
Computer Science Technical Reports Computer Science

8-1994

Introduction to the Literature on Semantics
Gary T. Leavens
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T., "Introduction to the Literature on Semantics" (1994). Computer Science Technical Reports. Paper 96.
http://lib.dr.iastate.edu/cs_techreports/96

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/96?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Introduction to the Literature
On Semantics

Gary T. Leavens

TR #94-15
August 1994

Keywords: programming languages, axiomatic sematics, denotational semantics, operational se-
mantics, type systems, polymorphism, type theory, data abstraction.
1992 CR Categories: D.2.4 [Software Engineering ] Program Veri�cation; D.3.1 [Programming
Languages ] Formal De�nitions and Theory; F.3.1 [Logics and Meaning of Programs ] Specifying
and verifying and reasoning about programs; F.3.2 [Logics and Meaning of Programs ] Semantics of
Programming Languages; F.3.3 [Logics and Meaning of Programs ] Studies of Program Constructs.

c
 Gary T. Leavens. Permission is granted for you to make copies for educational and scholarly
purposes, but not for direct commercial advantage, provided this notice appears on all copies. All
other rights reserved.

Department of Computer Science
226 Atanaso� Hall
Iowa Sate University

Ames, Iowa 50011-1040, USA



Introduction to the Literature on Semantics

Gary T. Leavens

Department of Computer Science, Iowa State University

Ames, IA, 50011-1040 USA

leavens@cs.iastate.edu

August 16, 1994

Abstract

An introduction to the literature on semantics. Included are pointers to the literature on

axiomatic semantics, denotational semantics, operational semantics, and type theory.

The following is an selective introduction to the literature on programming language semantics.
Since this is an introduction, only a small fraction of the literature can be mentioned here. Refer-
ences are included because they have intrinsic interest, although some are included simply because
they are the original sources and are likely to be referenced by others doing related work (e.g.
[Chu41]). If you wish to probe an area more deeply, you might start with the papers mentioned,
follow their references, and also use the Science Citation Index to see what papers have referenced
the ones mentioned.

1 General Sources

Two recent texts that cover many di�erent approaches to semantics are: [NN92] [Win93].
Articles discussing principal topics in semantics, containing many references, appear in volume

B of the Handbook of Theoretical Computer Science [vL90].
Journals that include a substantial coverage of semantics include ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), ACM SIGPLAN Notices, IEEE Transactions on
Software Engineering, Information and Computation (formerly Information and Control, Academic
Press), and Acta Informatica (Springer-Verlag). Related areas, such as speci�cation and veri�ca-
tion have their own journals (e.g., ACM Transactions on Software Engineering and Methodology,
Science of Computer Programming, and Formal Aspects of Computing).

Conferences devoted to topics related to semantics include the IEEE Annual Symposium on
Logic in Computer Science (LICS), the Annual ACM Symposium on Principles of Programming
Languages (POPL), Mathematical Foundations of Programming Semantics (MFPS), the European
Symposium on Programming (ESOP), the ACM Symposium on LISP and Functional Programming
(LFP), the International Colloquium on Automata, Languages, and Programming (ICALP), and
the International Symposium on Mathematical Foundations of Computer Science. Conferences
not sponsored by the ACM or IEEE are often available in the Springer-Verlag series of Lecture
Notes in Computer Science (LNCS), and workshops are often available in the series Workshops
in Computing. The above list does not include conferences devoted to software engineering (e.g.
TAPSOFT) or particular methods (e.g., category theory) where some important work is also found.
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2 Mathematical Background

The basics of universal algebra underly much of the work in semantics. Gratzer's monumental
book [Gra79] is a standard reference. A generalized notion of homomorphism that is often used in
semantics is Statman's logical relations [Sta85], explained in [Mit90].

Another foundation is the area of mathematical logic. A classic approach, using proof theory
and model theory is [End72]. More recent approaches, favoring proof theory (especially predicate
logic) at the expense of model theory and mathematical depth and emphasizing calculation, include
[DS90] [GS94] [MW93].

2.1 �-Calculus

A standard reference on Church's (untyped) �-calculus [Chu41] is Barendregt's book [Bar84]. This
book is at times highly technical, but also has sensible de�nitions and introductory material. A
shorter account, with a reasonable introduction to the �-calculus is found in [Bar90]. Other intro-
ductions include [Gor88] [Sch94, Sections 6.1{6.2].

The use of �-calculus for describing programming languages and as the inspiration for program-
ming language design has been investigated by Landin [Lan65] [Lan66] and many others.

For the typed �-calculus, a standard reference is [GLT89]. A good introduction can be found
in [Gun92, Chapter 2] and [Sch94, Sections 6.4]; both of these texts discuss the semantics of the
typed lambda calculus in detail. Schmidt's book [Sch94] is also a good introduction to higher-order
typed lambda calculi, and contains references to work on such higher-order extensions.

2.2 Category Theory

Increasingly, especially in denotational semantics, category theory [Lan71] [LS91] is used in research
and for the elegant presentation of results. For example, categorical logic and the semantics of the
typed lambda calculus are discussed in [LS86].

For me, the best introduction seems to be the �rst 5 chapters of [Gol84]. There are now several
articles [Hoa89] and books [BW90] [AL91b] [Pie91] [Wal91] explaining category theory to computer
scientists. For those familiar with (or needing) background in the semantics of abstract data type
speci�cations, a good introduction is Burstall and Goguen's paper [BG82].

3 Axiomatic Semantics

Hoare pointed out, in his seminal paper [Hoa69, Section 6], that one could de�ne a programming
language by insisting \that all implementations of the language shall `satisfy' the axioms and rules
of inference which underlie proofs of the properties of the programs expressed in the language."
(However, Hoare attributes this idea to Floyd [Flo67].) Such a semantics is useful because it directly
aims to support program veri�cation.

Because a logic for program veri�cation can be used to de�ne a programming language, it is
di�cult to disentangle work on program veri�cation from work on semantics. Even if program
veri�cation is not itself a form of semantics (rather, it is an application), it still provides important
motivation for axiomatic semantics. Therefore, veri�cation is also discussed in this section.

3.1 Program Veri�cation

Program veri�cation is concerned with showing that a particular program meets its speci�cation.
This may be accomplished in several ways; for example, reasoning from the denotational semantics
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of the program. However, the term \program veri�cation" is usually implies a syntactic proof in a
specially constructed logic.

Floyd introduced the inductive assertions and well-founded sets methods for program veri�ca-
tion in 1967 [Flo67] (see also [LS87, Chapter 8]). (See [Cou90] for historical references to the work
of Naur, Von Neumann, and Turing, who anticipated this work.) The term inductive assertions
refers to the assertions that are put at every branch point in the program's 
ow graph; these give
rise to veri�cation conditions, which state that along every path, the correctness of the assertions
is preserved. This shows partial correctness (that the program is correct if it terminates). The
well-founded sets method allows proofs of termination.

Hoare [Hoa69] was the �rst to present veri�cation in terms of a logic for partial correctness that
was compositional, so that program proofs are done by induction on the syntax of programs. This
paper sparked a wealth of research in program veri�cation. Some surveys of results of this research
are [Apt81], [FB86], and [Cou90], the latter of which also cites other surveys. A technical reference
is [LS87, Chapter 9].

A very introductory tutorial on veri�cation from the software engineering perspective is [LG86,
chapter 11]. The idea of developing a proof of a program at the same time the program is being
developed has been eloquently advocated by Dijkstra and Gries [Dij76] [Gri81]. See [Gor88] for a
more theoretical introduction that treats some aspects of theorem proving.

Concurrency has always been a prime application area, because concurrent programs are so dif-
�cult to debug. Veri�cation of concurrent programs may be handled with the Owicki-Gries method
[OG76]. Other techniques use temporal logic (e.g., [OL82]) and \transition axioms" [Lam89].
An introduction to Hoare-style veri�cation that discusses concurrent and distributed programs is
[Al91a].

3.1.1 Abstract Data Types

Hoare also was the �rst to consider how veri�cation and abstract data types interact [Hoa72]. His
technique allows one to separately verify the correctness of a type's implementation and programs
that use that type, and is based on the use of representation invariants and abstraction functions.
A practical implementation of these ideas is found in [NHN80]. VDM also uses these techniques
[Jon90]. More recent work in this area is found in [Sch90] and [Nip89].

Abstract data types (ADTs) can be speci�ed algebraically [GHM78] [EM85] or by using pre-
and post-conditions [BJ82] [Jon86] [Win87]. See [LG86, chapter 11] for a tutorial on program
veri�cation using abstract data types.

A related aspect is how the structure of a proof of correctness may help follow the hierarchical
(i.e., layered) structure of the implementation design [RL77] [GMP90] [Sch82].

3.1.2 Transformational Programming

Hoare's original paper [Hoa69], treated veri�cation as something to be done after a program was
written. However, Hoare [Hoa71] and others were soon advocating the development of proofs at
the same time as programs. Dijkstra and Gries became prime advocates of this technique [Dij76]
[Gri81]. More recent treatments in this style advocate a calculational approach [Coh90] [GS94]. One
formalization of this approach is the re�nement calculus [Bv89a][Bv89b] [Mor90] [MG90] [MV94].

The idea of formal development of program and proof has found favor in the functional pro-
gramming community as well. The idea behind transformational programming is to transform the
speci�cation of a program into an e�cient version [BD77] [MW80] [Bal81] [CHT81]; these references
are characterized by their work with equational logic (instead of predicate transformers or a Hoare
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logic), their use of algebraic techniques, and the general focus on functional languages. Some recent
work in this area can be found in [Mee87] [Bir89a] [Bir89b] [Tal88]. Transformational (or algebraic)
techniques also underly the work on Backus's FP [Bac78] and Hoare's \Laws of Programming" for
CSP [HHJ+87].

Contrary to popular belief, it is also possible to reason \equationally" about programs with
side-e�ects and even continuations [Boe85] [FF86] [FH89].

3.2 Axiomatic Semantics of Programming Languages

A classic text on the semantics of programming languages which treats axiomatic semantics is
[dB80a]. Predicte transformer semantics, using the \weakest precondition" operator were advo-
cated by Dijkstra for the de�nition of his guarded command language [Dij75]. A monograph on
predicate transformer semantics is [DS90] which goes over notational issues as well as the underlying
mathematics. A recent monograph that updates [dB80a] using predicate transformers is [Hes92].

An example of the use of the axiomatic semantics to describe a programming language is Hoare
and Wirth's axiomatic de�nition of Pascal [HW73].

The use of an axiomatic semantics as a metric for the \goodness" of a language led to two
language designs in the 1970s. Although never implemented fully, Alphard [SWL77] [Sha81] was
interesting, and focused on support for both data abstraction and veri�cation. The language Euclid
[LGH+78] [PHL+77] was implemented, and has been used for various large projects.

3.3 Algebraic Semantics

While most axiomatic approaches use Hoare logic or variations on Hoare logic, there have been a
few attempts to use the techniques of algebra and equational speci�cation to de�ne programming
languages. Examples include [MA86] [BWP87].

4 Denotational Semantics

In contrast to axiomatic semantics, denotational semantics [Str66] [SS71] [MS76] [Sto77] [Sco81]
[Sch86] explicitly constructs mathematical models of programming languages. A short summary
of the denotational approach can be found in Tennent's article \The Denotational Semantics of
Programming Languages" [Ten76]. A recent survey is found in [Mos90].

Introductory texts include [Gor79], [All86], [Wat91], [Sch94]. An excellent new graduate text
with more mathematical depth is [Gun92]. Standard works on denotational semantics are the
books by Stoy [Sto77] and Schmidt [Sch86], both of which o�er a comprehensive and mathematical
treatment. Schmidt's book [Sch86] has an excellent discussion of domain theory (see also [GS90])
and can be consulted for references to denotational descriptions of real languages.

One can use a typed functional programming language, such as Standard ML, to implement a
denotational semantics. Two descriptions of this idea are [Wat86] [MA89].

Action semantics, an o�shoot of denotational semantics, is described in [Wat91] and more fully
in [Mos92].

Schmidt's book [Sch86] also has a discussion of denotational semantics for concurrent systems.
Hennessy's book has a discussion of more recent work in this area [Hen88]. However, denotational
approaches to concurrency have not been as successful as operational semantics.
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5 Operational Semantics

A compiler or interpreter gives an operational semantics to a programming language. This style of
semantics dates back to the earliest programming languages, and was �rst formalized in the idea
of a meta-circular interpreter for LISP [McC60].

Meta-circular interpreters are still useful for teaching purposes, and for prototyping program-
ming language designs. Several meta-circular interpreters for variants of LISP are discussed in
Steele and Sussman's paper The Art of the Interpreter [SS78]. An excellent and more readily ac-
cessible discussion is found in Abelson and Sussman's book [ASS85], which uses Scheme. A more
detailed treatment of interpreters is found in [Kam90] [FWH92]. See [KdRB91] for an approach
using the CLOS meta-object protocol.

However, for mathematical convenience, one wants something more abstract than an interpreter
or complier. Landin overcame the circularity problem by the use of an abstract machine called the
\SECD machine" [Lan64] (see also [Hen80]).

A more systematic style of operational semantics based on rewrite rules is found in Plotkin's
terminal transition systems [Plo77] also known as \structural operational semantics" [Plo81] [Hen90]
or a \labeled transition system" [Ast91]. Hennessy's book is an elementary introduction [Hen90].
This style of semantics has the advantage that it extends naturally to studies of concurrency [Mil90].
A classic reference for the operational semantics of concurrent processes is Milner's book on CCS
[Mil80]. See [Hen88] and [Mil90] for more recent work in this area.

6 Type Systems

Much of the modern study of semantics concerns type systems, which describe many aspects of the
static semantics of programming languages. In contrast, axiomatic, denotational, and operational
semantics describe the dynamic semantics of programming languages.

The purpose of type checking is nicely summarized by Morris as a mechanism that allows
program modules to protect objects from unwanted discovery, modi�cation, and impersonation
[Mor73]. Wegbreit's discussion of the extensible language EL1, is also good background [Weg74].

Schmidt's recent book [Sch94] starts treats type systems in the context of programming language
semantics. It also goes deeply into more advanced topics such as higher-order type systems and
predicate-logic typing.

6.1 Polymorphism

An introductory survey of modern polymorphic type systems and research results is Cardelli and
Wegner's paper \On Understanding Types, Data Abstraction and Polymorphism" [CW85]. See also
[Har84] [Car91] [DT88]; the latter two have much material related to object-oriented programming.
A still more recent survey is [Mit90].

Standard references include Girard's system F! [Gir71] (see also [Gir86] [GLT89]), and Reynolds
independent work [Rey74], sometimes called the Girard-Reynolds second order lambda calculus (or
SOL). Modern expositions are found in [MP85] [MH88] [Rey85] [Mit90] [Car91].

Other kinds of type information may be incorporated into a type system and checked at the
same time as types [GL86] [LG88] [OG89].
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6.2 Type Theory

Type theory, narrowly de�ned, uses the tools of constructive logic to study polymorphic type
systems. A good introduction can be found in [Sch94, Chapters 8{10]. Logical inference systems
can often be translated directly into type systems due to the \Formula as Types" notion or the
\Curry-Howard isomorphism" [How80] [GLT89, Chapter 3] [Con89]. Thus much research in type
theory lies on the border of mathematics and computer science. Another motivation is to use type
information to capture behavioral speci�cations, thus allowing one to reason about programs in the
programming language [NP83] [Dyb90].

The principal groups working on type theory include deBruijn and others working on AU-
TOMATH [dB80b], Martin-L�of's and followers [ML75] [ML82] [Bac89], Constable's group at Cor-
nell has been very active in this area. Their language PRL which uses constructive mathematics,
is described in the paper \Proofs as Programs" [BC85]. A related language is PL/CV3 [CZ84].
Coquand and Huet's group is responsible for the \calculus of constructions" [CH88]. A recent
survey with more references is [BH90a].

6.3 Data Abstraction: ADTs and OOP

Reynolds [Rey75] [Rey78] (see also [Coo91]) distinguished two ways in which a type system could
support data abstraction. The �rst way is to have the language give an object di�erent types outside
and inside a de�ning module; this Reynolds called \user de�ned types". User de�ned types also go
by the name of \abstract data types" (ADTs), and their support in a type system is exempli�ed
by the language CLU [LSAS77] [LG86].

Mitchell and Plotkin connected this approach, ADTs, to the second-order lambda calculus
[MP85]. This idea has been used to show some representation independence results [Mit86]. For
other work along these lines, see for example, [Mac86] [CL90] [Mit90].

The second approach to supporting data abstraction Reynolds called \procedural data abstrac-
tion". Today it goes under the more common name of \object-oriented programming" (OOP)
[DMN70] [BDMN73] [GR83]. Some languages exemplifying typed support for OOP include SIM-
ULA [BDMN73], and Ei�el [Mey88] [Mey92], both of which have insecure type systems [Coo89].
The language Trellis/Owl [SCB+86] features by-name type checking and subtyping. By con-
trast,Emerald [BHJL86] [BHJ+87] [BH90b] [BH91] and Quest [Car91] feature structural subtyping.

Some seminal references on types and OOP are reprinted in [GM94]. Recent theoretical work
on types for OOP includes the following [Car88b] [Car88a] [CM89] [AC90] [CMMS91] [Car93]
[CCH+89] [CHC90] [Coo89] [BTGS90] [HP90] [MMM91] [BCM+93] [BL90] [BM92] [Aba93] [Bru93].
(Cardelli is one of the most active in this area, and most of the literature will cite one of his papers.)
For work that directly bears on multimethods (as in CLOS), see [Rey80] [Ghe91a] [Ghe91b] [CGL92]
[Cha92] [CGL93] [Cas93] [CL94].

6.4 Type Reconstruction

Type reconstruction (or type inference) is the process of reconstructing types for a program that has
no type declarations. A practical and sound algorithm is described in Milner's paper \A Theory of
Type Polymorphism in Programming" [Mil78]. Another exposition of this material, incorporating
re�nements found in [DM82], is found in [Car87].

Milner-style type inference system is used in the programming language ML [GMW79] [Mil84]
[Har86] [HMM86]. The ideal model has been used to give a semantics to the ML type system
[MPS86].
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The question of whether one can do type inference for more powerful type systems has been
an active area of research (e.g., [McC84] [Wan89]). A recent survey of what is known about such
problems is found in [Tiu90].

See Knight's survey [Kni89] for a discussion of the central role that uni�cation plays in type
inference and more details on uni�cation itself.

6.5 Research Languages

The language Russell was developed at Cornell to investigate how types can be treated as values.
There are many papers that have appeared about Russell, but perhaps the best introduction to the
language is the paper \Data Types are Values" [DD85], which can be consulted for other references.
Russell has separate mechanisms for building types and for information hiding; the same idea is
found in Haskell [Hud89, Pages 387-388]. Interesting variations are found in Miranda [Tur85].

Much recent work has centered around the language ML and its modern variant Standard ML
[Mil84] [MTH90] [MT91]. Besides the type inference in its type system mentioned above, Standard
ML has an interesting module system [Mac84] [Har85] [HMT87].
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