
Computer Science Technical Reports Computer Science

3-1994

Type Checking and Modules for Multi-Methods
Craig Chambers
Iowa State University

Gary T. Leavens
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Programming Languages and Compilers Commons, and the Systems Architecture
Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Chambers, Craig and Leavens, Gary T., "Type Checking and Modules for Multi-Methods" (1994). Computer Science Technical Reports.
Paper 44.
http://lib.dr.iastate.edu/cs_techreports/44

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/44?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

1

Chambers & Leavens

Type Checking and Modules
for Multi-Methods

Craig Chambers and Gary T. Leavens
TR #94-03
March 1994

A shorter version of this report has been submitted for publication..

Keywords: Multi-methods, object-oriented programming, encapsulation, modules, packages, static
typechecking, typechecking algorithms, conformance, completeness, and consistency, subtype, inheritance
abstract classes, Cecil language.

1994 CR Categories:D.3.2 [Programming Languages] Language Classifications— Object-oriented
languages; D.3.3 [Programming Language] Language Constructs and Features— Modules, packages;
D.3.m [Programming Language] Miscellaneous— type systems; F.2.m [Analysis of Algorithms and
Problem Complexity] Miscellaneous— type checking algorithms; F.3.3 [Logics and Meanings of
Programs] Studies of Program Constructs— type structure.

© 1994 Craig Chambers and Gary T. Leavens.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Typechecking and Modules for Multi-Methods

Craig Chambers

Department of Computer Science and Engineering
309 Sieg Hall, FR-35

University of Washington
Seattle, Washington 98195

(206) 685-2094; fax: (206) 543-2969
chambers@cs.washington.edu

UW CS&E Technical Report 94-03-01

Abstract

Two major obstacles preventing the wider acceptance of multi-methods are concerns over the lack of
encapsulation and modularity and the lack of static typechecking in existing multi-method-based languages.
This paper addresses both of these problems. We present a polynomial-time static typechecking algorithm
that checks conformance, completeness, and consistency of a group of method implementations with respect
to declared message signatures. This algorithm improves on previous algorithms by handling separate type
and inheritance hierarchies, the presence of abstract classes, and graph-based method lookup semantics. We
prove formally that our algorithm fulfills its specification. We also present a module system that enables
independently-developed code to be fully encapsulated and statically typechecked on a per-module basis.
To guarantee that potential conflicts between independently-developed modules have been resolved, a
simple well-formedness condition on the modules comprising a program is checked at link-time. The
typechecking algorithm and module system are applicable to a range of multi-method-based languages, but
the paper uses the Cecil language as a concrete example of how they can be applied.

1 Introduction

Multiple dispatching of multi-methods as found in CLOS [Bobrowet al. 88, Steele 90, Paepcke 93] and
Cecil [Chambers 92, Chambers 93] is a more general form of message passing (dynamic binding) than
traditional single dispatching of receiver-based methods as found in Smalltalk [Goldberg & Robson 83] and
C++ [Stroustrup 91] or static overloading of functions as found in C++, Ada [Ada 83, Barnes 91], and
Haskell [Hudaket al. 92]. With multiple dispatching, method lookup can depend on the dynamic type or
class of any of the arguments to a message, not just the dynamic type of the first as in singly-dispatched
systems and not just the arguments’ static type as in systems with static overloading. To illustrate, consider
the following matrix multiplication implementations, written in a close approximation to Cecil syntax:*

abstract type matrix; -- matrix is the abstract superclass of all matrix implementations
method index(m:matrix, row:int, col:int):num {

abstract } -- this method must be provided by concrete descendants
method +(m1:matrix, m2:matrix):matrix {

... } -- add matrices, invoking implementation-specific index fns to do indexing
method *(m1:matrix, m2:matrix):matrix {

... } -- multiply matrices, invoking implementation-specific index fns to do indexing

* For simplicity, in this paper we ignore issues relating to parameterized types. Hence the matrix is a matrix of numbers
rather than being parameterized by the element type as it really is in Cecil.

Gary T. Leavens

Department of Computer Science
229 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040

(515) 294-1580
leavens@cs.iastate.edu

ISU CS Technical Report #94-03

3

Typechecking and Modules for Multi-Methods Chambers & Leavens

concrete type dense_matrix isa matrix;
method index(m @dense_matrix, row:int, col:int):num {

... } -- the implementation of indexing for a dense matrix
method +(m1 @dense_matrix, m2 @dense_matrix):matrix {

... } -- an optimized implementation of addition for two dense matrices

concrete type sparse_matrix isa matrix;
method index(m @sparse_matrix, row:int, col:int):num {

... } -- the implementation of indexing for a sparse matrix

let a, b: matrix := ...;
print(a + b*b); -- will invoke most specific+ and* functions, depending on dynamic classes ofa andb

Some of the formals in the above methods are declared using the formname@specializer . Such a
formal is called aspecialized formal and is subject to dynamic dispatching. A method is only applicable to
actual argument objects that descend from the formal’sargument specializer class named after the@
symbol. Moreover, argument specializers determine the overriding relationships among methods: methods
with more specific argument specializers override methods with less specific argument specializers.

Unspecialized formals are treated as being specialized on a distinguishedany class that is an ancestor of all
other classes; an unspecialized formal applies to all actual argument objects and is less specific than any
specialized formal. An unspecialized formal may still be declared to be of a particular type, using the
notationname: type . Such a type declaration specifies theinterface required of actual arguments but
places no constraints on theirimplementations. Static type checking must guarantee that these interface
requirements are satisfied.

In the matrix algebra example, the method* is unspecialized, and hence acts like a normal function. The
methods namedindex are specialized on their first argument, and so emulate singly-dispatched receiver-
based methods. The first+ method does not specialize on any arguments, and so acts like a default method,
while the second+ method is specialized on multiple arguments. The ability of each method individually to
specialize on any subset of its arguments integrates unspecialized, singly-dispatched, and multiply-
dispatched methods in a uniform framework, facilitating the definition of algebraic data types with binary
operations and other kinds of operations where knowledge of or access to the representations of several
arguments is needed.

Unfortunately, the potential increased expressiveness of multi-methods is hampered by several drawbacks
that limit the wider acceptance of multi-methods:

• The programming style often associated with multi-methods, based on generic functions, is viewed by
many as contrary to the object-centered programming style employed in singly-dispatched object-
oriented languages. This problem was addressed in an earlier paper that described a programming
methodology, language design, and programming environment for multi-methods that preserves much
of the flavor of object-centered programming [Chambers 92].

• The semantics of multi-method lookup is considered extremely complicated. This problem also was
addressed in the earlier paper, where a simple lookup semantics was presented which was based on
deriving the partial ordering over methods from the partial ordering over their specializers. This
semantics considers ambiguously-defined multi-methods to be a programming error, unlike the CLOS
semantics which attempts to resolve such ambiguities automatically.

4

Typechecking and Modules for Multi-Methods Chambers & Leavens

• Multi-methods are seen to prevent object encapsulation. One approach to solving this problem was
presented in the same paper, but that approach did not allow privileged access to be restricted to a single,
well-defined area of program text.

• Multi-methods might be slower to implement efficiently than singly-dispatched methods. Work is
progressing on this front, however, and we expect that the run-time performance difference between
singly- and multiply-dispatched systems to become negligible in the near future.

• The few static type systems that have been designed for multi-method-based languages have dealt with
a fairly restrictive language model. Recent multi-method languages contain features such as abstract
classes, mixed specialized and unspecialized formals, partially-ordered multi-method definitions, and
separate inheritance and subtyping graphs, and these features cannot be handled by previously proposed
static type systems for multi-method-based languages.

• With multi-methods, independently-developed libraries cannot be typechecked completely separately,
but instead must be typechecked at link-time. Similarly, code written in one library might interact
unintentionally with code written in another independently-developed library, leading to message
lookup errors that did not exist when the libraries were separate.

In this paper we address the last two points above:

• We describe a type checking algorithm that guarantees statically the absence of message lookup errors
for a much more general and realistic class of languages than does previous work. We show our
algorithm to run in polynomial time.

• We describe a module mechanism that allows privileged access to be textually restricted, enables parts
of a program to be typechecked independently, and eases integration of independently-developed code.

These two contributions are integrated: the module system helps make typechecking more practical, and the
typechecking algorithm is compatible with and supports our module system.

The next section of this paper reviews related work. Section 3 describes the language model that our
algorithm supports and shows how the Cecil language fits into this model. Section 4 then specifies the
typechecking problem, details our algorithm, argues for its correctness, and analyzes its complexity. Section
5 introduces our module mechanism and discusses its impact on the typechecking algorithm. Section 6
offers our conclusions.

2 Related Work

2.1 Type Checking

Agrawal, DeMichiel, and Lindsay present a polynomial-time algorithm for typechecking Polyglot, a CLOS-
like database type system [Agrawalet al. 91]. Their algorithm divides the typechecking problem into two
components: checking that the collection of multi-methods comprising a generic function isconsistent, and
checking that calls of generic functions are type-correct. Our algorithm makes a similar division between
client-side checking and implementation-side checking, mediated by a set of legalsignatures. However,
their algorithm depends on a number of assumptions about the language they typecheck:

• The multi-methods within a generic function can betotally ordered in terms of specificity. Graph-based
method lookup semantics found in most object-oriented languages with multiple inheritance
[Snyder 86], where the method overriding relationship only forms a partial order, cannot be handled.
Our algorithm supports such partially ordered method hierarchies while still detecting whether any
ambiguously-defined messages are sent.

5

Typechecking and Modules for Multi-Methods Chambers & Leavens

• All classes in Polyglot are assumed to beconcrete and fully-implemented; all of the multi-methods in a
generic function are complete implementations. This assumption is needed because their algorithm
declares a call site legal exactly when there is a method implementation that applies to the static types
of the formals. Our algorithm is more flexible because it allows a call to be declared legal as long as all
concrete implementations of the arguments’ static types provide an implementation for the method. This
allows the use of abstract classes defining interfaces whose implementation is deferred to concrete
subclasses, as with the matrix class and the index function earlier.

• Inheritance and subtyping is synonymous in Polyglot. While many common object-oriented languages
link code inheritance with subtyping, many researchers have noted that conceptually the two relations
are different and more flexible and extensible organizations of code can result if the two relations are
allowed to be distinct [e.g. Snyder 86, Cooket al. 90, Leavens & Weihl 90], and some more recent
languages including Cecil, POOL [America 87, America & van der Linden 90], and Strongtalk [Bracha
& Griswold 93] do in fact separate the two graphs. Our algorithm allows the type partial order to be
specified independently of the code inheritance graph, and the set of legal messages (described by
signatures) to be defined independently of the set of multi-method implementations.

• All arguments are dispatched. Methods are ordered using the declared types of all their formals in
Polyglot. Our algorithm allows any subset of a method’s formals to be specialized, with the
unspecialized formals receiving normal type declarations that must be guaranteed statically. As a result,
our algorithm includes the standard contravariant method typechecking rules of singly-dispatched
languages as a special case.

Kea is a higher-order polymorphic functional language supporting multi-methods [Mugridgeet al. 91]. Like
Polyglot, code inheritance and subtyping in Kea are unified. Kea’s type checking includes the notion that a
collection of multi-methods must beexhaustive andunambiguous, and these notions appear in our type
system as well. The semantics of typechecking in Kea is specified formally, but an efficient typechecking
algorithm is not presented. As with Polyglot, our contribution in the area of typechecking relative to Kea is
that we typecheck several important language features not found in Kea, including mutable state, separate
subtyping and inheritance graphs, abstract classes, and mixed specialized and unspecialized arguments, and
we present a typechecking algorithm, argue for its correctness, and analyze its complexity.

Other researchers have developed more theoretical accounts of multi-method-based languages [Rouaix 90,
Leavens & Weihl 90, Ghelli 91, Castagnaet al. 92, Pierce & Turner 92]. These papers are more concerned
with specifying the semantics of multi-methods and with defining type systems than with algorithms for
typechecking. As a result, they ignore many of the language features specifically addressed by our work.
Most other work on type systems for object-oriented programming [e.g. Cardelli & Wegner 85, Cardelli &
Mitchell 89, Bruceet al. 93, Palsberg & Schwartzbach 94] only deals with single-dispatching languages.

2.2 Module Systems

The only module system for a multi-method-based language of which we are aware is the Common Lisp
package system [Steele 90]. This system provides name space management only, and users may always
circumvent the encapsulation of a packagep by writing “p::internal_sym .” Common Lisp does not
include static type checking. Encapsulation can be enforced in our module system and our module system
cooperates with our static typechecking algorithm.

Other object-oriented languages include some form of separate module system, including Modular
Smalltalk [Wirfs-Brock & Wilkerson 88], Modula-3 [Nelson 91], and Oberon-2 [Mössenböck & Wirth 91].
In Modular Smalltalk, modules provide name space management for class names, and a separate mechanism
provides access control for the methods of a class. Our module design is closer to the Common Lisp,

6

Typechecking and Modules for Multi-Methods Chambers & Leavens

Modula-3, and Oberon-2 approach, with a single construct, the module, providing all name space
management and access control.

Several object-oriented languages enable access to the operations on classes to be controlled. C++ classes,
for example, have three levels of access control: one level for clients (public), one for subclasses
(protected), and one restricted to the class and its explicitly named friends (private). Because of
C++’s friend mechanism, one can write software that has privileged access to more than one type of data,
while still textually limiting private access. Our module design supports these various degrees of visibility.
Trellis supports these notions except for friends [Schaffertet al. 86] and Eiffel supports public and protected
levels of visibility [Meyer 88, Meyer 92].

Canning, Cook, Hill, and Olthoff define a notion of interfaces for languages like Smalltalk [Canning et al.
89]. Their notation distinguishes types from classes, as do we, and they are concerned with type checking
against such interfaces. They also have an interesting notion of interface inheritance. However, they do not
consider multi-methods or encapsulation issues.

More sophisticated module systems than ours are found in the functional language Standard ML [Milneret
al. 90, Paulson 91] and in the equational specification language OBJ2 [Goguen 84]. SML’s modules are first-
class and can be parameterized. OBJ2’s theories are like SML’s signatures (the interfaces to SML modules),
but allow for behavioral specifications as well as type information. Both SML and OBJ2 have ways of
importing modules that allow for sophisticated kinds of renaming. We omit such sophisticated features to
keep our proposal simple and to focus on support for multi-methods.

3 Programming Model

Our typechecking algorithm is designed for object-oriented languages that have a class inheritance graph, a
potentially separate subtyping graph, a set of multi-method implementations specialized to classes, and a set
of message signatures that define the message interface supported by types. The following paragraphs
elaborate on these assumptions and show how the Cecil language’s constructs meet these assumptions.
Appendix 3 formalizes these assumptions.

3.1 Classes and Inheritance

We assume that the program includes a fixed set of classes and a fixed implementation inheritance graph,
potentially including multiple inheritance. Each class is marked as either abstract or concrete, with the
implication that abstract classes cannot be directly instantiated at run-time. Abstract classes model pure
virtual classes in C++ and deferred classes in Eiffel. We assume that there exists a class that is the ancestor
of all other classes, and that this class is used as the specializer of “unspecialized” formals.

In Cecil, the class inheritance graph is derived fromrepresentation declarations andinherits
clauses. For example, the Cecil declarations

abstract representation matrix_rep;
template representation dense_matrix_rep inherits matrix_rep;

are modeled with two classes namedmatrix_rep and dense_matrix_rep , with
dense_matrix_rep inheriting frommatrix_rep . matrix_rep is modeled as an abstract class,
while dense_matrix_rep is considered a concrete class, since in Cecil a template representation acts
like a pattern for run-time-created objects while an abstract representation cannot be instantiated at run-
time). Cecil includes a predefined classany that is the ancestor of all other classes and used as the
specializer of otherwise unspecialized formals of multi-methods. Cecil supports closures (first-class

7

Typechecking and Modules for Multi-Methods Chambers & Leavens

function objects), and each distinct textual occurrence of a closure constructor expression (the Cecil
equivalent of a lambda expression) is treated as a distinct new class.

3.2 Types and Subtyping

We assume that the program includes a fixed set of types related through subtyping. The type graph can be
different than the class inheritance graph: types and classes can be independent, and inheritance and
subtyping can differ. In Cecil, types and subtyping are derived fromtype declarations andsubtypes
clauses. For example, the Cecil declarations

type matrix_type;
type dense_matrix_type subtypes matrix_type;

are modeled with two types namedmatrix_type and dense_matrix_type with
dense_matrix_type subtyping frommatrix_type . Cecil also includes the following special kinds
of types:

• void , the type of functions that return no useful result to their callers, which is the supertype of all other
types,

• any , which the supertype of all other non-void types,

• none , the type of functions that do not return to their callers, which is a subtype of all other types,

• t1 | t2, the most specific supertype (least upper bound) of two types,

• t1 & t2, the most general subtype (greatest lower bound) of two types, and

• the types of closures, which use standard contravariant rules for subtyping.

3.3 Conformance of Classes to Types

The class and type graphs are related through conformance. A classconforms to a type when its direct
instances may legally result from evaluating an expression of the type. We assume that the program
indicates whether a class conforms to a type. In Cecil, conformance is derived fromconforms clauses that
are part ofrepresentation declarations and from subtyping of types:

abstract representation matrix_rep conforms matrix_type;
template representation dense_matrix_rep inherits matrix_rep

conforms dense_matrix_type;

These declarations indicate that the classmatrix_rep conforms to the typematrix_type and to all
supertypes ofmatrix_type , and thatdense_matrix_rep conforms todense_matrix_type and
to all supertypes ofdense_matrix_type .

3.4 Vectors of Classes and Types

To model argument lists, we form vectors of classes and types. It simplifies the discussion of the
typechecking algorithm to assume an inheritance, subtyping, or conformance relation between vectors,
derived by extending the appropriate relation on individual classes or typespointwise. Informally, a vector
of classes is considered to override (inherit from) another equal-length vector of classes whenever each of
the element classes of one vector overrides the corresponding element of the other vector; subtyping
between two type vectors and conformance between a class vector and a type vector is defined similarly.

3.5 Method Implementations

We assume a program contains a fixed set of method implementations. Each method implementation has a
name, a vector of argument specializer classes, a vector of argument types, a result type, and a body. In
Cecil, method implementations are derived fromimplementation declarations like the following:

8

Typechecking and Modules for Multi-Methods Chambers & Leavens

implementation fetch(m @matrix_rep : matrix_type,
row @any : int, col @any : int):num { ... }

The name of this method isfetch/3 (in Cecil, a method only applies to messages with the right number
of arguments), its argument specializers are modeled with the class vector <matrix_rep , any , any >, its
argument types are modeled with the type vector <matrix_type , int , int >, and its result type isnum.

The method overriding relationship is derived from the overriding relationship of the methods’ argument
specializer class vectors. This ordering reflects the message lookup semantics in Cecil: one method
overrides another exactly when its argument specializers are more specific than the other’s. Because vectors
of classes are ordered pointwise, with no priority assigned to the position of the vector element, the
specializers of a method are equally important in determining the method’s overriding relationships
[Touretzky 86]. This matches Cecil’s semantics, but may not match other languages. For example, CLOS
prioritizes argument positions with earlier argument orderings completely dominating later argument
orderings. It seems possible to extend our model to encompass other method overriding relationships, for
example by ordering vectors of classes lexicographically rather than pointwise.

3.6 Signatures

The final component of a program is a set ofsignatures, where each signature has a name, a vector of
argument types, and a result type. A signature represents a message that is considered legal to send, and
consequently it places constraints on the set of method implementations supporting the signature. In Cecil,
signatures are derived fromsignature declarations like the following:

signature fetch(matrix_type, int, int):num;

This signature specifies that it is legal to send thefetch message to three arguments that conform to the
matrix_type , int , andint types, respectively. Additionally, such a message can be assumed to return
an object that conforms to the typenum.

3.7 Syntactic Sugar

While Cecil supports independent specification of the class graph, the type graph, and the conforms relation,
in practice these relations often take on very stylized forms. To make programming easier, Cecil includes
theobject declaration, which is syntactic sugar for arepresentation and atype declaration with
aconforms clause linking the two, and theisa clause, which is syntactic sugar for aninherits clause
and asubtypes clause. To illustrate, the following declarations more concisely define the same object,
type, and conformance structures as the earlierimplementation andtype declarations:

abstract object matrix;
template object dense_matrix isa matrix;

Herematrix names both an representation and a type. Since in Cecil types and representations are in
distinct name spaces, and it is clear by context which name space is used in an expression, no ambiguity can
result.

As with representations and types, Cecil supports themethod declaration which is syntactic sugar that
allows implementations and signatures to be declared simultaneously when convenient. The following
method declaration generates an implementation declaration and a signature similar to the ones illustrated
above:

method fetch(m@:matrix, row:int, col:int):num { ... }

9

Typechecking and Modules for Multi-Methods Chambers & Leavens

This declaration illustrates two final pieces of syntactic sugar in Cecil. If a formal’s specializer is@any, this
may be omitted, as in therow andcol formals above. If a formal’s specializer and its declared type have
the same name, then the@: sugar is more concise, as with them formal above.

4 Typechecking Algorithm

The subtyping graph and the set of signatures together define an interface. We use this interface to divide
the typechecking process for a program into two parts:client-side checking of expressions against the type/
signature interface andimplementation-sidechecking that class and method definitions properly implement
the interface guaranteed to clients by the type and signature specifications. The next subsection briefly
discusses client-side checking. The remaining subsections discuss the more difficult problem of
implementation-side checking. Subsection 4.2 specifies the implementation-side typechecking problem.
Subsection 4.3 presents an overview of our algorithm, with subsections 4.4 and 4.5 filling in the details.
Section 4.6 discusses the impact on the algorithm of some of the more sophisticated language features
supported by our model.

This section presents our typechecking algorithm and correctness arguments informally. Appendix 4
formally specifies the typechecking problem, presents our algorithm formally, and includes a detailed
complexity analysis of the algorithm.

4.1 Client-Side Typechecking

Client-side checks are fairly typical, and include checks like an expression of one type is only assigned to
variables declared to be of a supertype and a method only returns the results of expressions that are subtypes
of the declared return type of the method. The most interesting of the client-side checks is that of message
sends, since sends are the only kind of expression whose checking depends on signatures. In our model, a
message typechecks if there is a signature with the same name as the message whose argument types are
supertypes of the static types of the send’s argument expressions. To compute the type of the result of the
message, all signatures that match the send in this way are collected, and then the most specific result type
of any of the matching signatures is used as the result of the send. For example, given the types and
signatures

type num;
type int subtypes num;
type fraction subtypes num;
signature +(num,num):num;
signature +(int,int):int;
signature +(fraction,fraction):fraction;

and the expression
3 + 4

whose argument types are<int , int> , the set of matching signatures is {+(num,num):num ,
+(int,int):int }. Because this set is non-empty, the+ message is type-correct. The type of the result
of this message isint , the most specific result type of the matching signatures.

Other client-side typechecks are straightforward and language-dependent, and we do not discuss them
further here.

4.2 Specification of Implementation-Side Typechecking

A set of classes and methods in a program is considered to correctly implement the interface guaranteed to
clients by a set of types and signatures if and only if every possible message that could be sent to concrete

10

Typechecking and Modules for Multi-Methods Chambers & Leavens

arguments which conform to the argument types of some signature would result in a legal message send with
no message lookup errors. More precisely, the implementation-side checks are satisfied if for each signature,
for each vector of concrete argument classes that conforms to the argument types of the signature, a single
most specific method is inherited by that argument vector, and that method’s declared argument types can
handle the actual arguments being passed and the method’s result type is a subtype of that promised by the
signature. Simply translating this specification into the isomorphic algorithm would lead to an algorithm
whose execution time was exponential in the number of concrete classes in the program, which clearly is
infeasible in a practical language. One of our main contributions is a polynomial-time algorithm for
implementation-side typechecking for the class of languages that can be modeled as described in section 3.

4.3 Overview of the Algorithm

We divide the implementation-side typechecking algorithm into checking for three separate properties of
class/method implementations with respect to a type/signature interface:

• For each signature, every method whose specializers could match a send that would typecheck against
the signature mustconform to the signature; i.e., the method’s argument and result types must be
compatible with those specified by the signature.

• For each signature, the methods implementing a signature must becomplete; i.e., for any concrete
argument vector conforming to the signature’s argument types, there must exist at least one method that
implements the message. If the methods are incomplete, then a “message not understood” error might
arise at run-time.

• For each signature, the methods implementing a signature must beconsistent; i.e., for any concrete
argument vector conforming to the signature’s argument types, there must exist no more that one most-
specific method that implements the message. If the methods are inconsistent, then a “message
ambiguously defined” error could occur at run-time.

The following declarations illustrate these issues:
-- interface:
type num;
type int subtypes num;
type fraction subtypes num;
signature +(num,num):num;
signature +(int,int):int;
signature +(fraction,fraction):fraction;
-- implementation:
abstract representation num_rep conforms num;
concrete representation int_rep conforms int inherits num_rep;
concrete representation fraction_rep conforms fraction inherits num_rep;
concrete representation float_rep conforms fraction inherits num_rep;
implementation +(x@int_rep:int, y@int_rep:int):int {...}
implementation +(x@float_rep:fraction, y@float_rep:fraction):num {...}
implementation +(x@num_rep:num, y@fraction_rep:fraction):num {...}
implementation +(x@fraction_rep:fraction, y@num_rep:num):num {...}

This implementation fails all three criteria for type-correctness with respect to the interface. The+ method
for two float_rep objects does not conform to the+(fraction,fraction):fraction signature,
since its result typenum is not a subtype offraction . The implementations are incomplete, since addition
for an int_rep object and afloat_rep object is not implemented. Finally, the implementations are
inconsistent, since when adding twofraction_rep objects, two+ methods apply but neither overrides
the other. If these problems were corrected, then the implementations would become type-correct. In

11

Typechecking and Modules for Multi-Methods Chambers & Leavens

particular, becausenum_rep is abstract, no incompleteness results from not implementing addition of two
num_rep objects.

Conformance can be checked for each method declaration separately, similarly to the kinds of method
interface checks that occur in other statically-typed object-oriented languages, although separating
subtyping from inheritance introduces a subtlety that requires special care. Completeness and consistency
must be checked globally, considering the combination of methods that together implement some signature.
The requirement for a more global view for typechecking completeness and consistency stems from the
presence of multi-methods, abstract classes, and the separation of code inheritance and subtyping.

There is no need for any additional checks such as that a type really is a subtype of all its declared
supertypes. If the method implementations are conformant, complete, and consistent with respect to all
applicable signatures, then all classes are guaranteed to fully and correctly implement the types to which
they conform. Our algorithm uses the declared conformance and subtyping relationships to determine which
methods must be implemented for which classes. If these checks pass, then the declared conformance and
subtyping relationships are satisfied.

4.4 Checking Conformance

Given a signature, the set of methods which must conform to the signature are those that might be invoked
from a message that matches the signature. We say such a method iscovered by the signature. A method is
covered by a signature if there exists some vector of concrete classes that both conforms to the argument
types of the signature and inherits from the method’s argument specializers.

For every signature, for every method covered by the signature, we verify the following two conditions:

• the type of each of the method’s unspecialized formals must be a supertype of the corresponding type
of the signature, and

• the result type of the method must be a subtype of the signature’s result type.

This pair of checks is the standard contravariant rule for subtyping of functions, restricted to unspecialized
formals.

For each specialized formal, we need to ensure that, for every class of actual argument that might invoke
the method, the class conforms to the declared type of the formal. Because the formal is specialized, only
classes that inherit from the specializing class need to be considered. A simple check would be that the
specializer class conforms to the declared type. However, this check is not sufficient: since subtyping and
inheritance are independent, some class could inherit from the specializer class without conforming to the
same set of types as the specializer class, in particular the declared type of the specialized formal. Consider
the following example:

type a_type;
representation a_rep conforms a_type;
method foo(x@a_rep:a_type) { ... }
type b_type; -- is not a subtype ofa_type
representation b_rep inherits a_rep conforms b_type;
... foo(new b_rep) ... -- violates conformance!

Here theb_rep class inherits thefoo method, butb_rep objects do not conform to thea_type expected
in thefoo method. This could lead to dynamic type errors if messages are sent tox that are supported by
a_type but notb_type . To detect these kinds of problems, our algorithm computes the most specific
types to which the specializer and its subclasses conform, and then verifies that these types conform to the

12

Typechecking and Modules for Multi-Methods Chambers & Leavens

declared type of the specialized formal. By precomputing the most specific such types for each class, this
check can be fast.

To show that this algorithm correctly determines whether the set of methods conforms to the set of
signatures, we consider each vector of concrete classes that conforms to a signature and show that for each
of the methods inherited by this vector, the vector of concrete classes conforms to the declared argument
types of the method and the declared result type of the method is a subtype of the signature’s declared result
type. The algorithm directly ensures that this property is satisfied with respect to result types. Checking
conformance of each actual concrete argument class against the corresponding type of the method’s formal
is more subtle. If the corresponding formal is unspecified, then the algorithm’s contravariance check verifies
that the formal’s type is a supertype of the corresponding type of the signature, thereby ensuring that the
actual argument class will conform to the declared type of the formal. If the formal is specialized, then the
class of the actual must be a descendant of the specializing class (otherwise the method would not be
applicable and not be considered covered by the signature). The algorithm has calculated the most specific
set of types to which all subclasses of the specializer conform and verified that these types are subtypes of
the formal’s declared type. Since the actual class must be a subclass of the specializer, it must conform to
one of the types in the set, and hence it must conform to the declared type of the formal. This completes the
correctness argument.

The algorithmic complexity of conformance checking of a program is proportional to the number of
methods and the larger of the number of signatures and the number of types.

4.5 Checking Completeness and Consistency

Completeness and consistency checking forms the heart of our algorithm. The following “mountain top”
diagram illustrates the key issues:

The diagram divides up regions of the space of vectors of classes, with one vector plotted below another if
the first overrides (i.e., its elements inherit from the elements of) the second. We have drawn cones below
certain points in this space, modeling the set of vectors that override the root of the cone; in the presence of
multiple inheritance, a vector of classes may inherit from several mutually-unrelated vectors, leading to
overlapping cones as in the diagram. The vector labeledargtypes(s) corresponds to the most general vector

argtypes(s)

specializers(m1)
specializers(m3)

region of potential inconsistency

region of potential incompleteness

specializers(m2)

specializers(m4)

13

Typechecking and Modules for Multi-Methods Chambers & Leavens

of classes that conforms to the argument types of the signature being checked.* The cone below this vector
represents all class vectors that conform to the signature’s argument types; the vectors in this cone are of
interest because they are exactly the vectors that can be arguments of a message matching the signature.
Four other class vectors represent the specializers of the methods that are covered by the signature. The cone
below each specializer vector represents the class argument vectors that inherit that method.

Given this “mountain top” picture, the meaning of completeness and consistency can be made clear. A set
of methods is complete with respect to a signature if there are no vectors of concrete classes in the region
labeled as potentially incomplete. If such a vector existed, then it would be considered legal from the
perspective of the signature but have no method implementation that it inherited. Similarly, a set of methods
is consistent if there are no vectors of concrete classes in the region labeled as potentially inconsistent. If
such a vector existed, then more than one method would be inherited by the vector but no single method
would be most specific. The other regions under the signature’s argtypes cone are completely and
consistently implemented. The goal of the typechecking algorithm is to check whether there exist any
vectors of concrete classes in either the incomplete or the inconsistent regions.

Our completeness and consistency checking algorithm iterates over all signatures, for each signature
verifying completeness and consistency of the set of method implementations with names that match the
signature. This algorithm can be performed in polynomial time, as shown in Appendix 4.

4.5.1 Checking Completeness

To check the completeness of a set of method implementations with respect to a signature, we first compute
the set of concrete class vectors that are the tops of those cones that conform to the argument types of the
signature. For each member of this set, we verify that there exists a method inherited by this vector. The
following diagram illustrates the check, by showing with open circles the tops of three concrete class vectors
that conform to the argument types of a signature. The two tops in the region of potential incompleteness
are flagged as errors.

* For simplicity in the diagram we are assuming that there is one vector of classes that corresponds to the argument
types of the signature. In general that may not be true, and our algorithm does not depend on this assumption.

argtypes(s)

specializers(m1)
specializers(m3)

specializers(m2)

specializers(m4)

tops of cones of concrete class vectors

region of potential incompleteness

14

Typechecking and Modules for Multi-Methods Chambers & Leavens

This algorithm requires time proportional to the number of methods and the number of concrete classes, for
every signature in the program. In practice, we believe this algorithm can be sped up by checking all
signatures with the same name in a single pass.

To show that this algorithm correctly determines whether a set of method implementations is complete with
respect to a signature, assume for the sake of contradiction that the algorithm reports that the methods are
complete but that they really are incomplete. Then there must exist a vector of concrete classes which
conforms to the argument types of the signature but does not inherit a method (by definition of
incompleteness). This class vector must inherit from at least one of the top vectors computed above (by
definition of top). However, each of these top vectors has been verified to inherit at least one method (by
assumption that the check was successful), and this method must therefore be inherited by the concrete class
vector (by definition of inheritance). Hence the assumption that the system was incomplete must be wrong.

4.5.2 Checking Consistency

To check the consistency of a set of method implementations with respect to a signature, we need show the
absence of any regions of potential incompleteness where two method implementations are inherited by a
vector of concrete classes without an intervening method resolving the ambiguity. Our algorithm tackles this
problem by first computing the set of all pairs of mutually-incomparable method implementations (i.e., all
pairs of methods where one method does not override the other). This set defines all those pairs of methods
that have the potential to be mutually ambiguous. For each pair, we then construct the set of class vectors
that are the tops of the lower bounds of the argument specializers of the two methods, i.e., the set of class
vectors that inherit from both specializer class vectors and are not overridden by any other such vectors.
Each of these vectors is the root of a cone of potential inconsistency. The following diagram highlights with
open circles the four top lower bounds constructed from the four incomparable combinations of methods
from the earlier “mountain top” diagram:

We wish to determine whether there exists a concrete argument vector in any of these cones that does not
inherit some other method resolving the ambiguity. To help us solve this problem, we observe that
determining the absence of concrete class vectors in a region of potential incompleteness is related to the
problem of determining the absence of concrete class vectors in a region of potential incompleteness.
Accordingly, our algorithm first constructs a new set of methods comprised of those methods in the original
set that override both of the two mutually ambiguous methods, and then it tests for completeness of this

argtypes(s)

specializers(m1)
specializers(m3)

tops of cones of potential inconsistency

specializers(m2)

specializers(m4)

15

Typechecking and Modules for Multi-Methods Chambers & Leavens

reduced set of methods with respect to the set of top lower bound class vectors constructed above. If this
subgraph is complete, then the two mutually-ambiguous methods are not a source of inconsistency.

The complexity of this check is a polynomial function of the number of methods and classes in the program,
to be performed for each signature. As with completeness checking, we suspect that checking all signatures
with the same name in one pass will lead to faster typechecking in practice. The real cost of this check
depends on the kinds of inheritance structures that occur in practice. We expect that for most kinds of
program structures, the time required to verify consistency will be acceptable. Modules as described in the
next section will serve to further reduce the time required for typechecking.

To show that our algorithm correctly determines whether a set of methods is consistent with respect to a
signature, assume for the sake of contradiction that the algorithm reports success but that the methods really
are inconsistent. Then there must exist a vector of concrete classes that conforms to the argument types of
the signature but inherits no single most specific method implementation (by definition of inconsistency).
This vector must inherit at least two methods that are mutually unordered but are not overridden by a third
method that is inherited by the concrete class vector (by definition of “inheriting no single most specific
method”). The concrete class vector must inherit from a vector that is a top lower bound of the specializers
of the two methods (by definition of top). But there are no concrete class vectors that inherit from this top
class vector that do not also inherit from some other method that overrides the two mutually-ambiguous
methods (by the definition of completeness of the subgraph). Hence the original assumption of
inconsistency must be wrong.

4.6 Discussion

The independence of inheritance and subtyping has a major impact on our algorithm. In conformance
checking, our algorithm must explicitly calculate the set of most specific types to which a class conforms,
to ensure that methods are not inherited by classes that do not conform to the types of specialized formals.
If inheritance and subtyping were the joined, then the set would be just the specializing class and the check
of specialized formals would be trivial. These two degrees of complexity also appear in singly-dispatched
languages, where languages that link subtyping and inheritance make no check of the implicit receiver
argument, while languages that separate the two require additional checking in subclasses or place
restrictions on inheritance to ensure that subclasses do not misuse inherited methods [Bruceet al. 93].

During checking of completeness and consistency, our algorithm deals with the independence of subtyping
and code inheritance by passing the signature being checked to all the various subproblems. Each of these
subproblems restricts the set of interesting classes (typically classes that inherit from some particular class
such as a method argument’s specializer class) to those that also conform to the appropriate argument type
of the signature. This has the same effect as producing a new class and inheritance graph containing only
those classes that conform to the signature, and then processing this reduced graph as if inheritance and
subtyping were the same.

Our programming language model distinguishes abstract and concrete classes. This distinction shows up in
the completeness and consistency checking algorithms where the tops of the set of vectors of concrete
classes are calculated from a vector of (potentially abstract) classes. We feel that handling this distinction in
the typechecking algorithm is of crucial importance in being able to typecheck realistic programs. Our
current body of Cecil code includes 180 abstract classes, and virtually all of them would be rejected as
incompletely implemented if our algorithm did not treat them specially.

We allow each multi-method to independently decide which formals are specialized and which are not;
multi-methods are completely independent and not restricted by a “congruent lambda list” rule as are CLOS

16

Typechecking and Modules for Multi-Methods Chambers & Leavens

multi-methods. This flexibility also allows our language model to include singly-dispatched languages as a
special case, enabling more direct comparisons of type systems. Mixed specialized and unspecialized
formals is fairly easy to accommodate in our algorithm. Unspecialized formals are modelled as specialized
on a top class that is a superclass of all other classes. During conformance checking, unspecialized formals
are checked against signatures using normal contravariant rules, while specialized formals can be checked
independently of covering signatures. Completeness and consistency checking are unaffected by the
difference between specialized and unspecialized formals.

5 Modules

Object-oriented methods encourage programmers to develop reusable libraries of code. However, multi-
methods can pose obstacles to smoothly integrating code that was developed independently. Unlike with
singly-dispatched systems, if two classes that subclass a common class are included into a program, it is
possible for incompleteness or inconsistency to result. The additional expressiveness and flexibility of
multi-methods creates new pitfalls for integration.

Standard module systems, such as the Common Lisp package system, help to manage the global name
space, and in some circumstances the name hiding they provide can serve to avoid integration problems. But
Common Lisp packages do not allow a CLOS multi-method to be added to a global generic function within
a particular package, without exposing the presence of the multi-method to all invokers of the generic
function.* As CLOS resolves method ambiguities automatically, independently-developed CLOS packages
can work in isolation but silently fail to give correct results when combined. No existing module system for
a multi-method language allows a library module to be certified as free of static type errors, independently
of its use in a program.

Encapsulation and modularity of multi-methods is a related problem. To support careful reasoning and to
ease maintenance, a data structure’s implementation may be encapsulated [Parnas71, Parnas72, Liskov &
Zilles 74]. But existing multi-method languages do not provide the same support for encapsulation as
abstract data type-based languages such as CLU [Liskovet al. 77, Liskovet al. 81] or singly-dispatched
object-oriented languages such as C++ and even Smalltalk. In ADT-based or singly-dispatched languages,
direct access to an object’s representation can be limited to a statically-determined region of the program.
An earlier approach to encapsulation in Cecil suffered from the problem that privileged access could always
be gained by writing methods that specialized on the desired data structures [Chambers 92].

We have developed a module system for Cecil that addresses these shortcomings of existing multi-method
languages. This system can restrict access to parts of an implementation to a bounded region of program
text while preserving the flexibility of multi-methods. Individual modules can be reasoned about and
typechecked in isolation from modules not explicitly imported. Modules canextend existing modules with
subclasses, subtypes, and augmenting multi-methods. If any conflicts arise between independent extensions,
they are resolved throughresolving modules that extend each of the conflicting modules. A simple check
for the presence of the necessary resolving modules is all that is needed at link-time to guarantee type safety.

5.1 Module Basics

The core of our module system provides standard name space management, as in Modula-2 [Wirth 88]. Like
Common Lisp and Oberon-2, we do not tie the module notion to the notion of classes or types [Szyperski
92]. A program is a sequence of one or more modules, one of which is calledMain . Each module contains

* CLOS does allow an entire generic function to be private to a single package, but CLOS does not support generic
functions whose member multi-methods have different visibilities.

17

Typechecking and Modules for Multi-Methods Chambers & Leavens

a group of declarations; there is no code that appears outside of a module, and for simplicity modules do not
nest. The declarations in a module are taggedpublic (the default) orprivate . A module may explicitly
import another module, which has the effect of making the imported module’s public declarations visible in
the importing module. Private declarations are encapsulated within a module and are invisible to other
modules.* Import declarations themselves can be taggedpublic orprivate . The declarations imported
through a public import declaration are visible in the module’s public interface, while declarations imported
through a private import declaration are hidden from clients.

We illustrate the core of our module system with the following example.
module Complex {

type complex subtypes num;
signature +(complex, complex):complex;
signature new_complex(x:real, y:real):complex;
method new_complex(x:real, y:real):complex {...}

}
module Main {

private import Complex;
method main():void {

let c := new_complex(3, 4);
...}

}

The visibility of declarations determines the set of method implementations considered during method
lookup. All declarations visible at the call site, either by being declared in the current module or by being
imported as a public declaration from another module (potentially through a chain of public imports
declarations), are considered in effect for the purposes of resolving method lookup. All other declarations
are invisible and do not affect method lookup. This guarantees that unrelated code, even code that defines
methods with the same name as the message being sent, has no effect on method lookup and can be ignored
when reasoning about the behavior of the program or when statically typechecking it. The scope of a private
declaration is limited to the enclosing module, and consequently no other module can be affected by a
private declaration.

Using the sending scope to determine the set of potentially callable methods allows a module to extend and
customize imported types and representations without affecting unrelated modules. For example, a text-
processing module can add tab-expansion behavior to string data structures without polluting the general
interface to strings as seen by unrelated modules. This local extension feature of multi-methods resolves a
tension observed in singly-dispatched languages of whether to add functionality as operations within the
class or external to the class.

To typecheck a program, each module in the program is typechecked. Typechecking a module involves
performing both client-side typechecks of the expressions in the module and implementation-side
typechecks of conformance, completeness, and consistency, with respect to the declarations in the current
module and the public declarations of any explicitly imported modules. Because each module can be
typechecked independently, examining only a small portion of the declarations in a large program,
typechecking can run much faster. Moreover, the public interface of each module can be typechecked in
isolation, allowing the compiler to assume that each module’s public interface is type-correct and thereby

* Our module system also includes a notion of explicitly-named friend modules which are able to access the private
declarations of a module, much as in C++.

18

Typechecking and Modules for Multi-Methods Chambers & Leavens

avoid rechecking any parts of the imported interface that are not affected its use in the importing module,
further speeding typechecking.

5.2 Subtyping and Extensions of Modules

Unfortunately, subtyping creates a problem for the basic module design presented above. Consider the
following example in which aCartComplex module implements thecomplex type:*

module Complex {
type complex subtypes num;
signature +(complex, complex):complex;

}
module CartComplex {

import Complex;
class cartesian conforms complex;
private field x(c@:cartesian):real;
private field y(c@:cartesian):real;
method +(c1@cartesian:complex, c2@:cartesian:complex):cartesian {

new_cart_complex(c1.x + c2.x, c1.y + c2.y) }
method new_cartesian(r,i:real):complex { new cartesian(x:=r, y:=i) }

}
module Storage {

import Complex;
private import CartComplex; -- hide this use ofCartComplex from clients
var c1, c2: complex; -- variables visible to modules importingStorage
method store() {

c1 := new_cartesian(3.14, 15.9);
c2 := new_cartesian(-2.5, 227.0);

}
}
module Main {

private import Storage;
private import Complex;
method main() {

store();
... c1 + c2 ...; -- message not understood!

}
}

In this example, the method+ for two cartesian objects is not visible where it is called in themain routine.
The cartesian objects have “outrun” the scope of their methods, passing through the moduleStorage
which hides its use ofCartComplex from its clients. We could fix the problem by requiringMain to
explicitly import CartComplex , but there is no particular reason thatMain should know about that
module. Alternatively, we could alter our visibility rules so that the set of potentially callable methods is
based on the module that defines the dynamic classes of the argument objects rather than the sending
module; this approach is effectively how singly-dispatched systems such as C++ and Smalltalk determine
the operation to invoke. However, if the classes of the arguments of a multi-method are defined in separate
modules, then these different perspectives on the set of available methods need to be reconciled somehow.
Moreover, an object-centered approach would sacrifice the ability of the sending module to customize its
view of the interfaces of the objects it manipulates.

The key insight underlying our solution to this problem is to observe that if theMain module imported the
CartComplex module (and every other module that defined a class conforming to thecomplex type),

* Thefield declaration introduces the Cecil equivalent of instance variables.

19

Typechecking and Modules for Multi-Methods Chambers & Leavens

then the appropriate implementations of the+ signature would be visible at the call site. The trick is to adjust
the visibility rules so that the declarations inCartComplex are considered visible at method-lookup time
without requiringMain or Complex to explicitly list CartComplex or any other implementation of
complex at program-definition time.

Our solution achieves this implicit importing of declarations through the notion ofextension modules. If a
moduleM declares a class or type that inherits or subtypes from a class or type declared in another module
N, then we require thatM be defined as an extension ofN. In the complex number example,CartComplex
must be declared as an extension ofComplex , sincecartesian in CartComplex conforms to
complex in Complex:

module Complex { ... }
module CartComplex extends Complex { ... }

For the purposes of determining which declarations are visibledynamically at message-lookup time, the
public declarations in an extension module are imported automatically whenever the extended module is
imported (either explicitly or recursively through additional layers of module extension). However, for the
purposes of reasoningstatically about code or typechecking clients such asMain , only the public interfaces
of the explicitly imported modules need to be examined. For example, to statically typecheck the body of
themain function, only the public interface ofComplex needs to be considered; the presence (or absence)
of CartComplex is irrelevant. This distinction preserves the ability to easily extend existing code without
rewriting or even retypechecking clients. Typechecking theCartComplex module will ensure that the
interface assumed by clients ofComplex is conformingly, completely, and consistently implemented. This
split between checking clients against explicitly imported interfaces and checking extensions of the
interface resembles the “modularity” obtained by the use of legal subtyping in the verification of object-
oriented languages with subtyping [Leavens & Weihl 90, Leavens 91].

To provide more exact control over the interface seen by extension modules, declarations in a module may
be taggedprotected . A protected declaration is not visible to clients that import the module
explicitly, but it is visible in extension modules; in this respect it is analogous to theprotected construct
in C++. Extension modules automatically import the public and protected declarations of the module(s) they
extend. For example, thex andy fields inCartComplex would probably be taggedprotected , to
allow future extensions of cartesian complex numbers access to the representation of cartesian complex
numbers.

The extension mechanism, together with the restriction that subtypes and subclasses can only be defined in
the same module or in an extension module, fixes the problem of objects outrunning their methods and
preserves the ability of each scope to extend and customize a set of methods. Furthermore, it does not require
changes to existing modules when new extension modules are added to a program, and extension modules
do not have to be considered when reasoning statically about a module.

5.3 Resolving Module Conflicts

Unfortunately, multi-methods create a final problem with this module design. Two independently-developed
modules can extend a common module incompletely or inconsistently. For example, consider writing a
PolarComplex module with a different representation for complex numbers:

module PolarComplex extends Complex {
class polar conforms complex;
private field rho(c@polar:complex):real;
private field theta(c@polar:complex):real;
method +(c1@polar:complex, c2@polar:complex):complex {...}

20

Typechecking and Modules for Multi-Methods Chambers & Leavens

method new_polar(r,t:real):complex { new polar(rho:=r,theta:=t) }
}

If only one of theCartComplex or PolarComplex modules is linked into a program, then no conflicts
arise. However, if both modules are used, then any variable of typecomplex , such asc1 or c2 in
Storage , might hold an instance of either thecartesian or polar classes. When sending the+
message inmain , if at run-timec1 was an instance ofcartesian while c2 was an instance ofpolar ,
then the+ will not be understood; the program is incomplete. But viewed independently, each module is
type-correct.

To solve this problem, we impose a well-formedness condition on the set of modules comprising a program
(this set is defined as those transitively reachable throughimport declarations from theMain module):
for each modulem in the program, there must exist asingle most-extending module n. Formally,

ProgramIsWellFormed ≡
∀ m ∈ Program.

∃ n ∈ Program.
n ≤modulem ∧
∀ n’ ∈ Program. n’ ≤modulem ⇒ n ≤modulen’

where≤module is the reflexive, transitive closure of theextends relation.

Such a most extending module will import all other extensions, and consequently that module will be
responsible for resolving any ambiguities between other independently-developed extension modules.

In our running example, if neither or only one ofCartComplex or PolarComplex is present, then the
system of modules in this example is well-formed. However, when both are present, then there is no single
most extending module forComplex . So when the programmer combines the two independent
representations of complex numbers into a single program, the programmer must also create a newresolving
module that extends both:

module CPComplex extends CartComplex, PolarComplex {
method +(c1@cartesian:complex, c2@polar:complex):complex {...}
method +(c1@polar:complex, c2@cartesian:complex):complex {c2+c1}

}

This module extends the two representations and adds the necessary “glue” methods to make the two
representations interoperate. For the purposes of run-time method lookup, the declarations in this module
are visible to any module that importsComplex , through the rules for extension modules. When the
CPComplex module is typechecked, it will ensure that the combination of the two representations forms a
conformant, complete, and consistent implementation of thecomplex type, again according to the normal
rules for typechecking a module. By requiring such a most extending module that statically “witnesses” and
checks all other extensions of a module, we guarantee that a complete program can have no message errors.
As the programmer combines independently-developed code into larger libraries, the programmer creates
the necessary resolving modules. At link-time, the linker can test quickly for the existence of the necessary
resolving modules. No typechecking is performed at link-time; resolving modules are written and
typechecked independently during program development just like other modules. A programming
environment could automatically create and typecheck any omitted resolving modules, reporting whenever
new methods need to be written to eliminate incompleteness or inconsistency.

To summarize, by requiring the existence of single most extending modules, which resolve incompleteness
or inconsistency problems arising from the combination of independently-developed multi-methods, we

21

Typechecking and Modules for Multi-Methods Chambers & Leavens

ensure that there exist modules whose static checking ensures that the program has no message errors.
Checking for the existence of such modules must be done at link-time, but creating and typechecking the
resolving modules can be done as part of normal program development.

6 Conclusions

The work presented in this paper targets problems that arise when large programs are constructed in
languages based on multi-methods. To secure the benefits of static typechecking for multi-methods, we
developed a polynomial-time algorithm for statically typechecking multi-methods. This algorithm supports
a broader class of languages than previous work, including those that incorporate mutable state, separate
subtyping and code inheritance, abstract classes, mixed specialized and unspecialized formals, and graph-
based multi-method lookup semantics. Our algorithm breaks down the typechecking problem into client-
side and implementation-side checking, then further subdivides implementation-side checking into
conformance, completeness, and consistency checking. A key insight into our algorithm is to divide up the
space of concrete class vectors conforming to a signature into cone-shaped regions, such that correctness of
the tops of the cones implies correctness of the class vectors contained in the cones.

To help organize programs with multi-methods, we designed a module system that enables portions of a
program to be encapsulated within modules, protecting this code from unwanted external access and
insulating clients from the details of the hidden code. Our design retains the advantages of multi-methods,
including allowing clients to extend and customize an existing set of methods, while enabling each module
to be typechecked independently. The key new feature of our design is extension modules. The declarations
in an extension module are automatically imported into the extended module, for the purposes of run-time
method lookup. By restricting subtyping and subclassing to cross only extension module boundaries, and
by requiring the final program to include for each module a single most extending module which can ensure
the completeness and consistency of independently-developed extensions, we retain the ability to typecheck
client code using only the public interfaces of explicitly imported modules.

We believe that these two contributions are important steps towards modular development of robust
software in multi-method-based languages. At least two issues remain open: will typechecking of individual
modules be fast enough in practice, and will the restrictions placed on module extensions be too severe in
practice? To gain the necessary experience with which to answer these questions, we are implementing our
typechecking algorithm and module system in the context of the Cecil language. To date, over 30,000 lines
of Cecil code has been written, in a version of the language lacking modules or static type checking, and we
expect that this code base will be an effective test of our design.

Acknowledgments

We thank Piaw Na for discussions about the typechecking algorithm and its complexity. Thanks to William
Cook for discussions about the modularity problems of multi-methods. We thank Jens Palsberg, Tim Wahls,
David Fernandez-Baca, Jeffrey Dean, David Grove, and Charles Garrett for their helpful comments on
earlier drafts.

Chambers’s work is supported in part by a National Science Foundation Research Initiation Award (contract
number CCR-9210990) and several gifts from Sun Microsystems. Leavens’s work is supported in part by a
National Science Foundation grant (contract number CCR-9108654).

22

Typechecking and Modules for Multi-Methods Chambers & Leavens

References
[Ada 83] Reference Manual for the Ada Programming Language, ANSI/MIL-STD 1815A, 1983.
[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of Multi-

Methods. InOOPSLA ’91 Conference Proceedings, pp. 113-128, Phoenix, AZ, October, 1991. Published as
SIGPLAN Notices 26(11), November, 1991.

[America 87] Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented Language. InECOOP ’87
Conference Proceedings, pp. 234-242, Paris, France, June, 1987. Published asLecture Notes in Computer Science
276, Springer-Verlag, Berlin, 1987.

[America & van der Linden 90] Pierre America and Frank van der Linden. A Parallel Object-Oriented Language with
Inheritance and Subtyping. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 161-168, Ottawa, Canada,
October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Barnes 91] J. G. P. Barnes.Programming in Ada (third edition). Addison-Wesley, Wokingham, England, 1991.
[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon. Common

Lisp Object System Specification X3J13. InSIGPLAN Notices 23(Special Issue), September, 1988.
[Bracha & Griswold 93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a Production

Environment. InOOPSLA ’93 Conference Proceedings, pp. 215-230, Washington, D.C., September, 1993.
Published asSIGPLAN Notices 28(10), October, 1993.

[Bruceet al. 93] Kim B. Bruce, Jon Crabtree, Thomas P. Mutagh, Robert van Gent, Allyn Dimock, and Robert Muller.
Safe and Decidable Type Checking in an Object-Oriented Language. InOOPSLA ’93 Conference Proceedings,
pp. 29-46, Washington, D.C., September, 1993. Published asSIGPLAN Notices 28(10), October, 1993.

[Canninget al. 89] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Interfaces for Strongly-
Typed Object-Oriented Programming. InOOPSLA ’89 Conference Proceedings, pp. 457-467, New Orleans, LA,
October, 1989. Published asSIGPLAN Notices 24(10), October, 1989.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. InComputing Surveys 17(4), pp. 471-522, December, 1985.

[Cardelli & Mitchell 89] Luca Cardelli and John C. Mitchell. Operations on Records. InProceedings of the
International Conference on the Mathematical Foundation of Programming Semantics, New Orleans, LA, 1989.

[Caseau 93] Yves Caseau. Efficient Handling of Multiple Inheritance Hierarchies. InOOPSLA ’93 Conference
Proceedings, pp. 271-287, Washington, D.C., September, 1993. Published asSIGPLAN Notices 28(10), October,
1993.

[Castagnaet al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. InProceedings of the 1992 ACM Conference on Lisp and Functional Programming, pp. 182-192,
San Francisco, June, 1992. Published asLisp Pointers 5(1), January-March, 1992.

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. InECOOP ’92 Conference Proceedings,
pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Published asLecture Notes in Computer Science 615,
Springer-Verlag, Berlin, 1992.

[Chambers 93] Craig Chambers. The Cecil Language: Specification and Rationale. Technical report #93-03-05,
Department of Computer Science and Engineering, University of Washington, March, 1993.

[Cooket al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. InConference Record of
the 17th Annual ACM Symposium on Principles of Programming Languages, San Francisco, CA, January, 1990.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. InOOPSLA ’91 Conference Proceedings, pp.
129-145, Phoenix, AZ, October, 1991. Published asSIGPLAN Notices 26(11), November, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and its
Implementation,.Addison-Wesley, Reading, Mass., 1983.

[Goguen 84] Joseph A. Goguen. Parameterized Programming. InIEEE Transactions on Software Engineering 10(5),
pp. 528-543, September, 1984.

[Gries 91] David Gries. Teaching Calculation and Discrimination: A More Effective Curriculum. In Communications
of the ACM 34(3), pp. 44-55, March, 1991.

[Hudaket al. 92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, María
M. Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and
John Peterson.Report on the Programming Language Haskell: A Non-strict, Purely Functional Language,
Version 1.2. In SIGPLAN Notices 27(5), May, 1992.

23

Typechecking and Modules for Multi-Methods Chambers & Leavens

[Leavens 91] Gary T. Leavens. Modular Specification and Verification of Object-Oriented Programs. IEEE Software
8(4), pp. 72-80, July, 1991.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs that use
Subtypes. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 212-223, Ottawa, Canada, October, 1990.
Published asSIGPLAN Notices 25(10), October, 1990.

[Liskov et al. 77] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction Mechanisms in
CLU. In Communications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and
Alan Snyder. CLU Reference Manual. Lecture Notes in Computer Science, volume 114, Springer-Verlag, New
York, NY, 1981.

[Liskov & Zilles 74] Barbara H. Liskov and Stephen N. Zilles. Programming with Abstract Data Types. InProceedings
of the ACM SIGPLAN Conference on Very High Level Languages, pp. 50-59, April, 1974. Published asSIGPLAN
Notices 9(4), 1974.

[Meyer 88] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, New York, 1998.
[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.
[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,

Cambridge, MA, 1990.
[Mössenböck & Wirth 91] H. Mössenböck and Niklaus Wirth. The Programming Language Oberon-2.Structured

Programming 12(4), 1991.
[Mugridgeet al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed Programming

Language. Technical report #50, Department of Computer Science, University of Auckland, 1991. Also appears
in ECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.
[Paepcke 93] Andreas Paepcke.Object-Oriented Programming: The CLOS Perspective. MIT Press, 1993.
[Palsberg & Schwartzbach 94] Jens Palsberg and Michael I. Schwartzbach.Object-Oriented Type Systems. John Wiley

& Sons, 1994.
[Parnas 71] D. L. Parnas. Information Distribution Aspects of Design Methodology.Proceedings of IFIP Congress 71.

IFIP, 1971.
[Parnas 72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. InCommunications of

the ACM 15(5), pp. 330-336, May, 1972.
[Paulson 91] Laurence C. Paulson.ML for the Working Programmer. Cambridge University Press, 1991.
[Pierce & Turner 92] Benjamin C. Pierce and David N. Turner. Statically Typed Multi-Methods via Partially Abstract

Types. Unpublished manuscript, October, 1992.
[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. InConference Record of the 17th Annual ACM Symposium

on Principles of Programming Languages, pp. 355-366, San Francisco, CA, January, 1990.
[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An Introduction

to Trellis/Owl. InOOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. InOOPSLA ’86
Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11),
November, 1986.

[Steele 90] Guy L. Steele Jr.Common Lisp: The Language (second edition). Digital Press, Bedford, MA, 1990.
[Stroustrup 91] Bjarne Stroustrup.The C++ Programming Language (second edition). Addison-Wesley, Reading,

MA, 1991.
[Szyperski 92] Clemens A. Szyperski. Import is Not Inheritance - Why We Need Both: Modules and Classes. In

ECOOP ’92 Conference Proceedings, pp. 19-32, Utrecht, the Netherlands, June/July, 1992. Published asLecture
Notes in Computer Science 615, Springer-Verlag, Berlin, 1992.

[Touretzky 86] D. Touretzky.The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.
[Wirfs-Brock & Wilkerson 88] Allen Wirfs-Brock and Brian Wilkerson. An Overview of Modular Smalltalk. In

OOPSLA ’88 Conference Proceedings, pp. 123-134, San Diego, CA, October, 1988. Published asSIGPLAN
Notices 23(11), November, 1988.

[Wirth 88] Niklaus Wirth.Programming in Modula-2 (fourth edition). Springer-Verlag, Berlin, 1988.

24

Typechecking and Modules for Multi-Methods Chambers & Leavens

Appendix A Formal Programming Model

This appendix formalizes the programming model discussed in Section 3.

We assume a finite set of classes,C, a setCconcrete of concrete classes which is a subset ofC, and an
associated binary relationdirect-inherits on C modeling direct inheritance of implementation between
classes. We extend this to a relation≤inh onC by defining≤inh as the reflexive, transitive closure ofdirect-
inherits; we require≤inh to be a partial order. We further assume that there exists a greatest elementtop of
the≤inh partial order.

We assume a finite set of types,T, and an associated downward semi-lattice* ≤sub on T that models
subtyping:t1 ≤sub t2 iff t1 is equal tot2 or t1 is a subtype oft2. We further assume that the following
relationship between subtyping and the g.l.b. of two types holds:

∀ t, t1, t2 ∈ T. t ≤subt1 ∧ t ≤subt2 ⇔ t ≤subglb(t1, t2)

We assume a functiondirect-conforms: C → T, which for each class gives the most specific type to which
the class directly conforms. We derive the full conformance relation between classes and types,<: , from
direct-conforms and the subtyping relation≤sub as follows:

c <: t ≡ direct-conforms(c) ≤subt.

Because subtyping and inheritance do not necessarily coincide, ifc’ ≤inh c andc <: t, onecannot conclude
thatc’ <: t.

We extend the≤inh, ≤sub, and<: relations to equal-length vectors of classes and types, pointwise; i.e., for a
relation≤:

≤ ≡ ∀ i. pi ≤ qi.

We assume a finite set of message keys,MessageKey.

We assume a finite set of method implementations,M, with the following accessor functions:

• A function msg: M → MessageKey, such that msg(m) = µ is the message handled bym.

• A function specializers: M → C*, such that specializers(m) = is a vector of classes that are the
argument specializers for methodm.

• A function argtypes: M → T*, such that argtypes(m) = is a vector of types declared for the formals
of methodm.

• A function restype: M → T, such that restype(m) = t is result type of methodm.

We derive a partial ordering on methods,≤meth, modelling the method overriding relationship, from the
methods’ specializers as follows:

m1 ≤methm2 ≡ specializers(m1) ≤inh specializers(m2).

We assume a finite set of signatures,S, with the following accessor functions:

• A function msg: S→ MessageKey, such that msg(s) = µ is the message handled bys.

• A function argtypes: S→ T*, such that argtypes(s) = is a vector of types declared for the arguments
of signatures.

• A function restype: S→ T, such that restype(s) = t is result type of signatures.

* A downward semi-lattice is a partial order where every pair of elements has a single greatest lower bound in the order.

p q

c

t

t

25

Typechecking and Modules for Multi-Methods Chambers & Leavens

Appendix B Formal Details of the Typechecking Algorithm

This appendix formalizes the typechecking algorithm presented in Section 4 and analyzes its complexity. In
our complexity analyses, we assume that basic operations over the subtyping and inheritance partial orders
can be performed in constant time. Various sources have described efficient data structures and algorithms
for testing subtyping in a lattice and for testing whether there exists a common descendant of two members
of a partial order [e.g. Caseau 93, Agrawalet al. 91]. We also assume that the maximum number of
arguments to a message is bounded by a constant (does not grow with the size of the program).

B.1 Client-Side Typechecking

A messageµ sent to argument expressions of static type typechecks iff the set of signatures

Smatch = { s  msg(s) = µ ∧ ≤sub argtypes(s) }

 is non-empty. The static type of the result of such a message is the g.l.b. of{ restype(s)  s ∈ Smatch}.*

B.2 Specification of Implementation-Side Typechecking

The implementation-side typechecking problem can be specified formally as follows:

ImplementationTypechecks ≡
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∃ m ∈ M.

m= glb(applicable-methods(s,)) ∧
<: argtypes(m) ∧

restype(m) ≤sub restype(s)

where

applicable-methods(s,) ≡ { m ∈ M  msg(m) = msg(s) ∧ ≤inh specializers(m) }

m= glb(M) ≡ m ∈ M ∧ ∀ m’ ∈ M. m ≤methm’

(In all our specifications, we assume that the sets and relations defined in Appendix 3 are globally available.)

Simply translating this specification into an isomorphic algorithm would lead to an algorithm with execution
time equal toO(S ⋅ kCconcrete ⋅ M), wherek is the maximum number of arguments of any message in
the program. Such an exponential algorithm is unacceptable in a practical system.

B.3 Overview of the Algorithm

Our algorithm breaks down the implementation-side typechecking problem into three pieces:

• conformance checking, specified byImplementationIsConforming and implemented using the
algorithmComputeIsConforming,

• completeness checking, specified byImplementationIsComplete and implemented using the
algorithmComputeIsComplete, and

• conformance checking, specified byImplementationIsConsistent and implemented using the
algorithmComputeIsConsistent.

* The g.l.b. is used, rather than the l.u.b., because clients can assume the information promised by every matching
signature, including their result types. Signatures are not selected at run-time, in contrast to method implementations.
Implementation-side checking will ensure that each signature’s guarantee is fulfilled.

t

t

c
c

c
c

c c

26

Typechecking and Modules for Multi-Methods Chambers & Leavens

Theorem 1.
(ImplementationIsConforming ∧ ImplementationIsComplete ∧ ImplementationIsConsistent)
⇒ ImplementationTypechecks

Proof: See appendix C.1.

B.4 Checking Conformance

Given a signature, the set of methods which must conform to the signature are those whose argument
specializers are ancestors of some concrete classes that conform to the argument types of the signature; this
set is called thecovered set of the signature. An entire implementation is conforming if for each signature,
each of the methods in the signature’s covered set conforms to the signature. Formally, we can specify
conformance as follows:

ImplementationIsConforming ≡
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧
restype(m) ≤sub restype(s)

We divide implementing this specification into two pieces: a check of each method’s specialized formals
ensuring that all classes that inherit from a formal’s specializer also conform to formal’s declared type, and
a check of each method’s unspecialized formals and result types against all signatures that cover it, applying
contravariance-like rules. Formally:

ComputeIsConforming ≡
SpecializersAreConforming ∧ ConformsToSignatures

SpecializersAreConforming ≡
∀ m ∈ M. ∀ i ∈ indexes(specializers(m)).

let c = specializers(m)i in
c ≠ top ⇒

(∀ t ∈ conformed-types(c). t ≤sub argtypes(m)i)

ConformsToSignatures ≡
∀ s ∈ S. ∀ m ∈ relevant(M, s).

m ∈ covered-methods(s) ⇒ conforms(m, s)

where

conformed-types(c) ≡
let Cs = { c’  ∃ c’. c’ ≤inh c ∧ (c’ ≠ c ⇒ ¬ is-parallel-type-and-class(c’)) },

Ts = { t  ∃ c’ ∈ Cs. t = direct-conforms(c’) } in
tops(Ts)

is-parallel-type-and-class(c) ≡
∀ c’. c direct-inherits c’ ∧ c <: direct-conforms(c’)

tops(T) ≡ { t ∈ T  t’ ∈ T ∧ t’ ≠ t ⇒ ¬ (t ≤subt’) }

relevant(M, s) ≡ { m ∈ M  msg(m) = msg(s) }

c
c

c
c

27

Typechecking and Modules for Multi-Methods Chambers & Leavens

covered-methods(s) ≡
{ m ∈ relevant(M, s)  has-common-classes(specializers(m), argtypes(s)) }

has-common-classes(,) ≡ ∃ ’ ∈(Cconcrete)*. ’ ≤inh ∧ ’ <: .

conforms(m, s) ≡
(∀ i ∈ indexes(specializers(m)).

specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i) ∧
restype(m) ≤sub restype(s)

Theorem 2. ComputeIsConforming ⇒ ImplementationIsConforming

Proof: See appendix C.2.

Complexity. We precompute the set of tops of the specific types to which a class and its subclasses conform
(conformed-types) for every class. This precomputation can use breadth first search on thedirect-inherits
relation, making the worst case timeO(C + direct-inherits). Each of these sets is of sizeO(T) at
worst. Then to check conformance for the specialized arguments of all methods
(SpecializersAreConforming) requires timeO(M ⋅ T). The time complexity of checking conformance
of relevant methods against all signatures (ConformsToSignatures) is O(M ⋅ S). Therefore, the
overall time required to check conformance of a program isO(M ⋅ (S + T)).

B.5 Checking Completeness

Formally, completeness of a program can be specified as follows:

ImplementationIsComplete ≡
∀ s ∈ S. ¬ ∃ ∈(Cconcrete)*.

<: argtypes(s) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m).

Our algorithm recasts this problem as follows:

ComputeIsComplete ≡
∀ s ∈ S.

let top-vector = { } where  = argtypes(s) and each ci = top in
IsComplete(relevant(M, s), top-vector, s)

To check the completeness of a set of method implementationsM with respect to a set of class vectorsCs
and a signatures, this algorithm first locates the set of concrete class vectorsTCSs that are the tops of those
that both inherit from a member ofCs and conform to the argument types ofs. It then verifies that each
member ofTCSs inherits a method inM.

IsComplete(M, Cs, s) ≡
∀ ∈ Cs.

let TCSs = { ’  ci’ ∈ top-concrete-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ M. ’ ≤inh specializers(m)

where

top-concrete-subclasses(c, t) ≡ tops(concrete-subclasses(c, t))

concrete-subclasses(c, t) ≡ { c’ ∈ Cconcrete c’ ≤inh c ∧ c’<: t }

tops(C) ≡ { c ∈ C  c’ ∈ C ∧ c’ ≠ c ⇒ ¬ (c ≤inh c’) }

c t c c c c t

c
c

c

c c

c
c

c c

28

Typechecking and Modules for Multi-Methods Chambers & Leavens

Theorem 3. ComputeIsComplete ⇒ ImplementationIsComplete

Proof: See appendix C.3.

Complexity. We precompute the partial order of concrete subclasses of every class prior to typechecking.
With this set-up, the time complexity of computingtop-concrete-subclasses(c, t) is O(Cconcrete). All
methods are checked against each of the top concrete class vectors, leading to an overall time complexity
for IsComplete(M, Cs, s) of O(M ⋅ Cs ⋅ Cconcrete).

B.6 Checking Consistency

Formally, consistency of a program can be specified as follows:

ImplementationIsConsistent ≡
∀ s ∈ S. ¬ ∃ ∈(Cconcrete)*.

<: argtypes(s) ∧
∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2.

Our algorithm recasts this problem as follows:

ComputeIsConsistent ≡
∀ s ∈ S. IsConsistent(relevant(M, s), s)

To check the consistency of a set of method implementationsM with respect to a signatures, we first
compute the setMP of all pairs of incomparable methods inM. For each pair (m1, m2) in MP, we construct
the set of class vectorsTLBs that are the tops of the lower bounds of the argument specializers ofm1 and
m2.* We then construct the set of methodsM-reduced that override bothm1 andm2. Finally, we test for
completeness ofM-reduced with respect toTLBs ands.

IsConsistent(M, s) ≡
∀ (m1, m2) ∈ incomparable-pairs(M).

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ M  m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

where

incomparable-pairs(M) ≡ { (m1, m2) ∈ M×M  ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) }

tlb(, ’, s) ≡ tops(lb(, ’, s))

lb(, ’, s) ≡ { ’’  ’’ ≤inh ∧ ’’ ≤inh ’ ∧ ’’ <: argtypes(s) }

tops(Cs) ≡ { ∈ Cs ’ ∈ Cs∧ ’ ≠ ⇒ ¬ (≤inh ’) }

Theorem 4. ComputeIsConsistent ⇒ ImplementationIsConsistent

Proof: See appendix C.4.

Complexity. There can be at mostO(M2) incompatible pairs, each requiring constant time to produce.
This worst-case scenario occurs with completely flat sets of method implementations. There can be at most

* We do not require the object inheritance partial order to be a downward semi-lattice, and so we cannot assume g.l.b.’s
of argument specializers exist. For our algorithm, g.l.b.’s are not required. We only need the set of “great lower
bounds,” i.e., those lower bounds that are not strictly less than any other lower bound.

c
c

c c
c

c c c c

c c c c c c c c

c c c c c c

29

Typechecking and Modules for Multi-Methods Chambers & Leavens

O(Ck) top lower bounds of each of these pairs, wherek is the number of arguments of the message, each
computed in constant time; since we assumek is bounded by a constant, this term is polynomial. This worst
case scenario is extremely unlikely in practice, however, and can only occur in a program with many type
errors; we would expect a small constant number of top lower bounds in normal programs with few type
errors. The reduced method set can be constructed inO(M) time, and its size can be on the same order as
M; note that, if there areO(M2) incompatible pairs, then the size ofM-reduced will be a small constant,
so we are being overly conservative by assuming it always is of sizeO(M). Therefore, each call to
IsComplete(M-reduced, TLBs, s) can require timeO(M ⋅ Ck ⋅ Cconcrete) (although we would expect
something more likeO(M) in practice). This leads to a worst-case time complexity forIsConsistent(M,
s) of O(M3 ⋅ (Ck + M) ⋅ Ck ⋅ Cconcrete), althoughO(M4 ⋅ Cconcrete) is a more likely worst-
case time in practice. Note thatM here refers to the subset of methods that have the same name as the
signature being checked, not all methods in the program.

B.7 Complexity Summary

Checking conformance of all method implementations against all signatures requires worst-case time of
O(M ⋅ (S + T)). Checking completeness of all method implementations against all signatures
requiresO(M ⋅ S ⋅ Cconcrete). Checking consistency of all method implementations against all
signatures requiresO(M3 ⋅ S ⋅ (Ck + M) ⋅ Ck ⋅ Cconcrete) (wherek, the maximum number of
message arguments, is bounded by a constant) in contrived worst-case scenarios andO(M4 ⋅ S ⋅
Cconcrete) in somewhat more realistic situations. Consistency checking dominates the overall complexity
of implementation-side typechecking.

30

Typechecking and Modules for Multi-Methods Chambers & Leavens

Appendix C Correctness Theorems and Proofs

This appendix gives formal correctness proofs for our typechecking algorithm, using the specifications
defined in Appendix B. The proofs use the calculational format described in [Gries 91].

C.1 Problem Breakdown

This theorem shows that our conformance, completeness, and consistency checks are sufficient to guarantee
that an implementation type checks.

Theorem 1.
(ImplementationIsComplete ∧ ImplementationIsConsistent ∧ ImplementationIsConforming)
⇒ ImplementationTypechecks

Proof: We prove this theorem by the following calculation.

ImplementationIsComplete ∧ ImplementationIsConsistent ∧ ImplementationIsConforming

⇔ 〈by definition〉
∀ s ∈ S. ¬ ∃ ∈(Cconcrete)*.

<: argtypes(s) ∧ ¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m)
∧ ∀ s ∈ S. ¬ ∃ ∈(Cconcrete)*.

<: argtypes(s) ∧
∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

∧ ∀ s ∈ S. ∀ ∈(Cconcrete)* .
<: argtypes(s) ⇒

∀ m ∈ applicable-methods(s,).
<: argtypes(m) ∧ restype(m) ≤sub restype(s)

⇔ 〈by ¬ ∃ x. P(x) ⇔ ∀x. ¬P(x), twice; predicate calculus and definition of implication, twice〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒ ∃ m ∈ relevant(M, s). ≤inh specializers(m)
∧ ∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
¬ ∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

∧ ∀ s ∈ S. ∀ ∈(Cconcrete)* .
<: argtypes(s) ⇒

∀ m ∈ applicable-methods(s,).
<: argtypes(m) ∧ restype(m) ≤sub restype(s)

c
c c

c
c

c c
c

c
c

c
c

c
c c

c
c

c c
c

c
c

c
c

31

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by (∀x.P(x)) ∧ (∀x.Q(x)) ⇔ ∀x.(P(x)∧Q(x)), 4 times; and((P⇒Q)∧(P⇒R)) ⇔ (P⇒(Q∧R)),
twice〉

∀ s ∈ S. ∀ ∈(Cconcrete)*.
<: argtypes(s) ⇒

((∃ m ∈ relevant(M, s). ≤inh specializers(m))
∧ (¬ ∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

∧ (∀ m ∈ applicable-methods(s,).
<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇔ 〈by ¬∃x.P(x) ⇔ ∀x.¬P(x) and definition of⇒〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
((∃ m ∈ relevant(M, s). ≤inh specializers(m))
∧ (∀ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

∧ (∀ m ∈ applicable-methods(s,).
<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇒ 〈by instantiation of the quantifier∀ m2 ∈ relevant(M, s) to m1, renamingm1 to m’, and predicate
calculus〉

∀ s ∈ S. ∀ ∈(Cconcrete)*.
<: argtypes(s) ⇒

((∃ m ∈ relevant(M, s). ≤inh specializers(m))
∧ (∀ m’ ∈ relevant(M, s). ≤inh specializers(m’) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm’)
∧ (∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇔ 〈by definition ofglb({ m ∈ relevant(M, s) ≤inh specializers(m) })〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
((∃ m ∈ relevant(M, s). ≤inh specializers(m))
∧ (∃ m. m = glb({ m ∈ relevant(M, s) ≤inh specializers(m) }))
∧ (∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇒ 〈by P ∧ Q ⇒ Q〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
(∃ m. m = glb({ m ∈ relevant(M, s) ≤inh specializers(m) }))
∧ (∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

c
c

c

c c
c

c
c

c
c

c

c c
c

c
c

c
c

c
c

c
c

c

c
c

c
c

c
c

c

c
c

c
c

c

32

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition ofrelevant〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
((∃ m. m= glb({ m ∈ M  msg(m) = msg(s) ∧ ≤inh specializers(m) }))
 ∧ (∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇔ 〈by definition ofapplicable-methods〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
((∃ m. m= glb(applicable-methods(s,)))
 ∧ (∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)))

⇒ 〈by instantiation of the quantifier∀ m ∈ applicable-methods(s,) to theglb〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∃ m. m= glb(applicable-methods(s,))

∧ <: argtypes(m) ∧ restype(m) ≤sub restype(s)

⇔ 〈by definition〉
ImplementationTypechecks

C.2 Correctness of Conformance Checking Algorithm

Theorem 2 below says that our algorithm for computing completeness is sufficient to ensure completeness.
To prove this theorem we first prove the following lemma. This lemma handles the case of specialized
arguments as checked by our algorithm.

Lemma 1. Let c andc’ be classes. Then

c ≤inh c’ ⇒ ∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t

Proof: We proceed by induction on the length of the (shortest) chain of inheritance relationships that
connectsc to c’ to show that the last formula above is implied byc ≤inh c’.

For the basis, supposec = c’. Then we can calculate as follows.

c = c’

⇒ 〈by Leibnitz’s rule〉
direct-conforms(c) = direct-conforms(c’)

⇒ 〈by reflexivity of≤sub〉
direct-conforms(c) ≤sub direct-conforms(c’)

⇔ 〈by set theory〉
∃ t ∈ { direct-conforms(c’) }. direct-conforms(c) ≤subt

⇔ 〈by set theory〉
∃ t ∈{ t  t = direct-conforms(c’) }. direct-conforms(c) ≤sub t

⇔ 〈by reflexivity of≤inh andP ⇒ P ∧ true〉
∃ t ∈{ t  c’ ≤inh c’ ∧ t = direct-conforms(c’) }.

direct-conforms(c) ≤sub t

c
c

c
c

c

c
c

c
c

c

c
c

c
c

c

33

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by P ⇔ (P ∧ (false⇒ Q))〉
∃ t ∈{ t  c’ ≤inh c’ ∧ (c’ ≠ c’ ⇒ ¬ is-parallel-type-and-class(c’)) ∧ t = direct-conforms(c’) }.

direct-conforms(c) ≤sub t

⇒ 〈by P(x) ⇒ ∃x’. P(x’)〉
∃ t ∈{ t  ∃ c’’ . c’’ ≤inh c’ ∧ (c’’ ≠ c’ ⇒ ¬ is-parallel-type-and-class(c’’)) ∧

t = direct-conforms(c’’) }.
direct-conforms(c) ≤sub t

⇔ 〈by definition oftops and≤sub〉
∃ t ∈tops({ t  ∃ c’’ . c’’ ≤inh c’ ∧ (c’’ ≠ c’ ⇒ ¬ is-parallel-type-and-class(c’’)) ∧

t = direct-conforms(c’’) }).
direct-conforms(c) ≤sub t

⇔ 〈by definition ofconformed-types(c’)〉
∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t

For the inductive case, suppose that∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’. The inductive assumption is
that the lemma holds for all shorter inheritance chains, such asc’’ ≤inh c’. We calculate as follows.

 ∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’

⇔ 〈by law of excluded middle〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ is-parallel-type-and-class(c))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇔ 〈by definition ofis-parallel-type-and-class(c)〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’

∧ (∀ c’’’ . c direct-inherits c’’’ ∧ c <: direct-conforms(c’’’)))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇒ 〈by instantiatingc’’’ to c’’ and idempotency of∧〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ c <: direct-conforms(c’’))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇒ 〈by the inductive hypothesis, with c’’ for c〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ c <: direct-conforms(c’’)

∧ (∃ t ∈conformed-types(c’). direct-conforms(c’’) ≤sub t))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇔ 〈by definition of<: 〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ direct-conforms(c) ≤subdirect-conforms(c’’)

∧ (∃ t ∈conformed-types(c’). direct-conforms(c’’) ≤sub t))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇒ 〈by transitivity of≤sub〉
(∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’

 ∧ (∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t))
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇒ 〈by logic, asc’’ does not occur in(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ c’’ . c direct-inherits c’’ ∧ c’’ ≤inh c’ ∧ ¬ (is-parallel-type-and-class(c)))

34

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition ofdirect-inherits and≤inh〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ c’’ . c ≤inh c’ ∧ c ≠ c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇔ 〈by logic, asc’’ does not occur in the formula above〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (c ≤inh c’ ∧ c ≠ c’ ∧ ¬ (is-parallel-type-and-class(c)))

⇔ 〈by (P ∧ Q) ⇔ (R ⇒ Q)〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (c ≤inh c’ ∧ (c ≠ c’ ⇒ ¬ (is-parallel-type-and-class(c))))

⇔ 〈by reflexivity of≤sub, the added clause is a tautology〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (c ≤inh c’ ∧ (c ≠ c’ ⇒ ¬ (is-parallel-type-and-class(c)))

∧ direct-conforms(c) ≤subdirect-conforms(c))

⇔ 〈by set theory〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ t ∈{ t  c ≤inh c’ ∧ (c ≠ c’ ⇒ ¬ (is-parallel-type-and-class(c))) ∧

t = direct-conforms(c) }.
direct-conforms(c) ≤sub t)

⇒ 〈by predicate calculus, wherec satisfies the existentially quantifiedc’’ 〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ t ∈{ t  ∃ c’’ . c’’ ≤inh c’ ∧ (c’’ ≠ c’ ⇒ ¬ is-parallel-type-and-class(c’’)) ∧

t = direct-conforms(c’’) }.
direct-conforms(c) ≤sub t)

⇔ 〈by definition oftops and≤sub〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ t ∈tops({ t  ∃ c’’ . c’’ ≤inh c’ ∧ (c’’ ≠ c’ ⇒ ¬ is-parallel-type-and-class(c’’)) ∧

t = direct-conforms(c’’) }).
direct-conforms(c) ≤sub t)

⇔ 〈by definition ofconformed-types(c’)〉
(∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t)
∨ (∃ t ∈ conformed-types(c’). direct-conforms(c) ≤sub t)

⇔ 〈by idempotence of∨〉
∃ t ∈conformed-types(c’). direct-conforms(c) ≤sub t

Now that the lemma is proved, we can prove the main theorem about our conformance checking algorithm.

Theorem 2. ComputeIsConforming ⇒ ImplementationIsConforming

Proof: We prove this theorem by the following calculation.

ComputeIsConforming

⇔ 〈by definition〉
SpecializersAreConforming ∧ ConformsToSignatures

35

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition〉
(∀ m ∈ M. ∀ i ∈ indexes(specializers(m)).

let c = specializers(m)i in
c ≠ top ⇒

(∀ t ∈ conformed-types(c). t ≤sub argtypes(m)i))

∧ (∀ s ∈ S. ∀ m ∈ relevant(M, s).
m ∈ covered-methods(s) ⇒ conforms(m, s))

⇔ 〈by logic, ass does not occur in the first conjunct〉
∀ s ∈ S.

(∀ m ∈ M. ∀ i ∈ indexes(specializers(m)).
let c = specializers(m)i in

c ≠ top ⇒
(∀ t ∈ conformed-types(c). t ≤sub argtypes(m)i))

∧ (∀ m ∈ relevant(M, s).
m ∈ covered-methods(s) ⇒ conforms(m, s))

⇒ 〈by set theory, asrelevant(M, s) is a subset ofM〉
∀ s ∈ S. ∀ m ∈ relevant(M, s).

(∀ i ∈ indexes(specializers(m)).
let c = specializers(m)i in

c ≠ top ⇒
(∀ t ∈ conformed-types(c). t ≤sub argtypes(m)i))

∧ (m ∈ covered-methods(s) ⇒ conforms(m, s))

⇔ 〈by definition ofc in thelet〉
∀ s ∈ S. ∀ m ∈ relevant(M, s).

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (m ∈ covered-methods(s) ⇒ conforms(m, s))

⇔ 〈by definition ofcovered-methods(s) andconforms(m, s)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s).

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (m ∈ {m ∈ relevant(M, s)  has-common-classes(specializers(m), argtypes(s))} ⇒

((∀i ∈ indexes(specializers(m)).
specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ restype(m) ≤sub restype(s)))

36

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by set theory, as eachm is already inrelevant(M, s)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s).

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (has-common-classes(specializers(m), argtypes(s)) ⇒

((∀i ∈ indexes(specializers(m)).
specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ restype(m) ≤sub restype(s)))

⇔ 〈by logic, asi does not occur inhas-common-classes(specializers(m), argtypes(s))〉
∀ s ∈ S. ∀ m ∈ relevant(M, s).

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (∀i ∈ indexes(specializers(m)).

has-common-classes(specializers(m), argtypes(s)) ⇒
((specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s)))

⇔ 〈by (∀x.P(x)) ∧ (∀x.Q(x)) ⇔ ∀x.P(x)∧Q(x)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ i ∈ indexes(specializers(m)).

(specializers(m)i ≠ top ⇒
(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))

∧ (has-common-classes(specializers(m), argtypes(s)) ⇒
((specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s)))

⇔ 〈by definition ofhas-common-classes(specializers(m), argtypes(s))〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ i ∈ indexes(specializers(m)).

(specializers(m)i ≠ top ⇒
(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))

∧ ((∃ ’ ∈(Cconcrete)*. ’ ≤inh specializers(m) ∧ ’ <: argtypes(s)) ⇒
((specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s)))

⇒ 〈by logic as does not occur in the above formula, and thenQ ⇒ (P ⇒Q), twice〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ ((∃ ’ ∈(Cconcrete)*. ’ ≤inh specializers(m) ∧ ’ <: argtypes(s)) ⇒

((specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s)))

c c c

c
c

c
c

c c c

37

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇒ 〈by assumptions about , which satisfy the hypothesis about’ in the last main conjunct〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (specializers(m)i = top ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s))

⇒ 〈by definition of<: and assumption that <: argtypes(s)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i). t ≤sub argtypes(m)i))
∧ (specializers(m)i = top ⇒ ci <: argtypes(m)i)
∧ restype(m) ≤sub restype(s)

⇒ 〈by lemma 1 and assumption that≤inh specializers(m)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∀ t ∈ conformed-types(specializers(m)i).
(∃ t’ ∈conformed-types(specializers(m)i).

direct-conforms(ci) ≤sub t’)
∧ t ≤sub argtypes(m)i))

∧ (specializers(m)i = top ⇒ ci <: argtypes(m)i)
∧ restype(m) ≤sub restype(s)

⇒ 〈by instantiatingt to t’ , which is legal because the result ofconformed-types is always non-empty〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∃ t’ ∈conformed-types(specializers(m)i).
direct-conforms(ci) ≤sub t’
∧ t’ ≤sub argtypes(m)i))

∧ (specializers(m)i = top ⇒ ci <: argtypes(m)i)
∧ restype(m) ≤sub restype(s)

c c
c

c
c

c
c

c
c

c
c

c
c

c
c

c

38

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition of<: and transitivity of ≤sub〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒

(∃ t’ ∈conformed-types(specializers(m)i).
ci <: argtypes(m)i))

∧ (specializers(m)i = top ⇒ ci <: argtypes(m)i)
∧ restype(m) ≤sub restype(s)

⇒ 〈by logic, ast’ does not occur inci <: argtypes(m)i〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
(specializers(m)i ≠ top ⇒ ci <: argtypes(m)i)
∧ (specializers(m)i = top ⇒ ci <: argtypes(m)i)
∧ restype(m) ≤sub restype(s)

⇔ 〈by law of excluded middle〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

∀ i ∈ indexes(specializers(m)).
ci <: argtypes(m)i
∧ restype(m) ≤sub restype(s)

⇔ 〈by logic, asi does not occur inrestype(m) ≤sub restype(s)〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

(∀ i ∈ indexes(specializers(m)).
ci <: argtypes(m)i)

∧ restype(m) ≤sub restype(s)

⇔ 〈by definition of<: for vectors〉
∀ s ∈ S. ∀ m ∈ relevant(M, s). ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
≤inh specializers(m) ⇒

<: argtypes(m)
∧ restype(m) ≤sub restype(s)

⇔ 〈by logic, asm does not occur in <: argtypes(s)〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ relevant(M, s).

≤inh specializers(m) ⇒
<: argtypes(m) ∧ restype(m) ≤sub restype(s)

c
c

c

c
c

c

c
c

c

c
c

c

c
c

c
c

c
c

c

c
c

39

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition ofrelevant(M, s) and set theory〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ { m ∈ M  msg(m) = msg(s) ∧ ≤inh specializers(m) }.

<: argtypes(m) ∧ restype(m) ≤sub restype(s)

⇔ 〈by definition ofapplicable-methods(s,)〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ applicable-methods(s,).

<: argtypes(m) ∧ restype(m) ≤sub restype(s)

⇔ 〈by definition〉
ImplementationIsConforming

C.3 Correctness of Completeness Checking Algorithm

The following theorem says that our algorithm for computing completeness is sufficient to ensure
completeness.

Theorem 3. ComputeIsComplete ⇒ ImplementationIsComplete

Proof: We prove this theorem by the following calculation.

ComputeIsComplete

⇔ 〈by definition〉
∀ s ∈ S.

let top-vector = { } where  = argtypes(s) and each ci = top in
IsComplete(relevant(M, s), top-vector, s)

⇔ 〈by definition ofIsComplete(relevant(M, s), top-vector, s)〉
∀ s ∈ S.

let top-vector = { } where  = argtypes(s) and each ci = top in
∀ ∈ top-vector.

let TCSs = { ’  ci’ ∈ top-concrete-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftop-vector, there is only one intop-vector and each element of istop〉
∀ s ∈ S.

let TCSs = { ’  ci’ ∈ top-concrete-subclasses(top, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftop-concrete-subclasses(top, argtypes(s)i)〉
∀ s ∈ S.

let TCSs = { ’  ci’ ∈ tops(concrete-subclasses(top, argtypes(s)i)) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition ofconcrete-subclasses(top, argtypes(s)i)〉
∀ s ∈ S.

let TCSs = { ’  ci’ ∈ tops({ c’ ∈ Cconcrete c’ ≤inh top∧ c’<: argtypes(s)i }) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

c
c

c
c

c
c

c
c

c

c c

c c
c

c
c c

c c

c
c c

c
c c

c
c c

40

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition oftop, every classc’ is such thatc’ ≤inh top〉
∀ s ∈ S.

let TCSs = { ’  ci’ ∈ tops({ c’ ∈ Cconcrete c’<: argtypes(s)i }) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by the definition ofTCSs in thelet〉
∀ s ∈ S.

∀ ’ ∈{ ’ ci’ ∈ tops({ c’ ∈ Cconcrete c’ <: argtypes(s)i }) }.
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftops and<: for vectors〉
∀ s ∈ S.

∀ ’ ∈tops({ ’ ∈ (Cconcrete)*  ’ <: argtypes(s) }).
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftops and≤inh〉
∀ s ∈ S.

∀ ’ ∈{ ’ ∈ (Cconcrete)*  ’ <: argtypes(s) }.
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by set theory〉
∀ s ∈ S.

∀ ’ ∈(Cconcrete)*.
’ <: argtypes(s) ⇒

∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition of implication, predicate calculus, and∀x.¬P(x) ⇔ ¬∃x.P(x)〉
∀ s ∈ S. ¬ ∃ ’ ∈(Cconcrete)*.

’ <: argtypes(s) ∧
¬ ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition, renaming ’ to 〉
ImplementationIsComplete

C.4 Correctness of Consistency Checking Algorithm

Theorem 4. ComputeIsConsistent ⇒ ImplementationIsConsistent

Proof: We prove this theorem by the following calculation.

ComputeIsConsistent

⇔ 〈by definition〉
∀ s ∈ S. IsConsistent(relevant(M, s), s)

⇔ 〈by definition ofIsConsistent(relevant(M, s), s)〉
∀ s ∈ S. ∀ (m1, m2) ∈ incomparable-pairs(relevant(M, s)).

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s)  m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

c
c c

c c
c

c c c
c

c c c
c

c
c

c

c
c

c

c c

41

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition ofincomparable-pairs(relevant(M, s))〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s)  m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

⇔ 〈by definition ofIsComplete(M-reduced, TLBs, s)〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s)  m ≤methm1 ∧ m ≤methm2 } in
∀ ∈ TLBs.

let TCSs = { ’  ci’ ∈ top-concrete-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ M-reduced. ’ ≤inh specializers(m)

⇔ 〈by definition ofM-reduced and set theory〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s) in
∀ ∈ TLBs.

let TCSs = { ’  ci’ ∈ top-concrete-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s).

’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇒ 〈by definition of TLBs, TCSs, and inheritance〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

∀ ∈(Cconcrete)*.
<: argtypes(s) ∧ ≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by logic, as does not occur in∀m1, m2 ∈ relevant(M, s). (¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1))〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

<: argtypes(s) ∧ ≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by definition of⇒, twice, and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1)) ∨
¬(<: argtypes(s)) ∨ ¬(≤inh specializers(m1) ∧ ≤inh specializers(m2)) ∨
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by associativity of∨〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(<: argtypes(s)) ∨
¬(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1)) ∨
¬(≤inh specializers(m1) ∧ ≤inh specializers(m2)) ∨
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

c
c

c c

c
c

c
c

c
c c c

c

c
c

c c c
c

c

c c c
c

c

c

c c
c

42

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇔ 〈by definition of⇒, three times〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

∀ m1, m2 ∈ relevant(M, s).
<: argtypes(s) ⇒

¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by logic, asm1, m2 do not occur in <: argtypes(s)〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ true ∧ true

⇔ 〈by reflexivity of≤meth and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1)) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ⇒

≤inh specializers(m1) ⇒
≤inh specializers(m1) ∧ m1 ≤methm1 ∧ m1 ≤methm2)

∧ (m2 ≤methm1 ⇒
≤inh specializers(m2) ⇒

≤inh specializers(m2) ∧ m2 ≤methm2 ∧ m2 ≤methm1)

c

c

c c
c

c
c

c

c c
c

c
c

c c
c

c
c

c c
c

c
c

c
c

43

Typechecking and Modules for Multi-Methods Chambers & Leavens

⇒ 〈by existentially quantifying overm1 in one clause andm2 in another clause〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1)) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ⇒

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

∧ (m2 ≤methm1 ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm2 ∧ m ≤methm1)

⇔ 〈by ((P⇒R) ∧ (Q⇒R)) ⇔ ((P ∨ Q) ⇒ R) and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2 ∨ m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ∨ m2 ≤methm1 ⇒

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

⇔ 〈by law of excluded middle〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by ∀x.¬P(x) ⇔ ¬∃x.P(x) and definition of⇒〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
¬ ∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by ∀x.¬P(x) ⇔ ¬∃x.P(x) and definition of⇒〉
∀ s ∈ S. ¬ ∃ ∈(Cconcrete)*.

<: argtypes(s) ∧
∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ ∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2.

⇔ 〈by definition〉
ImplementationIsConsistent

c
c

c c
c

c c
c

c c
c

c
c

c c
c

c c
c

c
c

c c
c

c
c

c c
c

c
c

c c
c

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR94-03
Submission Date: March 2, 1994

	3-1994
	Type Checking and Modules for Multi-Methods
	Craig Chambers
	Gary T. Leavens
	Recommended Citation

	tmp.1394131375.pdf.jmO6v

