

[FWH92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Pro-
gramming Languages. McGraw-Hill Book Co., New York, N.Y., 1992.

[Ghe91a] Giorgio Ghelli. Modelling Features of Object-Oriented Languages in Second Or-
der Functional Languages with Subtypes. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX
School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of
Lecture Notes in Computer Science, pages 311{340. Springer-Verlag, New York, N.Y.,
1991.

[Ghe91b] Giorgio Ghelli. A Static Type System for Message Passing. ACM SIGPLAN No-
tices, 26(11):129{145, November 1991. OOPSLA '91 Conference Proceedings, Andreas
Paepcke (editor), October 1991, Phoenix, Arizona.

[GHM78] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract Data Types and
Software Validation. Communications of the ACM, 21(12):1048{1064, December 1978.

[Gir71] Jean-Yves Girard. Une extension de l'interpr�etation de G�odel �a l'analyse, et son appli-
cation �a l'�elimination des coupures dans l'analyse et la th�eorie des types. In Proceedings
2nd Scandinavian Logic Symposium, pages 63{92, Amsterdam, 1971. North-Holland.

[Gir86] J. Y. Girard. The System F of variable types, �fteen years later. Theoretical Computer
Science, 45:159{192, 1986.

[GL86] David K. Gi�ord and John M. Lucassen. Integrating Functional and Imperative Pro-
gramming. In ACM Conference on LISP and Functional Programming, pages 28{38.
ACM, August 1986.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge Uni-
versity Press, New York, N.Y., 1989.

[GM94] Carl A. Gunter and John C. Mitchell, editors. Theoretical Aspects of Object-Oriented
Programming. Fondations of Computing. The MIT Press, Cambridge, MA, 1994.

[GMP90] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal Veri�cation of Ada
Programs. IEEE Transactions on Software Engineering, 16(9):1058{1075, September
1990.

[GMW79] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science. Springer-Verlag, New York, N.Y.,
1979. The second author is listed on the cover as Arthur J. Milner, which is clearly a
mistake.

13

[Gol84] R. Goldblatt. Topoi: The Categorial Analysis of Logic (Revised Edition), volume 98 of
Studies in Logic and the Foundations of Mathematics. North-Holland, New York, N.Y.,
1984.

[Gor79] Michael J. C. Gordon. The Denotational Description of Programming Languages.
Springer-Verlag, New York, N.Y., 1979.

[Gor88] Michael J. C. Gordon. Programming Language Theory and its Implementation. Prentice
Hall International Series in Computer Science. Prentice-Hall, Inc., New York, N.Y.,
1988.

[GR83] Adele Goldberg and David Robson. Smalltalk-80, The Language and its Implementa-
tion. Addison-Wesley Publishing Co., Reading, Mass., 1983.

[Gra79] George Gratzer. Universal Algebra. Springer-Verlag, New York, N.Y., second edition,
1979.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, New York, N.Y., 1981.

[GS90] C. A. Gunter and D. S. Scott. Semantic Domains. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 8,
pages 633{674. North-Holland, New York, N.Y., 1990.

[GS94] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer-Verlag, New York, N.Y., 1994.

[Gun92] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foun-
dations of Computing. The MIT Press, Cambridge, Mass., 1992.

[Har84] D. M. Harland. Polymorphic Programming Languages: Design and Implementation.
John Wiley and Sons, New York, N.Y., 1984.

[Har85] Robert Harper. Modules and Persistence in Standard ML. In Persistence and Data
Types: Papers for the Appin Workshop, pages 419{430. Universities of Glasgow and St.
Andrews, Departments of Computer Science, August 1985. Persistent Programming
Research Report 16.

[Har86] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,
Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, November 1986.

[Hen80] Peter Henderson. Functional Programming: Application and Implementation. Interna-
tional Series in Computer Science. Prentice-Hall, Inc., Englewood Cli�s, N.J., 1980.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: an Elementary In-
troduction using Structural Operational Semantics. John Wiley and Sons, New York,
N.Y., 1990.

[Hes92] Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, New York,
N.Y., 1992.

14

[HHJ+87] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of Programming. Communications of
the ACM, 30(8):672{686, August 1987. See corrections in the September 1987 CACM.

[HMM86] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Re-
port ECS-LFCS-86-2, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, March 1986.

[HMT87] Robert Harper, Robin Milner, and Mads Tofte. A Type Discipline for ProgramModules.
In Proceedings of the International Joint Conference on Theory and Practice of Software
Development (TAPSOFT), volume 250 of Lecture Notes in Computer Science, pages
308{319. Springer-Verlag, March 1987.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of
the ACM, 12(10):576{583, October 1969.

[Hoa71] C.A.R. Hoare. Proof of a Program: Find. Communications of the ACM, 14(1):39{45,
January 1971.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271{281, 1972.

[Hoa89] C. A. R. Hoare. Notes on an Approach to Category Theory for Computer Scientists.
In Manfred Broy, editor, Constructive Methods in Computing Science, volume F55 of
NATO ASI Series, pages 245{305. Springer-Verlag, New York, N.Y., 1989.

[How80] W. A. Howard. The Formulae-as-Types notion of Construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479{490. Academic Press, Inc., New York, N.Y., 1980.

[HP90] Robert W. Harper and Benjamin C. Pierce. Extensible Records Without Subtypes.
Technical Report CMU-CS-90-102, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, Penn., February 1990. See also the 1991 POPL proceedings.

[Hud89] Paul Hudak. Conception, Evolution, and Application of Functional Programming Lan-
guages. ACM Computing Surveys, 21(3):359{411, September 1989.

[HW73] C. A. R. Hoare and N. Wirth. An Axiomatic De�nition of the Programming Language
Pascal. Acta Informatica, 2(4):335{355, 1973.

[Jon86] Cli� B. Jones. Program Speci�cation and Veri�cation in VDM. Technical Report
UMCS-86-10-5, Department of Computer Science, University of Manchester, Manch-
ester M13 9PL, England, November 1986.

[Jon90] Cli� B. Jones. Systematic Software Development Using VDM. International Series in
Computer Science. Prentice Hall, Englewood Cli�s, N.J., second edition, 1990.

[Kam90] Samuel N. Kamin. Programming Languages: An Interpreter-Based Approach. Addison-
Wesley Publishing Co., Reading, Mass., 1990.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, Cambridge, Mass., 1991.

15

[Kni89] Kevin Knight. Uni�cation: A Multidisciplinary Survey. ACM Computing Surveys,
21(1):93{124, March 1989.

[Lam89] Leslie Lamport. A Simple Approach to Specifying Concurrent Systems. Communica-
tions of the ACM, 32(1):32{45, January 1989.

[Lan64] P. J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6:308{
320, 1964. See also Landin's paper \A Lambda-Calculus Approach" in Advances in
Programming and Non-Numerical Computation, L. Fox (ed.), Pergamon Press, Oxford,
1966.

[Lan65] P. J. Landin. A Correspondence Algol 60 and Church's Lambda Notation. Communi-
cations of the ACM, 8:89{101, 158{165, 1965.

[Lan66] P. J. Landin. The Next 700 Programming Languages. Communications of the ACM,
9(3):157{166, March 1966.

[Lan71] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, N.Y., 1971.

[LG86] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Develop-
ment. The MIT Press, Cambridge, Mass., 1986.

[LG88] John M. Lucassen and David K. Gi�ord. Polymorphic E�ect Systems. In Confer-
ence Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, Calif., pages 47{57. ACM, January 1988.

[LGH+78] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J.
Popek. Proof Rules for the Programming Language Euclid. Acta Informatica, 10(1):1{
26, 1978.

[LS86] J. Lambek and P. J. Scott. Introduction to higher order categorical logic, volume 7 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York,
N.Y., 1986.

[LS87] Jacques Loeckx and Kurt Sieber. The Foundations of Program Veri�cation (Second
edition). John Wiley and Sons, New York, N.Y., 1987.

[LS91] F. W. Lawvere and Stephen H. Schanuel. Conceptual Mathematics: a �rst introduction
to categories. Bu�alo Workshop Press, Bu�alo, NY, 1991.

[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scha�ert. Abstraction Mech-
anisms in CLU. Communications of the ACM, 20(8):564{576, August 1977.

[MA86] Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Program Semantics.
Springer-Verlag, New York, N.Y., 1986.

[MA89] C. McDonald and L. Allison. Denotational Semantics of a Command Interpreter and
their Implementation in Standard ML. The Computer Journal, 32(5):422{431, October
1989.

[Mac84] David MacQueen. Modules for Standard ML. In Proceedings of the Symposium on
LISP and Functional Programming, Austin, Texas, pages 198{207. ACM, August 1984.

16

[Mac86] David MacQueen. Using Dependent Types to Express Modular Structure. In Confer-
ence Record of the Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, pages 277{286. ACM, January 1986.

[McC60] John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I. Communications of the ACM, 3(4):184{195, April 1960.

[McC84] Nancy McCracken. The Typechecking of Programs with Implicit Type Structure. In
D. B. MacQueen G. Kahn and G. Plotkin, editors, Semantics of Data Types: Interna-
tional Symposium, Sophia-Antipolis, France, volume 173 of Lecture Notes in Computer
Science, pages 301{315. Springer-Verlag, New York, N.Y., June 1984.

[Mee87] L. G. L. T Meertens, editor. Program Speci�cation and Transformation. North-Holland,
1987.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
N.Y., 1988.

[Mey92] Bertrand Meyer. Ei�el: The Language. Object-Oriented Series. Prentice Hall, New
York, N.Y., 1992.

[MG90] Carroll Morgan and P. H . B. Gardiner. Data Re�nement by Calculation. Acta Infor-
matica, 27(6):481{503, May 1990.

[MH88] John C. Mitchell and Robert Harper. The Essence of ML. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San
Diego, Calif., pages 28{46. ACM, January 1988.

[Mil78] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17(3):348{375, December 1978.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 94 of Lecture Notes in
Computer Science. Springer-Verlag, New York, N.Y., 1980.

[Mil84] Robin Milner. A Proposal for Standard ML. In Conference Record of the ACM Sym-
posium on LISP and Functional Programming, Austin, Texas, pages 184{197. ACM,
August 1984. Also appeared as Tech. Report CSR-157-83, University of Edinburgh,
Edinburgh, Scotland, 1983.

[Mil90] Robin Milner. Operational and Algebraic Semantics of Concurrent Processes. In J. van
Leewen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, chapter 19, pages 1201{1242. The MIT Press, New York, N.Y., 1990.

[Mit86] John C. Mitchell. Representation Independence and Data Abstraction (preliminary
version). In Conference Record of the Thirteenth Annual ACM Symposium on Princi-
ples of Programming Languages, St. Petersburg Beach, Florida, pages 263{276. ACM,
January 1986.

[Mit90] John C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 8, pages 365{458. North-Holland, New York, N.Y., 1990.

17

[ML75] P. Martin-L�of. An Intuitionistic Theory of Types: Predictive Part. In H. E. Rose and
J. C. Sheperdson, editors, Logic Colloquium '73, volume 80 of Studies in Logic, pages
73{118. North-Holland Publishing Co., New York, N.Y., 1975.

[ML82] Per Martin-L�of. Constructive Mathematics and Computer Programming. In L. J.
Cohen et al., editors, Logic, Methodology, and Philosophy of Science VI (Proceedings of
the Sixth International Congress; Hannover, 1979), volume 104 of Studies in Logic and
the Foundations of Mathematics, pages 153{175. North Holland, Amsterdam, 1982.

[MMM91] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of Standard ML modules
with subtyping and inheritance. In Conference Record of the Eighteenth Annual ACM
Symposium on Principles of Programming Languages, Orlando, pages 270{278. ACM,
January 1991.

[Mor73] James H. Morris, Jr. Protection in Programming Languages. Communications of the
ACM, 16(1):15{21, January 1973.

[Mor90] Carroll Morgan. Programming from Speci�cations. Prentice Hall International, Hemp-
stead, UK, 1990.

[Mos90] Peter D. Mosses. Denotational Semantics. In J. van Leewen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 11,
pages 577{631. The MIT Press, New York, N.Y., 1990.

[Mos92] Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, New York, N.Y., 1992.

[MP85] John C. Mitchell and Gordon D. Plotkin. Abstract Types have Existential Type. In
Conference Record of the 12th Annual ACM Symposium on Principles of Programming
Languages, New Orleans, Louisana, pages 37{51. ACM, January 1985.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. Information and Control, 71(1/2):95{130, Oct./Nov. 1986.

[MS76] R. E. Milne and C. Strachey. A Theory of Programming Language Semantics (part a,
part b). Chapman & Hall, London, 1976.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, Cam-
bridge, Mass., 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. The
MIT Press, Cambridge, Mass., 1990.

[MV94] Carroll Morgan and Trevor Vickers, editors. On the re�nement calculus. Formal ap-
proaches of computing and information technology series. Springer-Verlag, New York,
N.Y., 1994.

[MW80] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthe-
sis. ACM Transactions on Programming Languages and Systems, 2(1):90{121, January
1980.

[MW93] Zohar Manna and Richard Waldinger. The Deductive Foundations of Computer Pro-
gramming. Addison-Wesley, New York, N.Y., 1993.

18

[NHN80] Reiji Nakajima, Michio Honda, and Hayao Nakahara. Hierarchical Program Speci�ca-
tion and Veri�cation | a Many-sorted Logical Approach. Acta Informatica, 14(2):135{
155, 1980.

[Nip89] T. Nipkow. Formal Veri�cation of Data Type Re�nement | Theory and Practice. In
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Re�nement
of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook, The
Netherlands, volume 430 of Lecture Notes in Computer Science, pages 561{591. Spring-
Verlag, May/June 1989.

[NN92] F. Nielson and H.R. Neilson. Semantics with Applications - A Formal Introduction.
John Wiley and Sons, New York, N.Y., 1992.

[NP83] Bengt Nordstr�om and Kent Peterson. Types and Speci�cations. In R. E. A. Mason, edi-
tor, Information Processing 83, pages 915{920. Elsevier Science Publishers B.V. (North-
Holland), September 1983. Proceedings of the IFIP 9th World Computer Congress,
Paris, France.

[OG76] Susan Owicki and David Gries. Verifying Properties of Parallel Programs: An Ax-
iomatic Approach. Communications of the ACM, 19(5):279{285, May 1976.

[OG89] James William O'Toole and David K. Gi�ord. Type Reconstruction with First-Class
Polymorphic Values. ACM SIGPLAN Notices, 24(7):207{217, July 1989. Proceedings of
the SIGPLAN '89 Conference on Programming Language Design and Implementation,
Portland, Oregon, June.

[OL82] Susan Owicki and Leslie Lamport. Proving Liveness Properties of Concurrent Pro-
grams. ACM Transactions on Programming Languages and Systems, 4(3):455{495,
July 1982.

[PHL+77] G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, and R. L. London. Notes
on the Design of Euclid. ACM SIGPLAN Notices, 12(3):11{18, March 1977. Proceed-
ings of an ACM Conference on Language Design for Reliable Software, Raliegh, North
Carolina, March, 1977.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,
Cambridge, Mass, 1991.

[Plo77] G. D. Plotkin. LCF Considered as a Programming Language. Theoretical Computer
Science, 5:223{255, 1977.

[Plo81] Gordon Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Aarhus University, September 1981.

[Rey74] J. C. Reynolds. Towards a Theory of Type Structure. In Programming Symposium,
Proceedings, Colloque sur la Programmation, Paris, April 1974, volume 19 of Lecture
Notes in Computer Science, pages 408{425. Springer-Verlag, New York, N.Y., 1974.

[Rey75] J. C. Reynolds. User-de�ned Types and Procedural Data Structures as Complemen-
tary Approaches to Type Abstraction. In S. A. Schuman, editor, New Directions in
Algorithmic Languages, pages 157{168. IRIA, 1975.

19

[Rey78] John C. Reynolds. User De�ned Types and Procedural Data Structures as Complemen-
tary Approaches to Data Abstraction. In David Gries, editor, Programming Method-
ology, A Collection of Articles by IFIP WG2.3, pages 309{317. Springer-Verlag, New
York, N.Y., 1978. Reprinted from S. A. Schuman (ed.), New Directions in Algorithmic
Languages 1975, Inst. de Recherche d'Informatique et d'Automatique, Rocquencourt,
1975, pages 157-168.

[Rey80] John C. Reynolds. Using Category Theory to Design Implicit Conversions and Generic
Operators. In Neil D. Jones, editor, Semantics-Directed Compiler Generation, Pro-
ceedings of a Workshop, Aarhus, Denmark, volume 94 of Lecture Notes in Computer
Science, pages 211{258. Springer-Verlag, January 1980.

[Rey85] John C. Reynolds. Three Approaches to Type Structure. In Hartmut Ehrig, Chris-
tiane Floyd, Maurice Nivat, and James Thatcher, editors, Mathematical Foundations
of Software Development, Proceedings of the International Joint Conference on Theory
and Practice of Software Development (TAPSOFT), Berlin. Volume 1: Colloquium
on Trees in Algebra and Programming (CAAP '85), volume 185 of Lecture Notes in
Computer Science, pages 97{138. Springer-Verlag, New York, N.Y., March 1985.

[RL77] Lawrence Robinson and Karl N. Levitt. Proof Techniques for Hierarchically Structured
Programs. Communications of the ACM, 20(4):271{283, April 1977.

[SCB+86] Craig Scha�ert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. ACM SIGPLAN Notices, 21(11):9{16, November 1986.
OOPSLA '86 Conference Proceedings, Norman Meyrowitz (editor), September 1986,
Portland, Oregon.

[Sch82] Oliver Schoett. A Theory of ProgramModules, their Speci�cations and Implementation
(Extended Abstract). Internal Report CSR-155-83, Department of Computer Science,
University of Edinburgh, December 1982.

[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, Inc., Boston, Mass., 1986.

[Sch90] Oliver Schoett. Behavioural Correctness of Data Representations. Science of Computer
Programming, 14(1):43{57, June 1990.

[Sch94] David A. Schmidt. The Structure of Typed Programming Languages. Foundations of
Computing Series. MIT Press, Cambridge, Mass., 1994.

[Sco81] Dana Scott. Lectures on a Mathematical Theory of Computation. Technical Monograph
PRG-19, Oxford University Computing Laboratory, Programming Research Group,
1981. Appears in Theoretical foundations of programming methodology : lecture notes
of an international summer school, directed by F.L. Bauer, E.W. Dijkstra, and C.A.R.
Hoare (Ridel, 1982).

[Sha81] Mary Shaw. ALPHARD: Form and Content. Springer-Verlag, New York, N.Y., 1981.

[SS71] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer languages.
In Proceedings Symposium on Computers and Automata, volume 21 of Microwave In-
stitute Symposia Series, pages 19{46. Polytechnic Institute of Brooklyn, 1971.

20

[SS78] Guy Lewis Steele Jr. and Gerald Jay Sussman. The Art of the Interpreter or, The Mod-
ularity Complex (Parts Zero, One, and Two). AI Memo 453, Massachusetts Institute
of Technology, Arti�cial Intelligence Laboratory, May 1978.

[Sta85] R. Statman. Logical Relations and the Typed �-Calculus. Information and Control,
65(2/3):85{97, May/June 1985.

[Sto77] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. The MIT Press, Cambridge, Mass., 1977.

[Str66] C. Strachey. Towards a Formal Semantics. In IFIP TC2 Working Conference on
Formal Language Description Languages for Computer Programming, pages 198{220,
Amsterdam, 1966. North-Holland.

[SWL77] Mary Shaw, William A. Wulf, and R. L. London. Abstraction and Veri�cation in
Alphard: De�ning and Specifying Iteration and Generators. Communications of the
ACM, 20(8):553{564, August 1977.

[Tal88] C. Talcott. Rum: An intensional theory of function and control abstractions. In
M. Boscarol, L. Carlucci Aiello, and G. Levi, editors, Foundations of Logic and Func-
tional Programming, Workshop Proceedings, Trento, Italy, (Dec. 1986), volume 306 of
Lecture Notes in Computer Science, pages 3{44. Springer-Verlag, 1988.

[Ten76] R. D. Tennent. The Denotational Semantics of Programming Languages. Communica-
tions of the ACM, 19:437{453, August 1976.

[Tiu90] Jerzy Tiuryn. Type Inference Probelms: A Survey. In B. Rovan, editor, Mathematical
Foundations of Computer Science 1990, Bansk�a Bystrica, Czechoslovakia, volume 452
of Lecture Notes in Computer Science, pages 105{120. Springer-Verlag, New York, N.Y.,
1990.

[Tur85] David A. Turner. Miranda: A non-strict functional language with polymorphic types.
In J. Jouannaud, editor, Proceedings IFIP International Conference on Functional Pro-
gramming Languages and Computer Architectures, Nancy, France, volume 201 of Lec-
ture Notes in Computer Science, pages 1{16. Springer-Verlag, New York, N.Y., Septem-
ber 1985.

[vL90] Jan van Leeuwen. Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics. The MIT Press, New York, N.Y., 1990.

[Wal91] R. F. C. Walters. Categories and Computer Science, volume 28 of Cambridge Computer
Science Texts. Cambridge University Press, New York, N.Y., 1991.

[Wan89] Mitchell Wand. Type Inference for Record Concatenation and Multiple Inheritance. In
Fourth Annual Symposium on Logic in Computer Science, Paci�c Grove, California,
pages 92{97. IEEE, June 1989.

[Wat86] D. A. Watt. Executable Denotational Semantics. Software: Practice and Experience,
16(1):13{43, 1986.

[Wat91] David A. Watt. Programming Language Syntax and Semantics. Prentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, New York, N.Y., 1991.

21

[Weg74] Ben Wegbreit. The Treatment of Data Types in EL1. Communications of the ACM,
17(5):251{264, May 1974.

[Win87] Jeannette M. Wing. Writing Larch Interface Language Speci�cations. ACM Transac-
tions on Programming Languages and Systems, 9(1):1{24, January 1987.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. Foundations of
Computer Science Series. The MIT Press, Cambridge, Mass., 1993.

22

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR94-15
Submission Date: August 16, 1994

	8-1994
	Introduction to the Literature on Semantics
	Gary T. Leavens
	Recommended Citation

	literature-survey.dvi

