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Abstract

Good motivating examples for teaching the utility of curried func-

tions can be taken from Physics. The curried function perspective

can also be used to help functional programmers understand �elds in

Physics. The correspondence between the curried function view of

vector �elds and the usual view taken in Physics is also explained.

1 Introduction

The earth and everything in it is held together by forces that can be modeled
using curried functions. Yet many students think that curried functions have
little to do with their everyday experience, and so have trouble grasping
the concept. Typical examples, given in texts on programming languages
or functional programming, are curried mapping and reduction functions
on lists, which connect only with students' experience in programming. A
novel1 approach is to draw more compelling examples from Physics.

Once one understands curried functions, it is easy to understand the
concept of a �eld in Physics. Fields are similar to curried functions, although
vector �elds in Physics are modeled in a slightly di�erent but mathematically
equivalent way.

The rest of this note is organized as follows. Section 2 gives some back-
ground on the Newtonian gravitational �eld used for a running example,
and the programming language Scheme used in this note for examples. Sec-
tion 3 presents the way in which examples from Physics can be used to teach
curried functions. Section 4 explains how functional programmers can use
their understanding of curried functions to understand the concept of �elds

1Gerald J. Sussman apparently discussed something like this in his invited lecture at
the 1982 ACM Symposium on LISP and Functional Programming. Sussman says that
he never wrote down his lecture. Although his lecture was titled \Teaching the Control
of Complexity," the idea does not seem to have made it into the practice of teaching
functional programming, and it does not appear in [ASS85].
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(de�ne G 6.670e-11) ; N�m2/kg2

(de�ne grav-force

(lambda (m1 r m2) ; kg m kg
(if (zero? r)

0.0

(- (/ (* G (* m1 m2))

(square r))))))

(de�ne square

(lambda (num)

(* num num)))

Figure 1: De�nitions of the universal gravitational constant G, and the func-
tion grav-force in Scheme. The auxiliary Scheme function square returns
the square of its actual parameter.

in Physics, and discusses how the view of �elds as curried functions can be
reconciled with the standard interpretation of �elds in Physics. Section 5
o�ers some conclusions.

2 Background

A simple physical example that can be used to teach curried functions is
Newton's law of gravity [New87] [FLS63, Chapter 7]. Coding Newton's
law in the programming language Scheme [SS78] [RCA+86] [IEE91] [ASS85]
[SF89] will help explain Scheme's notation and curried functions.

2.1 Newton's Law of Universal Gravitation

The magnitude of the gravitational force, F , between two masses, m1 and
m2, separated by distance (radius) r is given by the following equation.

F =
Gm1m2

r2
(1)

In the above equation, G is the universal gravitational constant. Using
International System (SI) units, G is 6:670� 10�11 N�m2/kg2, where \N"
stands for \newtons" (1 newton = 1 kg�m/s2), \m" stands for \meters",
\kg" stands for \kilograms", and \s" stands for \seconds." With SI units,
m1 andm2 would be given in kilograms, r in meters, and thus F in newtons.

2.2 Scheme

Equation (1) implicitly de�nes the force, F , as a function of m1, r, and m2.
Figure 1 codes this as the function grav-force in Scheme. The code re�nes
the equation, by de�ning the force to be zero, if the distance r is zero.
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In Scheme de�ne introduces a name being de�ned; the name is followed
by an expression whose value becomes the name's value. There are three
de�ne expressions in Figure 1. The �rst such de�ne binds the name G to
the universal gravitational constant in SI units. A semicolon (;) starts a
comment, which continues to the end of the line; the �rst comment gives
the units of G.

The second de�ne binds the name grav-force to a Scheme function.
A lambda expression makes a Scheme function, with formal parameters
named within the following set of parentheses, and a body which is an
expression. The function grav-force thus has three formal parameters:
m1, m2, and r. When a function is called, it returns as its value the result
of the expression that is its body, using the actual parameter values as the
values of its formal parameters. For example, the function call

(grav-force 5.96e24 6.37e6 68.0)

has as its approximate value 666.2 newtons; this is the magnitude of the
gravitational force when m1 is 5:96� 1024 kilograms (the earth's mass), r is
6:37� 106 meters (the earth's radius), and m2 is 68.0 kilograms. As above,
the application of a Scheme function, f, to an actual parameter, x, is written
(f x). Even arithmetic operators, such as multiplication are written this
way; for example, the expression (* r r) is the square of r. An if expression
of the form (if b e2 e3) returns the value of e2 if the value of the test b is
true, and otherwise returns the value of e3. The built-in Scheme predicate,
zero?, used in Figure 1, returns true just when its argument is zero.

3 The Gravitational Force Example

This section shows various ways to explain curried functions to students.
It illustrates the kind of example that can be drawn from physics. (Other
examples include the dielectric force law.)

A curried version of the Scheme function grav-force is given in Figure 2.
Currying a function with more than one argument means expressing that
function using nested one-argument functions [Fre91, pages 153{156] [Sch24]
[Cur30] [CFC58] [Bar84, Page 6] [SF89, Section 7.3]. As a start to explaining
this concept, the Scheme expression

(((grav-force-c 5.96e24) 6.37e6) 68.0)

also has as its approximate value 666:2 newtons. In general the Scheme
function grav-force-c is such that for all m1, r, and m2, the following
equation between Scheme expressions holds.

(((grav-force-c m1) r) m2) = (grav-force m1 r m2) (2)

In the Scheme expression (((grav-force-c m1) r) m2), the Scheme func-
tion grav-force-c is applied to m1, and this returns another Scheme func-
tion. The function returned is the one de�ned by the expression (lambda

(r) . . .) in Figure 2. Note that when this function is de�ned, there is al-
ready a value for m1, which this function will ultimately use. That Scheme
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(de�ne grav-force-c

(lambda (m1) ; kg
(lambda (r) ; m

(lambda (m2) ; kg
(if (zero? r)

0.0

(- (/ (* G (* m1 m2))

(square r))))))))

Figure 2: The curried function grav-force-c. The universal gravitational
constant, G, and the Scheme function square are de�ned above.

function is applied to r, and that application returns another function; this
function is the one de�ned by the expression (lambda (m2) . . .) in Fig-
ure 2. This function is then applied to m2, which returns a number.

Another way to understand curried functions is by looking at their
types2. To start with the type of a function that is not curried, the type of
grav-force is as follows.

[(kg�m� kg)! N] (3)

In the above notation, \kg" stands for a set of numbers that are thought of
as kilograms, \m" stands for a set of numbers that are thought of as meters,
\N" stands for a set of numbers that are thought of as newtons, and the
notation [S ! T ] means the set of all functions with domain S and range T .
That is, grav-force has a type that is the set of functions whose domain
is triples of kilograms, meters, and kilograms, and whose range is newtons.
The type of the curried function grav-force-c is as follows.

[kg! [m! [kg! N]]] (4)

That is, grav-force-c has a type that is the set of functions whose domain is
kilograms, and whose range is the set of functions [m! [kg! N]]. Thus the
range type of grav-force-c is the set of functions whose domain is meters,
and whose range is the set of functions [kg ! N]. Using the notation,
\x : T", to mean that x has type T , the table in Figure 3 illustrates the
type of grav-force-c using examples.

The above discussion explains what curried functions are, but it does not
explain to students why curried functions are useful. Curried functions are
useful as tool-makers, since a curried function is a function that produces
other functions, which can be used to do useful computations (including
making other functions). One way to illustrate this is by a series of appli-
cations, and discussions about the utility of each step.

2What is meant by \type" is similar to what physicists mean by \unit". For purposes
of this note, a type is a set. A value \has a type" if it belongs to that set. In Scheme
functions are also values, and thus have types.
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Scheme expression : type

grav-force-c : [kg! [m! [kg! N]]]
5.96e24 : kg

(grav-force-c 5.96e24) : [m! [kg! N]]
6.37e6 : m

((grav-force-c 5.96e24) 6.37e6) : [kg! N]
68.0 : kg

(((grav-force-c 5.96e24) 6.37e6) 68.0) : N

Figure 3: Scheme expressions and their types, illustrating the type of the
curried function grav-force-c.

For example, to work with the gravitational force exerted by the earth,
one passes to grav-force-c the mass of the earth. This is done in the
de�nition of the function earths-force-fun below, which assigns to each
radius from the earth's center a function that assigns to each mass placed
at that distance a force.

(de�ne mass-of-earth 5.96e24) ; kg
(de�ne earths-force-fun ; type: [m! [kg! N]]

(grav-force-c mass-of-earth))

Passing any other mass, such as the mass of the galaxy or a student to
grav-force-c gives the analogous function for that mass.

As an example of how to use earths-force-fun, to work with the grav-
itational force of the earth at the earth's surface, one can pass the earth's
radius to earths-force-fun. This is done below in the de�nition of the
SML function earths-force-at-surface. This function assigns to each
mass at the earth's surface the magnitude of the force exerted by the earth's
gravity on that mass.

(de�ne radius-of-earth 6.37e6) ; m
(de�ne earths-force-at-surface ; type: [kg! N]

(earths-field radius-of-earth))

Passing any other radius from the earth's center to earths-force-fun, such
as the distance from the earth's center to the orbit of the space shuttle or
to the sun or moon, gives an analogous function for that radius.

As an example of how to use earths-force-at-surface, the following
expression computes the gravitational force exerted by the earth (at its
surface) on a mass of 68 kilograms (about 150 pounds).

(earths-force-at-surface 68.0)

The value of this expression is approximately 666:2 newtons. Using a unit
mass, one can �nd the acceleration per unit mass at the earth's surface,
which is about 9.8 meters per second squared.
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4 Using Curried Functions to Understand Fields

The previous section showed how examples from Physics can be used as an
aid to understanding the concept of curried functions. This section shows
how the concept of curried functions can be used as an aid to understanding
the concept of a �eld in Physics. The gravitational �eld of a mass is again
used as an example. Before doing that, a bit more background on Physics
is needed.

4.1 Force as a Vector Quantity

Forces are applied in a particular direction3; for example, the force on a ball
is downwards, so that when one lets go of the ball it falls. Thus, a more
accurate statement of Newton's law uses the concept of vectors [FLS63,
Chapters 11{12].

The distance from one mass to another is a directed quantity, and so
is written as a vector. This vector can be thought of as the coordinates
of the second mass in three-dimensional space, and thus has x, y, and z
components. A force vector would have forces for its x, y, and z components,
where the number in each component tells what part of the force vector can
be thought of as directed along each axis.

In terms of vectors, Newton's law of gravity can be stated as follows
[FLS63, Chapter 12], where ~F is the force vector, ~r = hrx; ry; rzi is the radius

vector (the vector from m1's location to m2's), and r =
q
r2
x
+ r2

y
+ r2

z
is the

distance from m1's location to m2's.

~F =
Gm1m2

r2
�

�
�~r

r

�
(5)

=
�Gm1m2

r3
� ~r (6)

Formula (6) is what a physicist would write. The r3 in the denominator of
this formula is explained by Formula (5), which shows the magnitude of the
force multiplied by a unit vector (�~r=r) in the direction opposite to ~r.

To code vector functions in Scheme, the mathematical vectors used in
physics will represented in Scheme using lists.4 For example, the vector
h1; 2; 3i will be represented by the Scheme expression (list 1 2 3).

The Scheme function gravity-law de�ned in Figure 4 codes Equa-
tion (6). The function gravity-law is not curried; but takes m1, the
radius vector ~r, and m2 as its three parameters. In the type comment
for gravity-law, the unit m� means a vector of meters, represented as a
list, and N� means a vector of newtons, represented as a list. The let ex-
pression is local de�nition construct; it binds r to the value of (distance
r-vector) and returns the result of the expression following the double
right parentheses. This expression does the scalar multiplication called for

3The idea of using directed quantities in mechanics goes back at least as far as Aristotle
[Ari61, Book V] [Dug55, Page 21].

4Scheme's vectors, which are like arrays in other programming languages, could also
be used.
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(de�ne gravity-law ; type: [kg�m� � kg! N�]
(lambda (m1 r-vector m2)

(let ((r (distance r-vector)))

(scalar-multiply

(- (/ (grav-force m1 r m2)

r))

r-vector))))

(de�ne distance ; type: [m� ! m]
(lambda (r-vector)

(sqrt (sum (map square r-vector)))))

(de�ne sum ; type: [(m2)� ! m2]
(lambda (vec)

(if (null? vec)

0.0

(+ (first vec) (sum (rest vec))))))

(de�ne scalar-multiply

(lambda (scalar vec)

(map (lambda (vec-component)

(* scalar vec-component))

vec)))

Figure 4: The Scheme function gravity-law, which models Newton's law
of Universal gravitation, and some auxiliary functions.

in Equation (6). (The scalar is the �rst argument to scalar-multiply,
which represents (�Gm1m2)=r

3, and the vector is r-vector.)
The following approximate equation between Scheme expressions is an

example of using gravity-law.

(gravity-law 5.96e24 (list 1.0 0.0 6.37e6) 68.0)

� (list -1.05e-4 0.0 -666.2)
(7)

The other Scheme functions de�ned in Figure 4 are auxiliary functions.
The Scheme function distance, is such that if its argument is a list rep-

resenting the vector hrx; ry; rzi, then it returns
q
r2
x
+ r2

y
+ r2

z
. It uses the

built-in Scheme function map to square the components of its argument, the
auxiliary function sum to add the squares, and the built-in function sqrt to
�nd the positive square root of the sum of the squares. The Scheme function
scalar-multiply is such that if its arguments are s and a list representing a
vector hrx; ry; rzi, then it returns a list representing the vector hsrx; sry; srzi.
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(de�ne gravity-law-c ; type: [kg! [m� ! [kg! N�]]]
(lambda (m1) ; kg

(lambda (r-vector) ; m�

(lambda (m2) ; kg
(let ((r (distance r-vector)))

(scalar-multiply

(- (/ (grav-force m1 r m2)

r))

r-vector))))))

Figure 5: The curried function gravity-law-c, which is used to explain the
concept of �elds. The auxiliary functions distance, scalar-multiply, and
grav-force are de�ned above.

4.2 A Curried Function View of Fields

Currying the function gravity-law de�ned in Figure 4 gives a curried func-
tion that can be used to explain the concept of a gravitational �eld. The
curried version of gravity-law is shown in Figure 5.

The gravitational �eld of a given mass, m1, in this view, is modeled by
the curried function, (gravity-law-c m1). This function is the function
de�ned by (lambda (r-vector) . . .) in Figure 5. It assigns to each radius
vector (point in the space around m1) another function (the one de�ned by
(lambda (m2) . . .) in Figure 5). That function assigns to each mass placed
at the point given by r-vector a force vector.

For example, the earth's gravitational �eld can be modeled by the func-
tion earths-field declared in the following code. The function earths-field
assigns to each point around the earth a function, which function assigns to
each mass placed at that point a force vector.

(de�ne earths-field ; type: [m� ! [kg! N�]]
(gravity-law-c mass-of-earth))

The earth's gravitational �eld at a point on the earth's surface can be
modeled by the function earths-field-at-surface declared in the fol-
lowing code. The function earths-field-at-surface assigns to each mass
placed at the given point the force vector exerted (downward) by the earth's
gravity on that mass.

(de�ne earths-field-at-surface ; type: [kg! N�]
(let ((point-on-earth (list 1.0 0.0 6.37e6))) ; m�

(earths-field point-on-earth)))

Finally, the following expression computes the gravitational force vector
exerted by the earth at a point on its surface on a mass of 68 kilograms
(about 150 pounds).

(earths-field-at-surface 68.0) ; N�

8



The value of this expression is approximately the following force vector (rep-
resented as a list) (list -1.05e-4 0.0 -666.2).

4.3 Vector Fields in Physics

Physics does not use the curried function view of �elds. Instead a physicist
thinks of a �eld as a function that assigns to each point in space a quantity
[FLS63, Section 12-4]. In this view, the gravitational �eld of the earth is a
function that assigns to each point around the earth a vector, whose units
are newtons per kilogram. This vector gives the force vector per unit mass
at the given point. The force vector that would result from putting a mass
m2 at such a point is obtained by multiplying this force per unit mass vector
by m2.

Historically, this view of �elds was made standard by the tremendous
success of Maxwell's mathematics of the electromagnetic �eld [Max64]. Al-
though this view of �elds may have been invented before Maxwell, Maxwell's
use of it certainly came before curried functions were conceived by Frege
[Fre91], and well before curried functions were used by Sch�on�nkel [Sch24],
or made widely known by Curry [Cur30] [CFC58]. At that time there were
no units for curried functions in Physics, which remains the case today. In-
stead Maxwell described his mathematics by using an analogy to 
uid 
ow,
in which the �eld potential is likened to the 
uid's pressure, which is mea-
sured in force per unit area [Tri66, page 105{106] [Max64, part II (49)].
Maxwell's view of �elds is perfectly satisfactory in physics, because �elds
have a physical reality [Far52] [FLS63, Chapter 28].

As in the Feynman lectures [FLS63, Section 12-4], this view of �elds can
be thought of as factoring Formula (6) as follows.

~F = m2 �
�Gm1~r

r3
(8)

This vector quantity, (�Gm1~r)=r
3, is the gravitational �eld of the mass m1.

This �eld is written as ~C in the Feynman lectures, and is de�ned as follows.

~C =
�Gm1~r

r3
(9)

Thus one can write ~F = m2 � ~C.
The Scheme code that corresponds to the view taken in Equation (9) is

given in Figure 6. Note that this is still a curried function, as the massm1 is
needed before a �eld is created. However, when applied to a mass it no longer
returns a curried function. The Scheme expression (physics-gravity-law

m1) gives the gravitational �eld of m1 as measured in units of a newtons
per kilogram vector. A physicist would write this as g(~r), letting m1 be
understood from context, and letting ~r implicitly range over all vectors, as
in the following equation, where it is clear that a function of ~r is being
de�ned.

g(~r) = ~C =
�Gm1~r

r3
(10)
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(de�ne physics-gravity-law ; type: [kg! [m� ! (N�=kg)]]
(lambda (m1) ; kg

(lambda (r-vector) ; m�

(let ((r (distance r-vector)))

(scalar-multiply

(- (/ (* G m1)

(cube r)))

r-vector)))))

(de�ne cube

(lambda (r)

(* r (* r r))))

Figure 6: The physics view of Newton's law of universal gravitation. The
auxiliary functions distance and grav-force are de�ned above.

It is interesting that a physicist would not assign units to g in the above
equation. However, by calling g a \gravitational �eld" a physicist remembers
that g is a function of type [m� ! (N�=kg)].

As an example, the earth's gravitational �eld can be modeled by the
function physics-earths-field declared in the following code. Unlike the
function earths-field de�ned above, physics-earths-field assigns to
each point around the earth a force per unit mass vector, not a function.

(de�ne physics-earths-field ; type: [m�! (N�=kg)]
(physics-gravity-law mass-of-earth))

Passing to physics-earths-field a radius vector representing some
point on the earth's surface gives the �eld strength at the earth's surface.
This is measured in units of force per unit mass.

(de�ne field-strength-at-surface ; type: N�=kg
(let ((point-on-earth (list 1.0 0.0 6.37e6))) ; m�

(physics-earths-field point-on-earth)))

Unlike the function earths-field-at-surface de�ned above, the force
per unit mass vector field-strength-at-surface is not a function. How-
ever, the force per unit mass vector can be used to �nd the force vector on
a given mass by scalar multiplication. For example, to �nd the force vector
on a 68 kilogram mass at the given point, one would write the following in
Scheme.

(scalar-multiply 68.0 field-strength-at-surface)

4.4 A Correspondence between Di�erent Views of Vector
Fields

When a physicist says \force per unit mass vector" a functional programmer
may think \function from masses to force vectors." (The opposite transla-

10



(de�ne gravity-law-c-2 ; type: [kg! [m� ! [kg! N�]]]
(lambda (m1) ; kg

(lambda (r-vector) ; m�

(vector-per-unit->function

((physics-gravity-law m1) r-vector)))))

(de�ne vector-per-unit->function

(lambda (vec)

(lambda (scalar)

(scalar-multiply scalar vec))))

Figure 7: The curried function view of Newton's law of universal gravitation,
coded using the physics view.

(de�ne physics-gravity-law-2 ; type: [kg! [m� ! (N�=kg)]]
(lambda (m1) ; kg

(lambda (r-vector) ; m�

(function->vector-per-unit

((gravity-law-c m1) r-vector)))))

(de�ne function->vector-per-unit

(lambda (f)

(f 1.0)))

Figure 8: The physics view of Newton's law of universal gravitation, coded
using the curried function view.

tion also makes sense.) In general, a functional programmer may think of
the phrase \per unit" as signaling the presence of a function. This works for
other �elds, such as the dielectric �eld, where the physicist says \force per
unit charge vector" and the function programmer may think \function from
charges to force vectors". This translation is not a vague way of thinking,
but can be formalized in Scheme and mathematics as is done below.

The translation is expressed in Scheme by coding the curried function
view of Newton's law of universal gravitation, gravity-law-c, using the
physics view, physics-gravity-law, and vice versa. The �rst translation is
shown in Figure 7, and the reverse is shown in Figure 8. Since these transla-
tions are built around the auxiliary functions vector-per-unit->function
and function->vector-per-unit, they can be applied to any �eld.

Mathematically, let T and S be sets (of numbers with appropriate units).
Assume that S has a distinguished element 1. The type T=S (of as numbers
with units T=S) can be thought of as having elements of the form t=1, where
t has type T (i.e., t 2 T ). Assume that there is an operator, �, such that for

11



all t of type T the following holds.

1 � (t=1) = t (11)

From this it follows that for all x of type T=S,

((1 � x)=1) = x: (12)

Let the type E[S ! T ] of equivariant maps from S to T be such that for
all f of type E[S ! T ] and for all s of type S, the following holds [BW90,
De�nition 3.2.2].

f(s) = s � ((f(1))=1) (13)

Theorem 1 There is an isomorphism (of sets) between the type T=S and
the type E[S ! T ] of equivariant maps from S to T .

Proof: The isomorphism is given by the function I : T=S ! E[S ! T ]
that is de�ned such that for all x of type T=S and for all s of type S,

(I(x))(s)
def
= s � x: (14)

That is, I is the function �x : �s : s � x, which assigns to each x of type T=S
the equivariant map, fx, such that fx(s) = s � x. The inverse function I�1

is de�ned as follows.
I�1(f)

def
= ((f(1))=1) (15)

That is, I�1 is the function �f :((f(1))=1), which assigns to each equivariant
map f of type E[S! T ] its value at 1 (in the appropriate units).

That I and I�1 are inverses is be shown as follows.

I�1(I(x)) = I�1(�s : s � x) (16)

= (((�s : s � x)(1))=1) (17)

= ((1 � x)=1) (18)

= x (19)

I(I�1(f)) = I((f(1))=1) (20)

= �s : s � ((f(1))=1) (21)

= �s : f(s) (22)

= f (23)

The function I used in the above proof is vector-per-unit->function
in Figure 7, and its inverse, I�1 is coded by function->vector-per-unit

in Figure 8.
A physicist might object to these translations, saying that vectors sup-

port addition, scalar multiplication, etc. However, one can also use these
translations to de�ne such operations on equivariant maps. For example,
one can de�ne addition of equivariant maps f and g of type E[S ! T ] as
follows, where the plus on the right hand side is vector addition.

(f + g)
def
= I(I�1(f) + I�1(g)) (24)
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The translation into Scheme and the de�nition of scalar multiplication of
functions are left to the reader.

These translations can also be lifted to functions, and hence both I and
I�1 can be considered functors [Lan71] [Pie88] [BW90] between the category
T=S (a sub-category of the category of sets), and the category E[S ! T ]
of equivariant maps. Hence I is an isomorphism of these categories [BW90,
Section 3.2], meaning that they are mathematically equivalent perspectives.

4.5 The Utility of Another View of Vector Fields

Why is another way to think about vector �elds useful?

I would answer, that it is a good thing to have two ways of
looking at a subject, and to admit that there are two ways of
looking at it. | James Clerk Maxwell [Max90, page 208]

One answer is that it is always interesting for teachers and students to
connect disparate areas of knowledge. Students who understand curried
functions are given a way to understand vector �elds (and vice versa).

If physicists have not considered curried functions before (which seems
plausible), then it may be that the curried function view will be of some
conceptual advantage in Physics. However, any such advantage would be
highly speculative. A more likely bene�t for Physics would be the expansion
of the vocabulary of \units" to include functions.

Another answer is that while the two views may be mathematically
equivalent, it may be computationally advantageous to use one or the other.
The advantage of the curried function point of view is that partial appli-
cations of curried functions may produce functions that are signi�cantly
faster than the uncurried function. If one is doing several computations
about the gravitational �eld of some particular object (e.g., the earth, sun,
or galaxy), then �xing these parameters by partial applications, such as
earths-field-at-surface may result in faster code. For example, con-
sider the rewrite of gravity-law-c in Figure 9. When the Scheme function
call (gravity-law-c-3 m1) is evaluated, a negation and a multiplication
are done. This work is saved if the function (lambda (r-vector) . . .)
that results from the call is bound to a name and used over and over (as
in earths-field). Note that this work could not have been saved un-
less gravity-law-c-3 were curried. Similarly, for a �xed r-vector, the
considerable work in computing r and force-per-unit-vector is saved.
(However, this work would also be saved using the physics view of the �eld,
even without currying.)

5 Conclusion

Examples from Physics, such as the gravitational force example discussed
above, are excellent ways to motivate students of functional programming.
The example is fairly intuitive, connects with the real-world experience of
students, and connects with other courses they may be taking or will take

13



(de�ne gravity-law-c-3 ; type: [kg! [m� ! [kg! N�]]]
(lambda (m1) ; kg

(let ((negative-G-m1 (- (* G m1)))) ; N�m2/kg
(lambda (r-vector) ; m�

(let ((r (distance r-vector))) ; m
(let ((force-per-unit-vector ; N/kg

(scalar-multiply

(/ negative-G-m1

(cube r))

r-vector)))

(lambda (m2) ; kg
(scalar-multiply

m2

force-per-unit-vector))))))))

Figure 9: A potentially faster version of gravity-law-c, which does as
much computation as possible upon receiving each actual parameter.

in Physics. The aura of Physics as being \natural" adds \naturality" to the
concept of curried functions, which might otherwise seem highly \arti�cial".
The context of some real-world application adds some complications, but
the increased interest more than makes up for these complications. The
increased interest comes from showing the utility of curried functions in a
real-world example.

As a side bene�t of understanding curried functions, functional program-
mers gain an additional perspective on Physics, in that they may use their
understanding of curried functions to help them understand the concept of
�elds in Physics.
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