IOWA STATE UNIVERSITY

Digital Repository

Computer Science Technical Reports Computer Science

9-1993

Inheritance of Interface Specifications

Gary T. Leavens
Towa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports
b Part of the Systems Architecture Commons

Recommended Citation

Leavens, Gary T,, "Inheritance of Interface Specifications" (1993). Computer Science Technical Reports. Paper 95.
http://lib.dr.iastate.edu/cs_techreports/95

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,

please contact digirep@iastate.edu.


http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/95?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Inheritance of Interface Specifications
(Extended Abstract)

Gary T. Leavens

TR #93-23
September 1993

Keywords: specification, inheritance, subtype, subclass, modularity, object-
oriented, abstract data type.

1992 CR Categories: D.2.1[Software Engineering] Requirements/Specifications
— Languages; F.3.1 [Logics and Meanings of Programs] Specifying and verify-
ing and reasoning about programs — pre- and post-conditions, specification
techniques;

Submitted to the Workshop on Interface Definition Languages.
© Gary T. Leavens, 1993. All rights reserved.

Department of Computer Science
226 Atanasoff Hall
Towa Sate University

Ames, lowa 50011-1040, USA



Inheritance of Interface Specifications

(Extended Abstract)

Gary T. Leavens*
Department of Computer Science, 229 Atanasoff Hall

lowa State University, Ames, lowa 50011-1040 USA
leavens@cs.iastate.edu

September 14, 1993

Abstract
Four alternatives for the semantics of inheritance of specifications are

discussed. The information loss and frame axiom problems for inherited
specifications are also considered.

1 Introduction

An interface specification language (ISL) defines both how to call a module and
its (functional) behavior [Win83] [Win87] [Lam89] [GHG193]. The details of
how to call a module and some aspects its behavior are specific to the particular
programming language; hence in the Larch approach to interface specification
[GHG193], each ISL is tailored to a particular programming language.

What does this tailoring involve?

e The syntax for specifying interfaces is a subset of the syntax for the pro-
gramming language, so it can be directly compared to the interface of a
candidate implementation. This means that the ISL must use the type
system of the programming language.

e Most of the semantic concepts of the programming language should be
reflected in the ISL’s semantics.

e The ISL should allow the specifier to use the programming language’s ab-
straction mechanisms. For example, an ISL tailored to an object-oriented
programming language (OOPL) should allow inheritance of specifications.

*This work was supported in part by the National Science Foundation under Grant CCR-
9108654.



e The ISL should ease ways of reasoning about the correctness of code that
are common or otherwise important. For example, an ISL for an OOPL
should ease reasoning that uses supertype abstraction (thinking only about
the types written in the program, not about the dynamically possible
subtype that expressions may denote [LW90]).

It follows that when one is designing an ISL for an OOPL, one must consider
both subtyping and inheritance.

1.1 Modularity

The last point in the list of ways to tailor an ISL is especially important in an
object-oriented context. In order to support supertype abstraction one must
pay attention to modularity. An ISL is modular if:

e at any point where an argument is specified to have type T', an actual
argument of some subtype of T is allowed,

e when adding new subtypes of existing types, or when using specification
inheritance, one need not change any existing specifications, and the mean-
ing of the existing specifications does not change (except for allowing the
new subtypes to be used),

e to specify a type, one need not be aware of the specification of any other
types, except those of the supertypes of the type being specified (and their
supertypes, etc.), and the argument and result types of the operations.

1.2 Subtype versus Subclass

It is important to carefully define the terms “type”, “class”, “subtype” and
“subclass”. By a type we mean an abstract data type (ADT), as characterized
by a (behavioral) specification. By a class we mean an implementation module
(such as classes in Smalltalk or C++).

A subelass is formed from another class (its superclass) by inheritance of
code; this has no particular relation to behavior, as an object of a subclass may
behave quite differently from an object of one of its superclasses. For example
the class IntStack may be a subclass of IntDEQueue, although a IntStack
object cannot respond to all the messages that one would want to send to a
IntDEQueue [Sny86].

If one were to make an analogy between the notions of subtype and subclass,
one would say that, by contrast, a subtype i1s formed from another ADT by
inheritance of specifications, not code. For example, one might specify the type
IntDEQueue by inheriting from IntStack, even if one chooses to implement the
class IntStack as a subclass of the class IntDEQueue. The inheritance analogy
is only approximate, however, as subtyping has to do with specified behavior,



not with how that behavior is specified. That is, subtyping is independent of
specification inheritance. More precisely, a type S is a subiype of T' if one can
use objects of type S in a program where objects of type T" are expected without
any surprising results. This certainly implies that each object of type S acts
like some object of type T' [Sny86] [SCB*86] [Lea89]. In many practical cases
it also implies that there is a homomorphic coercion function, fsp, that maps
the values of objects of type S to values of objects of type T in such a way that
for all instance operations of the supertype and for all « of the subtype 5,

SuperPreCond(fsr(x)) = SubPreCond(z) (1)
SuperPostCond(fs r(x)) < SubPostCond(z) (2)

where “SuperPreCond” is the precondition of the supertype’s instance opera-

tion, etc. [Ame87] [Ame89] [Ame91] [LW9I3a] [LW9I3b].

1.3 Plan

In the following we discuss inheritance of specifications in ISLs. Our ideas
come from our work on the ISLs Larch/Smalltalk (for Smalltalk) [Che91] and
Larch/C++ (for C++4) [LC93b] [CLI3] [LCI3a], and our work on the semantics
of subtyping in OOPLs [Lea89] [LW90] [Lea90] [LP91] [LW92].

2 Inheritance of Specifications

For an example, consider the types BankAccount and PlusAccount. The super-
type, BankAccount, has just a savings account. The subtype, PlusAccount, also
has a (“free”) checking account. We want to specify instance operations such
as balance and pay_interest, for BankAccount and have these specifications
be inherited by PlusAccount.

The Larch/C++ interface specification of BankAccount is given in Figure 1.
The LSL [GHG*93] trait BankAccountTrait it uses is presented in Figure 2.
The trait Rational which is included by BankAccountTrait, is found in the
Larch Shared Language Handbook [GHG193, Appendix A.16]. The member
functions are specified as virtual, which means that the code executed in a
call such as ba->pay_interest() will execute code determined by the dynamic
class of the object pointed to by ba.

In order to state the inheritance problem as clearly as possible, we specify
the subtype PlusAccount in Figure 3 without using inheritance. The LSL trait
PlusAccountTrait is specified in Figure 4.

2.1 The Specification Inheritance Problem

The specification inheritance problem is to state the specification of types like
PlusAccount as succinctly as possible, and to give the specification with inheri-



class BankAccount {
uses BankAccountTrait(BankAccount for Acct);
public:
BankAccount (double amt) {
requires (1/100) < rational (amt);
constructs self;
ensures approximates(amt, balance(self’), 1/100);
}
virtual double balance() const {
ensures approximates(result, balance(self”), (1/100));

}

virtual void pay_interest(double rate) {
requires (0/1) < rate A rate < (1/1);
modifies self;
ensures approximates(toDouble(balance(self’)),
((1/1) + rational(rate)) X balance(self”),
1/100);
}

virtual void update(double amt) {
modifies self;
ensures approximates(toDouble(balance(self’)),
balance(self”) + rational(amt), 1/100);

};

Figure 1: Larch/C++ interface specification of the (super)type BankAccount.

BankAccountTrait(Acct): trait
includes Rational % defines the sort Q
introduces
createlAcct: Q@ — Acct
balance: Acct —
asserts V q: Q
balance(createAcct(q)) == q

Figure 2: The trait that specifies the abstract values of BankAccount objects.

tance a semantics that matches the intended specification as nearly as possible.

For PlusAccount, what one wants to write is something like the specification
in Figure 5. In this specification, the type PlusAccount inherits the specifica-
tions of balance, pay_interest, and update. It is hard to imagine the interface
specification of PlusAccount being more succinct. The question is, what does



class PlusAccount : public BankAccount {
uses PlusAccountTrait(PlusAccount for PA);
public:
PlusAccount (double savings_balance, double checking_balance) {
requires (1/100) < rational(savings_balance)
A (0/1) < rational(checking_balance);
constructs self;
ensures approximates(savings_balance, savings(self’), 1/100)
A approximates(checking_balance, checking(self’), 1/100);
}
virtual double balance() const {
ensures approximates(result, savings(self”)+checking(self”), (1/100));

}

virtual void pay_interest(double rate) {
requires (0/1) < rate A rate < (1/1);
modifies self;
ensures approximates(toDouble(savings(self’)),
((1/1) + rational(rate)) X savings(self’), 1/100)
A approximates (toDouble(checking(self’)),
((1/1) + rational(rate)) X checking(self™), 1/100);
}

virtual void update(double amt) {
modifies self;
ensures approximates(toDouble(savings(self’)),
savings (self”) + rational(amt), 1/100)
A checking(self’) = checking(self”);

};

Figure 3: Larch/C++ interface specification of the (sub)type PlusAccount,
done without using inheritance.

Figure 5 mean? And how close is that meaning to the meaning of Figure 37

2.2 Possible Semantics of Specification Inheritance

A little reflection is enough to convince one that what should be done is to
copy each inherited operation specification from the parent specification to the
inheriting type’s specification [CDD*89] [DD90] [Cus91] [LCI3b]. The semantic
question then becomes: given that the parent’s specification was written in
terms of the abstract values of the parent type, how can one interpret it for the
abstract values of the inheriting type? We have identified four potential answers
to this question in the context of a Larch-style ISL.



PlusAccountTrait: trait

introduces
savNchk: Q,Q — PA
checking: PA — Q
savings: PA — Q

asserts
V q1,92: Q, pa: PA
savings (savlichk(ql,q2)) == qi;
checking(savlichk(ql,q92)) == q2

Figure 4: The trait that specifies the abstract values of PlusAccount objects.

class PlusAccount : public BankAccount {
uses PlusAccountTrait(PlusAccount for PA);
public:
PlusAccount (double savings_balance, double checking_balance) {
requires (1/100) < rational(savings_balance)
A (0/1) < rational(checking_balance);
constructs self;
ensures approximates(savings_balance, savings(self’), 1/100);
A approximates(checking_balance, checking(self’), 1/100);

};

Figure 5: [Ideal interface specification of PlusAccount as a subtype of
BankAccount, using specification inheritance.

1. Use the same sort of abstract values (i.e., extending the same LSL trait)
for the subtype as for the supertype [GM87] [MOMO90]. Since the abstract
values of the types are the same, there 1s no problem in interpreting the
parent type’s specification.

2. Define a homomorphic! coercion function that maps the abstract values
of the inheriting type to the abstract values of the parent type [Ame&7]
[AmeB9] [Ame9l] [LW93a] [LW93b]. The parent type’s specification is
interpreted by using this function to coerce the inheriting type’s abstract
values to the types assumed in its specification.

1Homomorphic in the sense that it commutes with the trait functions of the parent type;
for subtypes it should also commute with the instance operations of the supertype in the sense
of Formulae (1) and (2) above.



3. Define a homomorphic relation that relates each inheriting type’s abstract
value to at least one parent type abstract value, which is used to coerce
the abstract values of the inheriting type to the parent type [Lea89]. The
parent type’s specification is interpreted by using this relation to obtain a
set of parent type abstract values, and these are all used to interpret the
parent type’s specification.

4. Overload each trait function that takes an argument of the parent type’s
abstract values so that it is defined on abstract values of the inheriting
type [LW90] [Lea91] [LW92]. For the abstract values of an inheriting
type, these overloaded trait functions are used to interpret the inherited
specification.

These approaches are discussed and compared below.

2.2.1 Using the Same Sort of Abstract Values

The approach of using the same sort for the inheriting type’s specification as
for the parent type specification is slick when it works. It often works when the
inheriting type i1s a simple restriction on the parent type; for example, when
a subtype’s abstract values are a subset of the supertype’s. However, it does
not work well when the subtype’s objects contain more information than the
supertype’s, as i1s the case with PlusAccount. While it is always possible to
specify both sets of abstract values by using a disjoint union as the abstract
value set of the parent type, doing so is not modular.

2.2.2 Using a Coercion Function

In our example, one can define a trait function, toAcct, in PlusAccountTrait
that maps values of sort PA to values of sort Acct. There are infinitely many
such mappings. The mapping which makes the meaning of Figure 5 closest to
the meaning of Figure 3 is the one defined by the following axiom.

toAcct (savlchk(ql,q2)) == createlcct(ql+q2)

Since there are so many possible mappings, the desired coercion function
should be specified for the inheriting type. In Larch/C++ this can be done by
specifying tolcct in the trait PlusAccountTrait, and adding to the interface
specification of Figure 5 a line of the following form.

simulates BankAccount by tolcct

However the requirement that the coercion be a function, and that it be
homomorphic, sometimes makes specification inconvenient. Consider the spec-
ification of an abstract class Graph, which has no way to create objects, but is
intended as the common supertype of DirectedGraph and UndirectedGraph.



One way to describe the abstract values of Graph is as a pair of sets: a set of
nodes and a set of edges. The edges cannot be undirected, as this would make
them useless for DirectedGraph. But then one cannot specify the abstract val-
ues of UndirectedGraph by identifying the edges [n,m] and [m,n], because
doing that makes having a homomorphic function from the abstract values of
UndirectedGraph to the abstract values of Graph impossible. So the specifier of
UndirectedGraph is forced to specify the abstract values without making this
identification, which certainly complicates the specification of UndirectedGraph
(see [CL93] for how this is done). Note, however, that this is not a modularity
problem.

2.2.3 Using a Coercion Relation

A homomorphic relation 1s a generalization of a homomorphic function. Because
it can coerce an inheriting type’s abstract value to a set of abstract values of
the supertype (viewing the relation as a set-valued function), one can avoid the
inconvenience described in the previous paragraph. However the disadvantage
of homomorphic relations is that there is much to prove before one is convinced
that assertion evaluation is well-defined, because of the possible ambiguity in
dealing with sets of abstract values [Lea89] [Lea90].

2.2.4 Overloading the Trait Functions

This approach attacks the problem of how to interpret the parent type’s speci-
fication directly. It is clearly more general than the approaches above, because
the others also, in effect, overload the trait functions so that they are defined
on abstract values of the inheriting type. Permitting the trait functions to be
overloaded in any way at all allows more flexibility, which can be exploited to
partially solve the information loss problem (described in Section 3 below).

However, we recently discovered that this approach is not completely modu-
lar. Consider the specification of a type Node, which is used in the specification
of the type Graph. Let us suppose that there is a trait function in the trait defin-
ing the abstract values of type Graph called includesNode, with the signature:
includesNode: Graph, Node -> Node. When one defines a subtype of Node,
say ColoredNode, then one must overload the trait function includesNode so
that it is defined when its second argument is a ColoredNode. But this vi-
olates the definition of modularity of specifications, because the specifier of
Coloredlode should not have to know about the specification of Graph, which
is not a supertype of Node.

Another problem with this approach is that it requires a nonstandard inter-
pretation of equality (=).



2.3 Discussion

Recall that in an OOPL, inheritance of code does not have to be used to make
subtypes. Should inheritance of specifications necessarily be used to make sub-
types? We can see no good reason for this in general. All of the approaches
mentioned above work for inheriting specifications, even if the inheriting type is
not a subtype of the parent type. Indeed this is a plus, as one would want the
specification to be well-defined so that one can prove whether a claimed subtype
relationship is legal or not.

There is also the semantic issue of what to do when multiple specifications
of the same operation are inherited from different parent types. For the sake of
brevity, we only offer our opinion that the best thing for a specification language
to do 1s to prohibit the use of inheritance for such specifications; after all, the
understandability of the specification is not decreased by giving the specification
explicitly.

3 The Information Loss Problem

The information loss problem occurs when an inheriting type’s abstract values
contain more information than its parent type’s. Consider what the inherited
specification of pay_interest in Figure 5 says compared to its specification in
Figure 3. From Figure 5 one can conclude that the total balance is increased by
the specified interest, but the distribution between checkings and savings is not
specified. Thus, besides paying interest, an implementation of pay_interest
for PlusAccount is allowed to transfer money between checking and savings!

For post-conditions of the form self’ = tf(self”), where tf is a trait
function, the problem may be solved by specially overloading the trait function
tf to avoid the information loss. However, not all post-conditions take this
form—witness pay_interest. So overloading the trait functions is not a general
solution.

Meyer’s OOPL Eiffel has a way to avoid information loss without resorting
to complete respecification. In subtypes, the Eiffel specifier can (only) conjoin
an additional assertion to the post-condition using the keyword then [Mey92].
For example, one would specify pay_interest by specifying that the ratio of
the checking to the savings to the checking parts of a PlusAccount is unchanged
by pay_interest, as in the following.

virtual void pay_interest(double rate) {
ensures then if checking(self”) = 0 then checking(self’) = 0
else (savings(self’)/checking(self’))
= (savings(self”)/checking(self"));

However, there is no reason to limit such shorthands to the specification of
subtypes.



The information loss problem may also be amenable to solutions similar to
those proposed for the frame problem (see below).

4 The Frame Problem

The frame problem is how to say “and nothing else changes” in a specification
[BMR93]. In Larch/C++, a function specification has a modifies clause that
says what objects the function is allowed to change. However, when a modifies
clause of the formmodifies self isinherited, it means that the abstract value
as a whole may change. This may be less restrictive than intended, as extra
information that in the subtype’s abstract values may or may not be intended
to change. The approach advocated in [BMRI3] looks promising as a way to
solve this.

5 Summary Position

For each inheriting type, the specifier should state a coercion function (or re-
lation). This avoids all modularity problems. For maximum flexibility, a spec-
ification language could also allow individual trait functions to be defined, not
by the coercion, but by explicit overloading. That way only overloadings that
are different than those produced by the coercion function need be defined. In
effect this gives inheritance with overriding to trait functions.

Allow adding conjuncts to post-conditions to ease the information loss prob-
lem without requiring complete respecification.
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