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An Executable Semantics for a

Formalized Data Flow Diagram Speci�cation Language

Tim Wahls�, Albert L. Baker, and Gary T. Leavens

Iowa State University

November 15, 1993

Abstract

While traditional Data Flow Diagrams (DFDs) are popular, they lack the formality needed
in a good speci�cation technique. We provide an executable semantics for a subset of RT-
SPECS, a formalization of DFDs, using the programming language Standard ML. RT-SPECS
is a formal notation for specifying concurrent and real-time software that relies on model-based
speci�cation of abstract datatypes. Processes are speci�ed using assertions rather than algo-
rithms. Because our semantics of RT-SPECS is written in SML, it is also an interpreter, yielding
a directly executable speci�cation language.

Categories and Subject Descriptors:
D.2.1 [Software Engineering] Requirements/Speci�cations | languages; D.2.2 [Software
Engineering] Tools and Techniques | computer-aided software engineering (CASE); D.2.m
[Software Engineering] Miscellaneous | rapid prototyping
General Terms: Speci�cation, Design, Prototyping, Formal Semantics
Additional Key Words and Phrases: Data Flow Diagrams (DFDs), Standard ML, executable
speci�cation, literate programming, operational semantics, speci�cation language semantics,
RT-SPECS, Structured Analysis (SA)

1 Introduction

1.1 Data Flow Diagrams

Traditional Data Flow Diagrams (DFDs) are probably the most widely used speci�cation tech-
nique in industry today. They are the cornerstone of the software development methodology
commonly referred to as \Structured Analysis" (SA). Their popularity arises from their graphical
representation and hierarchical structure, which allows users with non-technical backgrounds to
understand them. Indeed, one of the common uses of DFDs is in explaining the static structure
of a system to non-technicians.

�Wahls's work is supported in part by a research assistantship provided by the College of Liberal Arts and Sciences,
Iowa State University. Baker's work was supported in part by a grant from Rockwell International. Leavens's work
is supported in part by the National Science Foundation under Grant CCR-9108654.
Authors' address: Department of Computer Science, 226 Atanaso� Hall, Iowa State University, Ames, Iowa 50011-
1040 USA
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Traditional DFDs consist of bubbles and 
ows. Bubbles are drawn as circles and represent
either processes (if the system being speci�ed is concurrent) or procedures. Flows are drawn
simply as arrows connecting the bubbles, and show the paths over which data may travel.
Hence, a DFD is a directed graph. Flows coming into a bubble are called in
ows, and 
ows
leaving, out
ows. A bubble reads the information on its in
ows, and produces information on
its out
ows.

1.2 Motivation for formalization of traditional DFDs

While the description above is simpli�ed, it is already enough to point out the greatest 
aw of
traditional DFDs | there is no way to know when a bubble will read its in
ows or produce on its
out
ows, and there is no way to know what a bubble will produce. This is partially explained
by the fact that traditional DFDs are intended as static \road maps" of how information is
transformed in a system, so that there was no notion of actually \executing" a DFD. This is
clearly insu�cient for precisely specifying a real software system.

A number of techniques have been used in traditional DFDs to combat this problem. In
particular, the functionality of a bubble is often expressed in \Structured English" [21]. This
has the advantages of informality and some level of understandability by non-technicians, but is
too ambiguous and low-level to be a good speci�cation technique. Another technique is to include
in the DFD the actual code implementing a bubble [3]. While this is a formal speci�cation, it
is not an adequate speci�cation technique, as it is too low-level. A third modi�cation to DFDs
describes the functionality of bubbles with a �nite state machine. This ends up as a notational
convenience, for the �nite state description is easily transformed into another traditional DFD.

A better way to augment traditional DFDs so that they can model software systems is RT-
SPECS, a technique developed at Iowa State University (ISU). In RT-SPECS, a set of rules is
associated with each bubble. Each rule has three parts: an enabling condition that describes
when a bubble may read its inputs, a pre-condition that gives conditions that must be met for
the bubble to produce results, and a post-condition, which de�nes what the bubble outputs to its
out
ows. These conditions are written as �rst order predicate calculus (FOPC) assertions over
the values on the in
ows and out
ows of the bubble. Thus, RT-SPECS has much in common
with SPECS (a non-graphical speci�cation language developed at ISU), VDM [6], and Z [5] [18]
[19] in that speci�cation is done using FOPC pre- and post-conditions. RT-SPECS thus has the
formality of these speci�cation techniques, and also the advantage of a graphical notation.

1.3 Goal of this paper

The goal of this paper, then, is to provide a formal semantics for RT-SPECS. First we provide
an informal syntax and semantics for RT-SPECS to introduce the reader to the language. Then
we give a formal syntax and semantics for RT-SPECS, written in the functional programming
language Standard ML [13]. This provides two distinct semantic views of RT-SPECS: a deno-
tational view (if we think of the program as a function mapping an RT-SPECS speci�cation to
its meaning), and an operational view obtained by actually running the SML code. We have
striven to provide su�cient explanation of the SML notation to allow the reader who is not

uent in SML to follow the formal development. As using full FOPC for the enabling, pre-, and
post-conditions makes RT-SPECS undecideable, we subset the language by using only propo-
sitional logic for these conditions. As the purpose of this paper is to give a formal semantics
for DFDs, and not to provide insights into logic programming, this is reasonable. We conclude
with a discussion of of problems remaining in the area of formalizing traditional DFDs, and a
description of the advantages of executable semantics/speci�cation.

2 Informal Description of RT-SPECS

The description in this section follows that of Coleman [2]. The syntax of RT-SPECS is an
extension of traditional DFD syntax. The semantics of RT-SPECS, however, is a more radical
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departure from traditional techniques, as the traditional DFD model does not have a well-de�ned
semantics.

2.1 Informal Syntax of RT-SPECS

An RT-SPECS speci�cation consists of a set of bubbles and a set of 
ows. Ordinarily, a Data
Dictionary, which stores information about individual bubbles and 
ows, is also associated with
each DFD. In this model, we attach the Data Dictionary information directly to the bubble or

ow, and so Data Dictionaries are not discussed here.

Each bubble is described by a name and a set of �ring rules. The name is written inside the
bubble on the diagram. The �ring rules are the enabling condition, pre-, and post-condition
triples discussed previously.

A 
ow is an arrow from one bubble to another labeled with a name and a type. The 
ow's
name is just a string. The type gives the type of information (integer, string, ...) which may
travel along the 
ow. In our model, the label \name: type" is required to be unique for each

ow. There are two kinds of arrows in a DFD. Arrows with a double head are used for persistent

ows. Those with single arrowheads are used for consumable 
ows. The di�erence between these
kinds of 
ows is described in the next section.

Tomore precisely describe the non-graphical parts of an RT-SPECS speci�cation, we give the
following BNF grammar. The non-terminals bubble-name, 
ow-name, and var-name represent
identi�ers, and any non-terminal of the form -literal represents a constant of the given type.
The symbol n is used for set di�erence, and k for appending of sequences. The propositional
logic subset of this concrete syntax includes all of the specialized RT-SPECS operators, and so
the functionality of these operators will be explained along with the abstract syntax presented
later.

textual-part ::= process-list initial-state
process-list ::= empty j process-list process
process ::= Process bubble-name : rule-list
rule-list ::= rule j rule-list; rule
rule ::= enabling-condition : pre-condition j= post-condition
enabling-condition ::= true j 
ow-enabled-list ^ FOPC-expr

ow-enabled-list ::= 
ow-enabled j 
ow-enabled-list ^ 
ow-enabled

ow-enabled ::= +
ow-name j �
ow-name
initial-state ::= empty j Initial State: 
ow-enabled-list

j Initial State: 
ow-enabled-list ^ FOPC-expr
pre-condition ::= FOPC-expr
post-condition ::= FOPC-expr
FOPC-expr ::= true j false j (FOPC-expr) j :FOPC-expr j

FOPC-expr ^ FOPC-expr j FOPC-expr _ FOPC-expr j
FOPC-expr ) FOPC-expr j
8var-name [FOPC-expr] j9var-name [FOPC-expr] j
token-expr rel-op token-expr j token-expr set-op token-expr

rel-op ::= = j 6= j < j � j > j �
set-op ::= 2 j � j � j � j �
token-expr ::= int-literal j real-literal j string-literal j bool-literal j

var-name j 
ow-name j 
ow-name'
unary-op(token-expr) j token-expr binary-op token-expr j
ftoken-expr-listgj <token-expr-list> j(token-expr-list)j
index(token-expr, token-expr)

token-expr-list ::= empty j t-expr-list
t-expr-list ::= token-expr j t-expr-list, token-expr
unary-op ::= size j �rst j header j last j trailer j length
binary-op ::= +j = j � j=j mod j [ j \ j n j k
empty ::=

3



QSize: int

Consumed: signal

I: real

Item: real

O: real
OutCPIn

As as example of an RT-SPECS speci�cation, consider the following speci�cation of a
bounded bu�er producer/consumer system from [1].

Process P:
+I ^ +QSize ^ �Consumed ^QSize < 3 :

j=QSize0 = QSize+ 1 ^ Item0 = I=2;
+I ^ +QSize ^ +Consumed :

j=QSize0 = QSize ^ Item0 = I=2;
�I ^ +QSize ^ +Consumed :

j=QSize0 = QSize� 1
Process C:

+Item :j= O0 = Item+ 1 ^ Consumed0 = ()
Initial State:

�Consumed ^ �Item ^ �O ^ +QSize ^QSize = 0

The +flowname expression in the enabling condition is true exactly when there is informa-
tion on the 
ow named flowname, and �flowname is true when there is no information on the
indicated 
ow. Primed 
ow names (0) refer to out
ows, while unprimed 
ow names are in
ows.
Bubbles In and Out represent the outside world, and so have no associated rules. Note that
all 
ows in this example are consumable. A more detailed explaination of part of this example
appears in the next section, but roughly bubble P produces reals onto 
ow Item, using the
information on 
ow QSize to maintain the property that a maximum of three reals reside on
Item at any time. The bubble C consumes reals from Item, and signals P that it has done so,
using 
ow Consumed.

2.2 Informal Semantics of RT-SPECS

This informal description of RT-SPECS semantics follows the �rst formalization by Coleman [2]
and the operational semantics given in Leavens et. al [8] for traditional DFDs. The key concept
is that of �ring a bubble. Firing is the process in which a bubble reads its in
ows and produces
onto its out
ows. The semantics of �ring gives meaning to the �ring rules in RT-SPECS, which
specify the dynamic behaviour of a DFD.

We model how a bubble �res in two steps. A bubble �rst reads its input 
ows, and then
writes to its output 
ows. We say a bubble is working when it has read its input 
ows but not
yet produced output; it is idle otherwise. We consider the transitions between these states to
be atomic.

What happens when a 
ow is read depends on the persistency of the 
ow. When a bubble
reads from a consumable 
ow, the information read is removed from the 
ow, while reading from
a persistent 
ow does not a�ect the information it contains. Similarly, writing to a consumable

ow adds to the information on the 
ow, while writing to a persistent one overwrites any
information already present.1 Thus, a persistent 
ow is like a variable shared between two

1The distinction between persistent and consumable 
ows is closely related to the issue of continuous versus
discrete 
ows found in the traditional DFD literature [2] [4] [20].
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bubbles, which only the origin bubble can write and only the destination bubble can read.
We treat consumable 
ows as unbounded FIFO queues. Hence, any information read from a
consumable 
ow is read from the head of the 
ow's queue, and any information added to a
consumable 
ow is added at the rear.

Firing occurs as follows. Initially, all the bubbles are idle. The 
ows may have some initial
values placed upon them | the input to the program being modeled. Then the following
algorithm is executed:

1. Find the set of bubbles that may �re. This includes all bubbles in the working state, and
any bubble in the idle state that has values on its in
ows satisfying the enabling condition
of at least one of its �ring rules.

2. Choose one of these bubbles to �re.

3. Fire the bubble:

� If the bubble is idle:

(a) Choose one of the bubble's rules whose enabling condition is satis�ed by the in
ow
values. The pre-condition is assumed to be true, as the bubble is not responsible
for what happens if the pre-condition is false.

(b) Read the values referenced by this rule from the in
ows. If the in
ow is con-
sumable, remove the information from the 
ow. Otherwise, do not change the

ow.

(c) Change the state of the bubble from idle to working.

� If the bubble is working:

(a) Produce output onto the out
ows. This output is de�ned by the post-condition
of the rule chosen when the bubble changed to the working state. If the out
ow
is consumable, add the output to the 
ow. If the 
ow is persistent, overwrite
whatever it currently contains.

(b) Change the state of the bubble from working to idle.

4. Repeat the above steps until the set of bubbles allowed to �re in step one is empty.

So, in the example of the previous section, if we start in a state where all bubbles are idle,

ow I has the value 2.0 at the head of its queue, 
ow QSize has the value 0 at the head of its
queue, and no information is on 
ows Consumed and Item, then the only bubble which may
�re is P, and the in
ows only satisfy the enabling condition of its �rst rule. This rule has no
pre-condition, which is equivalent to a pre-condition of just true. As both of P's in
ows are
consumable, the values mentioned above are read and removed from the 
ows. Finally, bubble
P changes state to working.

If we �re the bubble again in the state resulting from the previous �ring, then P is again
the only bubble which may �re, and so (using the post-condition of its �rst rule) it enques the
value 1 on 
ow QSize and 1.0 on 
ow Item. Finally, P changes state to idle.

3 RT-SPECS | in SML

While the above description gives useful intuition, those actually writing speci�cations in RT-
SPECS need a more formal de�nition of the language. We now de�ne the abstract syntax and
semantics of RT-SPECS using the language Standard ML, which is noted for its similarity to
standard denotational semantics notation. Thus, although SML is a programming language, it
is also an e�ective tool for communicating with humans, and we view our work as equal parts
executable speci�cation and formal semantics of a speci�cation language. See [11] for another
example of this style of formal semantics.
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3.1 Syntax

In this section, we give the abstract syntax for RT-SPECS in SML. We pay particular attention
to parts of the syntax that are most needed by someone using the SML program to model a
particular software system.

3.1.1 Flows

The syntax of 
ows is very close to that explained informally, so we give only the SML code
and a small amount of explanation. Recall that a 
ow can be either persistent or consumable.
The SML keyword datatype builds a discriminated union type whose constructors are listed on
the right hand side of the equals sign. Hence, Persistency is a type with only two elements |
persistent and consumable.2

h
owtype declarationi�
datatype Persistency = persistent | consumable;

In the following SML record implementation of 
ows, the Origin and Destination �elds
are the names of the initial and terminal bubbles of the 
ow, Name gives the name of the 
ow,
and Pers records whether the 
ow is persistent or consumable.

The Type �eld is used to indicate the type of information that may travel on the last �eld
of a 
ow, Contents. Borrowing from the language of Petri nets [14], we refer to each item of
information as a token. The string stored in the Type �eld of a 
ow must be written according
to the following grammar. This grammar renders types with parenthesized expressions, so that
a 
ow that is meant to carry tokens such as {<1>} must have its type expressed as (set of

(sequence of int)). FieldID is any nonempty sequence of alphanumeric characters.

Tokentype ::= int j real j bool j string j signal j (set of Tokentype)
(sequence of Tokentype) j (tuple (Fieldexprlist))

Fieldexprlist ::= (FieldID: Tokentype) j (FieldID: Tokentype), Fieldexprlist

The Contents �eld of a 
ow contains the tokens actually on the 
ow, and is modeled as a
FIFO queue. As only one data item may exist on a persistent 
ow at a time, the Contents

�eld of a persistent 
ow is always a queue of length zero or one. The natural data structure
for building queues is a sequence, and so the contents �eld is a sequence of tokens. But this
corresponds exactly to our notion of a token of type sequence, and so the Contents �eld is itself
a token. Thus, 
ows are actually implemented (not just modeled) as a sequence of tokens.3

h
ow declarationi�
structure Flow : FLOW =

struct

datatype F = Flow of {Origin:string,

Destination:string,

Name:string,

Type:string,

Pers:Persistency,

Contents:Token.T}

homitted 
ow implementationi
end;

2All SML code in this paper is presented using the literate programming tool Noweb [16]. Expressions of the
form hdecl i represent parts of the code that are presented elsewhere. The corresponding form hdecli � code de�nes
such omitted code. The advantages of Noweb are that it allows a program and the text describing it to be built
simultaneously and in the same �le, and that it provides a structured way of presenting the code.

3The structure keyword in SML introduces the body of an ADT, much like an Ada package body, while the
associated signature FLOW (not shown) speci�es client access to the ADT, much like an Ada package speci�cation.
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The only operation needed on 
ows at this level is the ability to build one. This is given by
the constructor makeFlow, whose four string arguments are: origin name, destination name, 
ow
name, and type | the type of token that may travel on the 
ow. Recall that is this context, F
is the type of 
ows.

h
ow constructori�
val makeFlow: string * string * string * string * Persistency -> F

3.1.2 Bubbles

The other components of an RT-SPECS speci�cation are the bubbles. In what follows we
describe the structure of bubbles | while attempting to keep a clear distinction between our
model of bubbles, and any additional information needed in our SML implementation.

Recall that a bubble may be either working or idle.

hbubble state declarationi�
datatype StateType = working | idle;

In the bubble record type de�ned below, the Name �eld is a unique identi�er for a bubble,
while State captures whether a bubble is working or idle. The Rules �eld gives the list of �ring
rules associated with the bubble. Each rule has a fairly complex structure and so we discuss
rules after the description of bubbles.

The rest of the �elds of a Bubble are used in our implementation, but are not part of the
RT-SPECS model. For example, the InFlows and OutFlows �elds just store the names and
types of all in
ows to the bubble, and all out
ows from the bubble. This information is already
present in the speci�cation, but is di�cult to access. The Envmt and CurRule �elds are used
when the bubble �res | the �rst holds the current environment being used to evaluate the rules,
and the second caches the rule that a bubble is using to �re while it is in the working state.
These steps are explained in greater detail in the semantics section that follows.

hbubble declarationi�
structure Bubble : BUBBLE =

struct

datatype B = Bubble of {Name:string,

State:StateType,

Rules:Rule list,

InFlows:(string * string) list,

OutFlows:(string * string) list,

Envmt: Env.E,

CurRule:Rule};

homitted bubble implementationi
end;

The syntactic interface used by the rest of the semantics for bubbles is described in the
following signature. The type \B" is used for \bubble" in the signature.
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hbubble signaturei�
signature BUBBLE =

sig

type B

hbubble exceptionsi
hbubble operationsi
hidle/working operationsi
homitted bubble operationsi

end;

The operations used to construct bubbles are: makeBubble, which constructs a new bubble
with name \string", and addRule, which is used to add a rule to the rule list of the argument
bubble. These allow a bubble to be constructed incrementally. These operations are not used
once we start interpretation (execution) of a DFD.

hbubble operationsi�
val makeBubble: string -> B

val addRule: B * Rule -> B

The following operations are provided for testing and changing the state of a bubble4 |
transforming it from idle to working, and back again. Operation makeWorking takes a bubble,
a rule, and a list of 
ow name and token pairs. The list contains precisely those 
ows and
corresponding token values that the bubble consumes when making the transition to working.
These are used to construct the environment in which the current rule (the parameter of type
Rule in the call to makeWorking) will be evaluated.

hidle/working operationsi�
val isIdle: B -> bool

val makeIdle: B -> B

val isWorking: B -> bool

val makeWorking: B * Rule * (string * Token.T) list -> B

3.1.3 Rules

What remains in our de�nition of the syntax of RT-SPECS is to give the structure of rules. A
rule is a triple consisting of an enabling condition, a pre-condition, and a post-condition. The
enabling condition resembles the when clause of GCIL [9].

hrule declarationi�
type Rule = (enabletype * preexpr * postexpr);

Each of the three conditions is a propositional logic expression written over RT-SPECS types.
We now give the SML representations for these expressions, and a brief explanation.

We start with tokenexprs, which are token valued expressions. They are the building
blocks for the enabling, pre-, and post-conditions | they will be combined with another type
of expression to produce propositional logic assertions.

4When we say \changing the state of a bubble", we are speaking loosely of \modeling the changing state of the
bubble."
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htokenexpr declarationi�
datatype tokenexpr =

hprimitive declarationsi
h
ow referencing declarationi
htoken operation declarationsi

;

The primitive tokenexprs mark constants appearing in the rules.

hprimitive declarationsi�
primi of int

| primr of real

| prims of string

| primb of bool

Tokens read from one of the bubble's in
ows are accessed by the tokenexpr inflow. Thus,
for example, the expression inflow("foo") refers to the token read from in
ow "foo", and can
return any possible type of token | depending on the type of 
ow "foo".

h
ow referencing declarationi�
| inflow of string

The token operation declarations give the syntax of all operators on tokens that return tokens
as their result. Boolean valued operators, such as the relational operators on numbers, subset,
and membership for sets and sequences are logical assertion constructors, and so are discussed
with the enabling, pre-, and post-condition syntax. The types for tokens that we currently
support are taken from the model based speci�cation language SPECS. Thus, the possible types
for tokens are: set, sequence, tuple, integer, real, string (of characters), and signal. The actual
implementation of tokens and the operations on them is omitted, as it is just an exercise in
SML programming with no real bearing on the ideas presented in this paper. However, we will
describe the functionality of the operators informally.

htoken operation declarationsi�
hnumerical operatorsi
hset operatorsi
hsequence operatorsi
htuple operatorsi
hboolean operatorsi

We provide the standard operations on numbers. All may be used with integers or reals,
except that modulo works only on integers. Both arguments must be of the same type | adding
a real and an integer is not permitted.

hnumerical operatorsi�
| add of (tokenexpr * tokenexpr)

| sub of (tokenexpr * tokenexpr)

| divide of (tokenexpr * tokenexpr)

| mult of (tokenexpr * tokenexpr)

| modulo of (tokenexpr * tokenexpr)

The operators on sets include the usual set operators, as well as operator buildset, which
converts an SML list of tokens to a set containing the list elements. We require sets to be
homogenous, so each of union, intersection, and difference require that both argument
sets contain the same type of tokens. Operator size returns the cardinality of its argument set.
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hset operatorsi�
| buildset of (tokenexpr list)

| union of (tokenexpr * tokenexpr)

| intersection of (tokenexpr * tokenexpr)

| difference of (tokenexpr * tokenexpr)

| size of tokenexpr

The operators on sequences are similar to the operators on lists usually provided in functional
languages. Operator buildseq converts an SML list of tokens to a sequence, much as buildset
does for sets. Sequences are also homogeneous, so operator append, which concatenates two
sequences, requires that its arguments contain the same type of tokens. Operator first returns
the �rst element of a sequence, while header returns a sequence containing all the elements of
its argument, except the last one. Thus, header(< a; b; c >) =< a; b >. Similarly, last returns
the last element of a sequence, and trailer returns a sequence containing every element of the
argument sequence except the �rst one. Thus, trailer(< a; b; c >) =< b; c >. Operator length
returns the size of a sequence, while index takes a sequence and an integer n, and returns the
nth element of the sequence.

hsequence operatorsi�
| buildseq of (tokenexpr list)

| append of (tokenexpr * tokenexpr)

| first of tokenexpr

| header of tokenexpr

| last of tokenexpr

| trailer of tokenexpr

| length of tokenexpr

| index of (tokenexpr * int)

Operation buildtuple takes a list of pairs, where each pair is a �eld name and a tokenexpr,
and returns a tuple with each �eld associated with the value of the paired tokenexpr. If
buildtuple's argument is an empty list, then it returns an empty tuple, which is the only
member of type signal. Having such a type is useful in speci�cations when the only information
required from a 
ow is the existence or nonexistence of a token. The 
ow Consumed in the
producer/consumer bounded bu�er speci�cation is an example.

The field operator takes a �eld name and a tuple, and returns the token associated with
that name in the tuple.

htuple operatorsi�
| buildtuple of ((string * tokenexpr) list)

| field of (string * tokenexpr)

The boolean operators take and return boolean valued tokens. The \t" pre�x is added to
distinguish them from SML's built in boolean operators.

hboolean operatorsi�
| tand of (tokenexpr * tokenexpr)

| tor of (tokenexpr * tokenexpr)

| timplies of (tokenexpr * tokenexpr)

| tnot of tokenexpr

Thus, the datatype tokenexpr allows the building of arbitrarily complex token valued ex-
pressions. For example,

index(buildseq [primi 3, primi 4], add(primi 1, primi 1))

would evaluate to primi 4.
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Now that we have syntax for dealing with tokens, we can give the syntax for rules, as they
are propositional logic assertions over tokens. The �rst component of a rule is the enabling
condition. An enabling condition has two parts, the �rst of which is a list of 
ow names tagged
with a plus or minus, and the second a preexpr, which represents a logical assertion exactly
like the next component of a rule | the pre-condition. A rule may also have a trivial enabling
condition | always true, denoted T.

In the flowenabled list section of an enabling condition, a plus tag on the name of the
in
ow means that a token is present on that 
ow, while the minus tag indicates that a token
is not present on that 
ow. Any in
ow name appearing anywhere else in the rule must appear
as a plus item in the flowenabled list. Interestingly, a list is su�cient structure here |
there is only one reasonable way for the flowenabled components to be related. This is a
dramatic simpli�cation of other e�orts to capture this notion [7] [2], and is discussed further in
the conclusions section.
henabling condition declarationsi�
datatype flowenabled = plus of string | minus of string;

datatype enabletype = T | flowlist of ((flowenabled list) * preexpr);

The second component of a rule (the pre-condition) has the same syntax as the second
component of the enabling condition. A preexpr is a propositional logic assertion over token
expressions. We also allow boolean constants (hence the prep component) and the use of
boolean tokens (from the prebool component) in these assertions. The standard propositional
logic connectives provide more building blocks for assertions. The constructors preless through
pregreatereq represent the obvious relational operators, and may be applied to tokenexprs
that evaluate to integers, reals, strings, or characters. The constructors preeq and preneq may
be applied to any type of token, but as with the other relational operators, require that both
argument tokenexprs represent expressions that are of the same type. Constructor presubset
requires that its arguments evaluate to sets of the same type of tokens, and premember requires
that its second argument be a set or sequence, and that the type of its �rst argument be the
element type of that set or sequence.

hpre-condition declarationi�
datatype preexpr = prep of bool

| prebool of tokenexpr

| preneg of preexpr

| preand of (preexpr * preexpr)

| preor of (preexpr * preexpr)

| preimplies of (preexpr * preexpr)

| preless of (tokenexpr * tokenexpr)

| prelesseq of (tokenexpr * tokenexpr)

| pregreater of (tokenexpr * tokenexpr)

| pregreatereq of (tokenexpr * tokenexpr)

| preeq of (tokenexpr * tokenexpr)

| preneq of (tokenexpr * tokenexpr)

| presubset of (tokenexpr * tokenexpr)

| premember of (tokenexpr * tokenexpr);

Syntactically and semantically, post-conditions are nearly identical to pre-conditions. The
only di�erences are the substitution of post for pre (to satisfy SML's requirements that the
names of datatype constructors be unique), and the addition of postassign, which is used to
put a token, represented by the tokenexpr argument, out on the out
ow with name string.
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hpost-condition declarationi�
datatype postexpr = postp of bool

| postbool of tokenexpr

| postneg of postexpr

| postand of (postexpr * postexpr)

| postor of (postexpr * postexpr)

| postimplies of (postexpr * postexpr)

| postless of (tokenexpr * tokenexpr)

| postlesseq of (tokenexpr * tokenexpr)

| postgreater of (tokenexpr * tokenexpr)

| postgreatereq of (tokenexpr * tokenexpr)

| posteq of (tokenexpr * tokenexpr)

| postneq of (tokenexpr * tokenexpr)

| postsubset of (tokenexpr * tokenexpr)

| postmember of (tokenexpr * tokenexpr)

| postassign of (string * tokenexpr);

For example, here is the SML rendition of the �rst rule for bubble P in the earlier pro-
ducer/consumer example:

hrule examplei�
(flowlist([plus("I"), plus("QSize"), minus("Consumed")],

preless(inflow("QSize"), primi 3)),

prep true,

postand(postassign("QSize", add(inflow("QSize"), primi 1)),

postassign("Item", divide(inflow("I"), primr 2.0)))))

which states that:

� enabling condition: tokens must exist on in
ows I and QSize, but not on in
ow Consumed,
and the value of the token on QSize is less than 3.

� pre-condition: always true

� post-condition: out
ow QSize receives the integer read from it plus one, and out
ow Item

receives the real read from in
ow I divided by 2.0. Note that it is possible for a 
ow to
be an in
ow to and out
ow from the same bubble.

We will not expect speci�ers to write expressions in this form. The reader should think of
this example as a parse of the more natural syntax given in Section 2. Recall that our goal for
this paper is to present an executable semantics for RT-SPECS, and so the syntax presented
here is intended only as a basis for that semantics.

3.1.4 The RT-SPECS Model

Now that we have built all the pieces of the RT-SPECS model, we are ready to assemble them
as complete, \formalized" DFDs. (Technically, the model also includes the Data Dictionary. We
omit it here for the reasons previously discussed.) We have stated that the diagram consists of
a set of 
ows and a set of bubbles.
hDfd declarationi�
structure Dfd: DFD =

struct

type D = {Flows: FlowSet.FSet, Bubbles: BubbleSet.BSet};

homitted Dfd implementationi
end;
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We have omitted the description of the structures FlowSet and BubbleSet as they are
uninteresting | both sets are implemented by SML lists.

Next we provide the signatures of operations on DFDs and a brief description of their func-
tionality.

hDfd signaturei�
signature DFD =

sig

type D

hDfd exceptionsi
hthe empty Dfdi
hDfd construction operationsi
h�re declarationi
h�rerule declarationi
hMeaning declarationi
hRun declarationi
hRandRun declarationi
hrunaux declarationi

end;

Building a Dfd starts from empty, which is just the value of the empty diagram | an empty
set of 
ows and an empty set of bubbles.

hthe empty Dfdi�
val empty: D

To make interesting diagrams, one uses the following operations. The operation addBubble

adds a bubble constructed by Bubble.makeBubble to the Dfd. The information about in
ows
and out
ows is added to the bubble when the appropriate 
ows are added. Hence, there is an
ordering constraint here, as a 
ow's origin and destination bubbles must both exist before it can
be created. Operation addFlow adds a new 
ow (constructed by Flow.makeFlow) to the Dfd.
Operations putToken and currToken work on the 
ow speci�ed by the name and type given in
their second and third arguments; putToken places a token on the named 
ow in the Dfd. The
type of the token is checked against the type of the 
ow. The token is placed at the end of the

ow, so putToken enqueues the token. Operation currToken returns the token currently at the
head of the 
ow.
hDfd construction operationsi�

val addBubble: D * Bubble.B -> D

val addFlow: D * Flow.F -> D

val putToken: D * string * string * Token.T -> D

val currToken: D * string * string -> Token.T

As an example of using these speci�cation constructor operations, here is the SML version
of the producer/consumer problem speci�cation presented in the second section. For purposes
of this example only, the SML syntax val varname = ... may be thought of as assigning a
value to varname, even though it isn't actually an assignment in SML.
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hproducer/consumer problemi�
(* the producer/consumer bounded buffer *)

local open Dfd in

val d = empty;

hbubble constructioni
h
ow constructioni
hstate initializationi

end;

First, construct the bubbles and add the necessary rules, using makeBubble and addRule.

hbubble constructioni�
val b = Bubble.makeBubble("Out");

val d = addBubble(d, b);

val b = Bubble.makeBubble("C");

val b = Bubble.addRule(b, (

flowlist([plus("Item")], prep true),

prep true,

postand(postassign("O", add(inflow("Item"), primr 1.0)),

postassign("Consumed", buildtuple([])))));

val d = addBubble(d, b);

val b = Bubble.makeBubble("P");

val b = Bubble.addRule(b, (

flowlist([minus("I"), plus("QSize"), plus("Consumed")], prep true),

prep true,

postassign("QSize", sub(inflow("QSize"), primi 1))));

val b = Bubble.addRule(b, (

flowlist([plus("I"), plus("QSize"), plus("Consumed")], prep true),

prep true,

postand(postassign("QSize", inflow("QSize")),

postassign("Item", divide(inflow("I"), primr 2.0)))));

val b = Bubble.addRule(b, (

flowlist([plus("I"), plus("QSize"), minus("Consumed")],

preless(inflow("QSize"), primi 3)),

prep true,

postand(postassign("QSize", add(inflow("QSize"), primi 1)),

postassign("Item", divide(inflow("I"), primr 2.0)))));

val d = addBubble(d, b);

val b = Bubble.makeBubble("In");

val d = addBubble(d, b);

Then, construct and add the necessary 
ows with makeFlow and addFlow.

h
ow constructioni�
val d = addFlow(d, Flow.makeFlow("C", "Out", "O", "real", consumable));

val d = addFlow(d, Flow.makeFlow("C", "P", "Consumed", "signal", consumable));

val d = addFlow(d, Flow.makeFlow("P", "C", "Item", "real", consumable));

val d = addFlow(d, Flow.makeFlow("P", "P", "QSize", "int", consumable));

val d = addFlow(d, Flow.makeFlow("In", "P", "I", "real", consumable));
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Finally, initialize the state of the diagram, using putToken to place the speci�cation's input
on the appropriate 
ows.

hstate initializationi�
val d = putToken(d, "QSize", "int", Token.inttoken 0);

val d = putToken(d, "I", "real", Token.realtoken 2.3);

3.2 Semantics

The example just given is a speci�cation for a software system. To understand what this
speci�cation means, we need to understand the semantics of RT-SPECS | which means that
we have to understand what it means to �re a bubble, and how bubbles and rules are selected
for �ring. To do this, we �rst formally de�ne the meaning of an RT-SPECS speci�cation by
showing the appropriate SML code, and then name and informally explain some of the functions
that allow a user to experiment with a speci�cation.

The operation Meaning takes a diagram and �res all possible bubbles and rules in all possible
combinations, returning the set of �nal con�gurations thus produced. Set is a generic set
implementation. By �nal con�gurations, we mean diagrams in which no rule may �re. Returning
a set of �nal con�gurations is necessary because an RT-SPECSDFD may not determine a unique
�nal con�guration, as at any stage there may be several bubbles enabled, and several rules
enabled in each bubble. One can view Meaning more abstractly | as a semantic function that
maps an RT-SPECS speci�cation to its meaning, which is the set of �nal con�gurations. Thus,
we have a denotational semantics along with the operational semantics obtained by viewing the
SML code as an RT-SPECS interpreter.

hMeaning declarationi�
val Meaning: D -> D Set.S

Function BubbleSet.BList takes a BubbleSet and returns the bubbles in it in an SML list,
thus allowing function meanaux to recurse through the bubbles one at a time.

hfunction Meaningi�
fun Meaning({Flows=f, Bubbles=b}) =

meanaux({Flows=f, Bubbles=b} , BubbleSet.BList(b), false);

If we view the execution of Meaning as computing a tree of diagram con�gurations, then the
return value, if any, is the set of leaves of the tree. Function meanaux, of type
Dfd.D * Bubble.B list * bool -> Dfd.D Set.S, �res all the bubbles of the diagram, and so
provides the \breadth" of the tree, while function onebubble, of type
Dfd.D * Bubble.B * Rule list -> (Dfd.D Set.S * bool) computes the result of �ring one
bubble, and so traverses the \depth". Function Bubble.BRules returns the list of rules asso-
ciated with its argument bubble. If no rules in the bubble have a true enabling condition (i.e.
when the variable found is false after traversing the entire diagram), meanaux returns that
con�guration of the diagram as a part of the result.5

5SML functions employ a form of pattern matching something like that of Prolog. Each repetition of the function's
name following a | starts a new \clause" of the function's de�nition. The SML compiler matches the actual arguments
to the function against the patterns provided in the formal argument positions for each \clause", the �rst that matches
is selected, and the body of that alternative is executed. Underscores ( ) represent \wildcards" in the pattern, and
so match any actual argument.
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hfunctions onebubble and meanauxi�
fun onebubble(dfd, _, []) = (Set.Emptyset, false)

| onebubble({Flows=f, Bubbles=b}, bub, r::rs) =

if not(Bubble.isWorking(bub)) then

h�ring an idle bubblei
else

h�ring a working bubblei
and meanaux(dfd, [], found) = if found then Set.Emptyset

else Set.Mkset(dfd)

| meanaux(dfd, b::bs, found) =

let val result = onebubble(dfd, b, Bubble.BRules(b)) in

Set.Union(fst(result), meanaux(dfd, bs, found orelse snd(result)))

end;

We �rst consider �ring an idle bubble on a given rule r. The function enabled checks
whether the enabling condition of the rule passed to it is satis�ed. The code for enabled will
be presented next. Function Bubble.BInFlows returns the in
ows of a bubble as a list of their
names and types, while Bubble.BName just returns the name of a bubble. If the bubble is
enabled on the given rule, then we use firerule (presented after enabled) to �re the bubble
on that rule. Otherwise, we recursively call onebubble to check the next rule.

h�ring an idle bubblei�
if enabled(f, r, Bubble.BInFlows(bub)) then

let val d = firerule({Flows=f, Bubbles=b}, Bubble.BName(bub), r)

in (Set.Union(meanaux(d, BubbleSet.BList(bubbles(d)), false),

fst(onebubble({Flows=f, Bubbles=b}, bub, rs))),

true)

end else (fst(onebubble({Flows=f, Bubbles=b}, bub, rs)), false)

The arguments to function enabled are the set of 
ows, the rule to �re on, and the set
of in
ows of the bubble in question, and so its type is FlowSet.FSet * Rule * (string *

string) list -> bool. As nontrivial enabling conditions have two parts, a flowenabled list

and a preexpr, we use function checkinflows to check that the in
ows satisfy the flowenabled
list portion, and function preeval to check that the preexpr portion is satis�ed. Function
extractpre gets the preexpr portion of the enabling condition | not the rule's pre-condition.
The pre-condition will be checked when the bubble is actually �red. Function getEnv constructs
the environment in which the preexpr part of the enabling condition is evaluated.

hfunction enabledi�
fun enabled(f, (T, _, _), _) = true

| enabled(f, r, inf) =

checkinflows(f, r, inf) andalso

preeval(extractpre(r), getEnv(f, inf, r));

Function checkinflows merely checks that any 
ows tagged with plus in the flowlist

contain tokens, and than any tagged with minus don't. The function FlowSet.isToken checks
whether a 
ow speci�ed by its name and type is carrying a token. Function Bubble.findType

is used to �nd the type of one of the in
ows of some bubble.
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hfunction checkin
owsi�
fun checkinflows(_, (T, _, _), _) = true

| checkinflows(_, (flowlist([], _), _, _), _) = true

| checkinflows(f, (flowlist(plus(s)::fs, p), pre, post), inf) =

FlowSet.isToken(f, s, Bubble.findType(inf, s))

andalso checkinflows(f, (flowlist(fs, p), pre, post), inf)

| checkinflows(f, (flowlist(minus(s)::fs, p), pre, post), inf) =

not (FlowSet.isToken(f, s, Bubble.findType(inf, s)))

andalso checkinflows(f, (flowlist(fs, p), pre, post), inf);

The function getEnv constructs an environment from the list of in
ows and the tokens on
those 
ows | the environment that the enabling, pre-, and post-conditions will be evaluated in.
Thus, the type of getEnv is FlowSet.FSet * (string * string) list * Rule -> Env.E.
Only 
ows tagged with plus in the enabling condition contribute to the �nal environment.
Function FlowSet.currToken returns the token at the head of the queue associated with a

ow.
hfunction getEnv i�

fun getEnv(f, inf, (T, _, _)) = Env.empty

| getEnv(f, inf, (flowlist([], _), _, _)) = Env.empty

| getEnv(f, inf, (flowlist(minus(s)::fs, p), pre, post)) =

getEnv(f, inf, (flowlist(fs, p), pre, post))

| getEnv(f, inf, (flowlist(plus(s)::fs, p), pre, post)) =

Env.extend( getEnv(f, inf, (flowlist(fs, p), pre, post)),

s,

FlowSet.currToken(f, s, Bubble.findType(inf, s)));

Assuming that the enabling condition is satis�ed (enabled returns true), onebubble uses
function firerule to �re the bubble. The string argument to firerule is the name of the
bubble, and it returns the con�guration resulting from the �ring.

h�rerule declarationi�
val firerule: D * string * Rule -> D

Function firerule uses BubbleSet.find to �nd the bubble being �red by name. Both idle
and working bubbles may be �red using firerule. As we are currently discussing �ring an idle
bubble, we discuss that case now, and defer the rest of firerule until the discussion of �ring
working bubbles.

hfunction �rerulei�
fun firerule({Flows=f, Bubbles=b}, name, r) =

let val cb = BubbleSet.find(b, name) in

if Bubble.isIdle(cb) then

hidle casei
else

hworking casei
end;

In the idle case, function BubbleSet.replace produces a new BubbleSet with the formerly
idle bubble now working, and consume produces a new FlowSet with the appropriate tokens
removed.
hidle casei�

{Bubbles = BubbleSet.replace(b, name, makeWorking(cb, r, f)),

Flows = consume(f, r, Bubble.BInFlows(cb))}
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Thus, a new DFD con�guration is produced as follows:

1. Produce a new FlowSet that re
ects what the bubble being �red has read from its in
ows.
The type of operation consume is
FlowSet.FSet * Rule * (string * string) list -> FlowSet.FSet. The function consume
uses the removeToken operation on 
ow sets to model consuming tokens from the con-
sumable in
ows. Function removeToken has no e�ect on persistent 
ows. Note that only
the 
ows mentioned in the flowenabled list portion of the enabling condition are con-
sidered.

hfunction consumei�
fun consume(f, (T, _, _), inf) = f

| consume(f, (flowlist([], p), _, _), inf) = f

| consume(f, (flowlist(minus(s)::fs, p), pre, post), inf) =

consume(f, (flowlist(fs, p), pre, post), inf)

| consume(f, (flowlist(plus(s)::fs, p), pre, post), inf) =

consume(FlowSet.removeToken(f, s, Bubble.findType(inf, s)),

(flowlist(fs, p), pre, post), inf);

2. Produce a new BubbleSetwith the bubble being �red nowworking. Function makeWorking
calls getEnv, which constructs the environment needed by the bubble to evaluate its pre-
and post-conditions.

hfunction makeWorkingi�
fun makeWorking(b, r, f) =

Bubble.makeWorking(b, r, getEnv(f, Bubble.BInFlows(b), r));

Function Bubble.makeWorking returns a new bubble in the working state, and with the
environment constructed by getEnv stored in its Envmt �eld. Note that makeWorking

exists only to call Bubble.makeWorking with the appropriate arguments.

Thus, after an idle bubble has �red, it is working. To see how to �re a working bubble,
we return to the appropriate case in function onebubble. As only one DFD con�guration can
result from �ring a working bubble, onebubble simply calls meanaux with that con�guration.

h�ring a working bubblei�
let val d=firerule({Flows=f, Bubbles=b},Bubble.BName(bub), r)

in (meanaux(d, BubbleSet.BList(bubbles(d)), false), true) end

The interesting part, then, is what firerule does when called with a working bubble. Again,
we call BubbleSet.replace to return a new BubbleSet with the Persistency of the bubble
being �red changed, and produce plays the role of consume in that it returns a new FlowSet

with the appropriate changes. Note that the argument of type Rule to firerule is ignored in
this case, as the rule that the bubble became enabled on was stored in the bubble's CurRule

�eld by Bubble.makeWorking | when the bubble changed state from idle to working.

hworking casei�
if preeval(prec(Bubble.BCurrentRule(cb)), Bubble.BEnv(cb))

then {Bubbles = BubbleSet.replace(b, name, Bubble.makeIdle(cb)),

Flows = produce(f, Bubble.BCurrentRule(cb), cb)}

else raise Precondition_not_satisfied

A new DFD con�guration is produced as follows:

1. Check the pre-condition. This is done with the call to preeval, using the environment
that was built by getEnv and stored in the bubble's BEnv �eld when the bubble changed
state from idle to working. As preeval simply checks if a propositional logic assertion is
satis�ed in the given environment, the code is simple, and so omitted. If the pre-condition
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is not satis�ed, the exception Precondition not satisfied is raised. Thus, we see that
a bubble expects its pre-condition to be true | for a diagram to �nish execution, all
pre-conditions must be true when they are evaluated. It is the responsibility of the set
of bubbles whose out
ows are the in
ows to the bubble in question to ensure that the
pre-condition of a rule is satis�ed whenever its enabling condition is.

2. Produce a new con�guration in which the bubble is idle and the output of the bubble is
re
ected on its out
ows. The call to Bubble.makeIdle in firerule handles the bubble,
and the out
ows are handled by the call to produce, which has type FlowSet.FSet * Rule

* Bubble.B -> FlowSet.FSet. Additionally, produce calls function posteval, which is a
weak check of the satis�ability of the post-condition. If this check fails, then the exception
Postcondition not satisfied is raised. Usually, this is a sign of a poorly written or
incorrect post-condition | we expect that post-conditions are always satis�able.

hfunction producei�
fun produce(f, (e, pre, post), b) =

if posteval(post, Bubble.BEnv(b)) then

prodaux(f, producelist(post, Bubble.BEnv(b)), b)

else raise Postcondition_not_satisfied;

Function producelist walks the post-condition, producing a list of out
ow name and to-
ken pairs representing the bubble's output. It will be presented after the code for function
prodaux, which takes the output from producelist and uses function FlowSet.putToken

to produce a new FlowSet. Hence, its type is FlowSet.FSet * (string * Token.T)

list * Bubble.B -> FlowSet.FSet. Function FlowSet.putToken enques tokens on con-
sumable 
ows, and creates a new, one element queue for persistent 
ows.

hfunction prodauxi�
fun prodaux(f, [], b) = f

| prodaux(f, (p, t)::ps, b) =

prodaux(FlowSet.putToken(f, p,

Bubble.findType(Bubble.BOutFlows(b), p), t),

ps, b);

Function producelist, of type postexpr * Env.E -> (string * Token.T) list, pro-
duces the input for function prodaux from the post-condition. Function tokeneval evalu-
ates tokenexprs into tokens, using the environment passed to producelist. Parentheses
and square brackets are SML's tuple and list constructors, respectively. Thus, the expres-
sion [(p, tokeneval(i, bv))] produces a one element list, where that element is an
out
ow name and token pair. In the alternative for postand, the SML operator @ is used
to append two lists, and in the last two alternatives, [] is SML's empty list constructor.
Note that producelist uses posteval to ensure that subexpressions of the post-condition
that may be false are not used to produce tokens. For example, a post-condition such as

postor(postand(postp false, postassign(f1, primi 3)),

postassign(f1, primi 2))

causes producelist to send only the value 2 to out
ow f1.
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hfunction producelisti�
fun producelist(postassign(p, i), bv) = [(p, tokeneval(i, bv))]

| producelist(postand(b1, b2), bv) = producelist(b1, bv)

@ producelist(b2, bv)

| producelist(postor(b1, b2), bv) =

if posteval(b1, bv) then producelist(b1, bv)

else producelist(b2, bv)

| producelist(postimplies(b1, b2), bv) =

if posteval(b1, bv) then producelist(b2, bv)

else []

| producelist(_, _) = [];

Thus, function Meaning produces the set of all possible �nal con�gurations of a DFD. How-
ever, the user may wish to make smaller, more controlled experiments with a DFD. Function
Run does exactly this, as the user chooses what rule to �re at every step. This is more practical
than Meaning, because it avoids the combinatorial explosion inherent in constructing the set of
all possible �nal con�gurations.

hRun declarationi�
val Run: D -> D

The operation RandRun simulates an actual execution of the diagram by nondeterministically
choosing which rule to �re at each step. The process halts (if at all) when no more rules may
�re. Thus, RandRun automates the kind of experiment possible with Run.

hRandRun declarationi�
val RandRun: D -> D

The operation runaux allows users to build their own functions for picking which rule to �re.
The second argument of runaux is a function that picks which rule of a list of bubble names
and rules to �re.
hrunaux declarationi�

val runaux: D * ((string * Rule) list -> int) -> D

Thus, we have formally de�ned the meaning of, and provided tools for experimenting with
RT-SPECS speci�cations

4 Conclusion

4.1 Contributions

We wish to highlight three contributions of this research. Two pertain directly to the speci�ca-
tion of DFDs, and the third bears on the �eld of semantics in general.

The �rst contribution to the speci�cation of DFDs is the previously mentioned simpli�cation
of the enabling conditions | namely that it does not make sense to allow arbitrary logical
connectives in the flowenabled list portion (the part consisting of the list of in
ows of the
bubble tagged with plus or minus). This realization occurred while automating evaluation of
enabling conditions, and so is a practical result of our e�ort to formalize the semantics of RT-
SPECS. Consider, for example, an enabling condition of the form or(plus(f1), plus(f2))

(manufacturing some syntax, as we will shortly show why we do not allow this form). This
enabling condition is true when a token is present on either 
ow, or on both. Thus, when
the rest of the rule is written, it is unknown which 
ow actually has a token on it, and so no
other part of the rule may refer to the value of a token consumed from either 
ow. Thus, the
information carried on the 
ows is lost. As an extreme example, when the enabling condition is
just \true", no 
ows may be referenced in the rule. So, the logical connective for the elements
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of the flowenabled list must be \and". A speci�er can get the e�ect of an \or" here by using
two rules: one with flowenabled list plus(f1), and the other with plus(f2), with the rest
of the rule bodies able to refer to one 
ow or the other. Hence, there is no need to use \or" in
this part of the enabling condition, and a list structure su�ces, as there is only one way that
its elements can be related.

The other contribution to the speci�cation of DFDs is an insight into the nature of �ring
rules. By adding the notion of �ring a bubble, we have raised the questions: \Can a bubble
�re concurrently with itself? Can a bubble �re on two distinct rules simultaneously?" For now,
the answer is no | the semantics we have given prohibits this behavior. When a bubble in the
working state �res, it must �re on the rule it was using when the transition to the working state
was made, and must produce its output and change state to idle. Work on re�nement notions for
RT-SPECS [10] has shown that if a bubble is re�ned to a sub-diagram with several bubbles the
sub-diagram can exhibit behaviors that look like reading more than one input before producing
output. We have investigated formal semantics for bubbles �ring concurrently with themselves
in a forthcoming work [8], and the application of this work to RT-SPECS is straightforward.

Finally, our use of SML demonstrates an unusual and exciting way of doing semantics. The
advantages for the semanticist are twofold:

1. formal semantics done in SML may be automatically type checked, giving us greater pre-
cision and more con�dence in the semantics,

2. SML provides a language with a clearly de�ned (and enforced) syntax and semantics
(provided operationally by the SML compiler) for communicating with other semanticists

Advantages for speci�ers and implementors are given at the end of Section 4.

4.2 Directions for further research

We have given the abstract syntax and semantics for a useful subset of the RT-SPECS model,
but more remains to be done. Some of what follows arises from traditional DFDs, but many of
the problems are unique to the formalized model.

4.2.1 Research arising from traditional DFDs

Traditional DFDs include a specialized form of bubble known as a terminator. Terminators
are always either sources or sinks of the diagram | they represent interaction with the world
outside the software system. Thus, they are easily modeled in our semantics by bubbles with no
�ring rules. For sources, tokens may be placed on the out
ows using putToken, and for sinks,
tokens may be observed and removed with currToken and removeToken.

An interesting possibility stemming from our research is that of using our formal semantics
with traditional CASE tools. In particular, Teamworktm has already been modi�ed to work
with RT-SPECS speci�cations. We would like to parse Teamwork output to the SML input to
our semantics.

The labeling of 
ows is another issue | is it reasonable to require that the combination
\name: type" be unique? Speci�ers may have a use for multiple 
ows with the same name and
type. Also, the semantics we have presented requires only that all 
ows incident on the same
bubble have unique names (as they are referenced by name only in the �ring rules). However, it
may be more \natural" for imperative language programmers to label data with its name and
type, as this is the way they are used to declaring variables. Additionally, this label is more
informative, as both the diagram and the SML rendering of an RT-SPECS speci�cation allow
the destination of a 
ow to be determined at a glance. Thus, we label 
ows by name and type,
but are not yet set in this decision.

We would also like to address the issue of stores. In the traditional DFD model, stores are
passive holders of data, and so are usually implemented as �les. The problem with stores is not
how to represent them | intuitively, a bubble with a persistent self-
ow of type StoreElement
should be su�cient. Instead, the main di�culty is providing access to the store. Does each
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bubble that accesses the store require 
ows to and from it? How cumbersome would this be in
practice? How can we handle concurrent access to stores? Is there a good general technique that
solves this problem, or must we rely on ad hoc solutions for each store? We have addressed these
questions in another work [8] by modeling stores as 
ows with multiple origin and destination
bubbles, and expect that this approach will work for RT-SPECS as well.

4.2.2 Research arising from RT-SPECS

The problems we have uncovered in formalizing DFDs are perhaps even more interesting than
those found in traditional DFDs. We have extended a static model to a dynamic one, and so
face issues that don't even exist in the traditional DFD world.

For example, we would like to write invariants over our RT-SPECS speci�cations. An
invariant is a logical assertion de�ning allowable states of the diagram, and so only makes sense
in terms of a dynamic model. For example, we might like to require that a certain 
ow never be
empty, or that it never contain more than some �xed number of tokens | consider the bounded
bu�er producer/consumer problem. Since our speci�cations are now executable, we would now
also like to check that the invariant holds at every step in the computation of the diagram.
Hence, the invariant would be evaluated over:

� the initial con�guration of the diagram

� the con�guration resulting from a bubble consuming from its in
ows

� the con�guration resulting from a bubble producing onto its out
ows

as these are the points where change occurs. Extending the idea of invariants, we may eventually
want to use temporal logic [12] [15] to describe liveness and safety properties of RT-SPECS
speci�cations.

Invariants are closely related to expression de�nitions, which are named, parameterized
assertions. The advantages of using expression de�nitions are that they allow modularization of
assertions, and that they allow recursive assertions | just as named functions allow recursion
in programming languages. The problem with expression de�nitions lies not in implementing
them, but in evaluating them, as this evaluation need not terminate. Consider, for example, a
simple de�nition such as:

define loop() such that loop = loop()

So, we lose the guarantee that preexprs and postexprs always evaluate to true or false, as they
may now fail to halt. Since there is clearly no automated way to check for this condition, users
of the semantics would have to be aware of this complication.

Expression de�nitions are not the largest hurdle remaining in our work. We have yet to
deal with allowing logical quanti�ers in our �ring rules | raising them from propositional logic
assertions to full �rst order predicate calculus ones. Quanti�ers are convenient for writing
assertions over the elements of a sequence, and vital for assertions over set elements, as the
current RT-SPECS model does not have set analogs for the sequence operations first, last,
header, and trailer that allow access to set elements. So, we propose to allow quanti�cation
over sets, and as a convenience, sequences and subranges of the integers. This raises the problem
of \constructive quanti�cation" | assertions like

8i[1 � i � 10) index(A; i) = i+ 1]

that not only quantify over a set or sequence, but actually construct one. Thus, the work
required for adding quanti�cation is substantial, as we need syntax for the quanti�ers themselves
and stronger versions of the functions preeval and posteval to evaluate the new types of
expressions. We have studied common quanti�er forms and ways of implementing them in the
context of an executable speci�cation language for C++, and much of the syntax and evaluation
technique developed there applies directly to RT-SPECS.
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4.3 Implications of this work

While considerable work remains to be done, the current state of our research already has two
important implications. The �rst is for the use of traditional DFDs as a formal speci�cation
technique. By formalizing the model and providing a semantics for it, we have made the rather
\warm and fuzzy" Data Flow Diagram into a solid tool for specifying software systems. Thus,
we have all the advantages of traditional formal speci�cation | an unambiguous statement of
functionality, clean interfacing for team coding projects, and the possibility of proving code
correctness. At the same time, our model still allows users to do traditional DFDs | simply
by building a diagram with bubbles and 
ows, but no rules, or even simpli�ed rules that don't
capture the entire functionality needed. This informal speci�cation can be directly re�ned to a
formal one | by adding the necessary rules [10].

The second result of our work is that we now can produce executable speci�cations. Thus,
the speci�cation is a prototype of the system. Some of the advantages for the speci�er and client
are:

1. Validating speci�cations. The speci�er can now test and debug a speci�cation in much
the same way that a programmer would validate a program. This pushes validation into
the second stage of the software development cycle.

2. Understanding formal speci�cations. The client, who is likely to have little or no experience
with formal methods, now has a way to understand a formal speci�cation. By experiment-
ing with the prototype, the client can discover and report to the speci�er erroneous or
unexpected results, and missing or incomplete features.

Both these points imply that errors are likely to be discovered earlier than with a traditional
software development cycle, resulting in quicker and less expensive production of software.

Thus, it is with high expectations that we approach the next stages of our research. As
it stands, our semantics is not ready to handle \industrial strength" speci�cations | we need
quanti�ers and the ability to work with a CASE package at the least, but we are con�dent that
we can supply the additional rigor and power needed. The research directions suggested in this
paper will make solid progress in that direction.
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