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The Direct Execution of SPECS-C++: A Model-Based

Speci�cation Language for C++ Classes

Tim Wahls�, Albert L. Baker, and Gary T. Leavens

November 18, 1994

Abstract

Executable speci�cation languages may be the key to more widespread use of formalmethods

in software production. However, the expressiveness of executable speci�cation languages is

typically much less than that of non-executable speci�cation languages such as VDM or Z.

Thus, speci�ers are forced to work at a lower level of abstraction to gain the advantage of

executability. Additionally, speci�cations are typically made executable by translating them to

a programming language, so errors in the speci�cation can only be detected as errors in the

resulting code. This paper presents a technique for directly executing speci�cations written

in SPECS-C++, a model-based speci�cation language for C++ classes. As SPECS-C++ has

much in commonwith the implicit subset of VDM, this technique is equally applicable to implicit

VDM speci�cations. Standard ML code for the interpreter and the example used in the paper

appear in the appendices.

1 Introduction

One barrier preventing formal methods from playing a larger role in industrial software development
is the fear that the bene�ts of using formal methods are not worth the costs. Executable formal
speci�cations can help in overcoming this fear, as an executable speci�cation yields an immediate
prototype of the �nal system. Those who already use formal speci�cations also bene�t, because
executing a speci�cation allows debugging it in the same way that programs are debugged. In addi-
tion, executable speci�cations ease incremental system integration and testing, as the speci�cation
(as a prototype) can take the place of parts of the �nal system that are yet to be implemented.

Thus it is not surprising that many executable speci�cation languages have been developed.
Unfortunately, these languages almost always force the speci�er to work at a much lower level
of abstraction than is normally employed in writing speci�cations in non-executable model-based
speci�cation languages, such as VDM [Jon90] and Z [Hay87, Spi88, Spi89, Spi92]. Typically, either
the speci�er must provide the algorithms needed for executing the speci�cation [LL91, BL90, ZS86,
LB89], or execution is based on translating the speci�cation to Prolog [TC89, WE92, DKC90]. In
the former case, the speci�er is forced to work in an impoverished speci�cation language that is
often almost indistinguishable from modern functional programming languages, and the algorith-
mic information that must be provided is a potential source of implementation bias [Jon90]. If
the speci�cation is translated to Prolog, the person using the executable speci�cation is exposed
to the ine�ciency and non-logical features of Prolog (cut, dependence on order of clauses). Such

�Wahls's work is supported by a fellowship provided by IBM Rochester. Leavens's work is supported in part by
the National Science Foundation under Grant CCR-9108654.
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translations also usually entail poor reporting of errors. These problems are magni�ed when val-
idating speci�cations, as speci�cation errors show up in the Prolog code, and the validator must
�rst �nd the error in the context of the Prolog code, and then �nd the corresponding error in the
speci�cation.

A number of existing executable speci�cation languages/techniques allow the execution of im-
plicit speci�cations | that is, speci�cations that do not explicitly provide the necessary algorithms.
We �rst brie
y describe several of these languages, and then discuss some of the limitations that
these languages share.

The EPROL speci�cation language [HI88, HI86] makes a fairly large subset of VDM executable
by compiling speci�cations to LISP. Even some speci�cations that use quanti�ers are executable.
EPROL is part of the EPROS system, which provides tool support for evolutionary and func-
tionality prototyping and for building the user interface to the prototype. Similarly, the me too
speci�cation language [Hen86] executes much the same subset of VDM by embedding speci�cations
in LISP.

The UK's National Physical Laboratory has developed a syntax-directed editor for entering
VDM speci�cations with a mode called SMLVIEW [O'N92a, O'N92b] that displays the VDM
speci�cation entered compiled into Standard ML (SML) [Pau91] code. The translation scheme
is apparently fairly direct, so the VDM speci�cation must be somewhat close to an SML program
for this translation to work, and the subset of VDM that can be translated is relatively small.
Additionally, some VDM features that are in principle executable, such as set comprehensions1,
are not implemented.

As both EPROL and SMLVIEW involve translation to a programming language, both force
the user wishing to validate speci�cations into the \debug the code, then debug the speci�cation"
mode described previously, especially if the generated code fails to compile (as can happen when
using SMLVIEW) or causes a run-time error. Any speci�cation error discovered is then reported
in the context of the generated code, rather than the context of the speci�cation. As an EPROL
speci�cation can be written at a more abstract level than a speci�cation to be executed using
SMLVIEW, the distance between the speci�cation and the Lisp code generated is relatively large,
and the di�culty of �nding the 
aw in the speci�cation that caused the error in the generated
code may be great. As speci�cations to be executed using SMLVIEW must be fairly close to the
resulting SML code, this \reverse translation" problem is likely to be less serious. However, with
SMLVIEW, the user must often hand edit the SML code resulting from the translation to achieve
even a syntactically correct SML program. In either case, then, the user is forced into intimate
contact with a language that is not directly involved in the software development process { it is
neither the speci�cation nor implementation language.

Additionally, all three of the techniques discussed apparently cannot execute VDM-like asser-
tions of the following three forms:

� The only operator that can be used to de�ne post-state values is =. In other words, the
assertion 3 2 S0, where S0 represents the post-state value of the set S, is of no help in
building a post-state value for S, even though it clearly de�nes part of that value.

� Post-state values of tuple, set, and sequence types cannot be de�ned \by parts", i.e. by
describing the result of applying tuple, set, and sequence observers to such post-state values.
For example, if rationals are modeled as a tuple consisting of numer and denom �elds, then
an assertion such as numer(r0) = 3^ denom(r0) = 4 is not executable, even though it clearly
de�nes the post-state value of r.

1For example, fi + 2 j 1 � i � 5 ^ i mod 2 = 0g is a set comprehension with value f4; 6g
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� A quanti�ed assertion can only be evaluated if it contains no references to post-state values,
and so can only be evaluated for its boolean value. Thus, an expression such as 8x[x 2
S ^ odd(x)) x 2 S0] can not be used in constructing the value of S0, even though it again
de�nes part of that value.

In the case of SMLVIEW, these limitations can be seen in the description of the subset of VDM
that can be executed (see Appendix J of [O'N92a]). Although the authors have been unable to
locate any similar characterization of the subset of VDM that EPROL or me too can execute, the
example speci�cations that have been published also exhibit these same limitations.

We present a technique that makes constructive use of these kinds of assertions in construct-
ing post-state values, and that executes the kinds of assertions that can be executed by EPROL,
me too, and SMLVIEW as well. While adding executability of these three features may seem like
small progress, they are characteristic (in our experience) of the truly implicit speci�cations many
speci�ers, regardless of their expertise and mathematical sophistication, tend to write. Thus, the
executability of these features is of key importance in executing speci�cations. We want executabil-
ity to be as small a burden on the speci�er as possible. Our main goal is to allow the speci�er to
write purely implicit speci�cations in a language that is in general not executable, and then execute
as much of the speci�cation as is practical. If more executability is needed, then the speci�cation
can be re�ned to an executable form. Thus, speci�cation languages that are designed to be exe-
cutable are in general not suitable for our purposes, but we do want to ease the trade-o� between
implicitness and executability as much as we can.

In addition, our technique has been implemented as an interpreter for model-based speci�ca-
tions, and so avoids the problems associated with validating a speci�cation when translation to
some programming language is used for execution. The technique is described in the context of
the speci�cation language SPECS-C++, which is a VDM-like language specialized for specifying
C++ [ES90, Str91] classes. However, our execution technique is not tied to any special feature of
SPECS-C++, and so would work as well for VDM speci�cations as it does for those written in
SPECS-C++.

An informal description of SPECS-C++ is presented in the next section. Our approach to
executing SPECS-C++ follows in Section 3. Section 4 presents an informal characterization of
the limitations of our execution technique. Finally, we examine some of the most closely related
work in Section 5 and speculate about the continued evolution of directly executable, abstract, and
formal speci�cations for C++ classes in the concluding Section 6.

2 Syntax for Executable SPECS-C++ Speci�cations

The next two sections summarize our work on direct execution of model-based speci�cations. We
have a literate2 Standard ML (SML) [Pau91] implementation of an interpreter for a subset of
SPECS-C++. This SML implementation should be thought of as a prototype and a demonstration
of the feasibility of the execution technique, as it uses an abstract syntax for SPECS-C++ that is too
cumbersome for actually writing speci�cations. Other members of the SPECS-C++ development
team are currently working on tools that use the concrete syntax of SPECS-C++ presented in
this section. The next section describes the executable subset of SPECS-C++ and the execution
technique used in the SML implementation. In the interest of brevity, no SML code is presented,
but is available in [WBL94].

2The interpreter is being developed with the aid of the literate programming tool Noweb [Ram91]. Noweb allows
a program and the text describing it to be written simultaneously and in the same �le, provides a structured way of
presenting the code, and makes extracting the code or the descriptive text easy.
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A SPECS-C++ speci�cation consists of a set of class speci�cations and the de�nitions of the
abstract model types used in those speci�cations. The primitive abstract types are basically those
of VDM: integer, float, char, string, and bool, where float is the type of real numbers.
The void type of C++ is included as the return type of pure procedures. More complex types are
composed from these basic types: �nite sets, sequences, tuples, and alternative (union) types. The
map and function types of VDM are not included, but �nite maps and functions may be modeled
as sets of tuples. All abstract type de�nitions are visible globally.

Class speci�cations in SPECS-C++ roughly correspond to modules in VDM. Each class speci�-
cation de�nes a type (with the same name as the class) and a set of operations on that type, called
public member functions. These public member functions correspond to the exported operations of
a VDMmodule, and are speci�ed using pre- and post-conditions, much like implicit VDM speci�ca-
tions. However, the precise meaning of a class speci�cation is di�erent than the meaning of a VDM
module, because SPECS-C++ is an interface speci�cation language [GHW85, GHG+93, Lam89]
for C++. That is, a SPECS-C++ speci�cation of a class can only be implemented by a C++ class
with the same name, each prototype of a public member function in the speci�cation must appear
(with the same name, return type, and arguments) in the implementation as a public member
function, and the implementation of each public member function must satisfy the speci�cation
given for it in the SPECS-C++ class. For example, consider a SPECS-C++ class OrderedPair

(representing ordered pairs of integers) and a member function First that returns the �rst element
of an OrderedPair. (This speci�cation will be presented in full shortly.) The relationship between
the speci�cation and the implementation is pictured in Figure 1. The interface and the meaning
are both part of the speci�cation that must be matched by the implementation.

As in Larch/Ada [GMP92] and LM3 [Jon92], SPECS-C++ speci�cations are embedded in im-
plementation code. A SPECS-C++ speci�cation is placed in specially formatted comments within
a C++ header �le. This automatically makes the interfaces match, and avoids redundancy. Thus,
the declaration of the class and the prototypes of the member functions in the speci�cation must
be compilable C++ code, and the other parts of the speci�cation (i.e., abstract type declarations,
pre- and post-conditions, and so on) are written inside C-style (/* to */) comments, and this style
of comment cannot be used otherwise. This separates the C++ clients of the speci�ed class from
the C++ code that implements it, so that the implementation can be separately compiled. As the
speci�cation is included in the header, the header contains all the information that C++ clients of
the class need to know to use the class correctly.

As an example of a SPECS-C++ speci�cation, consider the speci�cation of the classes OrderedPair
(Figure 2) and Relation (Figure 3), where Relation is modeled as a set of OrderedPairs. Member
functions with the class name are constructors, and are typically invoked in client code when class
instance declarations are executed. Class Int_Set, the return type of RelTo, is not shown here as
it is uninteresting, but would have to be included for executing this example. The pre-condition
of the function RelTo speci�es that the parameter key must be in the domain of the relation, and
the post-condition speci�es that the result consists of all the integers related to key in the relation.
The obvious VDM analog of RelTo's post-condition exhibits two of the kinds of assertions that are
not executable under the VDM-based techniques discussed earlier, as references to post-state values
appear inside quanti�ed assertions, and the value of result' is speci�ed using only \in (set mem-
bership). However, this post-condition is executable using our approach. As this post-condition is
also a non-trivial example of the expressive power of these features, the speci�cation of RelTo will
be used as a running example in the section on executing assertions (Section 3). A more detailed
description of SPECS-C++ is presented after this example.

In SPECS-C++, a class speci�cation consists of the abstract data members, an invariant, a set
of abstract function de�nitions, and a set of public member function speci�cations. Each of these
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Figure 1: The meaning of a SPECS-C++ member function speci�cation. The C++ code must
match the speci�ed interface and have a compatible meaning.

parts is described below.
In C++, the data members of a class implement the state of instances of the class { i.e., elements

of the type de�ned by the class. Abstract data members in SPECS-C++ di�er from the concrete
data members of C++ in two important ways:

� abstract data members are used to model the state of instances of the class type (and so
appear only in the speci�cation), while C++ data members actually implement these states.
Hence, many di�erent collections of concrete C++ data members can implement the speci�ed
abstract data members.

� abstract data members are visible globally in the speci�cation, while C++ allows various kinds
of control over what parts of a program may access concrete data members. The development
method used with SPECS-C++ requires that the C++ data members implementing any given
abstract data members be private (visible only within the class where they are de�ned).
Thus, class implementations that satisfy a SPECS-C++ speci�cation have only private data
members, and all client code access must be through the speci�ed public member functions.
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class OrderedPair {

/* model

** data members

** int first

** int second

** operations

*/

public:

OrderedPair(int f, int s);

/* modifies: self

** postA: first' = f /\ second' = s

*/

int First();

/* postA: result' = first

*/

int Second();

/* postA: result' = second

*/

};

Figure 2: Speci�cation of class OrderedPair.

In our semantics for SPECS-C++, class instances are modeled as tuples composed of the ab-
stract data members, and so are similar to VDM composite types (trees). If a class has no abstract
data members, then its type is modeled as the empty tuple. So, for example, instances of class
OrderedPair would be modeled as follows:

tuple OrderedPair (int first, int second)

The invariant in SPECS-C++ is a �rst order predicate calculus assertion that every class
instance must satisfy. Invariants may also be written for any speci�er-de�ned abstract type. In our
example speci�cations, any pair of integers is a valid OrderedPair, and any set of OrderedPairs
is a valid Relation, and so their invariants are both true, and hence omitted. The invariant for a
class should refer only to the abstract data members of the class it belongs to.

Abstract functions allow a �rst order assertion on the abstract model to be abstracted and
parameterized, much like the functions of an ordinary programming language. Abstract functions
cannot be invoked in client code. They are just aids in modularizing other assertions in a speci�-
cation.

The speci�cation of a member function consists of a C++ function prototype, a pre-condition,
a modifies clause, and a post-condition. The function prototype includes a return type, the name
of the function, and a parameter list with the types and names of the formal parameters, exactly
as in C++. Member functions always take a formal parameter of the associated class type which
is not explicitly listed, the default parameter. In SPECS-C++, this default parameter is always
referred to as self, and is analogous to *this in C++. As a shorthand, the abstract data members
of the default parameter can be referred to without mentioning self, so first and self.first

are synonyms when specifying the member functions of class OrderedPair.
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class Relation {

/* model

** data members

** set of OrderedPair theRel

** operations

*/

public:

Relation();

/* modifies: self

** postA: theRel' = {}

*/

Insert(OrderedPair elem);

/* modifies: self

** postA: theRel' = theRel \union {elem}

*/

...

Int_Set RelTo(int key);

/* preA: \exists (OrderedPair p) [

** (p \in theRel) /\ p.First() = key]

** postA: \forall (OrderedPair p) [

** (p \in theRel) /\ p.First() = key => p.Second() \in result'

** ] /\

** \forall (int i) [

** (i \in result') =>

** \exists (OrderedPair p) [

** (p \in theRel) /\ i = p.Second() /\ key = p.First()]]

*/

}

Figure 3: Speci�cation of class Relation.
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The modifies clause is a list of the formal parameters, possibly including the default parameter,
that the member function is allowed to mutate. The modifies clause could also be used to advertise
mutation of non-local objects, but this is not currently allowed by the SPECS-C++ method. An
omitted modifies clause means that the member function has no side e�ects.

Just as in VDM, the pre- and post-conditions describe respectively what must be true for the
member function to execute correctly, and what will be true after executing the member function.
An omitted pre-condition is equivalent to just true, and means that successful execution of the
member function does not depend on the pre-state. We take the total correctness approach, so an
implementation is required to terminate in a state that satis�es the post-condition whenever the
pre-state satis�es the pre-condition. In the post-condition, the keyword result' is used to refer
to the return value of the member function. To distinguish between the pre-state and post-state
values of formal parameters in the post-condition, variable identi�ers representing post-state values
are primed ('). We include result' in the set of primed identi�ers. Primed identi�ers may not
appear in a pre-condition.

Pre- and post-conditions, abstract functions, and invariants are �rst order predicate calculus
assertions written over SPECS-C++ types. Thus, SPECS-C++ expressions include the literals
of the primitive abstract types, the normal mathematical operations on integers and 
oats, and
the standard constructors and observers for sets, sequences, and tuples. Equality is de�ned in the
natural way for each of these types. Sets are constructed by the standard {...} notation, including
set comprehensions, i.e. {i + 2 | 1 <= i <= 10}. They are observed by \in and \subset, which
are just membership and subset, respectively. Sequences are constructed by <...>, and || is used
for appending of sequences. Given this much notation, the observers that decompose sequences are
de�ned as follows, where s represents a sequence, and e is a sequence element:

first(<e>||s) = e

last(s||<e>) = e

header(s||<e>) = s

trailer(<e>||s) = s

index(<e>||s, i) = if i = 1 then e else index(s, i - 1)

Note that none of these observers may be applied to empty sequences. The only built-in way to
observe tuples is to look at their components, or �elds. For each �eld of every tuple type, SPECS-
C++ provides an observer with the same name as the �eld that returns the associated value. For
example, given a declaration:

tuple rational (int num, int denom)

functions num: rational -> int and denom: rational -> int are then available for extracting
the components of the tuple.

Predicate calculus assertions are built with the standard boolean connectives: logical and (/\),
or (\/), implication (=>), and negation (!), and the universal (\forall) and existential (\exists)
quanti�ers.

Abstract function references and calls of member functions with non-void return types are also
allowed in assertions. Any side e�ects of the called member function are ignored, so the meaning is
that the value3 de�ned by the body of the abstract function, or respectively the value of result'

3While the speci�cations of member functions can in general be nondeterministic, we require abstract functions
and member functions that are referenced in pre- or post-conditions to be deterministic. Otherwise, the semantics
of assertions becomes problematic. For example, consider the truth value of the assertion foo(i) = 3 when foo(i)

can evaluate to either 2 or 3.
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de�ned by the post-condition of the member function, is substituted for the call or reference in the
assertion. (A syntax and informal semantics for using side e�ects of member functions in assertions
has been developed, but this feature is yet to be formalized.)

3 An Algorithm for Executing Assertions

Only public member functions of SPECS-C++ classes can be referenced in client code, so the di-
rect execution of SPECS-C++ (from a client's perspective) is just the execution of public member
function calls.4 A call to RelTo would have the form R.RelTo(2), where R is an instance of class
Relation. Note that the parameters are not C++ values, but rather abstract values correspond-
ing to C++ values. To interpret such a SPECS-C++ public member function call, we use its
speci�cation as follows:

1. Check that the actual arguments satisfy the pre-condition of the called member function.

2. Construct post-state values that satisfy the post-condition of the called member function.

If the post-condition isn't satis�able, or if the execution technique isn't adequate for the given
post-condition, then this attempt will fail.

3.1 Evaluating Pre-conditions

As the pre-condition is evaluated in the pre-state of the operation, all the values in the pre-condition
assertion are known { they are exactly the actual arguments of the member function. Thus, all
that is needed is to apply the de�nitions of the built-in operators, and the implementation is
straightforward. The quanti�ed assertions and set comprehension expressions are the only possible
complications.

In the executable subset of SPECS-C++, universally quanti�ed assertions must be of the form:

\forall (T x) [ (BP(x)) /\ P => Q ]

and existentially quanti�ed assertions must be of the form:

\exists (T x) [ (BP(x)) /\ P ]

where T is the type of the bound variable, and BP(x) is either x \in E and E is a �nite set or
sequence, or BP(x) is low <= x <= high, for some integer valued expressions low and high. We
use the term domain of the quanti�ed variable to mean either the predicate BP(x) or the set of
values that satisfy that predicate. Which meaning is intended should be clear from context. Clearly,
quanti�cation is restricted to �nite domains in the executable subset. The assertions P and Q are
arbitrary assertions of the executable subset (including quanti�ed assertions), and the /\ P portion
of both quanti�er forms is optional.

A universally quanti�ed assertion such as:

\forall (int x) [(1 <= x <= 5) => x < 6 ]

is evaluated by applying the predicate x < 6 to each of the integers 1 through 5, and logically
\anding" together each of the results. Thus, evaluating universal quanti�cation corresponds to an
and reduction over the domain of the quanti�ed variable. For existential quanti�ers, an assertion
such as the pre-condition of RelTo:

4Invariants could also be executed in order to check that all class instances created or modi�ed by member functions
satisfy their respective invariants. However, we have not done so to-date.
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\exists (OrderedPair p) [(p \in theRel) /\ p.First() = key ]

is evaluated by applying the predicate p.First() = key to each OrderedPair in theRel, and
logically \oring" together all of the results { which corresponds to an or reduction. This technique
of evaluating quanti�ers with reductions is common in the literature [BM93].

In the executable subset, set comprehensions must be of the form:

{F(x) | (BP(x)) /\ P}

where BP(x) and P are used in precisely the same manner as they were in the de�nitions of the
executable quanti�ed assertions. The term F(x) is an arbitrary term of the executable subset
of SPECS-C++. The term F(x) is not required to contain any occurrence of x, but will in any
interesting case. Given this de�nition, the evaluation of a set comprehension is basically a �lter of
the domain, followed by a map. For example, the expression:

{x + 2 |(1 <= x <= 5) /\ x mod 2 = 0}

is evaluated by choosing the integers between 1 and 5 that are even, adding 2 to each, and making
a set out of the results.

3.2 Satisfying Post-conditions

Executing a post-condition is more involved. The following steps provide an overview of our algo-
rithm for executing a post-condition:

1. Split the post-condition into constructive and nonconstructive parts. The constructive parts
are those which will actually be helpful in constructing post-state values that satisfy the
post-condition.

2. Generate a list of constraints from the constructive part. Each constraint de�nes a post-state
value or some part of a post-state value.

3. Solve the constraints to construct the portion of the post-state that di�ers from the pre-state.
The constraints need not determine unique post-state values (and so some \looseness" in
executable speci�cations is possible), but this process is deterministic. Thus, calling the same
sequence of member functions with the same arguments will always produce the same results.

4. Check the nonconstructive portion of the post-condition by evaluating it in a state where
unprimed identi�ers have their pre-state values, and primed identi�ers (including result')
have their post-state values. This state is built from the pre-state and the state constructed
in the previous step. If this check fails, then the execution of the post-condition fails.

5. Construct the state that results from the member function call. This state re
ects mutations
of the actual parameters of the call.

We are planning to generalize our algorithm by supporting backtracking; if the evaluation fails
in step three or step four, the algorithm could go back to step one and make a di�erent split into
constructive and non-constructive parts, or to step three and try some of the other possibilities
that any looseness in the speci�cation permits. We will discuss the possibilities for backtracking in
more detail as the algorithm unfolds.
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3.2.1 Splitting into Constructive and Nonconstructive Parts

The �rst step is to split the post-condition into two parts: the part that will be useful in constructing
post-state values, and the part that can only be used as a check on post-state values. This splitting
is based on the structure of the post-condition. For example, in an assertion of the form A1 /\ A2,
both A1 and A2 must be true for the post-condition to be satis�ed, and so each is processed
separately.

With an assertion of the form A1 \/ A2, the splitting algorithm tries to determine if either
A1 or A2 is necessarily false, just using pre-state values. If either is necessarily false, it dis-
cards that argument and continues processing the other. For example, in the post-condition:
(x = 3 /\ x' = 4) \/ (x != 3 /\ x' = 3) (recall that primed variable identi�ers represent
post-state values), one argument of the \/ assertion will be false just from pre-state values, and
so can be ignored. If neither argument can be determined to be false, then the entire \/ assertion
is nonconstructive, and is evaluated only after the construction of all post-state values. For ex-
ample, the entire assertion: x' = 3 \/ x' = 4 is nonconstructive. However, when backtracking
is added to the interpreter, this case can be handled di�erently. The interpreter can assume that
x' = 3 is true, and proceed with the execution. If this assumption results in an unsatis�able
or non-executable post-condition, then the interpreter can backtrack and make the other possible
assumption ( x' = 4). If this assumption fails, then the post-condition must be unsatis�able or
non-executable.

The �rst step in evaluating an assertion of the form A1 => A2 is to determine whether the
antecedent A1 is necessarily true or false, in the same way that the arguments of an \/ assertion are
tested. If A1 must be false, then the entire => assertion is ignored, as there is no requirement that
the consequent A2 holds. If A1 must be true, then A2 must hold, and so is processed recursively.
If the truth value of the antecedent cannot be determined just from the pre-state values, then the
entire assertion is nonconstructive. Again, the addition of backtracking allows better handling of
this case. The two possible assumptions that can be made are that A1 and A2 are both true, or
that A1 is false.

Of the post-condition operators that are not logical connectives, the most important are =,
\in, and \subset. These are the ones that directly contribute to the construction of post-state
values. For one of these operators to be constructive, it must be the case that one argument
of = and the left argument of both \in and \subset contain no primed identi�ers. This allows
the value of that argument to be computed in the pre-state in much the same way that pre-
conditions are evaluated. The other argument of =, and the right argument of both \in and
\subset, must represent a post-state value or part of a post-state value. In other words, it needs
to be a primed identi�er, or arbitrarily many applications of the built-in tuple and/or sequence
observers to a single primed identi�er. (The tuple and sequence observers were discussed in Sec-
tion 2.) For example, x' = 3, elem \in theRel', and {3} \subset result' are all constructive,
but result' = self'.Second(), 5 * x' = 3, x' in {3, 4} and index(S', i') = 3 are not.
Clearly, \constructive" information can be obtained from assertions that are not currently con-
structive, and so this is an area of ongoing research. In Section 4, we discuss an iterative technique
for relaxing these restrictions.

Other kinds of relational operators and negated assertions provide some information about
post-state values, but are usually of little help in actually constructing them, and so are classi�ed
as nonconstructive. For example, x' < 3 or !(x' = 3) do give some information about the post-
state value of x, but both are satis�ed by an in�nite number of post-state values. One possible
extension of the work presented here is to use constraint-satisfaction techniques [Lel88] both for
gleaning more information from these kinds of expressions and for generalizing what can represent
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a post-state value in a constraint.
Set comprehensions, abstract function references, and calls to member functions are construc-

tive if they contain no occurrences of primed identi�ers. For a universally quanti�ed assertion to
be constructive, the expression for the (�nite) domain that the quanti�ed variable ranges over and
the assertion P (the rest of the antecedent of the implication) must not contain primed identi-
�ers. Additionally, the assertion Q (the consequent of the implication) must be constructive, using
the de�nition being developed in this section. Otherwise, the universally quanti�ed assertion is
nonconstructive. For example, in the post-condition of RelTo:

\forall (OrderedPair p) [

(p \in theRel) /\ p.First() = key => p.Second() \in result']

is constructive, as neither the domain of the quanti�ed variable nor the antecedent of the implication
contains a primed identi�er, and the consequent of the implication is constructive. However,

\forall (int i) [

(i \in result') =>

\exists (OrderedPair p) [

(p \in theRel) /\ i = p.Second() /\ key = p.First()]]

is not constructive, because result' is the domain of the quanti�ed variable.
Existentially quanti�ed assertions are constructive if the domain of the bound variable contains

no primed identi�ers, and the rest of the assertion is constructive.

3.2.2 Evaluating Constructive Parts into Constraints

To simplify the construction of post-state values, the constructive part of the post-condition is
transformed into a list of constraints on the output values. As one might expect from the last
section, these constraints are equality, membership, and subset, and any occurrence of one of these
operators is immediately evaluated into a constraint, with the argument that contains no references
to post-state values evaluated into a value of one of the abstract types. Note that this transformation
is only applied to constructive expressions as de�ned in the previous section, so an appropriate
argument with no references to post-state values is guaranteed to exist. For the same reason, the
transformation need deal only with /\ and quanti�ed assertions, and an /\ assertion is handled
by simply appending the lists of constraints generated by its two arguments. For example, given
the the post-condition header(s') = <1, 2> /\ last(s') = 3, the transformation produces the
constraint list [header(s') = <1, 2>, last(s') = 3].

Universally quanti�ed assertions are transformed to constraints by repeatedly evaluating the
body of the assertion with the variable bound by the quanti�er bound to each value in the domain,
in turn. The resulting lists of constraints are appended into a single list of constraints. So, if (in
the post-condition of RelTo) the default parameter to RelTo is {(1, 2), (2, 2), (2, 3)} and
the value of key is 2, then the assertion

p.First() = key => p.Second() \in result'

is evaluated 3 times, with p bound to (1, 2), (2, 2), and (2, 3) in turn. The resulting constraint
list is [2 \in result', 3 \in result'].

For existentially quanti�ed assertions, the technique is to repeatedly evaluate the body of the
assertion for its boolean value, where subexpressions involving post-state values are ignored. This is
done with the quanti�ed variable bound to each element of the domain, in turn, until the evaluation
returns true. Then, the element that satis�es the body is bound to the quanti�ed variable, and the
body is evaluated to generate constraints. So, for example, an assertion such as:
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\exists (int x) [(1 <= x <= 3) /\ x mod 2 = 0 /\ y' = x + 5 ]

causes the predicate x mod 2 = 0 to be evaluated for x equal to 1, 2, and 3. As only 2 satis�es this
predicate, the constraint list [y' = 7] is generated. If multiple elements of the domain satisfy the
predicate, the �rst one that this evaluation technique �nds is used. Note that such an existentially
quanti�ed assertion constitutes an underdetermined or non-deterministic speci�cation, and that
this is the only kind of \loose" speci�cation that the execution technique can use constructively
in its current form. With the addition of backtracking, speci�cations that are loose because of
assertions using \/ and => as described earlier can also be used constructively. The addition
of backtracking will also allow more sophisticated use of existentially quanti�ed assertions. Many
elements of the domain quanti�ed over can potentially satisfy the parts of the body of the assertion
that do not refer to post-state values. In case the original choice of such an element causes the
execution of the post-condition to fail, backtracking would allow other elements of the domain to
be tried.

3.2.3 Evaluating Constraints into Values

The execution algorithm next tries to construct a post-state value for identi�ers appearing in the
modifies clause and for any non-void function result, using the list of constraints constructed as
described in the previous section. The �rst step is to check whether the (primed) identi�er appears
directly in one or more constraints. If so, then there are only two possibilities, assuming that
the post-condition used to generate the constraints is satis�able. Either one or more identical =
constraints match, and the (identical) post-state value is directly in each such constraint, or a group
of \in and \subset constraints match, and so a value of type set needs to be constructed. This is
done by unioning together the �rst arguments of all the constraints that matched. For example, if
the list of constraints is [2 \in result', 3 \in result'], then the post-state value constructed
for result' is {2, 3}.

If the primed identi�er doesn't match any constraint and the post-state value under construction
is of type tuple or sequence, then the next step is to check the constraint list for applications of built-
in tuple or sequence observers, respectively. (Recall that these observers are de�ned in Section 2.)
The only non-atomic values in SPECS-C++ are tuples, sequences, and sets, and the only built-in
observers of sets (\in and \subset) are converted directly into constraints, so tuples and sequences
are the only types whose values can be constructed in this way.

The only built-in way to observe tuples is to look at their components, or �elds. Thus, the
next step in trying to construct a post-state value of a tuple type is to attempt to match (in the
constraints list) the application field(identifier') for each �eld of that type of tuple. If this is
successful, then the post-state tuple value can easily be constructed.

When trying to construct a post-state value of a sequence type, our algorithm constructs ap-
plications of the sequence observers to the appropriate primed identi�er, and then matches these
applications with the constraint list. Each successful match de�nes a part of the post-state value.
For example, if the primed variable of interest is s' and the constraint list is
[header(s') = <1, 2>, last(s') = 3], then two applications match, and the post-state value
of <1, 2, 3> can easily be constructed. Clearly, such multiple matches can produce redundant
information about the post-state value of a sequence, and this information should be checked for
consistency. This has not yet been implemented, but seems straightforward. The other case (some
part of the post-state value of a sequence is not de�ned in the constraint list) is treated next.

If some part of the post-state value of a sequence or tuple is completely unconstrained by
the constraint list, then there are two possibilities, depending on whether the associated identi�er
(formal parameter of a tuple or sequence type) is de�ned (has a value associated with it) in the
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pre-state. If the identi�er is de�ned in the pre-state, then the \and nothing else changes" seman-
tics of SPECS-C++ implies that the unspeci�ed part should be whatever it was in the pre-state
value. If the value is being constructed from scratch, then the post-condition didn't provide enough
information to construct it, and so the construction fails and reports an error.

Post-state values of union types are constructed by searching the types of the union, and �nding
the �rst one to which the value belongs. If none of the type works, then the attempt to construct
the post-state value fails.

The steps described in the previous paragraphs are applied in a mutually recursive fashion.
Thus, if we had modeled integer relations as a sequences of sets of integers (i.e. each index position
in the sequence is related to each of the elements of the set found at that index position), then our
algorithm could utilize constraints like 3 \in index(R', key) in constructing a post-state value
for R'.

If the post-state value of some identi�er appearing in the modifies clause is completely un-
speci�ed (i.e. that identi�er does not appear in any constraint), then it is handled in the same way
as unspeci�ed parts of tuples or sequences { if it is de�ned in the pre-state, then the post-state
value is the same as that of the pre-state value, and if it is not de�ned in the pre-state, then the
construction fails. Note that the result' of the member function being speci�ed is always unde-
�ned in the pre-state, and so member functions with non-void return types must always construct
a post-state value for result'.

3.2.4 Checking the Nonconstructive Parts

Next, the parts of the post-condition that were determined to be nonconstructive are checked by
evaluating them for their boolean values. This evaluation is done with respect to both the pre-
and post-states, as the truth value of the nonconstructive parts may depend on both. Unprimed
identi�ers have their pre-state values, and primed identi�ers (including result') have their post-
state values. So, for example, the nonconstructive portion of the post-condition for RelTo:

\forall (int i) [

(i \in result') =>

\exists (OrderedPair p) [

(p \in theRel) /\ i = p.Second() /\ key = p.First()]]

is evaluated w.r.t a pre-state where theRel is {(1, 2), (2, 2), (2, 3)}, key is 2, and a post-
state where result' is {2, 3}. The evaluation mechanism is identical to that used for pre-
conditions. If this evaluation returns true (as it does for this example), then all is well. Otherwise,
the attempt to execute the post-condition fails. This can occur because the post-condition isn't
satis�able, or because the technique described for �nding post-state values failed to �nd satisfactory
ones.

3.2.5 Constructing the Result State

To complete the execution of a member function call, we need to construct the state that results
from the call. This is di�erent from the post-state we have been discussing so far, as this is outside
the scope of the member function. Thus, the formal parameters are no longer part of the state,
and any side e�ects of the member function are now re
ected in the actual parameters, rather than
the formals. Note that any formal that is mutated must appear in the modifies clause of the
called function. If the member function that was called has a non-void return type, then the value
constructed for result' is just printed, as return values of functions do not a�ect the state.
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As all state modi�cations performed by the member function have been made and any return
value constructed, execution of the member function call is complete.

4 Limitations of the Execution Technique

While the work described here makes a large subset of SPECS-C++ executable, not all valid
SPECS-C++ speci�cations can be executed. A post-condition must contain constructive subasser-
tions that de�ne all of the post-state values to be found. The following list of nonconstructive (and
so, non-executable) assertions is provided to highlight the limitations of the execution technique.

� Quanti�ed assertions where the domain of the bound variable depends on post-state values,
implications where the antecedent refers to post-state values, and multiple occurrences of
primed identi�ers in the same constraint (in the sense of Section 3.2.3). Examples include:

\forall (int x) [(x \in (foo' \union {3})) => x \in foo2' ]

x' = 3 => y' = 4

index(S', i') = 3

The backtracking approach previously described in only a partial solution to these problems.
Many more such assertions would be executable by a more incremental approach: �nd post-
state values for all the identi�ers possible, and then try again in a state where these primed
identi�ers are bound to the value found. This corresponds to �nding all of the post-state values
that depend only on pre-state values, then �nding all the post-state values that depend only
on pre-state values and those post-state values found in the previous step, and so on until no
more post-state values can be found. Note that this scheme is guaranteed to terminate, as at
least one post-state value must be found at each step for this iteration to continue.

� Negated assertions and assertions in which any relational operator other than =, \in, or
\subset is used to describe the relationship of some value to the post-state value being
constructed. Examples of such assertions can be found in Section 3.2.1. They limit the
possible post-state values that can be constructed. As these limits are checked when the
nonconstructive portion of the post-condition is evaluated, the evaluation technique already
utilizes such assertions as well as can be expected in the absence of constraint-satisfaction
techniques such as those discussed in [Lel88].

� Post-state values used as arguments to abstract function references and member functions
calls in post-conditions. Assertions like someabsfun(foo') do not help in constructing the
post-state value for foo, at least as far as the work described here is concerned. Note that
simply replacing the call or reference by the speci�cation of the associated function will not
work. To see this, consider a post-condition of some member function of class Relation that
just mimics RelTo on a key of 2, i.e. result' = self.RelTo(2). The post-condition of
RelTo is a (boolean valued) assertion, so this new post-condition fails to type check. The
same problem arises with abstract function references, as an abstract functions can also de�ne
its return value in the implicit manner typi�ed by RelTo. However, this problem does seem
reasonably tractable, and so this is an area for further research.
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5 Related Work

The most closely related work is the fase3/C++ language of Kamin and Kraus [KK93, Kra88], as
it is a (mostly) executable interface speci�cation language for C++ classes. The fase3 approach is
very similar to that taken in the Larch [GHW85, GHG+93] family of speci�cation languages, as it
is two-tiered, consisting of the fase3 shared language and the bf fase3/C++ interface language for
C++. The shared language is where most speci�cation occurs, and so where interesting execution
occurs as well. Only a few primitive types such as integer, boolean, and so on are built into fase3.
More structured types, such as the set, sequence, and tuple types of SPECS-C++ are speci�ed
in the shared language using a unique style of algebraic speci�cation that allows any type to be
represented as a tuple of functions. As long as these functions remain �nite for a particular element
of the type, the functions can be represented as \tables" (�nite sets of tuples), and quanti�ed
assertions over that element can be executed. The syntax for quanti�ed assertions is elegant and
concise, as the speci�er need not supply an explicit bound on the quanti�ed variable, as is required
in executable SPECS-C++ speci�cations. Assertions that use observers to de�ne values are also
executable | in fact, the functions that represent an element are exactly the observers of the type
as applied to that element.

However, many quanti�ed assertions that are executable using our technique for SPECS-C++
can not be executed in fase3. Given the natural fase3 shared language speci�cations of set,
sequence, and tuple, the kinds of quanti�ed assertions that have no references to post-state5 values
that are executable seem quite similar to those that are executable using our technique for SPECS-
C++. However, only one kind of fase3 quanti�ed assertion can be evaluated if it contains references
to post-state values, and so for more than just its boolean value. This kind of assertion is a
restricted form of existential quanti�cation that can only be used to select a particular element
from the domain quanti�ed over. Thus, for example, the post-condition of the member function
RelTo as discussed in the previous section, is not executable using the fase3 execution technique.

The execution techniques are quite di�erent. In fase3, speci�cations are �rst compiled to an
extended �-calculus, and then to an extended form of combinator graph, which is then reduced.
An execution technique of this generality seems to be necessary because the speci�er de�nes the
observers of a particular type, rather than the observers being built into the language as in SPECS-
C++. Because of the compilation phases and complicated reduction phase, the fase3 execution
technique seems unlikely to execute speci�cations as rapidly as our technique for SPECS-C++. We
are also unsure of the usefulness of errors reported by the reduction algorithm in debugging the
speci�cation that the graph was derived from.

Another work with some relation to our own is the structural mapping from Object-Z [CDD+90]
to C++ of Rafsanjani et. al. [RC93]. This mapping is an informal guideline for producing C++
implementations from Object-Z speci�cations. Object-Z classes are mapped to C++ classes, oper-
ations to virtual member functions, and so on. The mapping is not intended to be an automated
translation, so the only tool support provided is a partial implementation of the Object-Z basic
types. The work does provide some interesting observations on the relationship between speci�ca-
tion inheritance and code inheritance which may be helpful as we work on adding inheritance to
our interpreter for SPECS-C++.

5In fase3, there is no concept of pre- and post-state at the shared level. When we refer to post-state values in the
context of fase3, we are referring to the values returned from shared language functions. These are the values that
are de�ned by speci�cations, and so play the role of post-state values in SPECS-C++.
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6 Conclusion

One of the strengths of the execution technique described here is that it is relatively e�cient (at
least with respect to Prolog) and execution times are predictable. The most expensive built-in
operators (set intersection, di�erence, and subset) take O(n2) time, execution of quanti�ers takes
time linear in the size of the domain quanti�ed over, and all other built in operations take either
linear time (length of sequences, size of sets, etc.) or constant time. Hence, running times can be
estimated by inspection of the speci�cation. With the addition of backtracking to the interpreter,
some of this predictability would be lost. However, the loss of e�ciency would be minimal, as any
post-condition that is currently executable would not require backtracking for correct execution by
the augmented interpreter.

However, this execution technique does lose some aspects of expressiveness as compared to
Prolog, even with the addition of backtracking. For example, a classic way of implementing sorting
in Prolog is to de�ne predicates \permutation" and \ordered", and then de�ne a sorted sequence as
an ordered permutation of the original. SPECS-C++ is expressive enough to state the speci�cation
of a sort this way { the post-condition would look like:

Permutation(s, s') /\ Ordered(s')

for a sequence argument s and appropriate abstract functions Permutation and Ordered. This
speci�cation is not executable by the technique described here. On the other hand, executing the
Prolog sorting program takes exponential time, and so there is a trade-o� between expressiveness
and execution time.

Additionally, our execution technique was designed to take advantage of the ways in which
humans usually write speci�cations. We have found, for example, that people tend to write more
constructive speci�cations (in the sense developed in Section 3.2.1), rather than nonconstructive
speci�cations like the one discussed in the previous paragraph. In particular, our technique was
developed in the context of a suite of speci�cation examples used for teaching formal methods at
both the undergraduate and graduate levels. Almost all of these speci�cations are executable with
only (very) minor modi�cations, such as placing parenthesis around the domains of variables bound
by quanti�ers. This provides good evidence that the executable subset of SPECS-C++ is useful in
practice.

We have provided an interpreter for SPECS-C++, rather than using translation to some pro-
gramming language. Hence, this technique does not require the user to know Standard ML (the
language the interpreter is written in), and also can more easily report helpful error messages than
techniques using translation.

The execution technique also demonstrates the use of default frame axioms in a speci�cation
language. Frame axioms are used to say \and nothing else changes" { that only the state transfor-
mations explicitly required by the post-condition actually occur, and no more. The modi�es clause
is a form of frame axiom, as it explicitly limits the side e�ects of a member function to only the
formals (and corresponding actuals) that occur in the modi�es clause. However, additional frame
axioms are often required, as member function speci�cations don't always completely specify all
post-state values. While extra explicit frame axioms can be included in the post-condition, doing
so leads to large and unreadable speci�cations, along with a number of other problems [BMR93].
The technique used in executing SPECS-C++ is to embed default frame axioms in the speci�cation
language. This is demonstrated in the section on evaluating constraints into post-state values (Sec-
tion 3.2.3). For sets, the default frame axiom is to �nd a minimal set satisfying the post-condition.
To see this, note that nothing is included in a post-state set value unless the post-condition explic-
itly includes it, in the form of a \in or \subset expression. For tuples and sequences, the default
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frame axiom is that no �eld or index position changes from the pre-state to the post-state unless
the post-condition explicitly speci�es that it change.

Two major extensions of the interpreter are planned. These extensions will add constructs for
dealing with SPECS-C++ abstractions of C++ objects and for speci�cation inheritance.

In C++, \An object is a region of storage" [Str91]. Equivalently, an object may be thought of as
a cell in memory, or a value and its address. In SPECS-C++, we are concerned with distinguishing
between objects and values because objects can be mutated and aliased, while values cannot.
Incorrect usage of mutation and aliasing is a common cause of errors in C++ programs, so it is
important to advertise to users of a class (through the speci�cation of the class) exactly where
mutation and aliasing can occur. SPECS-C++ borrows the C++ notion of references as a uniform
mechanism for creating and handling objects. However, references are not yet part of the executable
subset of SPECS-C++.

Just as in C++, in SPECS-C++ inheritance relationships are established through the use of
derived classes. The syntax and semantics used are similar to C++, so that a class speci�ed as a
derived class inherits the abstract data members and (the speci�cations of the) member functions
of its base (super) class [Lea93]. We plan to add speci�cation inheritance to the SPECS-C++
interpreter, and so to the executable subset of SPECS-C++.

Even in its un�nished state, the SPECS-C++ interpreter can already be used in two important
ways. The �rst is that it provides a formal semantics for a large subset of SPECS-C++. Even if
the speci�er never wants to execute speci�cations, this work is useful in that it gives denotational
and operational semantics for the executable subset of SPECS-C++, which includes the built-in
operators, abstract functions, using member functions in speci�cations, and (soon) objects and
inheritance of speci�cations. As the SML compiler provides operational semantics for all the con-
structs in the executable subset, this work has a decided advantage over non-executable descriptions
in reference manuals. The SPECS-C++ interpreter is an unambiguous speci�cation of the meaning
of the executable subset of SPECS-C++ speci�cations.

Secondly, this work provides an executable subset of SPECS-C++, and the means to execute
speci�cations written in the subset. Thus, a speci�cation can serve as a prototype of the �nished
system. Some of the advantages for the speci�er and client are [WBL93]:

1. Validating speci�cations. The speci�er can now test and debug a speci�cation in much the
same way that a programmer would validate a program. This pushes validation into the
speci�cation stage of the software development process.

2. Understanding formal speci�cations. The client, who is likely to have little or no experience
with formal methods, now has a way to understand a formal speci�cation. By experimenting
with the prototype, the client can discover and report to the speci�er erroneous or unexpected
results, and missing or incomplete features.

Both these points imply that requirements and speci�cation errors are likely to be discovered earlier,
resulting in less expensive and more reliable software. Additionally, problems that traditional
software engineering techniques cope with poorly, such as missing functionality and incomplete
requirements documentation, are much more likely to be addressed by an executable speci�cation.
Often, the software developer is completely unaware of such problems, and only discovers them
after the completed software is delivered to the client. Giving the client a prototype can result in
such problems being discovered far earlier.

Thus, this research is a contribution to both the theoretical and practical sides of formal meth-
ods. On the theoretical side, it demonstrates an executable speci�cation language and execution
technique with clear advantages over other approaches. On the practical side, it demonstrates that
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prototypes generated by executable speci�cations can be e�cient enough for practical use. As such,
it represents solid progress in applying formal methods to industrial software production.
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A An Interpreter for SPECS-C++

This appendix contains the complete code for the SPECS-C++ interpreter, written in Standard
ML of New Jersey.

fun fst(one, two) = one;

fun snd(one, two) = two;

fun null([]) = true

| null(l::ls) = false;

fun filter([], _) = []

| filter(e::el, pred) =

if pred(e) then e::filter(el, pred) else filter(el, pred);

fun andred([], f) = true

| andred(e::es, f) = f(e) andalso andred(es, f);

fun orred([], f) = false

| orred(e::es, f) = f(e) orelse orred(es, f);

fun reduce([], f, zero) = zero

| reduce(e::es, f, zero) = f(e, reduce(es, f, zero));

fun find(l::ls, pred) =

if pred(l) then l else find(ls, pred);

fun isin([], pat) = false

| isin(l::ls, pat) = pat = l orelse isin(ls, pat);

fun len l = length l;

signature VALUE =

sig

type V

exception Set_not_homogeneous

exception Sequence_not_homogeneous

exception Arg_not_set

exception Arg_not_sequence

exception Type_error

exception Sequence_empty

val mkset: V -> V

val emptyset: V

val union: V * V -> V

val intersection: V * V -> V

val difference: V * V -> V

val subset: V * V -> V

val size: V -> V

val mkseq: V -> V

val emptyseq: V

val append: V * V -> V

val first: V -> V
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val header: V -> V

val last: V -> V

val trailer: V -> V

val length: V -> V

val member: V * V -> V

val index: V * V -> V

val mktuple: (string * V) list -> V

val field: string * V -> V

val add: V * V -> V

val sub: V * V -> V

val divide: V * V -> V

val mult: V * V -> V

val modulo: V * V -> V

val equal: V * V -> V

val less: V * V -> V

val lesseq: V * V -> V

val greater: V * V -> V

val greatereq: V * V -> V

val andexp: V * V -> V

val or: V * V -> V

val implies: V * V -> V

val neg: V -> V

val intvalue: int -> V

val realvalue: real -> V

val stringvalue: string -> V

val charvalue: string -> V (* data invariant: string is of length one *)

val boolvalue: bool -> V

val valueint: V -> int

val valuereal: V -> real

val valuestring: V -> string

val valuechar: V -> string

val valuebool: V -> bool

val undef: V

val isundefined: V -> bool

val empty: V -> bool

val sametype: V * V -> bool

val tkString: V -> string

val Filter: V * (V -> bool) -> V

val grabElem: V -> V

val AndReduce: V * (V -> bool) -> V

val OrReduce: V * (V -> bool) -> V

val Map: V * (V -> 'a) -> 'a list

val SetMap: V * (V -> V) -> V

val rangeset: V * V -> V

end;

structure Value: VALUE =

struct

datatype V = undefined
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| Set of (V list)

| Sequence of (V list)

| Tuple of (string * V) list

| i of int

| r of real

| str of string

| c of string

| b of bool;

exception Set_not_homogeneous

exception Sequence_not_homogeneous

exception Arg_not_set

exception Arg_not_sequence

exception Type_error

exception Sequence_empty

fun add(i(i1), i(i2)) = i(i1 + i2)

| add(r(r1), r(r2)) = r(r1 + r2)

| add(_, _) = raise Type_error;

fun sub(i(i1), i(i2)) = i(i1 - i2)

| sub(r(r1), r(r2)) = r(r1 - r2)

| sub(_, _) = raise Type_error;

fun divide(i(i1), i(i2)) = i(i1 div i2)

| divide(r(r1), r(r2)) = r(r1 / r2)

| divide(_, _) = raise Type_error;

fun mult(i(i1), i(i2)) = i(i1 * i2)

| mult(r(r1), r(r2)) = r(r1 * r2)

| mult(_, _) = raise Type_error;

fun modulo(i(i1), i(i2)) = i(i1 mod i2)

| modulo(_, _) = raise Type_error;

fun less(i(i1), i(i2)) = b(i1 < i2)

| less(r(r1), r(r2)) = b(r1 < r2)

| less(str(s1), str(s2)) = b(s1 < s2)

| less(c(c1), c(c2)) = b(c1 < c2)

| less(_, _) = raise Type_error;

fun lesseq(i(i1), i(i2)) = b(i1 <= i2)

| lesseq(r(r1), r(r2)) = b(r1 <= r2)

| lesseq(str(s1), str(s2)) = b(s1 <= s2)

| lesseq(c(c1), c(c2)) = b(c1 <= c2)

| lesseq(_, _) = raise Type_error;

fun greater(i(i1), i(i2)) = b(i1 > i2)

| greater(r(r1), r(r2)) = b(r1 > r2)

| greater(str(s1), str(s2)) = b(s1 > s2)

| greater(c(c1), c(c2)) = b(c1 > c2)

| greater(_, _) = raise Type_error;

fun greatereq(i(i1), i(i2)) = b(i1 >= i2)

| greatereq(r(r1), r(r2)) = b(r1 >= r2)
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| greatereq(str(s1), str(s2)) = b(s1 >= s2)

| greatereq(c(c1), c(c2)) = b(c1 >= c2)

| greatereq(_, _) = raise Type_error;

fun andexp(b(b1), b(b2)) = b(b1 andalso b2)

| andexp(_, _) = raise Type_error;

fun or(b(b1), b(b2)) = b(b1 orelse b2)

| or(_, _) = raise Type_error;

fun implies(b(b1), b(b2)) = b(not(b1) orelse b2)

| implies(_, _) = raise Type_error;

fun neg(b(b1)) = b(not b1)

| neg(_) = raise Type_error;

fun intvalue(in1) = i in1;

fun realvalue(rl1) = r rl1;

fun stringvalue(s1) = str s1;

fun charvalue(c1) =

if length(explode c1) = 1 then c c1

else raise Type_error;

fun boolvalue(b1) = b b1;

fun valueint(i i1) = i1

| valueint(_) = raise Type_error;

fun valuereal(r r1) = r1

| valuereal(_) = raise Type_error;

fun valuestring(str s1) = s1

| valuestring(_) = raise Type_error;

fun valuechar(c c1) = c1

| valuechar(_) = raise Type_error;

fun valuebool(b b1) = b1

| valuebool(_) = raise Type_error;

val undef = undefined;

fun isundefined(undefined) = true

| isundefined(_) = false;

fun mkset(x) = Set([x]);

val emptyset = Set([]);

fun subset(Set([]), Set(xs)) = b(true)

| subset(Set(x::xs), Set(ys)) =
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if valuebool(member(x, Set(ys))) then subset(Set(xs), Set(ys))

else b(false)

| subset(_, _) = raise Type_error

and member(undefined, _) = raise Type_error

| member(_, Set([])) = b(false)

| member(m, Set(x::xs)) =

if valuebool(equal(m, x)) then b(true)

else member(m, Set(xs))

| member(_, Sequence([])) = b(false)

| member(m, Sequence(x::xs)) =

if valuebool(equal(m, x)) then b(true)

else member(m, Sequence(xs))

| member(_, _) = raise Type_error

and equal(Sequence([]), Sequence([])) = b(true)

| equal(Sequence([]), Sequence(_::_)) = b(false)

| equal(Sequence(_::_), Sequence([])) = b(false)

| equal(Sequence(x::xs), Sequence(y::ys)) =

b(valuebool(equal(x,y)) andalso

valuebool(equal(Sequence(xs), Sequence(ys))))

| equal(Set(xs), Set(ys)) =

b(valuebool(subset(Set(xs), Set(ys))) andalso

valuebool(subset(Set(ys), Set(xs))))

| equal(Tuple([]), Tuple([])) = b(true)

| equal(Tuple([]), Tuple(_::_)) = b(false)

| equal(Tuple(_::_), Tuple([])) = b(false)

| equal(Tuple((s, t)::ts), Tuple((s1, t1)::ts1)) =

b(s = s1 andalso valuebool(equal(t, t1)) andalso

valuebool(equal(Tuple(ts), Tuple(ts1))))

| equal(r(x), r(y)) = b(x = y)

| equal(i(x), i(y)) = b(x = y)

| equal(str(x), str(y)) = b(x = y)

| equal(c(x), c(y)) = b(x = y)

| equal((b(x)), (b(y))) = b(x = y)

| equal(_, _) = raise Type_error;

fun empty(Sequence([])) = true

| empty(Set([])) = true

| empty(Sequence(_)) = false

| empty(Set(_)) = false

| empty(_) = raise Type_error;

fun sametype((i(x)), (i(y))) = true

| sametype((r(x)), (r(y))) = true

| sametype((str(x)), (str(y))) = true

| sametype(c(_), c(_)) = true

| sametype((b(x)), (b(y))) = true

| sametype(Sequence([]), Sequence(_)) = true

| sametype(Sequence(_), Sequence([])) = true

| sametype(Sequence(x::xs), Sequence(y::ys)) = sametype(x, y)

| sametype(Set([]), Set(_)) = true

| sametype(Set(_), Set([])) = true
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| sametype(Set(x::xs), Set(y::ys)) = sametype(x, y)

| sametype(Tuple([]), Tuple([])) = true

| sametype(Tuple([]), Tuple(_::_)) = false

| sametype(Tuple(_::_), Tuple([])) = false

| sametype(Tuple((s, t)::ts), Tuple((s1, t1)::ts1)) =

s = s1 andalso sametype(t, t1) andalso sametype(Tuple(ts), Tuple(ts1))

| sametype(_, _) = false;

(* note that the condition for sets and sequences is strong enough because

homogeneity is enforced when they are constructed *)

fun put(x, Set(xs)) = Set(x::xs);

fun unn(Set([]), Set(ys)) = Set(ys)

| unn(Set(ys), Set([])) = Set(ys)

| unn(Set(x::xs), Set(ys)) =

if valuebool(member(x,Set(ys))) then unn(Set(xs), Set(ys))

else put(x, unn(Set(xs), Set(ys)))

| unn(_, _) = raise Arg_not_set;

fun union(S1, S2) =

if sametype(S1, S2) then unn(S1, S2)

else raise Type_error;

fun intersect(Set([]), Set(ys)) = emptyset

| intersect(Set(ys), Set([])) = emptyset

| intersect(Set(x::xs), Set(ys)) =

if valuebool(member(x,Set(ys))) then put(x, intersect(Set(xs), Set(ys)))

else intersect(Set(xs), Set(ys))

| intersect(_, _) = raise Arg_not_set;

fun intersection(S1, S2) =

if sametype(S1, S2) then intersect(S1, S2)

else raise Type_error;

fun diff(Set([]), Set(ys)) = emptyset

| diff(Set(ys), Set([])) = Set(ys)

| diff(Set(x::xs), Set(ys)) =

if valuebool(member(x,Set(ys))) then diff(Set(xs), Set(ys))

else put(x, diff(Set(xs), Set(ys)))

| diff(_, _) = raise Arg_not_set;

fun difference(S1, S2) =

if sametype(S1, S2) then diff(S1, S2)

else raise Type_error;

fun size(Set([])) = i 0

| size(Set(_::xs)) = add(i(1), size(Set (xs)))

| size(_) = raise Arg_not_set;

fun mkseq x = Sequence([x]);

val emptyseq = Sequence([]);

fun app(Sequence(x), Sequence(y)) = Sequence(x @ y)
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| app(str(x), str(y)) = str(x^y)

| app(_, _) = raise Arg_not_sequence;

fun append(S1, S2) =

if sametype(S1, S2) then app(S1, S2)

else raise Type_error;

(* the rest of this sequence operators need to be extended to strings

sometime *)

fun first(Sequence(x::_)) = x

| first(Sequence([])) = raise Sequence_empty

| first(_) = raise Arg_not_sequence;

fun header(Sequence(_::[])) = emptyseq

| header(Sequence(x::xs)) = append(Sequence([x]), header(Sequence (xs)))

| header(Sequence([])) = raise Sequence_empty

| header(_) = raise Arg_not_sequence;

fun last(Sequence(x::[])) = x

| last(Sequence(_::xs)) = last(Sequence (xs))

| last(Sequence([])) = raise Sequence_empty

| last(_) = raise Arg_not_sequence;

fun trailer(Sequence (_::xs)) = Sequence (xs)

| trailer(Sequence([])) = raise Sequence_empty

| trailer(_) = raise Arg_not_sequence;

fun length(Sequence([])) = i(0)

| length(Sequence(_::xs)) = add(i(1), length(Sequence(xs)))

| length(str(s)) = i(String.size s)

| length(_) = raise Arg_not_sequence;

fun index(Sequence(x::xs), ind) =

if valueint(ind) = 1 then x

else index(Sequence (xs), sub(ind, intvalue 1))

| index(Sequence([]), _) = raise Sequence_empty

| index(_, _) = raise Arg_not_sequence;

fun mktuple(S) = Tuple(S);

fun field(s, Tuple((s1, v)::svl)) =

if s = s1 then v

else field(s, Tuple(svl))

| field(_, _) = raise Type_error;

fun Filter(Set(elems), pred) = Set(filter(elems, pred))

| Filter(Sequence(elems), pred) = Set(filter(elems, pred))

| Filter(_, _) = raise Type_error;

fun grabElem(Set(e::el)) = e

| grabElem(_) = raise Type_error;

fun tkString(t) =
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let fun sString([]) = ""

| sString([e]) = tkString(e)

| sString(e::es) = tkString(e)^", "^sString(es)

and tString([]) = ""

| tString([(_, t)]) = tkString(t)

| tString((_, t)::ts) = tkString(t)^", "^tString(ts)

in

case t of

i(i1) => makestring i1

| r(r1) => makestring r1

| str(s1) => s1

| c(c1) => c1

| b(b1) => makestring b1

| Set(s) => "{"^sString(s)^"}"

| Sequence(s) => "<"^sString(s)^">"

| Tuple(ts) => "("^tString(ts)^")"

| undefined => "undefined"

end;

fun AndReduce(Set(es), pred) = b(andred(es, pred))

| AndReduce(Sequence(es), pred) = b(andred(es, pred));

fun OrReduce(Set(es), pred) = b(orred(es, pred))

| OrReduce(Sequence(es), pred) = b(orred(es, pred));

fun Map(Set(es), pred) = map pred es

| Map(Sequence(es), pred) = map pred es;

fun SetMap(Set(es), pred) = Set(Map(Set(es), pred));

fun rangeset(low, high) =

if valuebool(less(high, low)) then emptyset

else union(mkset(low), rangeset(add(low, intvalue 1), high));

end;

datatype spectype = inttype

| realtype

| chartype

| stringtype

| booltype

| voidtype

| settype of spectype

| seqtype of spectype

| tupletype of (string * spectype) list

| alttype of spectype list

| typename of string

| reftype of spectype;

datatype expr =

primi of int

| primr of real

| prims of string
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| primb of bool

| primc of string

| add of (expr * expr)

| sub of (expr * expr)

| divide of (expr * expr)

| mult of (expr * expr)

| modulo of (expr * expr)

| buildset of (expr list)

| union of (expr * expr)

| intersection of (expr * expr)

| difference of (expr * expr)

| member of (expr * expr)

| subset of (expr * expr)

| size of expr

| buildseq of (expr list)

| append of (expr * expr)

| first of expr

| header of expr

| last of expr

| trailer of expr

| length of expr

| index of (expr * expr)

| buildtuple of ((string * expr) list)

| field of (string * expr)

| less of (expr * expr)

| lesseq of (expr * expr)

| greater of (expr * expr)

| greatereq of (expr * expr)

| eq of (expr * expr)

| andexp of (expr * expr)

| or of (expr * expr)

| implies of (expr * expr)

| neg of expr

| ident of string

| primed of string

| result

| forall of (string * expr * expr * expr)

| exists of (string * expr * expr)

| setcomp of (string * expr * expr * expr)

| subrange of (expr * expr)

| isoftype of (expr * spectype)

| call of (string * expr list)

| mcall of (expr * string * expr list)

;

fun noprimed(add(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(sub(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(divide(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(mult(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(modulo(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(buildset(el)) = andred(el, noprimed)

| noprimed(setcomp(_, dom, e, pred)) = andred([dom, e, pred], noprimed)

| noprimed(union(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(intersection(e1, e2)) = noprimed(e1) andalso noprimed(e2)
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| noprimed(difference(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(size(e)) = noprimed(e)

| noprimed(buildseq(el)) = andred(el, noprimed)

| noprimed(append(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(first(e)) = noprimed(e)

| noprimed(header(e)) = noprimed(e)

| noprimed(last(e)) = noprimed(e)

| noprimed(trailer(e)) = noprimed(e)

| noprimed(length(e)) = noprimed(e)

| noprimed(index(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(buildtuple(el)) = andred(el, fn(s, e) => noprimed(e))

| noprimed(field(_, e)) = noprimed(e)

| noprimed(primed(_)) = false

| noprimed(subrange(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(less(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(lesseq(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(greater(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(greatereq(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(eq(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(member(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(subset(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(andexp(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(or(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(implies(e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(neg(e)) = noprimed(e)

| noprimed(forall(_, e1, e2, e3)) = andred([e1, e2, e3], noprimed)

| noprimed(exists(_, e1, e2)) = noprimed(e1) andalso noprimed(e2)

| noprimed(isoftype(e, _)) = noprimed(e)

| noprimed(call(_, el)) = andred(el, noprimed)

| noprimed(mcall(instance, _, args)) = andred(instance::args, noprimed)

| noprimed(result) = false

| noprimed(_) = true;

datatype id = bound of string | unbound of string;

signature ENV =

sig

type E

exception Not_found of id

val empty: E

val extend: E * id * Value.V * spectype -> E

val replace: E * id * Value.V * spectype -> E

val lookup: E * id -> Value.V

val getType: E * id -> spectype

val isbound: E * id -> bool

val append: E * E -> E

end;

structure Env: ENV =

struct

type E = (id * Value.V * spectype) list;

exception Not_found of id;

val empty = [];
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fun extend(env, name, v, t) = (name, v, t)::env;

fun replace([], name, v, t) = raise Not_found name

| replace((n, v, t)::env, name, va, ty) =

if n = name then (name, va, ty)::env

else (n, v, t)::replace(env, name, va, ty);

fun lookup([], n1) = raise Not_found n1

| lookup((n, v, _)::env, n1) =

if n = n1 then v

else lookup(env, n1);

fun getType([], n1) = raise Not_found n1

| getType((n, _, t)::env, n1) =

if n = n1 then t

else getType(env, n1);

fun isbound([], _) = false

| isbound((n, _, _)::env, n1) = if n = n1 then true

else isbound(env, n1);

fun append(e1, e2) = e1 @ e2;

end;

signature TENV =

sig

type E

exception Not_found of string

val empty: E

val extend: E * string * spectype -> E

val lookup: E * string -> spectype

val isbound: E * string -> bool

val getpos: E * string -> int

end;

structure TEnv: TENV =

struct

type E = (string * spectype) list;

exception Not_found of string;

val empty = [];

fun extend(env, name, t) = (name, t)::env;

fun lookup([], name) = raise Not_found(name)

| lookup((n, t)::env, n1) =

if n = n1 then t

else lookup(env, n1);

fun isbound([], name) = false

| isbound((n, t)::env, name) = (n = name) orelse isbound(env, name);
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fun getpos([], name) = raise Not_found(name)

| getpos((n, t)::env, name) =

if n = name then 1

else 1 + getpos(env, name);

end;

type absfunctiontype = {name: string,

args: TEnv.E,

returntype: spectype,

body: expr};

datatype operationtype = operation of {name: string,

args: TEnv.E,

returntype: spectype,

modifies: string list,

pre: expr,

post: expr}

| friend of {name: string,

friendclass: string,

args: TEnv.E,

returntype: spectype,

modifies: string list,

pre: expr,

post: expr};

datatype parentclasstype = none | parentclassname of string;

type classspec = {name: string,

parentclass: parentclasstype,

invariant: expr,

absfunctions: absfunctiontype list,

publicops: operationtype list,

protectedops: operationtype list};

type spec = {classes: classspec list,

typeenv: TEnv.E};

(* ADT type *)

fun chasetype(typename(s), tenv) =

(case TEnv.lookup(tenv, s) of

typename(s1) => chasetype(typename(s1), tenv)

| t => t)

| chasetype(reftype(t), tenv) = chasetype(t, tenv)

| chasetype(t, tenv) = t;

fun gettuptype(s, tupletype((s1, t)::tl)) =

if s = s1 then t else gettuptype(s, tupletype(tl))

| gettuptype(s, _) = raise Value.Type_error;

fun getseqtype(seqtype(it)) = it

| getseqtype(_) = raise Value.Type_error;
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fun findtype(_, alttype([]), _) = raise Value.Type_error

| findtype(lv, alttype(t::tlist), tenv) =

(findtype(lv, t, tenv)

handle _ => findtype(lv, alttype(tlist), tenv))

| findtype(primed(_), t, tenv) = t

| findtype(field(s, lv), t, tenv) = chasetype(gettuptype(s, findtype(lv, t,

tenv)),

tenv)

| findtype(index(lv, _), t, tenv) = chasetype(getseqtype(findtype(lv, t,

tenv)),

tenv)

| findtype(first(lv), t, tenv) = chasetype(getseqtype(findtype(lv, t, tenv)),

tenv)

| findtype(last(lv), t, tenv) = chasetype(getseqtype(findtype(lv, t, tenv)),

tenv)

| findtype(header(lv), t, tenv) = findtype(lv, t, tenv)

| findtype(trailer(lv), t, tenv) = findtype(lv, t, tenv);

fun sametype(settype(pt), settype(rt), tenv) =

sametype(chasetype(pt, tenv), chasetype(rt, tenv), tenv)

| sametype(seqtype(pt), seqtype(rt), tenv) =

sametype(chasetype(pt, tenv), chasetype(rt, tenv), tenv)

| sametype(tupletype([]), tupletype([]), _) = true

| sametype(tupletype((s, pt)::ptl), tupletype((s1, rt)::rtl), tenv) =

s = s1 andalso sametype(chasetype(pt, tenv), chasetype(rt, tenv), tenv)

andalso sametype(tupletype(ptl), tupletype(rtl), tenv)

| sametype(alttype(tl), rt, tenv) =

orred(tl, fn(t) =>

sametype(chasetype(t, tenv), chasetype(rt, tenv), tenv))

| sametype(pt, alttype(tl), tenv) =

orred(tl, fn(t) =>

sametype(chasetype(t, tenv), chasetype(pt, tenv), tenv))

| sametype(pt, rt, _) = pt = rt;

fun typeok(pt, lv, rt, tenv) = sametype(pt, findtype(lv, rt, tenv), tenv);

fun typematch(formals, actuals, tenv) =

let val ftypes = map (fn(s, t) => t) formals in

len ftypes = len actuals

(* andalso orred(map *)

end;

(* end ADT type *)

(* ADT AbsFunction *)

fun getAName({name = n, ...}:absfunctiontype) = n;

fun getAArgs({args = a, ...}:absfunctiontype) = a;

fun getARetType({returntype = r, ...}:absfunctiontype) = r;

fun getABody({body = b, ...}:absfunctiontype) = b;
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(* end ADT AbsFunction *)

(* ADT Spec *)

fun getTEnv({typeenv = t, ...}:spec) = t;

fun getClass(typename(tname), {classes = c, ...}:spec) =

find(c, fn({name = n, ...}) => n = tname);

fun isClass(typename(tname), {classes = c, ...}:spec) =

orred(c, fn({name = n, ...}) => n = tname)

| isClass(_, _) = false;

fun getFriend(opname, args, {classes = c, ...}:spec) =

find(reduce((map (fn({publicops = p, ...}) => p) c), op @, []),

(fn(opn) => case opn of

friend({name = n, ...}) => n = opname

| operation(_) => false));

fun isAbsFunction(name, numargs, {classes = c, ...}:spec) =

orred(reduce((map (fn({absfunctions = f, ...}) => f) c), op @, []),

(fn(ab) => name = getAName(ab) andalso numargs = len(getAArgs(ab))));

fun getAbsFunction(name, {classes = c, ...}:spec) =

find(reduce((map (fn({absfunctions = f, ...}) => f) c), op @, []),

(fn(ab) => name = getAName(ab)));

fun isfriend(oper) = oper = "";

(* end ADT Spec *)

(* ADT Operation *)

fun getName(operation({name = n, ...})) = n

| getName(friend({name = n, ...})) = n;

fun getPre(operation({pre = p, ...})) = p

| getPre(friend({pre = p, ...})) = p;

fun getPost(operation({post = p, ...})) = p

| getPost(friend({post = p, ...})) = p;

fun getModifies(operation({modifies = m, ...})) = m

| getModifies(friend({modifies = m, ...})) = m;

fun getArgs(operation({args = a, ...})) = a

| getArgs(friend({args = a, ...})) = a;

fun fixForms(forms, object, typ, rettype) =

let val tenv = if isfriend(object) then forms

else TEnv.extend(forms, "self", typ) in

if rettype = voidtype then tenv

else TEnv.extend(tenv, "result", rettype) end;
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fun fixArgs(acts, object, typ, rettype) =

let val ac = if isfriend(object) then acts

else ident(object)::acts in

if rettype = voidtype then ac

else (primi 0)::ac end;

fun getRetType(operation({returntype = rt, ...})) = rt

| getRetType(friend({returntype = rt, ...})) = rt;

(* end of ADT Operation *)

(* ADT Class *)

fun getOp(opname, {publicops = ol, ...}:classspec) =

(* this must change when inheritance is added *)

find(ol, fn(opn) => getName(opn) = opname);

fun getInv({invariant = i, ...}:classspec) = i;

(* end of ADT Class *)

fun lhs(primed(_)) = true

| lhs(result) = true

| lhs(field(_, e)) = lhs(e)

| lhs(index(e1, e2)) = lhs(e1) andalso noprimed(e2)

| lhs(first(e)) = lhs(e)

| lhs(last(e)) = lhs(e)

| lhs(header(e)) = lhs(e)

| lhs(trailer(e)) = lhs(e)

| lhs(e) = noprimed(e);

fun constructive(eq(e1, e2)) = (lhs(e1) andalso noprimed(e2)) orelse

(lhs(e2) andalso noprimed(e1))

| constructive(member(e1, e2)) = noprimed(e1) andalso lhs(e2)

| constructive(subset(e1, e2)) = noprimed(e1) andalso lhs(e2)

| constructive(neg(_)) = false

| constructive(forall(_, dom, antecedent, consequent)) =

noprimed(dom) andalso noprimed(antecedent)

andalso constructive(consequent)

| constructive(exists(_, dom, conjunct)) =

noprimed(dom) andalso constructive(conjunct)

| constructive(primed(_)) = false

| constructive(result) = false

| constructive(andexp(e1, e2)) = constructive(e1) andalso constructive(e2)

| constructive(or(_, _)) = false

| constructive(implies(antecedent, consequent)) =

noprimed(antecedent) andalso constructive(consequent)

| constructive(e) = noprimed(e);

(* given an lvalue and a Value.V, return the value that would be given by

replacing the primed(_) expr in the lvalue with the Value.V.

Not well tested yet. *)

fun construct(primed(_), v) = v
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| construct(field(s, e), v) = Value.field(s, construct(e, v))

| construct(index(e, primi x), v) = Value.index(construct(e, v),

Value.intvalue x)

| construct(first(e), v) = Value.first(construct(e, v))

| construct(last(e), v) = Value.last(construct(e, v))

| construct(header(e), v) = Value.header(construct(e, v))

| construct(trailer(e), v) = Value.trailer(construct(e, v))

;

datatype constraint = ceq of expr * Value.V

| cmember of Value.V * expr

| csubset of Value.V * expr;

fun extractlhs(ceq(e, _)) = e

| extractlhs(cmember(_, e)) = e

| extractlhs(csubset(_, e)) = e;

fun match(c, lvalue) = lvalue = extractlhs(c);

fun partialmatch(c, lvalue) =

let fun helpmatch(l) =

if l = lvalue then true

else

case l of

field(_, l1) => helpmatch(l1)

| index(l1, _) => helpmatch(l1)

| first(l1) => helpmatch(l1)

| last(l1) => helpmatch(l1)

| header(l1) => helpmatch(l1)

| trailer(l1) => helpmatch(l1)

| _ => false

in helpmatch(extractlhs(c)) end;

fun isconsbound(clist, lvalue, pred) =

orred(clist, fn(elem) => pred(elem, lvalue));

fun replace(_, _, []) = []

| replace(pat, new, c::clist) =

if partialmatch(c, pat) then

let fun replaceaux(pat, new, l) =

if pat = l then new

else case l of

field(s, l1) => field(s, replaceaux(pat, new, l1))

| index(l1, ind) => index(replaceaux(pat, new, l1), ind)

| first(l1) => first(replaceaux(pat, new, l1))

| last(l1) => last(replaceaux(pat, new, l1))

| header(l1) => header(replaceaux(pat, new, l1))

| trailer(l1) => trailer(replaceaux(pat, new, l1))

in case c of

ceq(l, v) => ceq(replaceaux(pat, new, l), v)

::replace(pat, new, clist)

| cmember(v, l) => cmember(v, replaceaux(pat, new, l))

::replace(pat, new, clist)

| csubset(v, l) => csubset(v, replaceaux(pat, new, l))
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::replace(pat, new, clist)

end

else c::replace(pat, new, clist);

fun isid(ident(_)) = true

| isid(primed(_)) = true

| isid(_) = false;

fun getident(ident(s)) = s

| getident(primed(s)) = s;

fun makeNewEnv(env, object, newenv, formals, actuals, modslist) =

let fun mne(modslist, env) =

case (modslist) of

[] =>

let val d = if Env.isbound(newenv, unbound("result")) then

output(std_out,

Value.tkString(Env.lookup(newenv,

unbound("result")))^"\n")

else output(std_out, "\n")

in env end

| m::mlist =>

if m = "result" then mne(mlist, env)

else if m = "self" then

mne(mlist,

Env.replace(env, bound(object),

Env.lookup(newenv, unbound("self")),

Env.getType(newenv, unbound("self"))))

else if not(TEnv.isbound(formals, m)) then

mne(mlist,

Env.replace(env, bound(m),

Env.lookup(newenv, unbound(m)),

Env.getType(newenv, unbound(m))))

else let val actual = nth(actuals, TEnv.getpos(formals, m) - 1) in

if isid(actual)

then mne(mlist,

Env.replace(env, bound(getident(actual)),

Env.lookup(newenv, unbound(m)),

Env.getType(newenv, unbound(m))))

else mne(mlist, env) end

in mne(modslist, env) end;

fun composeset([]) = Value.emptyset

| composeset(cmember(v, _)::clist) = Value.union(Value.mkset(v),

composeset(clist))

| composeset(csubset(vs, _)::clist) = Value.union(vs, composeset(clist));

exception Not_implemented;

exception Insufficiently_constructive of string;

fun getconsvalue(name, t, constraints, mutating, env, tenv) =

let fun buildval(t, lvalue, constraints) =

if isconsbound(constraints, lvalue, match) then

case filter(constraints, fn(elem) => match(elem, lvalue)) of
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[ceq(_, v)] => v

| clist => composeset(clist)

else

case t of

tupletype(fieldlist) =>

Value.mktuple(map (fn(s, ty) => (s, buildval(chasetype(ty, tenv),

field(s, lvalue),

constraints)))

(* could filter the constraints here to improve efficiency *)

fieldlist)

| seqtype(itemtype) =>

if isconsbound(constraints, header(lvalue), partialmatch)

then let val newheader = buildval(t, header(lvalue), constraints)

val len = 1 + Value.valueint(Value.length(newheader)) in

Value.append(newheader,

Value.mkseq(buildval(chasetype(itemtype, tenv),

index(lvalue, primi len),

replace(last(lvalue),

index(lvalue, primi len),

constraints)))) end

else if isconsbound(constraints, trailer(lvalue), partialmatch) then

Value.append(Value.mkseq(buildval(chasetype(itemtype, tenv),

index(lvalue, primi 1),

constraints)),

buildval(t, trailer(lvalue), constraints))

else composeseq(chasetype(itemtype, tenv), lvalue, constraints, 1)

| alttype([]) => raise Insufficiently_constructive(name)

| alttype(ty::tlist) =>

(buildval(chasetype(ty, tenv), lvalue, constraints)

handle _ => buildval(alttype(tlist), lvalue, constraints))

| _ => if mutating andalso typeok(chasetype(t, tenv), lvalue,

chasetype(Env.getType(env,

bound(name)),

tenv), tenv)

then construct(lvalue, Env.lookup(env, bound(name)))

else raise Insufficiently_constructive(name)

and composeseq(t, lvalue, constraints, ind) =

if isconsbound(constraints, index(lvalue, primi ind), partialmatch) then

Value.append(Value.mkseq(buildval(t, index(lvalue, primi ind),

constraints)),

composeseq(t, lvalue, constraints, ind + 1))

else if mutating andalso

Value.valueint(

Value.length(

construct(lvalue, Env.lookup(env, bound(name))))) >= ind then

Value.append(Value.mkseq(construct(index(lvalue, primi ind),

Env.lookup(env, bound(name)))),

composeseq(t, lvalue, constraints, ind + 1))

else Value.emptyseq

in buildval(t, primed(name), constraints) end;

fun constraintstoenv(constraints, mods, params, env, tenv) =

case mods of

[] => Env.empty
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| m::modslist =>

let val typ = if TEnv.isbound(params, m)

then TEnv.lookup(params, m)

else Env.getType(env, bound(m)) in

Env.extend(constraintstoenv(constraints, modslist, params, env, tenv),

unbound(m),

getconsvalue(m, chasetype(typ, tenv), constraints,

not(Value.isundefined(Env.lookup(env, bound(m)))),

env, tenv),

typ) end;

exception Precondition_not_satisfied;

exception Postcondition_not_satisfied;

exception Wrong_number_of_args;

fun plhs(e) = lhs(e) andalso not(noprimed(e));

fun bind(env, spec, [], []) = Env.empty

| bind(env, spec, (name, typ)::formals, a::actuals) =

let val v = npeval(a, env, spec)

in

Env.extend(bind(env, spec, formals, actuals), bound(name), v, typ) end

| bind(_, _, _, _) = raise Wrong_number_of_args

and

npeval(e, env, s) =

let fun eval(e, env) =

case e of

primi i => Value.intvalue i

| primr r => Value.realvalue r

| prims s => Value.stringvalue s

| primc c => Value.charvalue c

| primb b => Value.boolvalue b

| add(e1, e2) => Value.add(eval(e1, env), eval(e2, env))

| sub(e1, e2) => Value.sub(eval(e1, env), eval(e2, env))

| divide(e1, e2) => Value.divide(eval(e1, env), eval(e2, env))

| mult(e1, e2) => Value.mult(eval(e1, env), eval(e2, env))

| modulo(e1, e2) => Value.modulo(eval(e1, env), eval(e2, env))

| buildset([]) => Value.emptyset

| buildset(e::el) => Value.union(Value.mkset(eval(e, env)),

eval(buildset(el), env))

| union(e1, e2) => Value.union(eval(e1, env), eval(e2, env))

| intersection(e1, e2) => Value.intersection(eval(e1, env), eval(e2, env))

| difference(e1, e2) => Value.difference(eval(e1, env), eval(e2, env))

| size(e) => Value.size(eval(e, env))

| buildseq([]) => Value.emptyseq

| buildseq(e::el) => Value.append(Value.mkseq(eval(e, env)),

eval(buildseq(el), env))

| append(e1, e2) => Value.append(eval(e1, env), eval(e2, env))

| first(e) => Value.first(eval(e, env))

| header(e) => Value.header(eval(e, env))

| last(e) => Value.last(eval(e, env))

| trailer(e) => Value.trailer(eval(e, env))

| length(e) => Value.length(eval(e, env))

| index(e1, e2) => Value.index(eval(e1, env), eval(e2, env))
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| buildtuple(el) => Value.mktuple(map (fn(s, e) => (s, eval(e, env))) el)

| field(s, e) => Value.field(s, eval(e, env))

| ident(s) => Env.lookup(env, bound(s))

| subrange(e1, e2) => Value.rangeset(eval(e1, env), eval(e2, env))

| less(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.less(eval(e1, env), eval(e2, env))

| lesseq(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.lesseq(eval(e1, env), eval(e2, env))

| greater(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.greater(eval(e1, env), eval(e2, env))

| greatereq(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.greatereq(eval(e1, env), eval(e2, env))

| eq(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.equal(eval(e1, env), eval(e2, env))

| member(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.member(eval(e1, env), eval(e2, env))

| subset(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.subset(eval(e1, env), eval(e2, env))

| andexp(e1, e2) => Value.andexp(eval(e1, env), eval(e2, env))

| or(e1, e2) => Value.or(eval(e1, env), eval(e2, env))

| implies(e1, e2) => if not(noprimed(e1) andalso noprimed(e2))

then Value.boolvalue(true)

else Value.implies(eval(e1, env), eval(e2, env))

| neg(e) => if not(noprimed(e)) then Value.boolvalue(true)

else Value.neg(eval(e, env))

| forall(x, dom, antecedent, consequent) =>

if not(noprimed(dom))

then Value.boolvalue(true)

else Value.AndReduce(eval(dom, env),

fn(elem) => Value.valuebool(eval(implies(antecedent, consequent),

Env.extend(env, bound(x),

elem, tupletype([])))))

(* note that the type needs to be fixed for type inferencing *)

| exists(x, dom, conjunct) =>

if not(noprimed(dom))

then Value.boolvalue(true)

else Value.OrReduce(eval(dom, env),

fn(elem) => Value.valuebool(eval(conjunct,

Env.extend(env, bound(x),

elem, tupletype([])))))

| setcomp(x, dom, e, pred) =>

Value.SetMap(

Value.Filter(eval(dom, env),

fn(elem) => Value.valuebool(eval(pred,

Env.extend(env, bound(x),

elem, tupletype([]))))),

fn(elem) => eval(e, Env.extend(env, bound(x), elem, tupletype([]))))
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| isoftype(e, t) => raise Not_implemented

| call(name, args) => funcall(name, args, env, s)

| mcall(obj, name, args) => methcall(obj, name, args, env, s)

in eval(e, env) end

and

getCons(andexp(e1, e2), env, s) =

let val r1 = getCons(e1, env, s)

val r2 = getCons(e2, env, s) in

(fst(r1) @ fst(r2), snd(r1) @ snd(r2))

end

| getCons(or(e1, e2), env, s) =

if not(Value.valuebool(npeval(e1, env, s))) then getCons(e2, env, s)

else if not(Value.valuebool(npeval(e2, env, s))) then getCons(e1, env, s)

else ([], [or(e1, e2)])

| getCons(implies(e1, e2), env, s) =

if noprimed(e1) then

if Value.valuebool(npeval(e1, env, s)) then

getCons(e2, env, s)

else ([], [])

else ([], [implies(e1, e2)])

| getCons(e, _, _) = if constructive(e) then ([e], [])

else ([], [e])

and

beval(e, env, s) =

let fun eval(e, env) =

case e of

primi i => Value.intvalue i

| primr r => Value.realvalue r

| prims s => Value.stringvalue s

| primc c => Value.charvalue c

| primb b => Value.boolvalue b

| add(e1, e2) => Value.add(eval(e1, env), eval(e2, env))

| sub(e1, e2) => Value.sub(eval(e1, env), eval(e2, env))

| divide(e1, e2) => Value.divide(eval(e1, env), eval(e2, env))

| mult(e1, e2) => Value.mult(eval(e1, env), eval(e2, env))

| modulo(e1, e2) => Value.modulo(eval(e1, env), eval(e2, env))

| buildset([]) => Value.emptyset

| buildset(e::el) => Value.union(Value.mkset(eval(e, env)),

eval(buildset(el), env))

| union(e1, e2) => Value.union(eval(e1, env), eval(e2, env))

| intersection(e1, e2) => Value.intersection(eval(e1, env), eval(e2, env))

| difference(e1, e2) => Value.difference(eval(e1, env), eval(e2, env))

| size(e) => Value.size(eval(e, env))

| buildseq([]) => Value.emptyseq

| buildseq(e::el) => Value.append(Value.mkseq(eval(e, env)),

eval(buildseq(el), env))

| append(e1, e2) => Value.append(eval(e1, env), eval(e2, env))

| first(e) => Value.first(eval(e, env))

| header(e) => Value.header(eval(e, env))

| last(e) => Value.last(eval(e, env))

| trailer(e) => Value.trailer(eval(e, env))

| length(e) => Value.length(eval(e, env))

| index(e1, e2) => Value.index(eval(e1, env), eval(e2, env))

| buildtuple(el) => Value.mktuple(map (fn(s, e) => (s, eval(e, env))) el)
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| field(s, e) => Value.field(s, eval(e, env))

| ident(s) => Env.lookup(env, bound(s))

| subrange(e1, e2) => Value.rangeset(eval(e1, env), eval(e2, env))

| less(e1, e2) => Value.less(eval(e1, env), eval(e2, env))

| lesseq(e1, e2) => Value.lesseq(eval(e1, env), eval(e2, env))

| greater(e1, e2) => Value.greater(eval(e1, env), eval(e2, env))

| greatereq(e1, e2) => Value.greatereq(eval(e1, env), eval(e2, env))

| eq(e1, e2) => Value.equal(eval(e1, env), eval(e2, env))

| member(e1, e2) => Value.member(eval(e1, env), eval(e2, env))

| subset(e1, e2) => Value.subset(eval(e1, env), eval(e2, env))

| andexp(e1, e2) => Value.andexp(eval(e1, env), eval(e2, env))

| or(e1, e2) => Value.or(eval(e1, env), eval(e2, env))

| implies(e1, e2) => Value.implies(eval(e1, env), eval(e2, env))

| neg(e) => Value.neg(eval(e, env))

| forall(x, dom, antecedent, consequent) =>

Value.AndReduce(eval(dom, env),

fn(elem) => Value.valuebool(eval(implies(antecedent, consequent),

Env.extend(env, bound(x), elem,

tupletype([])))))

| exists(x, dom, e) =>

Value.OrReduce(eval(dom, env),

fn(elem) => Value.valuebool(eval(e,

Env.extend(env, bound(x), elem,

tupletype([])))))

| setcomp(x, dom, e, pred) =>

Value.SetMap(

Value.Filter(eval(dom, env),

fn(elem) => Value.valuebool(eval(pred,

Env.extend(env, bound(x), elem,

tupletype([]))))),

fn(elem) => eval(e, Env.extend(env, bound(x), elem, tupletype([]))))

| isoftype(e, t) => raise Not_implemented

| call(n, el) => funcall(n, el, env, s)

| mcall(obj, n, args) => methcall(obj, n, args, env, s)

| primed(s) => Env.lookup(env, unbound(s))

| result => Env.lookup(env, unbound("result"))

in eval(e, env) end

and

(* evaluate all the indices in index exprs in lvalues, convert the result

constructor for exprs to primed("result") so that it can be stored in the

environment, and replace instances of first with index(_, 1) *)

evalindex(index(e1, e2), env, s) =

index(evalindex(e1, env, s), primi(Value.valueint(npeval(e2, env, s))))

| evalindex(field(n, e), env, s) = field(n, evalindex(e, env, s))

| evalindex(first(e), env, s) = index(evalindex(e, env, s), primi 1)

| evalindex(last(e), env, s) = last(evalindex(e, env, s))

| evalindex(header(e), env, s) = header(evalindex(e, env, s))

| evalindex(trailer(e), env, s) = trailer(evalindex(e, env, s))

| evalindex(result, _, _) = primed("result")

| evalindex(e, _, _) = e

and

feval(el, env, s) =
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let fun eval(e, env) =

case e of

eq(e1, e2) => if plhs(e1) then [ceq(evalindex(e1, env, s),

npeval(e2, env, s))]

else if plhs(e2) then [ceq(evalindex(e2, env, s),

npeval(e1, env, s))]

else []

| member(e1, e2) => if plhs(e2) then [cmember(npeval(e1, env, s),

evalindex(e2, env, s))]

else []

| subset(e1, e2) => if plhs(e2) then [csubset(npeval(e1, env, s),

evalindex(e2, env, s))]

else []

| andexp(e1, e2) => eval(e1, env) @ eval(e2, env)

| implies(e1, e2) => if Value.valuebool(npeval(e1, env, s))

then eval(e2, env)

else []

| forall(x, dom, antecedent, consequent) =>

reduce(Value.Map(npeval(dom, env, s),

fn(elem) => eval(implies(antecedent, consequent),

Env.extend(env, bound(x), elem,

tupletype([])))),

op @, [])

| exists(x, dom, conjunct) =>

eval(conjunct,

Env.extend(env, bound(x),

Value.grabElem(

Value.Filter(npeval(dom, env, s),

fn(elem) =>

Value.valuebool(

npeval(conjunct,

Env.extend(env, bound(x), elem,

tupletype([])),

s)))),

tupletype([])))

| _ => []

in reduce((map (fn(e) => eval(e, env)) el), op @, []) end

and

geneval(pre, post, formals, actuals, modslist, env, spec) =

let val benv = Env.append(bind(env, spec, formals, actuals), env) in

if not(Value.valuebool(npeval(pre, benv, spec)))

then raise Precondition_not_satisfied

else if not(Value.valuebool(npeval(post, benv, spec)))

then raise Postcondition_not_satisfied

else let val newenv =

constraintstoenv(feval(fst(getCons(post, benv, spec)), benv, spec),

modslist, formals, benv, getTEnv(spec)) in

if not(andred(snd(getCons(post, benv, spec)),

fn(nc) => Value.valuebool(beval(nc,

Env.append(newenv, benv),

spec))))

then raise Postcondition_not_satisfied

else newenv end end

and
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funcall(name, args, env, spec) =

if isAbsFunction(name, len args, spec) then

let val absfun = getAbsFunction(name, spec) in

Env.lookup(geneval(primb true, getABody(absfun),

TEnv.extend(getAArgs(absfun), name,

getARetType(absfun)),

primi 0::args, [name], env, spec),

unbound(name))

end

else let val friendfun = getFriend(name, args, spec) in

Env.lookup(geneval(getPre(friendfun), getPost(friendfun),

TEnv.extend(getArgs(friendfun), "result",

getRetType(friendfun)),

primi 0::args,

"result"::getModifies(friendfun),

env, spec),

unbound("result"))

end

and

methcall(obj, name, args, env, spec) =

let val idofobj = if Env.isbound(env, bound(getident(obj)))

then bound(getident(obj))

else unbound(getident(obj))

val typ = Env.getType(env, idofobj)

val oper = getOp(name, getClass(typ, spec)) in

Env.lookup(geneval(getPre(oper), getPost(oper),

TEnv.extend(TEnv.extend(getArgs(oper), "result",

getRetType(oper)),

"self", typ),

obj::primi 0::args,

"result"::getModifies(oper), env, spec),

unbound("result"))

end

and

eval(object, opname, args, env, specification) =

let val typ = if isfriend(object) then voidtype else

Env.getType(env, bound(object))

val oper =

if isfriend(object) then getFriend(opname, args, specification)

else getOp(opname, getClass(typ, specification))

val modslist = if getRetType(oper) = voidtype then getModifies(oper)

else "result"::getModifies(oper)

in

makeNewEnv(env, object,

geneval(getPre(oper), getPost(oper),

fixForms(getArgs(oper), object, typ, getRetType(oper)),

fixArgs(args, object, typ, getRetType(oper)),

modslist, env, specification),

getArgs(oper), args, getModifies(oper))

end;

fun declare(name, typ, env) =

Env.extend(env, bound(name), Value.undef, typ);
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B An Example SPECS-C++ Speci�cation

This appendix contains the abstract (SML) syntax for the example presented in the paper.

val te = [

("OrderedPair", tupletype [("first", inttype), ("second", inttype)]),

("Relation", tupletype [("theRel", settype(typename("OrderedPair")))])];

val opc = {

name = "OrderedPair",

parentclass = none,

invariant = primb true,

absfunctions = [],

protectedops = [],

publicops = [

operation {

name = "OrderedPair",

args = [("f", inttype), ("s", inttype)],

returntype = voidtype,

modifies = ["self"],

pre = primb true,

post = andexp(eq(field("first", primed("self")), ident("f")),

eq(field("second", primed("self")), ident("s")))}]};

val relc = {

name = "Relation",

parentclass = none,

invariant = primb true,

absfunctions = [],

protectedops = [],

publicops = [

operation {

name = "Relation",

args = [],

returntype = voidtype,

modifies = ["self"],

pre = primb true,

post = eq(field("theRel", primed("self")), buildset [])},

operation {

name = "Insert",

args = [("elem", typename("OrderedPair"))],

returntype = voidtype,

modifies = ["self"],

pre = primb true,

post = eq(field("theRel", primed("self")),

union(field("theRel", ident("self")),

buildset [ident("elem")]))},

operation {

name = "RelTo",

args = [("key", inttype)],

returntype = settype(inttype),

modifies = [],
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pre = primb true,

post = andexp(forall("x", field("theRel", ident("self")),

eq(field("first", ident("x")), ident("key")),

member(field("second", ident("x")), result)),

forall("x", result, primb true,

exists("p", field("theRel", ident("self")),

eq(ident("x"), field("second", ident("p")))))

)}

]};

val s = {classes = [opc, relc], typeenv = te};
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C SML Test Code

This appendix contains SML code for testing the speci�cation presented in the previous appendix.

val e1 = declare("r", typename("Relation"), Env.empty);

val e1 = eval("r", "Relation", [], e1, s);

val e1 = declare("e", typename("OrderedPair"), e1);

val e1 = eval("e", "OrderedPair", [primi 1, primi 2], e1, s);

val e1 = eval("r", "Insert", [ident("e")], e1, s);

val e1 = eval("e", "OrderedPair", [primi 2, primi 2], e1, s);

val e1 = eval("r", "Insert", [ident("e")], e1, s);

val e1 = eval("e", "OrderedPair", [primi 2, primi 3], e1, s);

val e1 = eval("r", "Insert", [ident("e")], e1, s);

Value.tkString(Env.lookup(e1, bound "r"));

val e1 = eval("r", "RelTo", [primi 2], e1, s);
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D Output

This appendix contains the output produced by running the test code presented in the previous
appendix.

Standard ML of New Jersey, Version 0.93, February 15, 1993

Beta release version

val it = () : unit

- [opening prog.ml]

...

- [opening rep.ml]

...

- [opening test.ml]

val e1 = [(bound "r",undefined,typename "Relation")] : Env.E

val e1 = [(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",undefined,typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val it = "({(1, 2), (2, 2), (2, 3)})" : string

{2, 3}

val e1 =

[(bound "e",Tuple [(#,#),(#,#)],typename "OrderedPair"),

(bound "r",Tuple [(#,#)],typename "Relation")] : Env.E

val it = () : unit

-
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