
Computer Science Technical Reports Computer Science

7-1996

An Operational Semantics of Firing Rules for
Structured Analysis Style Data Flow Diagrams
Gary T. Leavens
Iowa State University

Tim Wahls
Iowa State University

Albert L. Baker
Iowa State University

Kari Lyle
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Systems Architecture Commons, and the Theory and Algorithms Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T.; Wahls, Tim; Baker, Albert L.; and Lyle, Kari, "An Operational Semantics of Firing Rules for Structured Analysis Style
Data Flow Diagrams" (1996). Computer Science Technical Reports. Paper 122.
http://lib.dr.iastate.edu/cs_techreports/122

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/122?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

An Operational Semantics
of Firing Rules

for Structured Analysis Style
Data Flow Diagrams

Gary T. Leavens, Tim Wahls,
Albert L. Baker, and Kari Lyle

TR #93-28d
December 1993 (revised Dec. 1993, Sept. 1994, June, July 1996)

Keywords: structured analysis, data
ow diagram, operational semantics, formal spec-
i�cation, �ring rule, store.

1993 CR Categories: D.2.1 [Software Engineering] Requirements/Speci�cations |
languages, methodologies, tools; D.2.2 [Software Engineering] Tools and Techniques |
structured analysis, data
ow diagrams, D.2.10 [Software Engineering] Design | method-
ologies, representation; D.3.1 [Programming Languages] Formal De�nitions and Theory |
semantics, syntax; F.3.2 [Logics and Meanings of Programs] Specifying and Verifying and
Reasoning about Programs | speci�cation techniques; F.3.2 [Logics and Meanings of Pro-

grams] Semantics of Programming Languages | operational semantics.

Copyright c
 Gary T. Leavens, Tim Wahls, Albert L. Baker, and Kari Lyle 1993, 1994,
1996. All rights reserved.

Department of Computer Science
226 Atanaso� Hall

Iowa State University
Ames, Iowa 50011-1040, USA

An Operational Semantics of Firing Rules

for Structured Analysis Style Data Flow Diagrams

Gary T. Leavens�, Tim Wahlsy, Albert L. Baker, and Kari Lyle

Department of Computer Science, 226 Atanaso� Hall

Iowa State University, Ames, Iowa 50011-1040 USA

leavens@cs.iastate.edu, wahls@trex.hbg.psu.edu, baker@cs.iastate.edu

July 21, 1996

Abstract

Using operational semantic techniques, an extended variant of structured analysis

style data
ow diagrams is given a formal semantics. This semantics allows one to

describe both how information is processed and the dynamic behavior of the system.

The ability to describe dynamic behavior is an extension to the traditional notion of data

ow diagrams. This semantics can serve as a target for giving meaning to speci�cation

languages that use a graphical notation similar to data
ow diagrams.

1 Introduction

An approach to the development of software systems which has enjoyed wide-spread use in
the software engineering community is Structured Analysis (SA) [DeM78] [GS78] [WM85]
[You89]. Within SA one speci�es a data model using an Entity-Relationship Diagram (ERD)
and a data dictionary, and the process by a Data Flow Diagram (DFD) [Fra93]. Because
DFDs are widely-used [BB93], many tools support their development. There are at least
three attributes of DFDs that are appealing to software engineers:

� they have a graphical representation,

� they are hierarchical, thereby supporting the kind of modular decomposition that
programmers view as essential, and

� they are informal.

Since DFDs do not have a precise semantics, a DFD (even when combined with a ERD)
cannot serve as a formal speci�cation of the functionality of a software system. In addition,
DFDs are not even intended to capture the dynamic behavior of a software process.

Various researchers have proposed ways to use SA techniques either as a �rst step
towards extracting a formal speci�cation, or by augmenting SA techniques with the goal

�Leavens's work is supported in part by the National Science Foundation under grants CCR-9108654
and CCR-9593168. Wahls's work was supported in part by a research assistantship provided by the College
of Liberal Arts and Sciences, Iowa State University. Baker's work was supported in part by a grant from
Rockwell International.

yCurrent address: E258 Olmsted, Penn State Harrisburg, 777 W. Harrisburg Pike, Middletown, PA 17057

1

of making them more precise [tHvdW92]. For example, Fraser, Kumar, and Vaishnavi
[FKV91] and Larsen, et al. [LvKP+91] extract a VDM [BJ82] [Jon90] speci�cation from a
DFD and a data dictionary. As another example, Semmens and Allen [SA91] extract a Z
[Hay93] [Spi92] [Spi89] speci�cation from an application's ERD and DFD. See [FLP94] for
a survey that includes other such examples.

For this paper, the more relevant techniques are those that use formal notations to
supplement SA techniques. For example, Wing and Zaremski [WZ91] augment SA speci�-
cations (especially the data dictionary), with speci�cations in the Larch Shared Language
[GHG+93]. Several researchers have used VDM speci�cations to augment the data dic-
tionary and to specify the behavior of bubbles [LvKP+91] [ELP93] [ELA93] [LPT94]. As
another example, France [Fra93] [FLP95], has speci�ed the types in a data dictionary using
Z notation, and has used Z to augment the speci�cations of data stores and global state
invariants. These extensions are relevant, because they indicate that there is a desire for
integration of DFDs and formal methods.

These supplements to SA techniques motivate the problem we address in this paper:
how to formally model both the standard concepts of DFDs and integrate that with a
model of their dynamic behavior. Doing this would provide a semantic foundation for:

� de�ning extended DFD speci�cation languages that would allow for formal speci�ca-
tion of both data transformations and dynamic behavior, and the consequent ability
to do formal reasoning and validation,

� comparing the semantics of various extended DFD speci�cation languages, and

� using DFDs informally in ways that are more expressive and precise.

An additional bene�t of our e�orts is that, by focusing on the semantics of an extended
variant of DFDs, we explore much of the space of possible speci�cation languages that use
DFD notations and specify dynamic behavior; such an exploration would not be possible if
we were presenting a particular speci�cation language.

Some may object to this e�ort on the grounds that its intention to support extended
DFD speci�cation languages is misguided. They would say that a large part of the appeal of
DFDs is their informality, which allows them to be used during early stages of requirements
analysis and speci�cation. But having a formal DFD speci�cation language will certainly
not prevent anyone from drawing pictures on paper; what it will do is allow the possibility
of taking such paper sketches and formalizing them without a complete change of notation.
We also believe that an understanding of our semantics will aid both the design of extended
DFD speci�cation languages and aid the work of systems analysts who wish to be more
precise in their use of DFDs.

Due to space considerations, we will not give the details of an example extended DFD
speci�cation language (some preliminary ideas are, however, found in [WBL93]), or a trans-
lation from such a language into our semantic model. What we o�er is a de�nition of the
target of such a translation (the semantic model), and examples of translations which the
reader can use to judge the suitability of our model. Thus, in this paper we limit ourselves
to explaining the formal model, a variant of DFDs, and its formal semantics.

Because we are giving a semantic foundation to extended DFD speci�cation languages,
we do not limit ourselves to exactly the traditional notations and concepts used in DFDs.
(Such notations and concepts are fraught with ambiguity in any case.) Instead, we follow
the example of workers in semantics of programming languages, who extract from real

2

programming languages a simpli�ed set of core concepts, into which a real programming
language could be translated. No one expects a theoretical core language (like the �-
calculus) to be of practical value in real programming. Instead, a standard way to judge
such theoretical core languages is to see if they can capture (by translation) the meaning of
all the constructs of relevant real languages. Thus, our intention is to de�ne a model that
can act as a theoretical core for DFD-like speci�cation languages. The model should be
judged by whether it can serve as a translation target for traditional DFDs and extended
DFD-like speci�cation languages. It should not be judged by how exactly it matches the
traditional DFD notation.

The main extension to the traditional notions of DFD speci�cation is the speci�cation of
dynamic behavior; that is, our model gives a formal description of a DFD's �ring rules. We
believe that with such an extension, DFDs may be useful for the speci�cation of concurrent
and distributed systems. In such applications, the precise dynamic behavior of the system
is more important than when a DFD is used to help design a single-processor program.

In overview, the meaning our model would assign to an extended DFD speci�cation is
a set of sequences of con�gurations of the DFD. A con�guration of a DFD tells the state of
each process and
ow. A sequence of con�gurations represents a possible execution of the
DFD. The model uses sets of such sequences to handle concurrency and nondeterminism
that may be allowed by the speci�cation.

In addition to the modeling of dynamic behavior, we believe that the following aspects
of our semantics are interesting in the sense of �nding a smaller theoretical core for DFDs.

1. DFD terminators (external entities) have a speci�ed behavior, which is unusual (al-
though found in [Fra93]); however, if no constraints on the terminators are desired,
then the speci�cation can simply permit arbitrary behaviors.

2. DFD stores, which are often seen as abstractions for �les, can be modeled using only
data
ows that hold a single (possibly compound) value. This also provides a model
for shared variables in a straightforward manner. (A variation on this model that
used
ows that hold queues of values might provide a useful model of message passing
in distributed systems.)

3. One way to model non-primitive bubbles (DFD processes) in hierarchically decom-
posed DFDs is to allow a bubble to �re concurrently with itself. In a variation of our
basic model, a bubble may read again before it has written its output. This allows a
bubble to act like a system of interacting bubbles, and thus a single bubble can have
the dynamic behavior of a system of bubbles in a hierarchical DFD.

The rest of the paper describes our semantics for our theoretical core DFDs. (Thus,
when we say \DFD" below we usually mean our core theoretical variant of the DFD no-
tion, not the traditional notion.) It is organized as follows. Section 2 below describes the
structure of DFDs. Section 3 describes con�gurations of DFDs and which are the basis of
the operational semantics. Section 4 describes the meaning of a P-spec. Section 5 presents
the basic operational semantics. Section 6 formalizes the notion of stores and discusses
the implications of both persistent and consumable
ows in our formalization of stores.
Section 7 generalizes the way in which a bubble �res to include the possibility of a bubble
�ring concurrently with itself and highlights the possible use of this semantic generaliza-
tion for hierarchically structured (re�ned) DFDs. Following that, Section 8 presents some
discussion, including a discussion of related work.

3

2 Structure of a Data Flow Diagram

For the purposes of this paper, a data
ow diagram (DFD) is modeled as a set of bubbles,
B , and a set of labeled
ows, F . (We do not consider hierarchical DFDs until Section 7.
Imagine that the translation into our DFD semantics involves expansion of the hierarchical
DFD �rst.) Bubbles are abstractions of processes, and are often written as circles, ovals,
or boxes. Flows are abstractions of information movement or variables and are written as
arrows. Thus the abstract syntax of a DFD is a labeled, directed graph, where the labeled
arrows are the graph's directed edges, and the bubbles are the graph's nodes.

An example DFD for an accounts receivable system is given in Figure 1. (We will explain
our strange treatment of stores below.) Informally, the idea behind this simplistic DFD is
that when a customer communicates a need to a member of the sales sta�, a master list
of customer information is updated, and either a credit order or a cash order is generated.
Both kinds of orders generate changes in the accounts receivable database, but credit orders
also result in a billing. In the process of billing, a clerk sends a bill to the customer through
the mail, and a copy of the bill is sent to update the accounts receivable database. A
customer may also send a payment, consisting of money and the bills that are being paid.
The credit from the payment to be applied to each account is used to update the accounts
receivable database; that is, the collections process sorts out how much of the payment is
to be applied to each account.

A named bubble in the graphical notation is represented by its bubble name in the
formal model. So the set of bubbles, B , for the DFD in Figure 1 contains just the following
names: Customers, Generate-Sales-Order, Bill-Customer, Keep-Customer-Accounts,
Collections, and Mail.

The terminators (external entities) of a DFD are bubbles that are its sources and sinks,
when the DFD is considered as a directed graph. In our example, boxes are used instead of
ovals to denote terminators, and hence the bubbles Customers and Mail are its terminators.
(Considering terminators to be part of the DFD may strike some as unusual, but it will
be seen that they can be treated as bubbles, although in the usual case no interesting
constraints will be speci�ed on their behavior.)

In our graphical notation for a DFD,
ows are labeled with three pieces of information:
either a single or double arrowhead, a
ow name fn 2 FLOWNAMES, and a type name
T 2 TYPES . Neither the
ow name nor the type alone are su�cient to uniquely identify a

ow in our example; having both labels eliminates a common source of ambiguity [Col91].1

In SA, DeMarco [DeM78] and others (e.g., [War86]) make a distinction between \dis-
crete" and \continuous"
ows. However, some authors seem to consider continuous
ows
as continuous in the sense of calculus (i.e., real-valued, di�erentiable). DeMarco and Ward
seem to think of them as continuously existing (i.e., like a shared variable) even when read.
We adopt this latter interpretation, but to avoid confusion, we use di�erent terminology
[Col91]. Flows labeled with a double arrowhead are called persistent
ows, which can be con-
sidered to be shared variables;
ows with a single arrowhead are a consumable
ows, which
can be considered to be unbounded FIFO queues. For example, the
ow from Collections

to itself is a persistent
ow; its name is log, and its type is Money-and-Acct-List.
Thus a
ow is formally modeled by a 5-tuple, (b1; fn; T; b2; p), which represents a
ow

named fn going from the bubble b1 (the source) to the bubble b2 (the target), carrying
information of type T ; this
ow is persistent if p = persistent and consumable if p =

1For textual representations, a better label would include the
ow name and type, and also a source and
target bubble name: bsource; btarget 2 B . This would allow multiple
ows with the same name and type.

4

Mail

'
&
$
%

Generate-

Sales-

Order

Customers

'
&
$
%

Bill-

Customer

'
&
$
%

Keep-

Customer-

Accounts

'
&
$
%Collections

invoice: Bill

6

custs: Cust-DB
?
?

��

what: Need

�
�
�
�
�
�
�
�
�
��

cash: Order

@
@
@
@
@
@
@
@
@
@R

credit: Order-

internal: Bill

?

c-a-data:
Acct-DB

��

�

payment: Money-and-Bills@
@
@
@
@
@
@
@
@
@R

credit: Money-and-Acct

�
�
�
�
�
�
�
�
�
��

log: Money-and-Acct-List
��

�

Figure 1: (Extended) data
ow diagram of an accounts receivable system.

5

fc-a-data = (Keep-Customer-Accounts; c-a-data; Acct-DB; Keep-Customer-Accounts;
persistent)

fcash = (Generate-Sales-Order; cash; Order; Keep-Customer-Accounts; consumable)
fcreditBC = (Generate-Sales-Order; credit; Order; Bill-Customer; consumable)
fcreditKCA = (Collections; credit; Money-and-Acct; Keep-Customer-Accounts;

consumable)
fcusts = (Generate-Sales-Order; custs; Cust-DB; Generate-Sales-Order; persistent)
finternal = (Bill-Customer; internal; Bill; Keep-Customer-Accounts; consumable)
finvoice = (Bill-Customer; invoice; Bill; Mail; consumable)
fpayment = (Customers; payment; Money-and-Bills; Collections; consumable)
flog = (Collections; log; Money-and-Acct-List; Collections; persistent)
fwhat = (Customers; what; Need; Generate-Sales-Order; consumable)

Table 1: Abbreviations for the
ows in Figure 1.

Notation for Members 2 Name = description

b 2 B = a set (of bubble names)
fn 2 FLOWNAMES = a set (of
ow names)
T 2 TYPES = a set (of type names)
p 2 P = fpersistent, consumableg
f 2 F = B � FLOWNAMES � TYPES � B � P

Table 2: Domains describing the structure of a DFD.

consumable. For example, the
ow from Collections to itself is formally described as the
5-tuple (Collections; log; Money-and-Acct-List; Collections; persistent). Since such 5-
tuples tend to be rather unwieldy, for all the
ows in Figure 1 we give abbreviations in
Table 1. Abbreviations are based on the
ow name, and the two
ows named credit are
distinguished by appending an abbreviation for their targets.

In a persistent
ow, the shared variable that the
ow represents can be written by the
bubble at the source of the
ow, and read by the target bubble [Col91]. Reading from a
persistent
ow does not change the information in the
ow. The only persistent
ows in our
example go from bubbles to themselves; we use them to model stores. For example, fcusts
is used to model the store that would be attached to the bubble Generate-Sales-Order.

In a consumable
ow, the source bubble enters tokens of information at the tail of the
queue that the
ow represents, and the target bubble removes information tokens from the
head of the queue. (The dynamic behavior of
ows is discussed in detail below.)

The model of a DFD's structure is summarized in Table 2.

2.1 Auxiliary Functions for Flow Components

It will be convenient to have some auxiliary functions for accessing the components of a

ow. If f = (b1; fn; T; b2; p), then Source(f) = b1, FlowName(f) = fn, TypeOf (f) =
T , and Target(f) = b2. The value of Consumable(f) is true if p = consumable and is
false otherwise. For example, if fpayment is the
ow from Figure 1 described in Table 1,
then Source(fpayment) = Customers, FlowName(fpayment) = payment, TypeOf (fpayment) =

6

Function : Type

Source : F ! B

FlowName : F ! FLOWNAMES

TypeOf : F ! TYPES

Target : F ! B

Consumable : F ! Boolean

Inputs : B ! PowerSet(F)
Outputs : B ! PowerSet(F)

TypeMeaning : TYPES ! Set

Table 3: Auxiliary Functions for describing the structure of a DFD.

Money-and-Bills, Target(fpayment) = Collections, and Consumable(fpayment) = true .
A
ow f is said to be an input
ow of a bubble b if Target(f) = b. We write Inputs(b) for

the set of all of b's input
ows. Similarly, f is an output
ow of b if Source(f) = b. We write
Outputs(b) for the set of all of b's output
ows. In our example, Inputs(Mail) = ffinvoiceg
and Outputs(Mail) = fg.

2.2 Meanings of Types

A \data dictionary" is often associated with a DFD, and sometimes describes all the
ows.
However, for our purposes, we consider the data dictionary to de�ne the meaning of all the
types used in a DFD. In what follows we will need very little of the semantics of types; so
it will su�ce to think of a type as describing a set of objects. The set of objects associated
with a type T is given by TypeMeaning(T).

The above information is summarized in Table 3. In this table, by Set we mean the
class of all recursive sets. This su�ces for normal use of DFDs, but more exotic domains
could be used to model types such as higher-order functions or lazy streams.

3 Con�gurations of Data Flow Diagrams

The execution of a DFD consists of bubble computations and information moving from
one bubble to another along the
ows. We call a snapshot at certain well-de�ned points
of such an execution a con�guration; it is similar to a marking of a Petri net [Pet77]. A
con�guration records the mode of each bubble (see below), the information that bubble has
read from its input
ows (if any), and the information present on each
ow.

3.1 Bubble Modes

We use a two-step �ring rule for bubbles in order to model concurrent �ring of bubbles and
time delays. If bubbles were able to read their inputs and compute and write their outputs
in one atomic step, then we would be unable to model time delays and race conditions that
can occur in systems where processes take a �nite amount of time to compute results.

For example, consider the DFD shown in Figure 2. Suppose that the bubble Test

periodically changes the value on the persistent
ows named y and z by setting both to the
same value in the sequence 0; 1; 2; 3; : : :. Suppose that the bubble Copy copys its input on
z to x, and that the initial values of x, y, and z are 0. Finally, observe the results through

7

Test

'
&
$
%Copy

Observe
y: Int --

z: Int

�
�
�
�
�
�
�
�
�
�����

x: Int

@
@
@
@
@
@
@
@
@@R@@R

Figure 2: Data
ow diagram showing a race condition.

the bubble Observe; that is observe a sequence of pairs of the form (x = xi; y = yi). Under
an atomic �ring rule, if we observe a pair (x = xi; y = yi), then the next pair we observe,
(x = xi+1; y = yi+1), must satisfy one of the following conditions:

� xi+1 = xi.

This will be the case if Copy has not �red, since only Copy writes the
ow named x.

� xi+1 � yi.

This will be the case if Copy �red. It is impossible for xi+1 to be less than yi (the
previous value on y and z), because the value on y and z only increases, and if Copy
�res it atomically copies to x the value on y and z, which must be at least yi.

The behavior of the DFD in Figure 2 is di�erent if Copy can �re in two steps, �rst by
reading its inputs, and then later by writing its output. To be concrete, consider the initial
con�guration (where x, y, and z are 0). In this con�guration one can observe the pair
(x = 0; y = 0). Suppose that Test changes y and z to 1. Now suppose Copy reads the value
1 from z. Suppose that Test changes y and z to 2. In this con�guration one can observe
the pair (x = 0; y = 2). Finally, suppose that Copy writes out the value it read; that is, it
sets x to 1. In this con�guration one can observe the pair (x = 1; y = 2). The sequence of
pairs observed in this execution would be impossible with the atomic �ring rule, because
the value of x, 1, is neither the previous value of x, 0, nor is it greater than or equal to the
previous value of y (and z), 2. We emphasize that this sequence of observations would be
possible in a world where bubbles take a �nite time to execute and where executions can
overlap. Hence the necessity of non-atomic �rings in an adequate formal model.

To allow non-atomic �rings, each bubble can be in one of two modes: idle, which
means that the bubble has not read its input
ows, or working , which means that the
bubble has read its input
ows (and is computing). The modes of the bubbles in a DFD
con�guration are represented by a total function from the set B of bubble names to modes.
We use BubbleMode to stand for the set of all such functions. This notation is summarized
in Table 4. If bm 2 BubbleMode is such a function, then bm(b) represents the mode of
b. Changes in bubble modes are represented by changing to a new function in a new
con�guration.

8

Notation for Members 2 Name = description

m 2 MODES = fidle, workingg
bm 2 BubbleMode = B ! MODES

o 2 OBJECTS =
S

T2TYPES TypeMeaning(T)
s 2 WhatRead = (F ! OBJECTS?)
r 2 Read = B !WhatRead

fs 2 FlowState = F ! OBJECTS�

 2 � = BubbleMode � Read � FlowState

Table 4: Domains describing the con�guration of a DFD.

As an example of a bubble mode function, consider the following, which uses the DFD
of Figure 1. Suppose that bme is the function de�ned as follows.

bme(Customers) = idle

bme(Generate-Sales-Order) = idle

bme(Bill-Customer) = working

bme(Keep-Customer-Accounts) = idle

bme(Collections) = working

bme(Mail) = idle

Then this represents a state in which the bubbles Bill-Customer and Collections are
working concurrently. (The accountants and sales force are on a co�ee break.) In this form
of the semantics, bubbles can �re concurrently with each other, but not concurrently with
themselves. We relax this restriction in Section 7.

3.2 Information that a Bubble has Read from its Inputs

The information read by a bubble in its transition from idle to working cannot be discarded.
This information is captured by curried functions from bubble names to functions from
ows
to the information the bubble has read from that
ow. We use Read to stand for the set
of all such functions. (To describe the domain Read in Table 4, we use a set, OBJECTS,
that contains all types of objects that may appear on
ows. We write OBJECTS? for the
set OBJECTS [f?g. The notation ? means \no information."2) Suppose that r 2 Read

is such a function, b is a bubble name, and f is a
ow. Then r(b) is of type WhatRead

| a function from
ows to information, representing what b has read from its input
ows.
If the bubble b has not read any information from
ow f , then the value of r(b)(f)3 is ?;
otherwise the value of r(b)(f) should be an element of the type of the
ow f :

(r(b)(f) 6= ?)) r(b)(f) 2 TypeMeaning(TypeOf (f)): (1)

For each bubble b, the mapping r(b), where r 2 Read , should only be de�ned on
ows
that are inputs to b. This is stated formally as follows. For each r 2 Read , for each b 2 B ,

2We also use ? to indicate that a bubble read from an empty
ow. This should not happen if the enabling
rules of a bubble have been properly constructed, so we do not provide a way to distinguish the two ways
to not read information from a
ow.

3The notation r(b)(f) means the result of r(b) applied to f . Function application is left associative. We
ask readers familiar with such notational conventions to bear with us as we try to make this paper accessible
to a wider audience.

9

for each f 2 F :
(f 62 Inputs(b))) (r(b)(f) = ?): (2)

An example of a read function is the following, where co 2 TypeMeaning(Order), pmt 2
TypeMeaning(Money-and-Bills), and () 2 TypeMeaning(Money-and-Acct-List).4

re(Customers) = �f :?
re(Generate-Sales-Order) = �f :?
re(Bill-Customer) = �f : if f = fcreditBC then co else ? �
re(Keep-Customer-Accounts) = �f :?
re(Collections) = �f : if f = fpayment then pmt else if f = flog then () else ? � �
re(Mail) = �f :?

The function re describes part of a con�guration where the bubble Bill-Customer has read
the order co from the
ow fcreditBC (see Table 1), and where Collections has read the
payment pmt from fpayment and an empty list from flog.

3.3 Information on a Flow

The information on the
ows of a DFD is captured by a function from
ows to a �nite
sequence of objects of the appropriate type. A persistent
ow must be mapped to a sequence
of length zero or one; when the sequence is empty, it represents an uninitialized persistent

ow. (An alternative would be to use ? for uninitialized persistent
ows.) We use FlowState
to stand for the set of all such functions fs. Formally an element fs 2 FlowState must be
such that the following conditions are satis�ed for all f 2 F :

� TypeOf (fs(f)) = TypeOf (f)�, and

� :Consumable(f)) length(fs(f)) � 1,

where length is the usual length function on sequences.
For example, the function fse such that:

fse(f) =

8>>><
>>>:

hcdbi if f = fcusts
hardbi if f = fc-a-data
h()i if f = flog
hi otherwise,

describes part of a con�guration where there are no values on any of the consumable
ows,
and various values (cdb, ardb, and ()) on the persistent
ows of the DFD in Figure 1.

3.4 Auxiliary Functions on Sequences

We treat sequences of objects, that is elements of (OBJECTS�)?, as FIFO queues using
the following constants and operations.

hi : OBJECTS�

Enq : (OBJECTS�)? � OBJECTS ! (OBJECTS�)?
IsEmpty : (OBJECTS�)? ! Boolean?

Head : (OBJECTS�)? ! OBJECTS?
Rest : (OBJECTS�)? ! (OBJECTS�)?

4The notation �f : e denotes a function that takes an argument, and returns the value of the expression
e with the argument substituted for f [Chu41] [Sch86].

10

These operations are de�ned to satisfy the following equations for all q 2 OBJECTS� and
o 2 OBJECTS.

Enq(?; o) = ?
IsEmpty(?) = ?
IsEmpty(hi) = true

IsEmpty(Enq(q; o)) = false

Head(?) = ?
Head(hi) = ?

Head(Enq(q; o)) = if IsEmpty(q) then o else Head(q) �
Rest(?) = ?
Rest(hi) = ?

Rest(Enq(q; o)) = if IsEmpty(q) then hi else Enq(Rest(q); o) �

In dealing with ? in example formulas, we assume that all boolean functions are strict;
for example, (:?) = ? and (true _ ?) = ?.

3.5 Con�gurations

A con�guration summarizes all the information about the state of a DFD described above.
Formally, a con�guration of a DFD is a triple, (bm; r; fs), where bm 2 BubbleMode,

r 2 Read , and fs 2 FlowState. The set of all con�gurations is denoted by �. This is
summarized in Table 4.

An example con�guration of the DFD in Figure 1 is the triple (bme; re; fse) where bme,
re and fse are as described above.

3.6 Discussion

We do not model \control
ows" explicitly. One can translate a diagram that has a control

ow from b1 to b2 into a DFD with a
ow (b1; fn; Signal; b2; consumable), where Signal is a
type that has only one element. (One could also use a persistent
ow and a two-element
type to indicate that the signal is \on" or \o�".)

We defer further discussion of how to model the stores of a DFD until Section 6.

4 Meaning of a P-Spec

The things that the bubbles in a DFD can do are speci�ed by a P-spec. A P-spec may
be presented in many di�erent forms; for example, some authors use �nite state machines,
and others use a formal speci�cation language such as VDM or Z. Because our model is
intended to be a target for any such speci�cation language, we must be more general. Thus
we adopt a formal model of P-specs that consists of three curried functions and an initial
FlowState map:

(Enabled;Consume;Produce; fsinitial):

We do not show how to translate a P-spec into these functions, as this depends on the
technique used in presenting the P-spec. The three curried functions tell when a bubble in
the DFD is enabled, what it consumes when it is enabled, and what it produces when it
is �nished working. We allow bubbles to be nondeterministic in what they consume and
produce, as this is sometimes convenient in speci�cations.

11

4.1 When are Bubbles Enabled?

In a given
ow state, a bubble is enabled if it would be able to go from idle to working .
A bubble's being enabled depends on the
ow state, because if the bubble needs to read
consumable inputs, there must be a non-empty sequence of inputs available on the needed

ows.

In our formal model, we allow enablement to depend on both the presence of values on
input
ows as well as on the values on such
ows. Some speci�cation languages might not
allow enablement to depend on the values on
ows, the model supports those that do.

The part of P-spec that tells what bubbles are enabled is captured by a mapping:

Enabled : B ! (FlowState ! Boolean?):

This function is curried, so that for a bubble b, Enabled(b) tells the
ow states in which
b is enabled. In a given
ow state, fs , there may be no information on a given
ow; this
is why Enabled(b)(fs) is allowed to be ?; a bubble b is only considered enabled in fs if
Enabled(b)(fs) = true . The semantics only asks if a bubble is enabled if it is in idle mode.

The mapping Enabled(b) should only depend on the states of the
ows in Inputs(b);
formally, this condition is stated as follows. For all fs 2 FlowState and fs0 2 FlowState:

(8f 2 Inputs(b) : fs(f) = fs0(f))) Enabled(b)(fs) = Enabled(b)(fs0): (3)

As an example, the mapping Enablede de�ned as follows would be suitable for the DFD
of Figure 1.

Enablede(Customers) = �fs : true

Enablede(Generate-Sales-Order) = �fs ::IsEmpty(fs(fwhat))
Enablede(Bill-Customer) = �fs ::IsEmpty(fs(fcreditBC))
Enablede(Keep-Customer-Accounts) = �fs :

:IsEmpty(fs(fcash))_ :IsEmpty(fs(finternal))_ :IsEmpty(fs(fcreditKCA))
Enablede(Collections) = �fs : :IsEmpty(fs(fpayment))
Enablede(Mail) = �fs : :IsEmpty(fs(finvoice))

This says, for example, that Keep-Customer-Accounts is enabled if there is something on
one of the three consumable
ows into that bubble. Similarly, Collections is enabled if
there is something on the
ow named payment.

4.2 What do Bubbles Consume when they are Enabled?

When a bubble is enabled, its mode may be changed from idle to working . At this point
it reads some of its input
ows, and may consume some of these. Only consumable
ows
may be consumed, and consumption means removing the head of the sequence associated
with the
ow. (The information read from these consumable
ows is saved in the next
con�guration's Read map by the �ring rules below.)

The part of a P-spec that says what idle bubbles will consume in a given
ow state if
they make the transition from idle to working mode is captured in the curried, set-valued
mapping:

Consume : B ! ((FlowState � Read)! PowerSet(FlowState � Read)):

That is, for all idle bubbles b, and all pairs (fs; r) of FlowState and Read mappings, the set
Consume(b)(fs; r) is a set of pairs of FlowState and Read mappings. Because Consume is

12

The following must hold for all b 2 B , fs 2 FlowState, and r 2 Read .

[c-range:] If Enabled(b)(fs) = true , then Consume(b)(fs; r) 6= ;.

[c-local:] If (fs0; r0) 2 Consume(b)(fs; r), then

� for all b0 6= b, r0(b0) = r(b0) and

� for all f 2 F :

{ if f 62 Inputs(b) then fs0(f) = fs(f), and

{ if f 2 Inputs(b) then

� if Consumable(f), then either:

� fs 0(f) = fs(f) and r0(b)(f) = ?, or

� IsEmpty(fs(f)) = false and fs0(f) = Rest(fs(f)) and r0(b)(f) =
Head(fs(f)),

� if :Consumable(f), then fs0(f) = fs(f) and either:

� r0(b)(f) = ?, or

� IsEmpty(fs(f)) = false and r0(b)(f) = Head(fs(f)).

Figure 3: Restrictions on Consume.

curried, for a bubble b, Consume(b) is the mapping derived from b's P-spec. The mapping
Consume(b) can also be thought of as a binary relation between pairs of FlowState and Read
mappings. A relation or set-valued mapping is needed to deal with possible nondeterminism
in the P-spec.

Each FlowState-Read pair in the set Consume(b)(fs; r) represents a possible change in
fs and r that may occur when the bubble b makes the transition from idle to working . The
set of possible changes, Consume(b)(fs; r), is assumed to be non-empty when Enabled(b)(fs)
is true . The changes should be local to the bubble b; that is, each FlowState-Read pair in
Consume(b)(fs; r) should only di�er from (fs; r) on the input
ows of b and in the mapping
r(b). A consumable
ow need not be consumed, but if it is consumed, the head of the
ow
is taken o� and read by the bubble. A persistent
ow cannot be consumed, but it may be
read. A
ow can be read only if it is de�ned and non-empty. The above restrictions are
stated formally in Figure 3.

To construct a Consume mapping for our example, we �rst introduce two notations.
A notation for updating mappings at a given point is helpful, because so much of the

\state" of a DFD is encoded as functions. The notation [x 7! y]g is an update to a function,
g; it is de�ned by the following equation.

[x 7! y]g
def
= �z : if z = x then y else g(z) � (4)

For example, [f 7! Rest(fs(f))]fs is the function that is just like fs, except that the head
of the sequence on f has been removed.

The function In, de�ned below, will consume a given input
ow for a given bubble. It
is a curried function, so In(f; b) represents just the changes that b makes to the
ow state

13

and read function by reading the
ow f . It only changes the
ow state when the
ow is
consumable. It is formally de�ned as follows.5

In : (F � B)! ((FlowState � Read)! (FlowState � Read))
In(f; b)(fs; r) =

let rb = [f 7! Head(fs(f))](r(b))
in (if Consumable(f) then [f 7! Rest(fs(f))]fs else fs �;

[b 7! rb]r)

(Updating the read function of a con�guration when a bubble consumes some of its inputs
causes no problems, since the read function originally maps each of that bubble's input

ows to ?.)

As an example, the mapping Consumee de�ned as follows would be suitable for the DFD
of Figure 1. The clause for Generate-Sales-Order says that there is only one FlowState,
Read pair possible, that only the
ow named what is consumed (because the
ow named
custs is persistent), and that both of the input
ows are read.

Consumee(Customers) = �(fs; r) : f(fs; r)g
Consumee(Generate-Sales-Order) = �(fs; r) :

fIn(fwhat; Generate-Sales-Order)(
In(fcusts; Generate-Sales-Order)(fs; r))g

Consumee(Bill-Customer) = �(fs; r) : fIn(fcreditBC; Bill-Customer)(fs; r)g
Consumee(Keep-Customer-Accounts) = �(fs; r) :

fIn(fc-a-data; Keep-Customer-Accounts)(
In(fcash; Keep-Customer-Accounts)(fs; r));

In(fc-a-data; Keep-Customer-Accounts)(
In(finternal; Keep-Customer-Accounts)(fs; r));

In(fc-a-data; Keep-Customer-Accounts)(
In(fcreditKCA; Keep-Customer-Accounts)(fs; r))g

Consumee(Collections) = �(fs; r) :
fIn(flog; Collections)(In(fpayment; Collections)(fs; r)g

Consumee(Mail) = �(fs; r) : fIn(finvoice; Mail)(fs; r)g

One can check that the conditions of Figure 3 are satis�ed by Consumee by cases,
that is, bubble by bubble. For example, consider the bubble Customers, which is always
enabled. Because this bubble is always enabled, Consumee(Customers) always produces a
non-empty set, and thus satis�es the condition c-range. For this bubble, condition c-local
is trivially satis�ed, because the only pair in the set returned by Consumee(Customers) is
its argument.

Another way to check that the conditions of Figure 3 are satis�ed by Consumee is to
check c-range and c-local separately. It is easy to check c-range, since for all bubbles
b 2 B , Consumee(b)(fs; r) 6= ; by construction. (Closer comparison of Consumee with
Enablede is necessary to show that Consumee does the right thing when enabled, but that
is another story.)

Checking c-local can be based on the de�nition of In, used in its construction. For
each bubble b, if f 2 Inputs(b), then �(fs; r) : fIn(f; b)(fs; r)g satis�es c-local for b by
construction; that is, In satis�es the conditions of c-local for persistent and consumable

5What In returns is a pair, as noted by its type. The pair follows the in of the let in notation [Sch86],
with the �rst element of the pair before the comma, and the second after.

14

ows. Since the result of one application of In(f; b) satis�es c-local, and since In(f 0; b)
leaves the
ow state and read state for f alone when f 0 6= f , it follows that compositions
of In of the form �(fs; r) : fIn(f 0; b)(In(f; b)(fs; r))g also satisfy c-local, if f 0 6= f and
f 0 2 Inputs(b). Unions of sets representing functions that satisfy c-local also satisfy c-local,
so alternatives as in Consumee(Keep-Customer-Accounts) can be checked separately.

4.3 What do Bubbles Produce when they Finish their Work?

Each bubble in working mode can be called on to produce some output in the transition
from working to idle. This transition is modeled by a mapping, Produce, which is similar
to the Consume mapping above:

Produce : B ! ((FlowState � Read)! PowerSet(FlowState � Read)):

The idea is that for all bubbles b, and all pairs (fs; r) of FlowState and Read mappings, the
set Produce(b)(fs; r) is a set of pairs of FlowState and Read mappings. Again, Produce is
curried, so that for a bubble b, Produce(b) is the is the mapping derived from b's P-spec.
The semantics only ask what a bubble produces when it is in working mode.

Each FlowState-Read pair in the set Produce(b)(fs; r) represents a possible change in fs

and r that could be caused by b's transition from working to idle. This set must be non-
empty, so that the bubble may always go from working mode to idle mode. The changes
represented by Produce(b)(fs; r) should be local to the bubble b. Furthermore, nothing
about what was read is remembered in the new Read mapping after producing output. A
consumable output
ow need not be changed, but if it is, a single value is produced and
added to the tail of that
ow's queue. A persistent
ow also need not be changed, but if it
is, then the new value replaces the old value on the
ow.

There is an additional locality condition needed for Produce(b). This condition ensures
that what a bubble produces only depends on what it has read. More precisely, both the
values that a bubble b produces and the set of choices it o�ers should not depend on anything
except r(b).

The above restrictions are formally stated in Figure 4.
To work an example, we de�ne a function, similar to In, called Out . The function Out ,

de�ned below, will output a given object on a given
ow for a given bubble. It is a curried
function, so Out(o; f; b) represents just the changes that b makes to the
ow state and read
function by producing o on the
ow f .

Out : (OBJECTS � F � B)! ((FlowState � Read)! (FlowState � Read))
Out(o; f; b)(fs; r) =

let rb = �f 0 :?
in (if Consumable(f) then [f 7! Enq(fs(f); o)]fs else [f 7! Enq(hi; o)]fs �;

[b 7! rb]r)

A Produce mapping for the diagram in Figure 1 is as follows. For this example, assume
that the functions needsCredit,makeCashOrder, makeCreditOrder, updateCashCust, update-
CreditCust, makeBill, updateAccts, creditOfPayment, and updateLog are de�ned elsewhere
(e.g., in a P-spec). Because the bubble Customers is a source, we know that it can produce
output, but have no way of knowing what that output might be. Thus, the Produce map-
ping given allows Customers to have any behavior that is consistent with the types of its
out
ows. The sink Mail is given a Produce mapping that throws away the information it
has read, and produces no output.

15

The following must hold for all b 2 B , fs 2 FlowState, and r 2 Read .

[p-range:] If bm(b) = working , then Produce(b)(fs; r) 6= ;.

[p-local:] If (fs 0; r0) 2 Produce(b)(fs; r), then

� for all b0 6= b, r0(b) = r(b),

� for all f 2 F , r0(b)(f) = ?, and

� for all f 2 F :

{ if f 62 Outputs(b) then fs0(f) = fs(f), and

{ if f 2 Outputs(b), then for some o 2 TypeMeaning(TypeOf (f)):

� if Consumable(f), then either:

� fs 0(f) = fs(f), or

� fs 0(f) = Enq(fs(f); o).

� if :Consumable(f), then either:

� fs 0(f) = fs(f), or

� fs 0(f) = Enq(hi; o).

[p-depend:] For all fs 0 2 FlowState, for all r0 2 Read , if r(b) = r0(b), then there is a one-
to-one correspondence between Produce(b)(fs; r) and Produce(b)(fs0; r0) that sends
each (fs0; r0) 2 Produce(b)(fs; r) to a (fs1; r1) 2 Produce(b)(fs0; r0) such that: for all
f 2 Outputs(b) and for all o 2 TypeMeaning(TypeOf (f)),

� fs0(f) 6= fs(f) if and only if fs1(f) 6= fs0(f), and

� either fs0(f) = Enq(fs(f); o) or fs0(f) = Enq(hi; o) if and only if either fs1(f) =
Enq(fs0(f); o) or fs1(f) = Enq(hi; o).

Figure 4: Restrictions on Produce.

16

Producee(Customers) = �(fs; r) :
fOut(o; fwhat; Customers)(fs; r) j o 2 TypeMeaning(Need)g
[fOut(o; fpayment; Customers)(fs; r) j o 2 TypeMeaning(Money-and-Bills)g
[fOut(o1; fwhat; Customers)(Out(o2; fpayment; Customers)(fs; r)) j

o1 2 TypeMeaning(Need); o2 2 TypeMeaning(Money-and-Bills)g
Producee(Generate-Sales-Order) = �(fs; r) :

if needsCredit(r)
then fOut(updateCreditCust(r); fcusts; Generate-Sales-Order)(

Out(makeCreditOrder(r); fcreditBC; Generate-Sales-Order)(fs; r))g
else fOut(updateCashCust(r); fcusts; Generate-Sales-Order)(

Out(makeCashOrder(r); fcash; Generate-Sales-Order)(fs; r))g
�

Producee(Bill-Customer) = �(fs; r) :
let bl = makeBill(r) in
fOut(bl ; finternal; Bill-Customer)(Out(bl ; finvoice; Bill-Customer)(fs; r))g

Producee(Keep-Customer-Accounts) = �(fs; r) :
fOut(updateAccts(r); fc-a-data; Keep-Customer-Accounts)(fs; r)g

Producee(Collections) = �(fs; r) :
fOut(creditOfPayment(r); fcredit; Collections)(

Out(updateLog(r); flog; Collections)(fs; r))g
Producee(Mail) = �(fs; r) : f(fs; [Mail 7! �f :?]r)g

It is trivial to check that condition p-range of Figure 4 is satis�ed by Producee. Check-
ing p-local and p-depend can be based on the de�nition of Out , in the same way as we
checked c-local for Consumee; one must also assume that the de�nitions of all the auxiliary
functions only consult the read state of the bubble in whose clause they appear. The details
are left as an exercise for the reader.

5 Operational Semantics for Firing

We now have enough machinery to de�ne the semantics of �ring rules. In this (�rst)
semantics, we do not allow a bubble to �re concurrently with itself (a condition we relax in
Section 7). Thus there are just two kinds of transitions allowed between con�gurations: an
enabled bubble can go from idle to working , and a working bubble can go to idle. Formally,
these transitions are stated as a binary relation between con�gurations: �!.

The following transition rule states that if b is idle and enabled, then it may change its
mode to working and consume some inputs. The way that it consumes inputs is one of the
choices o�ered by Consume(b). The conditions above the horizontal line must hold for the
transition to be taken; they should be thought of as a hypothesis. That is, if the conditions
above horizontal line hold, then the transition below the line may take place [Hen90].

bm(b) = idle ;

Enabled(b)(fs) = true ;

bm 0 = [b 7! working]bm;

(fs0; r0) 2 Consume(b)(fs; r)

(bm; r; fs) �! (bm0; r0; fs0)

(5)

The following transition rule states that if b is working , then it may change its mode
to idle and produce some outputs. The way that it produces outputs is one of the choices

17

o�ered by Produce(b).
bm(b) = working ;

bm0 = [b 7! idle]bm;

(fs 0; r0) 2 Produce(b)(fs; r)

(bm; r; fs) �! (bm0; r0; fs0)

(6)

To complete the formal semantics of (our extended variant of) DFDs, one would have to
describe how to translate the graphical notation into the domains that describe the structure
of a DFD (see Table 2). We have not described this translation formally because we did
not want to go into the details of the graphical syntax of DFDs [Col91] [Tse91], although
we have given an example of one such translation.

Another aspect of the semantics of an (extended) DFD speci�cation is its initial con�g-
uration. For simplicity one can make the initial con�guration of a DFD have each bubble
be idle by default, and to have no values in any read state.

bm initial
def
= �b : idle

rinitial
def
= �b : �f :?

Unfortunately, there is no sensible default initial state for values on
ows. One might
imagine having a standard FlowState mapping, such as fsinitial = �f : hi. But if one
considers a speci�cation language where users can specify initial values for all
ows, such
a default makes it di�cult to translate that speci�cation language into a DFD. One could
try to have each bubbles initialize its out
ows upon noting that its in
ows are empty, but
that fails for sources (as they have no in
ows), and also fails when all of a bubble's in
ows
are initialized by the initialization actions of other bubbles. Hence, we require that the
initial FlowState mapping be given as part of the de�nition of a DFD in our model. For
our example DFD, an appropriate fsinitial would be something like fse from Section 3.3.

From a given initial con�guration, the above �ring rules lead to set of possibly in�nite
sequences of con�gurations. Each sequence in the set has the form

0 �!
1 �! � � �
n

if it is �nite or

0 �!
1 �! � � �
n �! � � �

otherwise. In such a sequence
0 = (bminitial ; rinitial; fsinitial) is the initial con�guration,
and
i+1 must result from
i by the two rules given above.

The set of con�guration sequences is the semantics of the given DFD. It is a set because
some of the bubbles may be nondeterministic, and because race conditions may result in
di�erent �rings (as in Figure 2).

We now brie
y consider some alternative semantics that are close to our framework.
The semantics given does not allow any easy way for a bubble to go into an \in�nite loop"

in working mode. One could imagine letting this be modeled by allowing Produce(b)(fs; r)
to be an empty set. However, this is an unsatisfactory way to model such behavior, as then
the bubble b cannot give the choice of either going into an in�nite loop or doing something
else. We leave a satisfactory solution to this problem as future work.

If one prefers not to specify the sources and sinks of a DFD, then one could use a
semantics that is a function from speci�cations (of the sources and sinks) to sets of se-
quences of con�gurations. This is easily done, but complicates the formal presentation of
the semantics.

18

Notation for Members 2 Name = description

f 2 F =
PowerSet(B)� FLOWNAMES � TYPES

� PowerSet(B)� P

Table 5: New de�nition of the F domain.

One might wish to abstract away from the sequences of con�gurations, in order to
focus on the \answer" returned by a DFD. Indeed, this is often done in the semantics
of programming languages given in Plotkin's structural style [Plo77] [Hen90]. To do this,
one would identify a set of terminal con�gurations, from which no transitions are possible.
However, such an attempt seems of little value for DFDs, because the sources may always
be able to �re, as in our example. Even if the sources stop sending outputs into the DFD,
the rest of the DFD may be able to continue running. This would be normal in many
applications. What can be done, however, is to extract from the sequence of con�gurations
a sequence of values presented to the sinks of a DFD. We leave the investigation of this
alternative as future work.

6 Adding Stores

In traditional SA, a store is a passive holder of data [DeM78] [Col91]. Multiple bubbles can
access a single store for both reading and writing, but the store itself does not transform
data. In fact, a store is usually thought of simply as a �le, which is a rather low level of
abstraction for a speci�cation.

To abstract and formalize the notion of a store, for our theoretical core DFDs we gener-
alize the de�nition of a
ow to subsume stores, following a suggestion by Coleman [Col91,
Figure 8.2]. As a
ow is also a holder of data, this is reasonable. To capture the idea of
multiple bubbles having read or write access to a single store, we allow a
ow to have a set
of bubble names for its source, and a set of bubble names for its target. Thus, in place of
the description of the domain F of
ows in Table 2, we now have the description in Table 5.

This change forces changes to several of the auxiliary functions from Section 2.1. We
change Source and Target to Sources and Targets, respectively. The type of both Sources

and Targets is F ! PowerSet(B). We extend the notions of input
ow and output
ow as
follows: a
ow f is an input
ow of bubble b if b 2 Targets(f), and f is an output
ow of
b if b 2 Sources(f). The functions Inputs and Outputs now re
ect these new de�nitions of
input and output
ows; that is, Inputs(b) is the set of input
ows of b, and Outputs(b) is the
set of all output
ows of b. Using these new de�nitions, we can now state the requirement
that all
ows have at least one source and target:

(8f 2 F : Sources(f) 6= ; ^ Targets(f) 6= ;): (7)

The auxiliary functions that describe the structure of a DFD, given in Table 3, are un-
changed, except that the Sources and Targets functions replace the obsolete Source and
Target functions. The rest of the functions de�ned in previous sections and the transition
rules require no modi�cation to work correctly with this new de�nition of
ows.

With these changes, persistent
ows with multiple sources and targets can be used to
represent the traditional SA notion of stores. Recall that a bubble may be both the source
and target of such a persistent
ow, and so can use it as a local store (as was done in our

19

example). However, allowing multiple sources and targets allows several bubbles to share
a store modeled as such a
ow. Source bubbles of such a
ow are those with write access,
and target bubbles are those with read access. As the
ow is persistent, any bubble writing
to the
ow changes the value observed by all the target bubbles. Bubbles reading from the

ow do not change the value on it.

This translation of stores into persistent
ows also works in the opposite direction. That
is, if we had made stores a primitive in the semantics, then we could have translated persis-
tent
ows into stores. We chose to say that stores are translated into persistent
ows mainly
to emphasize the idea of this equivalence. Making persistent
ows primary in the model
also seems to make for a more uniform semantic model, as
ows only go between bubbles,
not between stores and bubbles. (However, in a practical DFD speci�cation language, one
should certainly include the traditional store notation. In such a language, one might also
want to include persistent
ows, even though the semantics is equivalent, because stores
and persistent
ows may have di�erent connotations.)

Stores traditionally represent a collection of data; this is easily modeled by a
ow of
type set or sequence. Stores containing abstract data types (ADTs) may be modeled by
a
ow whose type is an ADT. In other words, the type system used in an extended DFD
speci�cation language, and not that used in our semantics, is the only thing that would
impose a limit on the kind of stores that can be speci�ed.

When consumable
ows are allowed to have multiple sources and targets, we �nd a new
semantics with many potential applications. Any of the source bubbles writing to the
ow
enqueue a new value on it, and any of the target bubbles reading consume the head of the

ow. The two-step �ring rule and the operational semantics force synchronization: at any
transition to a new con�guration, only one bubble is active, and this bubble may either read
or write, but not both. Hence, no simultaneous read or write is possible. This supports an
m-to-n message sending facility that may be useful in specifying systems. For example, one
can model an unbounded job queue directly by connecting those bubbles requesting jobs as
sources and those servicing jobs as targets to a single consumable
ow.

However, this powerful semantics for consumable
ows lets one write speci�cations that
may be di�cult to implement. An implementer of a speci�cation using consumable
ows
with more than one source and target must be aware of this semantics to ensure that the
proper synchronization is implemented. Whether a speci�cation language should allow such

ows is a methodological point, and thus beyond the scope of this paper. We have chosen
to make the semantic model more regular, and more expressive, by not requiring
ows with
multiple sources and targets to be persistent. It is up to a DFD speci�cation language
designer to decide if such
ows are useful.

7 Bubbles Firing Concurrently with Themselves

To this point in the paper, we have not considered hierarchical DFDs. However, when one
bubble is re�ned into a sub-DFD containing multiple bubbles, the sub-DFD often produces
results that would not have been possible in the original DFD. For example, consider the
re�nement shown in Figure 5. As we prefer not to discuss speci�c syntax for �ring rules, we
describe what the bubbles in this �gure do informally. Informally, bubble H is a top-level
speci�cation of the function

from = if to � 2 then to2 else to3 �

20

�
�
�
�

�
�
�
�

�
�
�
�

#
"

!

#
"

!- -

�
�
���

@
@
@@R

@
@
@@R

�
�
���

- -HTerm1 Term2

Term1 Term2Split

Square

Cube

Merge

To: Int From: Int

To: Int From: Int

ToSquare: Int

ToCube: Int

FromSquare: Int

FromCube: Int

Figure 5: An example of re�nement.

where to is the value read from the
ow named To and to2 or to3, as appropriate, is written
to the
ow From. The rest of the �gure is intended as a re�nement of bubble H. Bubble
Split sends inputs less than or equal to 2 to bubble Square, and other inputs to bubble
Cube. Square and Cube each read their in
ow, compute the appropriate value, and write it
to their out
ow. Bubble Merge reads from either of its in
ows, and places the read value
on the
ow named From.

Intuitively, the re�nement should behave exactly like the original bubble. However, if
the
ow named To contains integers 2 and 3, then the original bubble will always place 4
on the
ow named From before placing 27 there, whereas either order is possible with the
re�nement. To see this, consider the case where Split reads 2 from To and writes 2 to
ToSquare, and then reads 3 and writes it to ToCube. Next, Cube reads 3 and writes 27
to FromCube, followed by Merge reading this value from FromCube and writing it to From.
Then Square reads 2 from ToSquare and writes 4 to FromSquare. Finally, Merge reads
4 from FromSquare and writes it to From. While this is clearly a contrived example, this
situation can arise any time one bubble is re�ned by multiple bubbles.

If the bubble H could somehow hold the �rst value it consumes while consuming and
producing output with the second, then the two DFDs would behave identically [Lyl92].
This is our notion of a bubble �ring concurrently with itself | a bubble can consume
from its input
ows multiple times without producing any output, and when the bubble
does produce output, the output can be produced from the input provided by any of the
consumptions, not just the �rst. One might want to specify H with such a semantics precisely
to allow it to be re�ned as in Figure 5.

We formalize this notion of a bubble �ring concurrently with itself by changing the type

21

The following must hold for all b 2 B , fs 2 FlowState, and r 2 Read .

[c-range:] If Enabled(b)(fs) = true , then Consume(b)(fs; r) 6= ;.

[c-local:] If (fs0; r0) 2 Consume(b)(fs; r), then

� for all b0 6= b, r0(b0) = r(b0) and

� for all f 2 F :

{ if f 62 Inputs(b) then fs0(f) = fs(f), and

{ if f 2 Inputs(b) then r0(b) = fgg] r(b) and fs 0 and g are such that

� if Consumable(f), then either:

� fs 0(f) = fs(f) and g(f) = ?, or

� IsEmpty(fs(f)) = false and fs0(f) = Rest(fs(f)) and g(f) =
Head(fs(f)),

� if :Consumable(f), then fs 0(f) = fs(f) and either:

� g(f) = ?, or

� IsEmpty(fs(f)) = false and g(f) = Head(fs(f)).

Figure 6: New restrictions on Consume allowing for bubbles to �re concurrently with them-
selves.

of read mappings to be:

Read = B ! MultiSet(WhatRead): (8)

Recall that WhatRead = (F ! OBJECTS?). That is, a read mapping r is a function from
bubble names to multisets, such that for each bubble name b, r(b) represents what b has
consumed but not used to produce output. If g 2 r(b), then for each
ow f , g(f) represents
an object that b has read from the
ow f , or is ? if b did not read from f during that
consumption. Note that if f1 and f2 are
ows, then g(f1) and g(f2) were read at the same
time when b read from its inputs. Formerly r(b) was a single function from
ows to objects;
now the semantics tracks several such functions.

This change in the type Read forces changes in the restrictions on the Enabled, Consume,
and Produce mappings. As a bubble need not produce between consumings, we need to
apply the Enabled and Consume mappings to working bubbles, as well was to idle ones.
Otherwise, Enabled need not be changed.

The changes required for Consume are more substantial. In dealing with the multisets
introduced by the new de�nition of Read , we use the symbol \]" for multiset union, and \�"
for multiset di�erence. Figure 6 reproduces Figure 3 with the appropriate modi�cations.

The function In, used in examples of Consume mappings, changes in the corresponding
way.

In : (F � B)! ((FlowState � Read)! (FlowState � Read))
In(f; b)(fs; r) =

let gb = �f :Head(fs(f))

22

in (if Consumable(f) then [f 7! Rest(fs(f))]fs else fs �;
[b 7! (fgbg] r(b))]r)

Changes are also required in the restrictions on the Produce mapping. The appropriately
modi�ed version of Figure 4 is given as Figure 7. The only major change is in the p-depend
restriction. The new version says that what a bubble b outputs depends only on which
element of the multiset r(b) is used when b produces. Other elements of r(b) do not a�ect
the output.

Similarly, the function Out , used in examples of Produce mappings, must also be mod-
i�ed to account for the rede�nition of the Read domain. As the range of the Read domain
is now a multiset, the intuitive idea of removing read information that has been used to
produce output corresponds to multiset di�erence. However, because the arguments to Out
do not contain enough information to tell what Read mapping should be removed, the Out
function does not change the Read mapping. Thus we handle updating the Read mapping
explicitly when giving examples of the Produce mapping, as shown in the clause for bubble
H in the example below.

Out : (OBJECTS � F � B)! ((FlowState � Read)! (FlowState � Read))
Out(o; f; b)(fs; r) =

(if Consumable(f) then [f 7! Enq(fs(f); o)]fs else [f 7! Enq(hi; o)]fs �; r)

Thus, a possible Produce mapping for the �rst DFD in Figure 5, using the
ow abbre-
viation style of Table 1, is:

Producee(Term1) = �(fs; r) :
fOut(i; fTo; Term1)(fs; r) j i 2 TypeMeaning(Int)g

Producee(H) = �(fs; r) :
flet to = g(fTo) in

Out(if to � 2 then to2 else to3 �; fFrom; H)(fs; [H 7! r(H)� fgg]r)
j g 2 r(H)g

Producee(Term2) = �(fs; r) : f(fs; [Term2 7! fg]r)g

With these changes in the Enabled, Consume, and Produce mappings, the new transi-
tion rules required are straightforward. A working bubble may now consume, so the �rst
transition rule of Section 5 is no longer restricted to operating on idle bubbles. Note that
the update to the BubbleMode of b has no e�ect if b was already a working bubble.

Enabled(b)(fs) = true ;

bm 0 = [b 7! working]bm;

(fs0; r0) 2 Consume(b)(fs; r)

(bm; r; fs) �! (bm0; r0; fs0)

(11)

There are now two possibilities when a bubble produces output. If the bubble has
consumed only once more than it has produced output (i.e., jr(b)j = 1), then the bubble
becomes idle. Otherwise, it remains working . Note that if the mode of a bubble is working ,
then jr(b)j � 1.

bm(b) = working ;

bm0 = (if jr(b)j= 1 then [b 7! idle]bm else bm �);
(fs 0; r0) 2 Produce(b)(fs; r)

(bm; r; fs) �! (bm0; r0; fs0)

(12)

23

The following must hold for all b 2 B , fs 2 FlowState, and r 2 Read .

[p-range:] If bm(b) = working , then Produce(b)(fs; r) 6= ;.

[p-local:] If (fs 0; r0) 2 Produce(b)(fs; r), then

� for all b0 6= b, r0(b) = r(b),

� for some g 2 r(b), r0(b) = r(b)� fgg, and

� for all f 2 F :

{ if f 62 Outputs(b) then fs0(f) = fs(f), and

{ if f 2 Outputs(b), then for some o 2 TypeMeaning(TypeOf (f)):

� if Consumable(f), then either:

� fs 0(f) = fs(f), or

� fs 0(f) = Enq(fs(f); o),

� if :Consumable(f), then either:

� fs 0(f) = fs(f), or

� fs 0(f) = Enq(hi; o).

[p-depend:] For all fs0 2 FlowState, for all r0 2 Read , if there is some g 2 r0(b) such that
g 2 r(b), then there is a one-to-one correspondence between the following two sets

f(fs0; r0)jr0 = [b 7! (r(b)� fgg)]r and (fs0; r0) 2 Produce(b)(fs; r)g (9)

and

f(fs1; r1)jr1 = [b 7! (r0(b)� fgg)]r0 and (fs1; r1) 2 Produce(b)(fs0; r0)g (10)

such that: for all (fs0; r0) in the �rst set and for the corresponding (fs1; r1) in the
second, for all f 2 Outputs(b), and for all o 2 TypeMeaning(TypeOf (f)),

� fs0(f) 6= fs(f) if and only if fs1(f) 6= fs0(f), and

� either fs0(f) = Enq(fs(f); o) or fs0(f) = Enq(hi; o) if and only if either fs1(f) =
Enq(fs0(f); o) or fs1(f) = Enq(hi; o).

Figure 7: New restrictions on Produce allowing for bubbles to �re concurrently with them-
selves.

24

Finally, to support the change in the type Read , the initial read mapping must return
an empty multiset for each bubble, rather than the function �f :?.

rinitial
def
= �b : fg

8 Discussion

In this section we discuss related work and o�er some conclusions.

8.1 Related Work

We have already discussed some related work that describes ways to derive formal speci-
�cations from the products of SA, and which augments SA ERDs and DFDs with formal
speci�cations. In this paper we have done neither of these things, although they are mo-
tivation for our work. Instead, we have de�ned a formal semantics for a \theoretical core
variant of DFDs" that includes a way to model the dynamic behavior of such DFDs.

In what follows we discuss work that de�ned various other notions of DFDs, including
the original notions. We try to point out the di�erences from our notion of DFDs; as we
mentioned in the introduction, such di�erences should not be seen as a defect in our work,
because in each case the features not present in our models can be translated into our
models. We also point out places where related work does not give a precise semantics,
especially for dynamic behavior. In this part of the paper, \DFD" will no longer mean our
theoretical core variant of DFD, but the traditional notion.

To summarize, the main advantage of our work is greater rigor, greater expressive power,
and the ability to model dynamic behavior.

8.1.1 De Marco and Yourdon

DFDs used in traditional structured analysis [DeM78] [Col91, page 15] have a very informal

avor and some features that are not directly present in our models. For example, De Marco
has graphical notations on
ows for \conjunction" (*) and \disjunction" (�) that are not
a part of our formal model of the syntax of DFDs. Similarly, Yourdon makes graphical
distinctions between \data" and \control"
ows [You89] [Col91, pages 27{28]. However,
our formal model can encode this kind of information in a general way. Our model of P-
specs allows one to say that a bubble consumes or produces on two
ows at once, or one
only; the advantage of our formal model is that it can also express any other computable
way that bubbles could consume or produce on
ows. Our formal model can express control

ows in a variety of ways; for example, by using a persistent
ow that transmits boolean
values, or by using a consumable
ow that transmits values of a one-element type (a signal).

De Marco's DFDs feature converging and diverging
ows [DeM78]. However, their
semantics is ambiguous. A converging
ow may mean either that:

� there are several
ows which all have their sinks in the same bubble, or

� several \elementary packets of data" are to be joined \to form a complex packet"
(such as a tuple) [Col91, page 16].

In our model one can express the �rst by having several separate
ows, with a
ow having
several sources as in Section 6. In our model, one can express the second meaning for

25

converging
ows by introducing a bubble to accept each of the \converging"
ows and
specifying how it combines them. This avoids any possible ambiguity. De Marco's diverging

ows are ambiguous in the same way. In our model one can express such a diverging
ow
either as: several
ows (one to each destination of a De Marco style diverging
ow), with
a
ow having several targets as in Section 6, or with a
ow into a bubble that splits the
data into parts, and sends each part on a di�erent output
ow. Again our model does not
su�er from the ambiguity inherent in De Marco's DFDs. Ward, in [War86] gives notation to
disambiguate these two senses of converging and diverging
ows, but leaves the process by
which tupling and splitting of data is achieved implicit. Similarly, our model can represent
\dialogue
ows" by two separate
ows.

A feature of De Marco's DFDs that we do not model directly is the description of a
system as a hierarchy of DFDs. A hierarchical DFD can be considered as a graphical con-
venience, by expanding it out into a single level DFD, which can then be given a semantics
using our model. Nevertheless, it would be useful to have an operational semantics of DFDs
that took the hierarchy into account (as in the semantics of hierarchical colored petri nets
[HJS90] [CJ91]).

8.1.2 Ward

Ward [War86] distinguishes discrete from continuous data
ows; that is between discrete
and analog data, which he de�nes as \a set of values de�ned continuously over a time
interval" [War86, page 199]. Hatley and Pirbhai have a similar notion of continuity [HP87]
[Col91, Section 5.3.2]. Since such data can only be modeled in a computer by discrete
data, there seems to be no good reason to model this distinction. Instead, we have adopted
Ward's semantics for continuous
ows as shared variables [War86, page 203] as a feature of

ows in our model. This feature of
ows is orthogonal to the type of data on the
ow. This
is the distinction between consumable and persistent
ows [Col91, Section 5.3.4].

The traditional view of stores is that they represent �les [War86, page 199]. We model
stores as persistent
ows (shared variables), but as discussed in Section 6, the notion of a
store containing a single value and a shared variable are equivalent. Our semantics is more
general, in that the type of such a shared variable might be a \�le type" but it could also
be more speci�c, such as an integer.

Ward also includes in his extension of DFDs something called a \bu�er", which is highly
ambiguous. He says that a \bu�er is an abstraction on a stack or a queue" [War86, page
200]. Stacks and (LIFO) queues certainly have di�erent behavior.

Ward gives a semantics of DFDs based \loosely on the execution of a Petri net" [War86,
pages 203{205]. However, his semantics are somewhat informal and ambiguous. For exam-
ple, he does not clear up the ambiguity in the potential behavior of bu�ers. Ward does not
discuss an initial marking of the DFD with tokens, and his semantics does not deal with
the actual values of data on
ows. Hence his semantics can only be approximate (a kind
of abstract interpretation of the DFD), because the transitions between markings cannot
depend on the values of data on the
ows or the exact functions computed by bubbles. Our
semantics can be regarded as a cleaned-up version of this idea.

8.1.3 Tse and Pong

Tse and Pong recognize that: \Transitions and places of Petri nets correspond, respectively,
to processes and data
ows of DFDs" [TP89, page 1]. They also give an algebraic model of

26

DFDs. However, their semantics using Petri nets also ignores the values on the
ows and
so cannot describe the full behavior of a DFD.

Tse's work [Tse91] only deals with the syntax of DFDs, not their semantics.

8.1.4 Bruza and van der Weide

Bruza and van der Weide [BvdW89] give a semantics of DFDs in terms of extended Petri
nets and path expressions. Like Tse and Pong, they model
ows by places, and bubbles by
transitions. They point out that the DFD notation is ambiguous and needs extra speci�-
cation annotations to be unambiguous.

One similarity with our work is that they recognize the need for a two-step �ring rule
for bubbles. Like Tse and Pong, however, their semantics also ignores the values on the

ows, and so cannot describe the full behavior of a DFD.

8.1.5 Colored Petri Nets

One can imagine giving a fuller account of the dynamic behavior of DFDs by extending
Ward and Tse and Pong's approach with colored Petri nets [Jen91] [HJS90]. (The di�erent
\colors" on tokens can stand for di�erent values being passed in a DFD.) However, because
the �ring rules of Petri nets are atomic, each bubble in a DFD would have to be either
modeled by a complex Petri net, or the semantics of a bubble's �ring would be atomic.
This is because in a Petri net, a transition reads from its input places and writes its output
places in an atomic step, and so using Tse and Pong's idea would imply that a bubble in a
DFD would reads its input
ows and write its output
ows in an atomic step. However, as
described in Section 3.1, such a semantics is inadequate for capturing the dynamic behavior
of a DFD.

8.1.6 Elmstr�m, et al.

As part of the IPTES project, Elmstr�m and others [ELP93] [ELA93] described a semantics
for SA/RT DFDs [WM85] augmented with VDM-SL P-specs. This semantics uses high-
level timed Petri nets (HLTPNs) [FGP93]. HLTPNs are similar to colored Petri nets, but
because they include timing information on transitions, they can adequately model the
dynamic behavior of a DFD. This semantics has several features that are similar to our own
semantic foundation for DFDs (although our work was done independently).

� The timing information associated with a transition in a HLTPN makes the semantics
similar to our two-step �ring rule. That is, �ring a transition takes a certain amount
of time, which allows race conditions to be modeled. The minimum and maximum
times a transition may take to �re are an advantage in analyzing real-time systems.

� Elmstr�m, et al. give a model of stores that is very similar to one of their models for
a persistent data
ow.

A minor di�erence from our work is that Elmstr�m, et al. do not allow a separate
speci�cation of an initial marking for a DFD; we argued above that in some cases this
would make the speci�cation of initialization very di�cult.

A larger di�erence is that, in [ELP93] [ELA93], Elmstr�m, et al. do not handle hierar-
chical DFDs and re�nement. Thus they do not deal with the possibility of bubbles �ring
concurrently with themselves.

27

8.1.7 Larsen, Plat, and Toetenel

Larsen, Plat, and Toetenel have given a formal semantics of DFDs by translation into
VDM-SL [LPT94]. In this work, the DFDs are augmented by VDM-SL P-Specs (mini-
speci�cations), and the translation produces either an implicit style VDM-SL speci�cation,
or an explicit one (which can be executed).

In contrast to our work, their semantics treats DFDs as sequential processes. Thus their
semantics is fundamentally di�erent than ours. Their formal semantics also prohibits cyclic

ows (which we use heavily). Furthermore, because they only deal with sequential systems,
their semantics is more restrictive in what it can specify, because it enforces a one-to-one
correspondence between inputs to a DFD and its outputs.

8.1.8 Coleman

The static semantics of SA speci�cations (including notational issues) are treated in a
dissertation by Coleman [Col91]. As noted above, we have drawn on this dissertation for
its comprehensive discussion of the literature on DFDs and SA, for our model of
ows as
having both a name and a type, for the distinction between consumable and persistent
ows
and for the semantics of consumable and persistent
ows. Coleman describes a notation for
P-specs based on �rst-order logic [Col91, Chapter 7], which inspired parts of our model; his
notation could be translated into our model.

Coleman also describes how one could give an operational semantics of SA speci�cations
[Col91, Section 9.2] using what amounts to colored Petri nets (values are used instead of
Ward's tokens) and �rst-order logical assertions for the transition �ring rules. As described
above in the section on colored Petri nets, however, such a semantics is inadequate for
modeling the dynamic behavior of DFDs. Nevertheless, our model is derived from his
initial work.

Coleman also gives several di�erent possible models of stores, one of which [Col91,
Figure 8.2] is the one we adopt. However, he ignores stores in his sketch of the operational
semantics of DFDs. Coleman does not treat a bubble �ring concurrently with itself.

8.1.9 France

In the two works [Fra92] [Fra93] that we discuss below, France describes variants of DFDs,
speci�cation notations, and their semantics. Although his semantics are not general enough
for our purposes, this is understandable, because his papers did not seek to give a general
foundation for extended DFD speci�cation languages; instead, his papers seek to give a
semantics for the particular DFD variants and speci�cation notations. As with the other
work cited here, he is not as concerned with the dynamic behavior of DFDs as we are.
In summary, the major di�erence is that France presents speci�c speci�cation notations
and their semantics, while we have explored what kinds of semantics for extended DFD
speci�cation are sensible, with a special focus on modeling the dynamic behavior of DFDs.

Semantically Extended DFDs In [Fra92] France works with DFDs that have several
additional features, and he also gives a formal semantics. France's \queued
ows" are what
we call consumable
ows, and his \variables" are our persistent
ows. France distinguishes
two kinds of bubbles (data transforms and state transforms) and two kinds of
ows (data
and control). Our model is arguably simpler in that both of his types of bubbles and
ows
can be translated into ours.

28

France's operational semantics of extended DFDs use a framework similar to ours: alge-
braic state transition systems (ASTSs) [AR91] [Ast91]. The main di�erence in the formal
framework is that France's semantics use transition systems to model all parts of a DFD,
not just the �ring rules. This gives the semantics a nicely compositional
avor, and allows
an easy treatment of hierarchical DFDs [Fra92, page 333]. France gives an explicit notation
for P-specs, which could be given an alternative semantics using our model. All of his addi-
tional graphical conventions for DFDs can be translated into our model in ways similar to
those discussed above for other related work. France's DFDs have syntactic and semantic
restrictions that seem to be intended to enforce good methodology, but which also make
them less general than ours. For example, each bubble must have an output
ow (page
330) and nested loops are not allowed inside in�nite loops in his P-spec statement language
(page 337).

France treats stores the same as he treats other parts of a DFD, as ASTSs [Fra92, pages
336{337]; hence his stores need more description than necessary in our model, where stores
are modeled as persistent
ows. However, France's stores can be more powerful than this,
as he points out that one can \specify that a subset of write actions have priority over a
subset of read actions when they occur in parallel" (p. 337). Nevertheless, by translating
such an active store into a bubble with a persistent
ow to and from itself, such a store can
be translated into our model.

France's notion of convergence and divergence is apparently the same as Ward and
Mellor's (see France's Figure 2, p. 330). France calls these \binders" and \splitters".
Since he does not treat them in his formal semantics, his notions appear to su�er the same
problems (no precise description of how the splitting or aggregation is done).

France does not allow bubbles to �re concurrently with themselves because each bubble
has only one copy of its variables [Fra92, pages 344{345]. Firing in a DFD is apparently
an atomic step, since \outputs are solely dependent on current inputs" [Fra92, page 342];
so France's model includes explicit ways to make bubbles concurrent. However, there is no
way to make a bubble concurrent with itself, and so no way to specify a bubble that may be
re�ned into as system of bubbles that may process inputs in slightly di�erent orders, which
we permit by allowing a bubble to �re concurrently with itself [Lyl92].

A Predicative Basis for SA Speci�cation Tools In [Fra93] France gives a di�erent
formalization of the semantics of DFDs, this one geared towards composition and decom-
position of DFDs. In this work France uses a variant of DFDs he calls PDFDs, along with
ERDs, and data dictionaries with ADT speci�cations. His PDFDs include terminators
(external entities), as do ours.

In [Fra93], the behavior of a bubble is speci�ed with an input/output predicate, which
can be represented in our model as the functions that tell what a bubble produces and
consumes. However, his language is not able to express conditions on when a bubble is
enabled.

The major di�erence between his semantics for a PDFD and our model is that his
semantics regards a PDFD as an atomic data transformation. That is, his semantics says
what outputs (and global state changes) a bubble or a PDFD can produce for a single
input. Such data transformations are atomic, because they cannot model time delays and
race conditions, as discussed in Section 3.1 above. While for some purposes this might be
adequate to characterize the behavior of a single bubble (and for his example they seem
adequate), it is inadequate as a general model for the dynamic behavior of entire DFDs,

29

because it does not allow for concurrency within a DFD. For the same reason, France's
composition operators are also inadequate as a basis for studying the dynamic behavior
of DFDs: they operate on single inputs and generate an atomic data transformation. For
example, the parallel composition operator does not allow one PDFD to run twice while
the other waits.

Because of this atomic view of the PDFD semantics, France's notion of the correctness
of a decomposition is too restrictive for a semantics of DFDs that is concerned with dynamic
behavior, as described in Section 7 above.

8.1.10 Harel's Statecharts

While they are not intended as a semantic foundation for SA-style DFD speci�cation lan-
guages, Harel's statecharts [Har87] are also a visual speci�cation notation that allows for
concurrent execution, and could be taken as an alternative translation target for DFD
speci�cation languages. However, the states in statecharts represent control and not data
processing; thus there is no direct way to model the
ows of a DFD in the framework of
statecharts.

Our semantics solves the problems caused by mixing instantaneous events and those
that occur over a span of time by using a two-step �ring rule. In the case of statecharts,
this problem (and other related problems) greatly complicate the operational semantics.

Hierarchy in statecharts is provided by states that contain statecharts. The behavior of
such a superstate is de�ned in terms of the statechart it contains, so this kind of hierarchy
does not introduce re�nement in the sense that we discussed for DFDs.

8.2 Conclusions

In this paper we have described a formal foundation for the semantics of extended DFD
speci�cations by giving a structural operational semantics of a theoretical core variant of
DFDs. Our formalism should not be considered a proposal for notation that anyone would
use in practice, as indeed we have tried to avoid describing P-spec and DFD notations.
Instead we have described semantics that can adequately capture the meanings of various
extended DFD speci�cation languages. In particular we have focused on capturing the
dynamic behavior of DFDs.

The main problem with practical application of this work is to give a syntax for P-specs
and to give its formal semantics using these ideas.

However, our work does have implications for practitioners and speci�cation language
designers. Our work on a precise formal semantics for DFDs provides the following practical
insights.

� One can use DFDs to specify the dynamic behavior of a system. We showed how to
specify this behavior by adding the following information to DFDs:

{ when each bubble is enabled

{ what the bubble reads when it is enabled

{ what the bubble produces when it �nishes its work, and

{ the initial state of the system.

� In addition to
ow names, one should put the types of data as labels on the
ows,
and specify these types as ADTs in the data dictionary. Having both the name and

30

type on a
ow prevents ambiguity and conveys more information. Allowing the types
to be arbitrary ADTs permits modern software engineering practices to be used and
helps keep the level of abstraction high.

� There is no fundamental di�erence between a control
ow (or control bubble) and a
data
ow (or data bubble). Thus one can use data
ows to achieve some measure of
control, and designs without explicit control
ows are not necessarily less worthy than
those with explicit control
ows.

� One can think of stores abstractly as shared variables, not just as �les. Allowing
a store to have an arbitrary abstract data type gives the design more
exibility and
keeps implementation details out. (Of course, one useful ADT is a �le, so no expressive
power is lost.)

� One should think of a bubble as a collection of cooperating processes | not as a
procedure. This allows DFDs to be useful as high-level speci�cations for concurrent
and distributed systems, and it keeps the DFD from becoming embroiled in low-level
procedural details. The ADTs used by the DFD can (and will often) be implemented
with procedures. Thinking of a bubble as a collection of cooperating processes recog-
nizes that each bubble may be re�ned into another DFD. This is supported by our
semantics which allows a bubble to �re concurrently with itself.

In some discussions we have heard it said that it is counter-productive to try to formalize
DFDs: aren't DFDs supposed to be an informal notation that is intended to be understood
by customers? Wouldn't a formal notation be harder for a customer to understand? We
believe that customers think they understand the DFD notation, but often understand
something di�erent than what was intended. We know that as an ambiguous, informal
notation, DFDs are open to di�ering interpretations, sometimes with disastrous results.
However, we do not want to stop people from using DFDs informally. What we want is to
have the possibility to use some extension of DFDs in a precise, formal way. This precise
use of DFDs would certainly come after the imprecise, informal use, but one should not
have to completely change notations in order to formally describe systems. Instead, we look
forward to an integration of informal and formal speci�cations spanning a wide range of
needs [tHvdW92] [FLP94] [FLP95]. The advantage of formal and precise DFD speci�cations
would be that the work done in requirements analysis would not have to be thrown away
when more precision is required.

Acknowledgements

Thanks to Juergen Symanzik for helpful suggestions and corrections, especially about strict-
ness in the semantics. Thanks to two anonymous referees (of an earlier version of this paper)
for corrections and helpful comments. Thanks to Joe Reynolds for help with taking notes
and initial typing. Thanks to Joe, and the rest of the seminar on Structured Analysis
in Spring '91 (Joe Reynolds, John Rose, Becky Wemho�) and Spring '92 (Joe Reynolds,
Bashar Jano, Soma Chaudhuri) for help in developing the formal models.

31

References

[AR91] E. Astesiano and G. Reggio. SMoLCS Driven Concurrent Calculi. In Hart-
mut Ehrig et al., editors, TAPSOFT'87, Proceedings of the International Joint
Conference on Theory and Practice of Software Development, Pisa, Italy, Vol-

ume 1, volume 245 of Lecture Notes in Computer Science. Springer-Verlag, New
York, N.Y., 1991.

[Ast91] Edigio Astesiano. Inductive and Operational Semantics. In E. J. Neuhold and
M. Paul, editors, Formal Description of Programming Concepts, IFIP State-of-
the-Art Reports, pages 51{136. Springer-Verlag, New York, N.Y., 1991.

[BB93] Jorgen P. Bansler and Keld Bodker. A Reappraisal of Structured Analysis:
Design in an Organizational Context. ACM Transactions on O�ce Information

Systems, 11(2):165{193, 1993.

[BJ82] Dines Bjorner and Cli� B. Jones. Formal Speci�cation and Software Develop-

ment. International Series in Computer Science. Prentice-Hall, Inc., London,
1982.

[BvdW89] P. D. Bruza and Th. P. van der Weide. The Semantics of Data
Flow Diagrams. In N. Prakash, editor, Proceedings of the Inter-

national Conference on Management of Data, Hyderabad, India, 1989.
ftp://ftp.cs.kun.nl/pub/SoftwEng.InfSyst/articles/ProcSem1.ps.Z.

[Chu41] A. Church. The Calculi of Lambda Conversion, volume 6 of Annals of Math-

ematics Studies. Princeton University Press, Princeton, N.J., 1941. Reprinted
by Klaus Reprint Corp., New York in 1965.

[CJ91] Soren Christensen and Leif Obel Jepsen. Modelling and Simulation of a Net-
work Management System using Hierarchical Coloured Petri Nets (extended
version). Technical Report DAIMI PB 349, Computer Science Department,
Aarhus University, Apr 1991.

[Col91] David L. Coleman. Formalized structured analysis speci�cations. PhD thesis,
Iowa State University, Ames, Iowa, 50011, 1991.

[DeM78] Tom DeMarco. Structured Analysis and System Speci�cation. Yourdon , Inc.,
Englewood Cli�s, New Jersey, 1978.

[ELA93] Ren�e Elmstr�m, Poul B�gh Lassen, and Michael Andersen. An Executable
Subset of VDM-SL in an SA/RT Framework. Real-Time Systems, 5:197{211,
1993.

[ELP93] Ren�e Elmstr�m, Raino Lintulampi, and Mauro Pezz�e. Giving Semantics to
SA/RT by Means of High-Level Timed Petri Nets. Real-Time Systems, 5:249{
271, 1993.

[FGP93] Miguel Felder, Carlo Ghezzi, and Mauro Pezz�e. High-Level Timed Petri Nets
as a Kernel for Executable Speci�cations. Real-Time Systems, 5:235{248, 1993.

32

[FKV91] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Informal and Foraml Require-
ments Speci�cation Languages: Bridging the Gap. IEEE Transactions on Soft-

ware Engineering, 17(5):454{466, May 1991.

[FLP94] Robert B. France and Maria M. Larrondo-Petrie. From Structured Analysis
to Formal Speci�cations: State of the Theory. In Proceedings of the ACM

Computer Science Conference, Phoenix, AZ, pages 249{256. ACM, Mar 1994.

[FLP95] Robert B. France and Maria M. Larrondo-Petrie. A Two-Dimensional View
of Integrated Formal and Informal Speci�cations Techniques. In Jonathan P.
Bowen and Michael G. Hinchey, editors, ZUM '95: The Z Formal Speci�cation

Notation, 9th International Conference of Z Users, Limerick, Ireland, volume
967 of Lecture Notes in Computer Science, pages 434{448. Springer-Verlag,
September 1995.

[Fra92] Robert B. France. Semantically Extended Data Flow Diagrams: A Formal
Speci�cation Tool. IEEE Transactions on Software Engineering, 18(4):329{
346, April 1992.

[Fra93] R. B. France. A predicative basis for structured analysis speci�cation tools.
Information and Software Technology, 35(2):67{77, February 1993.

[GHG+93] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing. Larch: Languages and Tools for Formal Speci�cation. Springer-
Verlag, New York, N.Y., 1993.

[GS78] C. Gane and E. Sarson. Structured Systems Analysis: tools and techniques.
Prentice-Hall, 1978.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8(3):231{274, June 1987.

[Hay93] I. Hayes, editor. Speci�cation Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., second edition, 1993.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: an Elementary

Introduction using Structural Operational Semantics. John Wiley and Sons,
New York, N.Y., 1990.

[HJS90] Peter Huber, Kurt Jensen, and Robert M. Shapiro. Hierarchies in Coloured
Petri Nets. In G. Rosenberg, editor, Advances in Petra nets 1990, volume 483
of Lecture Notes in Computer Science. Springer-Verlag, New York, N.Y., 1990.

[HP87] D. J. Hatley and I. Pirbhai. Strategies for Real-Time System Speci�cation.
Dorset House, New York, N.Y., 1987.

[Jen91] Kurt Jensen. Coloured Petri Nets: A High Level Language for System Analysis
and Design. In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483
of Lecture Notes in Computer Science. Springer-Verlag, 1991. Also a technical
report from the CS Dept, Aarhus University, DAIMI PB-338, Nov. 1990.

33

[Jon90] Cli� B. Jones. Systematic Software Development Using VDM. International Se-
ries in Computer Science. Prentice Hall, Englewood Cli�s, N.J., second edition,
1990.

[LPT94] Peter Gorm Larsen, Nico Plat, and Hans Toetenel. A Formal Semantics of Data
Flow Diagrams. Formal aspects of Computing, 6(6):586{606, December 1994.

[LvKP+91] Peter Gorm Larsen, Jan van Katwijk, Nico Plat, Kees Pronk, and Hans
Toetenel. SVDM: An integrated combination of SA and VDM. In Methods

Integration Conference. Springer-Verlag, September 1991.

[Lyl92] Kari Ann Lyle. Re�nement in Data Flow Diagrams. Master's thesis, Iowa State
University, Ames, Iowa 50011, July 1992.

[Pet77] J. L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):221{252, September
1977.

[Plo77] G. D. Plotkin. LCF Considered as a Programming Language. Theoretical

Computer Science, 5:223{255, 1977.

[SA91] L. Semmens and P. Allen. Using Yourdon and Z: An Approach to Formal
Speci�cation. In Z User Workshop. Springer-Verlag, 1991.

[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language De-

velopment. Allyn and Bacon, Inc., Boston, Mass., 1986.

[Spi89] J. Spivey. An Introduction to Z and Formal Speci�cations. Software Engineering
Journal, January 1989.

[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. International Series
in Computer Science. Prentice-Hall, New York, N.Y., second edition, 1992.

[tHvdW92] A. H. M. ter Hofstdede and T. P. van der Weide. Formalization of tehniques:
chopping down the methodology jungle. Information and Software Technology,
34(1):57{65, January 1992.

[TP89] T. H. Tse and L. Pong. Towards a Formal Foundation for Demarco Data Flow
Diagrams. The Computer Journal, 32(1):1{12, February 1989.

[Tse91] T. H. Tse. A Unifying Framework for Structured Analysis and Design Models,
volume 11 of Cambridge Tracts in Theoretical Computer Science. Cambridge
Univerity Press, New York, N.Y., 1991.

[War86] Paul T. Ward. The Transformation Schema: An Extension of the Data Flow
Diagram to Represent Control and Timing. IEEE Transactions on Software

Engineering, SE-12(2), February 1986.

[WBL93] Tim Wahls, Albert L. Baker, and Gary T. Leavens. An Executable Semantics
for a Formalized Data Flow Diagram Speci�cation Language. Technical Report
93-27, Department of Computer Science, Iowa State University, 226 Atanaso�
Hall, Ames, Iowa 50011, November 1993. Available by anonymous ftp from
ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

34

[WM85] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time

Systems, volume 1: Introduction and Tools. Yourdon, Inc., Englewood Cli�s,
New Jersey, 1985.

[WZ91] Jeannette M. Wing and Amy Moormann Zaremski. Unintrusive Ways to Inte-
grate Formal Speci�cations in Practice. In S. Prehn and W. J. Toetenel, edi-
tors, VDM '91 Formal Software Development Methods 4th International Sym-

posium of VDM Europe Noordwijkerhout, The Netherlands, Volume 1: Confer-

ence Contributions, volume 551 of Lecture Notes in Computer Science, pages
545{569. Springer-Verlag, New York, N.Y., October 1991.

[You89] Edward Yourdon. Modern Structured Analysis. Yourdon Press computing se-
ries. Prentice-Hall, Englewood Cli�s, New Jersey, 1989.

35

	7-1996
	An Operational Semantics of Firing Rules for Structured Analysis Style Data Flow Diagrams
	Gary T. Leavens
	Tim Wahls
	Albert L. Baker
	Kari Lyle
	Recommended Citation

	firing-semantics.dvi

