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Abstract

This paper presents a semantics for a simple language that is a blend of algebraic

models and traditional denotational semantics. In this semantics, implementations of

user-de�ned abstract data types are \compiled" into an algebraic structure, which is

used by the denotational part of the semantics whenever an operation of the data type

is invoked. To show the utility of such a semantics, an algebraic characterization of

simulation between states over such algebras is given, and it is shown that simulation

is preserved by expressions and commands in the language.

1 Introduction

Abstract data types (ADTs) are important in programming, particularly in object-oriented
(OO) programming. The recent interest in OO programming has focused renewed attention
on problems of specifying and verifying such programs [2] [40] [32] [3] [28] [68] [67].

A key idea in the veri�cation of OO programs is that of behavioral subtyping. Because a
model of an ADT can be thought of as a mathematical abstraction of an ADT speci�cation
(or the code that implements it) [49] [35] [15] [14] [74] [5], several authors have used the
variations on multi-sorted algebras as a formal framework for studying behavioral subtyping
[7] [32] [30] [51] [33]. However, when put to such uses, multi-sorted algebras have two distinct
problems:

� the theory is not directly applicable to the study of ADTs with mutable objects |
objects with time-varying state,

� the theory is not directly connected to the study of programming languages, because
no standard semantic description technique uses multi-sorted algebras.

The �rst problem arises because multi-sorted algebras are designed to be used as models
of equations, for which referential transparency is fundamental. Hence, they do not have a
notion of locations (object identities). For example, in the standard Stack ADT, the push
method produces a new stack value, it does not mutate an object.

�This work was supported in part by the National Science Foundation under Grant CCR-9108654.
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Denotational semantics [64] [57] [44] also is based on a referentially transparent model
theory (the lambda calculus [9] [4]), but since the techniques of denotational semantics are
designed to model programming languages, not equational speci�cations, it does not have
any di�culty in modeling state, mutation, and aliasing. The essential technique used in
denotational semantics to model state is to pass around a \store mapping" to simulate the
computer's memory.

However, when one looks at the treatment of ADTs in the denotational semantics of
programming languages such as CLU [56], or OO languages such as Smalltalk and CLOS
[10], one searches in vain for something that is easily identi�able as an algebraic model of
the ADTs. Despite the clearly identi�able modules that de�ne ADTs in such languages,
there is no algebraic structure that is identi�able as the denotation of the program modules
that implement ADTs. Because there is nothing analogous to a multi-sorted algebra in the
semantics of such programming languages, it is di�cult to apply ideas from multi-sorted
algebras (such as behavioral subtyping for immutable objects).

In our previous model-theoretic work on behavioral subtyping [34] [27] [33] [13], we have
tried to use algebraic structures as the denotations of ADT speci�cations, while at the same
time working with a denotational semantics. This combination was achieved by only using
\half" of a programming language, the part that used objects to do things, and leaving out
the part of the programming language that implemented ADTs. The denotational semantics
would use an algebraic model of the ADTs desired for the program, and these models were
obtained directly from ADT speci�cations. This trick bypassed the problem of how to give
a denotational semantics of a programming language that used algebraic structures as the
denotations of ADT code.

However, because the worlds of denotational semantics and algebraic model theory are
so distant, it was not clear how our previous work could ever be connected with the reality
of a \whole" programming language. Skeptical readers of our previous work have also
wondered how the half of a programming language that was not shown would a�ect the
half that computed over the algebraic structures.

In this paper we ignore subtyping to focus on a semantic technique that connects the
worlds of algebraic and denotational semantics. Speci�cally, in Section 2 we give a program-
ming language with ADTs, and a denotational semantics that has an algebraic structure
as the denotation of its ADT implementations. The programming language studied is a
simple one, with mutable objects and some OO features, but not subtyping or inheritance.
The algebraic structures are modi�cations of multi-sorted algebras that allow for mutation
and aliasing. To show how this style of denotational semantics can be used to study ques-
tions about ADTs, in Section 3 we adapt our notion of simulation relations for types with
immutable objects to this setting. In Section 3 we also show that this notion of simulation
is preserved by expressions and commands in this language. This kind of theorem is the
key to model-theoretic study of subtyping (compare [30]). Following this we discuss related
work in Section 4, future work and open problems in Section 5, and o�er some conclusions
in Section 6.

2 A Simple Language

This section presents the syntax and semantics of a simple language, called �. The semantics
demonstrates the technique of giving a denotational semantics where the denotations of
types and their associated methods are given as an algebraic structure. Following the
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Abstract Syntax:

P 2 Program TD 2 Type-Declaration
T, S, U 2 Type-Name MD 2 Method-Declaration
F* 2 Formal-List F 2 Formal
B 2 Body D 2 Declaration
E 2 Expression g 2 Method-Name
E* 2 Expression-List C 2 Command
M 2 Main I 2 Identi�er
N 2 Numeric-literal

P ::= TD MD M
TD ::= j type I fields ( F* ) j TD1 ; TD2

FD ::= j I : T j FD1 ; FD2

T ::= I
MD ::= j method I ( F* ) : T f B g j MD1 ; MD2

F* ::= j F F*
F ::= I : T
B ::= D C ; return E
D ::= j const I : T = E j D1 ; D2

E ::= I j N j true j false j nothing j g(E*) j new T(E*) j I1 . I2
g ::= I
E* ::= j E* E
C ::= E j I1 . I2 := E j C1; C2 j if E1 then C1 else C2 fi

M ::= main f observe D1 C1 by C2 D2 g

Figure 1: Abstract syntax of �. In concrete examples, we separate elements of formal lists
and expression lists with commas.

semantics, we present an example of the semantics and discuss the technique.

2.1 Syntax and Overview of �

The abstract syntax of � is given in Figure 1. A program consists of type de�nitions,
method de�nitions, and a main procedure. Informally the program runs by elaborating the
declarations of types, and methods, and then running the main procedure.

The types the user can de�ne are all represented by records; for simplicity, there is
no built-in variant representation. The objects of such a type can be mutated if desired,
because the �elds can be assigned within a method by the �eld assignment command (of
the form \I1.I2 := E"). The �eld assignment command, and the object creation (\new
T(E*)") and �eld access (\I1 . I2") expressions can only be used directly within methods;
this provides a simple form of information hiding. For better information hiding, a module
system could be added, but it would complicate the semantics.
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The language is �rst-order: for simplicity there is no lambda abstraction or type poly-
morphism. Also for simplicity, there is no recursion. Methods return the result of the last
expression in their bodies; if nothing is to be returned, the built-in constant nothing may
be used to return the only value of the built-in type Void. (The constant nothing may also
be used as a command, in which case it acts like skip.)

For simplicity, the only declaration form binds a name to the result of an expression
(an object). Such bindings cannot be changed, and are therefore constant bindings. This is
not a great restriction, however, as the programmer can de�ne any desired type of variables
by de�ning objects with one �eld. (This is similar to the way variables are treated in, for
example, SML [41] [50].) For example, the following shows how one would write integer
variables.

type IntVar fields (val: Int);

method mkIntVar(e:Int): Void { nothing; return new IntVar(e) };

method assign(v:IntVar, e:Int): Void { v.val := e; return nothing };

method read(v:IntVar): Int { nothing; return v.val };

The form of a main procedure is unusual, because it is split into two parts; the dec-
laration and command between the keywords observe and by (D1 and C1) de�ne a state
which the following command and declaration (C2 and D2) observe. The �nal declaration,
D2, may only declare constants of types Int or Bool. For simplicity, the \output" of the
main procedure (and hence the program) is de�ned to be the values of the constants in D2.

The split of the main procedure into two parts is motivated by our studies of behavioral
subtyping [32] [28] [30]. Informally, OO programmers often add new subtypes of existing
types to a running program, with the expectation that once objects of the new subtypes
are created the rest of the program will continue running as before. The behavior will be
\enhanced" but nothing should break in the unchanged code. Thus the �rst declaration
and command in the main procedure model the part of the program that is changed by
the addition of new types (new type and method de�nitions would be added as well). The
second command and declaration in the main procedure model the part of the program that
is unchanged by the addition of the new types. In this paper, since we are ignoring sub-
typing, we will use this split to study representation independence: replacing one algebraic
model of the types with another, and seeing how the observation (the second command and
declaration) are a�ected. The split will also make clear how the denotations for command
are parameterized by an algebraic structure. However, such a split main procedure is not
necessary for our semantic techniques. As will be shown below, one can just run the �rst
part of the main procedure, and then the second.

Figure 2 is a complete example program. It declares two types: Point and Rect (rectan-
gle). Of the methods, mkRect is the most complex; it declares a constant, r, which is bound
to a new rectangle object, with the �eld bl initialized to the object p1 and tr initialized to
p2. (The actual arguments in object creation expression, \new T (E*)", are bound to the
�elds in the order in which the �elds are declared.) If the point p2 is not towards top and
right of p1, then r is mutated so that its �eld bl becomes p2, and tr becomes p1. Parameter
passing does not make copies; hence any other names for the arguments to mkRect outside
that method become aliases. (Similarly, �eld assignments do not make copies.) The meth-
ods botLeft and topRight also do not make copies when they return their results. This
is poor programming practice, but it helps us illustrate how the language allows mutation
and aliasing. For example, at the end of the �rst part of the main procedure, just before
the keyword \by", x and y are aliases, as are botLeft(x), botLeft(y), and botLeft(w).
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Hence, the horizMove(w, 1) adds 1 to the abscissa of the point which is botLeft(w) and
also botLeft(y) and botLeft(x). Similarly, vertMove(x) adds 1 to the ordinate of this
point, and also adds 1 to the ordinate of z. Thus the output values are appropriate for their
names in Figure 2.

2.2 Semantics of �

The fundamental idea of our semantic technique is to split the semantics of a language into
two parts: an algebraic structure, and a denotational semantics that computes using the
algebraic structure. This is illustrated in Figure 3. Here one sees that the denotation of
types and methods resides in the algebra. The denotational part handles the manipulation
of the program state (environment and store), and gives the semantics to commands and
expressions. The denotational part relies on the algebra for invoking methods. The signa-
ture (�) of the algebra thus documents the interface between the denotational part of the
semantics and the algebraic part.

Neither the algebra nor the denotational parts of the semantics are completely una�ected
by the other. One interaction comes from the treatment of the store. To handle mutation
and aliasing, the algebra uses the store that the denotational part maintains for it; when a
method is invoked, it receives a store, and returns a modi�ed store. Therefore, in a sense, an
algebra is not really an \algebra" at all, because it is not closed in the sense that its methods
take and return a store, but the store is not itself part of the algebra. This is done in order
to keep the meaning of the algebra �xed and the semantics of the algebra's methods purely
functional. If the store were part of the algebra, then the algebra would change (evolve,
as in [21] [22]), but then the denotational semantics would lose its characteristic referential
transparency; that is, the denotational semantics would no longer be written over a purely
functional base.

The other interaction is that when elaborating the method declarations, the denotational
semantics is used to give meaning to the body of a method. We will see, however, that
the semantic clauses for declarations, commands, and expressions, are parametrized with
respect to an algebra, and thus there is still great deal of separation.

Some terminological remarks may also be in order before going into the details of the
semantics. As is usual in denotational semantics, mutable objects are modeled using loca-
tions (memory cells). In other words, our model of an object is a typed location. Locations
are typed in the sense that a location l : T can only store a value of type T . Each object (lo-
cation) contains a value, sometimes called an \abstract value" [24], which can be extracted
by a store mapping, as is usual in denotational semantics [57]. (This resembles Scheier's
denotational semantics of CLU [56], and would be similar to a semantics of LISP.) An object
may \contain" other objects, if its value contains other locations. The main procedure in
a program, however, does not have direct access to locations that may be contained in an
abstract value, but can only access locations and abstract values in ways permitted by the
algebra's operations.

For simplicity, we do not worry about garbage collection in the semantics.

2.2.1 Visible Types and External Values

To facilitate the study of visible behavior, we distinguish a subset of types as visible types;
these are the types of values that can be \output" by a program [60] [46]. These are de�ned
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type Point fields (x:Int, y:Int);

type Rect fields (bl:Point, tr:Int);

method mkPoint (i:Int, j:Int):Point

{ const p:Point = new Point(i, j); return p };

method abscissa (p:Point):Int { nothing; return p.x };

method ordinate (p:Point):Int { nothing; return p.y };

method addX (p:Point, i:Int):Void { p.x := add(p.x, i); return nothing };

method addY (p:Point, i:Int):Void { p.y := add(p.y, i); return nothing };

method upRightOf (p1:Point, p2:Point):Bool

{ nothing; return and(leq(p1.x, p2.x), leq(p1.y, p2.y)) };

method pointEqual (p1:Point, p2:Point): Bool

{ nothing; return and(equal(abscissa(p1), absicissa(p2))

equal(ordinate(p1), ordinate(p2))) };

method mkRect (p1:Point, p2:Point):Rect

{ const r:Rect = new Rect(p1 p2);

if upRightOf(p1, p2) then nothing

else r.bl := p2; r.tr := b1

fi;

return r };

method botLeft (r:Rect):Point { nothing; return r.bl };

method topRight (r:Rect):Point { nothing; return r.tr };

method horizMove (r:Rect delta:Int):Void

{ addX(r.bl, delta); addX(r.tr, delta); return nothing };

method vertMove (r:Rect, delta:Int):Void

{ addY(r.bl, delta); addY(r.tr, delta); return nothing };

main { observe

const z:Point = mkPoint(2, 4);

const w:Rect = mkRect(mkPoint(0,0), mkPoint(2,4));

const y:Rect = mkRect(botLeft(w), z);

const x:Rect = y;

horizMove(w, 1);

vertMove(x,1)

by

if pointEqual(topRight(y), mkPoint(2, 5))

then addX(topRight(w), 1)

else nothing fi

const shouldBe1:Int = abscissa(botLeft(y));

const shouldBe5:Int = ordinate(z);

const shouldBe4:Int = abscissa(topRight(w) }

Figure 2: A sample program. When executed, it should terminate with the value 1 in
shouldBe1, 5 in shouldBe5, and 4 in shouldBe4.

6



Algebraic

�

Denotational
commands
expressions

types
methods

Figure 3: A picture that illustrates the idea of the split semantics.

as follows.
VIS

def
= fBool; Intg (1)

The sets of externally visible values of each of these types is also �xed, and are de�ned
as follows.

EXTERNALSBool = ftrue ; falseg (2)

EXTERNALSInt = f0; 1;�1; 2;�2; . . .g (3)

We write EXTERNALS for
S
V2VIS EXTERNALSV .

2.2.2 Signatures

The interface between our programming language semantics and an ADT model is described
by a signature. A signature contains, as usual, a set of type names, and method names.
(Method names are historically called operation symbols in this context.) Overloading of
operation symbols based on argument types is permitted, because this is needed to permit
�elds with the same names to be used in di�erent representations. It will also be useful in
the application of this work to object-oriented programming with message passing (which
supports a kind of dynamic overloading [69]). The signatures are thus a simpli�ed form of
the signatures used in category-sorted algebras [53] [54].

De�nition 2.1 (signature) A signature, �, is a tuple, (TYPES ;OPS ;ResType), where

� TYPES is a non-empty set of type symbols, such that both Void 2 TYPES and
VIS � TYPES, and

� OPS is a family of sets of operation symbols, indexed by the natural numbers, and

7



TYPES�
def
= fVoid; Bool; Intg

OPS� and ResType�

nothing : ()! Void

true : ()! Bool

false : ()! Bool

and : (Bool; Bool)! Bool

or : (Bool; Bool)! Bool

not : (Bool)! Bool

0 : ()! Int

1 : ()! Int

add : (Int; Int)! Int

mult : (Int; Int)! Int

negate : (Int)! Int

equal : (Int; Int)! Bool

less : (Int; Int)! Bool

leq : (Int; Int)! Bool

Figure 4: The signature �� of the built-in types in �.

� ResType is a family of partial functions indexed by the natural numbers, such that for
each natural number n, ResTypen : OPSn � TYPESn ! TYPES?.

The type Void is used to indicate that a method has no results.
To simplify notation we usually write g 2 OPS as shorthand for g 2

S
n2Nat OPSn; and

we usually omit the subscript on ResType. An operation symbol g has rank n if g 2 OPSn.
If g has rank n and ResType(g; ~S) = T , then the pair (~S; T ) is called a type of g, and we
write g : ~S ! T . Because of overloading, an operation symbol may have many types but
at most one result type for each tuple of argument types.

Example Signatures Figure 4 gives the signature, ��, of the built-in types in �.
The denotational semantics for � produces a signature for the type and method decla-

rations. This signature contains �� as a subsignature. As an example, the signature �D

that would be obtained by elaborating the declarations in Figure 2 is given in Figure 5.

Auxiliary Functions on Signatures Because signatures are constructed as part of the
denotations of types and methods in �, we will need several auxiliary functions on signatures.
These are de�ned below.

We write SIGS for the set of all signatures.

SIGS
def
= f� j � is a signatureg (4)

The notation [i 7! OPS i [ fgg]OPS , denotes the family hOPS
0
n : n 2 Nati such that

OPS 0
i = OPS i[fgg and for all j 6= i, OPS 0j = OPS j . We also write [(g; ~S) 7! T ]ResType, for
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TYPESD
def
= TYPES� [ fPoint; Rectg

OPSD and ResTypeD added to ��

mkPoint : (Int; Int)! Point

abscissa : (Point)! Int

ordinate : (Point)! Int

addX : (Point; Int)! Void

addY : (Point; Int)! Void

upRightOf : (Point; Point)! Bool

pointEqual : (Point; Point)! Bool

mkRect : (Point; Point)! Rect

botLeft : (Rect)! Point

topRight : (Rect)! Point

horizMove : (Rect; Int)! Void

vertMove : (Rect; Int)! Void

Figure 5: The signature �D. The operation symbols of �D include all those of �� and the
ones listed above.

the family hResType0n : n 2 Nati such that ResType0(g; ~S) = T , and for all (g0; ~U) 6= (g; ~S)
ResType0(g0; ~U) = ResType(g; ~U).

The following auxiliary functions are used to add types and messages (the names and
types of methods) to signatures. Both of these functions require the type or message being
added to not already be in the signature; this is useful in ensuring that types and methods
are not multiply declared in �.

addType : TYPES ! SIGS ! SIGS?
addType[[T ]] (TYPES ;OPS ;ResType) =

if T 2 TYPES then ? else (TYPES [ fTg;OPS;ResType)
addMessage : Method-Name! TYPES� ! TYPES ! SIGS ! SIGS?
addMessage[[g]][[~S]][[T ]] (TYPES ;OPS;ResType) =

if ResType(g; ~S) 6= ? then ?

else (TYPES ; [length(~S) 7! OPS
length(~S) [ fgg]OPS ; [(g;

~S) 7! T ]ResType)

9



Special message names are used in the semantics below to create objects, and to set and
get �elds of objects. These messages have names of the form \creator(T)", \getter(I)", and
\setter(I)". Later, for purposes of information hiding, we will need to delete these operations
from a signature. They are deleted by the auxiliary function hideInternalMessages de�ned
below. To avoid unnecessary detail, we assume that there is a predicate isToBeHidden,
which is true for all message names of the form \creator(T)", \getter(I)", or \setter(I)",
and false for all other message names. We write OPS n fg j g 2 OPS ; isToBeHidden(g)g
for the obvious Nat -indexed family of operation symbols with such operation symbols re-
moved. We also write ResTypenf(g; ~S) 7! T j ResType(g; ~S) = T; isToBeHidden(g)g for the
family ResType0 such that ResType0(g; ~U) = ? if isToBeHidden(g) and ResType0(g; ~U) =
ResType(g; ~U) otherwise.

hideInternalMessages : SIGS ! SIGS
hideInternalMessages (TYPES ;OPS ;ResType) =

(TYPES;
OPS n fg j g 2 OPS ; isToBeHidden(g)g;

ResType n f(g; ~S) 7! T j ResType(g; ~S) = T; isToBeHidden(g)g)

2.2.3 Algebras and Stores

An algebra that presents the interface � is called a �-algebra. Stores are de�ned simulta-
neously, but are not contained in �-algebras. This de�nition of algebra and stores below
was inspired by work on models of types for interface speci�cation languages [73] [8].

To explain a term used in the de�nition below, a �nite function, f : S
�n
! T is a function

S ! T? such that f has a proper result (not ?) only on a �nite number of arguments. By
the domain of a �nite function, dom(f), we mean the set of all arguments for which f 's
result is proper.

De�nition 2.2 (�-algebra, STORE) A �-algebra, A, is a tuple,

(SORTSA;ObjectTypesA;LOCSA;VALSA;TtoSA;OPSA; externValA);

where

� SORTSA � TYPES is a set of sort symbols,

� ObjectTypesA � TYPES is a set of object type symbols,

� LOCSA is a family of sets, indexed by ObjectTypesA, representing typed locations,

� VALSA is a family of abstract values indexed by SORTSA, such that for each T 2
ObjectTypesA, VALSAT = LOCSAT

� TtoSA : ObjectTypesA ! SORTSA is a function that gives a sort symbol for each
object type symbol,

� OPSA is a family of operation interpretations indexed by the natural numbers such
that for each n 2 Nat and g 2 OPSn, there is a polymorphic partial function gA 2
OPSAn where for each ~S 2 TYPESn and T 2 TYPES, if ResType(g; ~S) = T then gA

satis�es
gA : (VALSA~S � STORE [A])! (VALSAT � STORE [A])?;

10



� externValA is a family of functions indexed by VIS, such that for each T 2 VIS,
externValAT : VALSAT � STORE [A]! (EXTERNALST )?,

and

STORE [A]
def
= LOCSA

�n
! VALSA (5)

is such that if � : STORE [A], l 2 LOCSAT , and l 2 dom(�), then �(l) 2 VALSA
TtoSA[T ]

.

An algebra may have more sort symbols than type symbols because it may be convenient
to introduce hidden sorts in a model. (So, if we followed Goguen [17], we would call
algebras \machines".) The set of object types is the set of types whose objects are modeled
by locations. An immutable object might be modeled by a location whose value never
changes or might be modeled by a value that is not a location. For each object type, the
TtoS mapping gives the sort of its abstract values. A method is modeled by a partial
function from a tuple of argument values and an initial store to a result value and a �nal
store. (The notation VALSA~S means the cross product of the domains VALSASi , that is

�length ~S
i=1 VALSASi . For example, VALSA(S1 ;S2) means VALSAS1 � VALSAS2 .) Since methods

are modeled by functions, our algebras do not model nondeterministic methods; this is
another simpli�cation. We require that such functions be polymorphic, because it a�ords
considerable notational convenience; if we were modeling an object-oriented language with
message passing, the polymorphism would be of the essence [33], but in this setting we could
excise it at the cost of additional notation. Stores are �nite functions because they are not
de�ned for all potential locations. The store argument to externValAT might be needed if
the visible types were object types, and in that case the result might be ?, if the location
passed was not in the domain of the store.

We use l : T to stand for a location l 2 LOCSAT when the algebra A is clear from
context. For this we also write \l : T is a location." Similarly we use v : T to stand for an
abstract value v 2 VALSAT .

Example Algebras and Auxiliary Functions on Stores Figure 6 gives an example
��-algebra, which is the built-in algebra for �, A�. In A� the visible types are modeled
as abstract values instead of objects. This example also shows how traditional multi-sorted
algebras can be adapted to our de�nition.

A more interesting example algebra, D, is given in Figure 7. It would be the denotation
of the types and methods in Figure 2. We use the special names of the form \sortFor(Point)"
in the semantics of � for the names of sorts. Note that the abstract values of rectangles,
VALSDsortFor(Rect), contain point objects (i.e., locations). Because the visible types in D

are modeled as pure values instead of objects, D can be thought of as a model of an
implementation in a hybrid object-oriented language such as C++, CLOS, or Ei�el.

The operations of D are shown in Figure 8. In the �gure we use the following notation,
which we will also use in the semantics. This notation is not speci�c to D, but will also
be applied to any algebra constructed by our semantics, hence in the de�nitions of the
notation, D should be thought of as generic.

We use nextFree[T ] to �nd the next free location of type T in a given store (where
TYPES is the set of types in the signature of D):

nextFree[T ] : STORE [D]! LOCSDT
nextFree[T ] �

def
= lT

1+max(f�1g[fijlS
i
2dom(�); S2TYPESg)
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SORTSA
� def

= TYPES

ObjectTypesA
� def

= fg

LOCSA
�
is empty

TtoSA
�
[T ] is the empty function, for each T

VALSA
�

Void

def
= f�g

VALSA
�

Bool

def
= ftrue ; falseg

VALSA
�

Int

def
= f0; 1;�1; 2;�2; . . .g

externValA
�

Bool(v; �)
def
= v

externValA
�

Int
(v; �)

def
= v

Operation Interpretations

nothingA
�
((); �)

def
= (�; �)

trueA
�
((); �)

def
= (true; �)

falseA
�
((); �)

def
= (false; �)

andA
�
((v1; v2); �)

def
= (v1 ^ v2; �)

orA
�
((v1; v2); �)

def
= (v1 _ v2; �)

notA
�
((v); �)

def
= (:(v); �)

0A
�
((); �)

def
= (0; �)

1A
�
((); �)

def
= (1; �)

addA
�
((v1; v2); �)

def
= (v1 + v2; �)

multA
�
((v1; v2); �)

def
= (v1 � v2; �)

negateA
�
((v); �)

def
= (�v1; �)

equalA
�
((v1; v2); �)

def
= (v1 = v2; �)

lessA
�
((v1; v2); �)

def
= (v1 < v2; �)

leqA
�
((v1; v2); �)

def
= (v1 � v2; �)

Figure 6: The ��-algebra A�. In the de�nition of SORTSA
�
, TYPES means the TYPES

of ��.
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SORTSD
def
= TYPES

S
fsortFor(Point); sortFor(Rect)g

ObjectTypesD
def
= fPoint; Rectg

LOCSDT
def
= flTi j i 2 Natg; for each T 2 ObjectTypesD

Type to Sort Mapping (TtoSD)
Point 7! sortFor(Point)
Rect 7! sortFor(Rect)

VALSDVoid
def
= VALSA

�
Void

VALSDBool
def
= VALSA

�
Bool

VALSDInt
def
= VALSA

�
Int

VALSDsortFor(Point)
def
= f(vx; vy) j vx; vy 2 VALSDIntg

VALSDsortFor(Rect)
def
= f(lbl; ltr) j lbl; ltr 2 LOCSDPointg

and for T 2 ObjectTypesD, VALSDT
def
= LOCSDT

externValD
def
= externValA

�

Figure 7: The �D-algebra D (part 1). In this �gure, TYPES is from �D.
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We use the function alloc[T ] to �nd a free location and initialize it with an abstract value
of type T :

alloc[T ] : (VALSD
TtoSD[T ]

� STORE [D])! VALSDT � STORE [D]

alloc[T ](v; �)
def
= let l = nextFree[T ](�) in (l; [l 7! v]�):

The notation [l 7! v]� is de�ned by

[l 7! v]�
def
= �l2 : if (l2 = l) then v else (� l2): (6)

We use emptyStore : STORE [D] for the store whose domain is empty (i.e., �l :?).
Note that in Figure 8, in the interpretation of mkRect, the point arguments are put

directly into the abstract value of the rectangle, producing indirect aliasing. The operations
botLeft and topRight also produce aliasing.

Auxiliary functions on Algebras As with signatures, algebras are manipulated in the
semantics of �, so we need various auxiliary functions on them.

Let Alg(�) denote the class of all �-algebras.

Alg(�)
def
= fA jA is a �-algebrag (7)

For an algebra A, denote the components of the algebra by SORTSA, ObjectTypesA,
etc. Also the following functions are de�ned to produce a new algebra with the given
component changed, for each component. The function setSORTS is shown below as an
example; and the rest are entirely analogous.

setSORTS : PowerSet(Type-name)! Alg(� : SIGS)! Alg(�)
setSORTS SORTS A =

(SORTS;ObjectTypesA;LOCSA;VALSA;TtoSA;OPSA; externValA)

Because operation interpretations are polymorphic, we need a notation for de�ning the
action of a polymorphic function on tuples of a given type. For this we use the notation
[~S 7! f ]gA, which is de�ned by the following.

([~S 7! f ]gA)
def
= �(~v; �) : if ~v 2 VALSA~S then f(~v; �) else gA(~v; �) (8)

We also use the following to add an interpretation of an operation for tuples of arguments
of type ~S to OPSA.

addOp [~S][T ] : (� : SIGS)! (A : Alg(�))! Identi�er

! ((VALSA~S � STORE [A])! (VALSAT � STORE [A])?)! Alg(�)?
addOp [~S][T ] (TYPES;OPS ;ResType) A [[g]] f =

let i = length ~S in

if g 62 OPS i then ? else setOPS ([i 7! (OPSAi n fgAg) [ f[~S 7! f ]gAg]OPSA) A

To handle the hiding of the operation interpretations for operations named \creator(T)",
\setter(I)", or \getter(I)", we adapt the notion of a reduct of an algebra (see, for exam-
ple, [14, Section 6.8]) to this setting. Since we will only be using reducts to hide such
operations, we only de�ne Aj(hideInternalMessages �) for a �-algebra A. Let OPS and OPS 0

be the operation symbols of � and (hideInternalMessages �), respectively. Since we are
deleting only the specially named operations, it su�ces to de�ne Aj(hideInternalMessages �)

as being the same as A, except that for each g 2 (OPS n OPS 0), for each ~v and �,

gAj(hideInternalMessages �)(~v; �) = ?.
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Operation Interpretations that are not also in A�

mkPointD((v1; v2); �)
def
= alloc[Point]((v1; v2); �)

abscissaD((l); �)
def
= let (v1; v2) = (� l) in (v1; �)

ordinateD((l); �)
def
= let (v1; v2) = (� l) in (v2; �)

addXD((lPoint; vInt); �)
def
= let (v1; v2) = (� lPoint) in

(�; [lPoint 7! (v1 + vInt; v2)]�)

addYD((lPoint; vInt); �)
def
= let (v1; v2) = (� lPoint) in

(�; [lPoint 7! (v1; v2 + vInt)]�)

upRightOfD((lPoint1 ; lPoint2 ); �)
def
= let (v11; v12) = (� lPoint1 ) in

let (v21; v22) = (� lPoint2 ) in
(v11 � v21 ^ v12 � v22; �)

pointEqualD((lPoint1 ; lPoint2 ); �)
def
= let (v11; v12) = (� lPoint1 ) in

let (v21; v22) = (� lPoint2 ) in
(v11 = v21 ^ v12 = v22; �)

mkRectD((l1; l2); �)
def
= let (lr; �

0) = alloc[Rect]((l1; l2); �) in

let (vb; �
00) = upRightOfD(l1; l2) in

if externValDBool(vb; �
00) then (lr; �

00)
else (lr; [lr 7! (l2; l1)]�00)

botLeftD((l); �)
def
= let (l1; l2) = (�l) in (l1; �)

topRightD((l); �)
def
= let (l1; l2) = (�l) in (l2; �)

horizMoveD((lRect; vInt); �)
def
= let (lbl; ltr) = (� lRect) in

let (v0; �0) = addXD((lbl; vInt); �) in

let (v00; �00) = addXD((ltr; v
Int); �0) in

(�; �00)

vertMoveD((lRect; vInt); �)
def
= let (lbl; ltr) = (� lRect) in

let (v0; �0) = addYD((lbl; vInt); �) in

let (v00; �00) = addYD((ltr; vInt); �0) in
(�; �00)

Figure 8: The �D-algebra D (part 2).
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2.2.4 Other Semantic Domains

Environments and States The state of a program is given by two mappings: an envi-
ronment and a store. The type of stores is given in Equation (5) above. An environment
maps identi�ers to abstract values (which are thus the \denotable values"). The notation
indicates that a state is a state over a particular algebra, as is an environment.

ENV [A]
def
= Identi�er

�n
! VALSA (9)

STATE[A]
def
= ENV [A]� STORE [A] (10)

Like stores, environments are typed mappings. That is, if � : ENV [A] and if x : T 2
dom(�), then �(x) 2 VALSAT . We write emptyEnviron for the empty �nite function from
identi�ers to denotable values, and de�ne the following functions on environments, for any
�-algebra A [71].

emptyEnviron : ENV [A] = �I :?
overlay : ENV [A]� ENV [A]! ENV [A]
overlay(�1; �2) = �I : if I 2 dom(�1) then �1[[I ]] else �2[[I ]]

bind : Identi�er �VALSA ! ENV [A]
bind(I; v) = �I 0 : if I 0 = I then v else ?

We also use the notation [I 7! v]� as a shorthand for overlay(bind(I; v); �).

Observations and Answers Recall that the second declaration, D2, of the main pro-
cedure in a � program declares names for \outputs", each of which must have type Bool

or Int. The denotation of the second part of the main procedure is a function from an
algebra to an observation, which is itself a function from a state (de�ned, for example, by
the �rst part of the main procedure) to a representation of this output. The output itself,
the domain ANSWERS , is modeled as a �nite function from the identi�ers declared in the
�nal declaration to their corresponding external values. One can think of the program as
printing these values (labeled by each identi�er's name).

OBSERVATION [A]
def
= STATE[A]! ANSWERS? (11)

ANSWERS
def
= Identi�er

�n
! EXTERNALS (12)

Lists and Tuples For lists and tuples we follow the notation in [57]. For tuples, we
use the usual pairing notation, and indicate indexing with a downward arrow; for example,
(x; y) # 2 = y. As usual, tuples are written with vector notation, ~v. Recall that the
notation D� means all �nite tuples of D. We use the notation [i 7! y]~v for the tuple such
that ([i 7! y]~v) # i = y and for j 6= i, ([i 7! y]~v) # j = ~v # j.

For lists, List(D) is the notation for the domain of lists of D, and we use the constant
nil , and auxiliary functions cons, hd , and tl and the predicate null . To aid the reader, we
use notations like x̂ for lists. We also assume an auxiliary function length, that gives the
length of a list. We use a map functional as in SML [50], as well as a foldright functional,
which is de�ned below as the �xedpoint of a generator. (For simplicity of notation, we
use the convention that the application of a function of a type such as S � T ! T? to ?
produces ?.)

foldright : 8S:8T:(S � T ! T?)! T ! List(S)! T?
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foldright = �x �G : �f : �b : �x̂ : if null x̂ then b else f((hd x̂); G f b (tl x̂))

The auxiliary function \productize" converts a list of n items into an n-tuple, preserving
the ordering. The auxiliary function \addToEnd" adds an item to the end of a list. These
satisfy the following property for all 1 � i � length(v̂) + 1.

productize (addToEnd v̂ v0) # i (13)

= if i = (length(v̂) + 1) then v0 else (productize(v̂) # i)

We also use the auxiliary function indexOf to �nd the 1-based index of an element in a list.

indexOf : 8T:T ! List(T )! Nat?
indexOf = �x �G : �x : �x̂ : if null x̂ then ? else if (x = hd x̂) then 1 else 1 + (G x (tl x̂))

2.3 Valuation Functions

2.3.1 Programs

The denotation of a program reects the split in the main procedure and in the semantics.
It returns a signature, �00, a �00-algebra, A00, a state over that algebra (de�ned by the �rst
part of the main procedure, \D1; C1"), and a function from �00-algebras to observations.
The signature and algebra are obtained by elaborating the program's type and method
declarations, and then hiding the primitive operations used to create objects and access �elds
of objects. The denotation of the main procedure is obtained by using the restricted algebra
and signature, which ensures that the code in the main procedure cannot (successfully) use
the primitives on objects, but must use the methods de�ned in the method declarations.
Therefore nothing in the main procedure can depend on these primitives. This also means
that the signature and algebra returned do not reect these details of the representation of
objects used in this semantics.

Some remarks about the notation used below are also in order. The type of P is a
dependent type [11] [58, Chapter 8]; for example, the signature of the algebra returned is
the same as the signature returned. Recall that the signature �� and the ��-algebra A�

used below are de�ned in Figures 4 and 6. The valuation functions for type declarations,
T D, and method declarations, MD, are de�ned below. The valuation function for the
main procedure, M, also de�ned below, has a currying that reects: the possibility of using
the signature to do static checking on the syntax (for example, type checking), and the
lack of dependence of the denotation produced on the particular algebra. Recall that the
primitive operation symbols for creating objects, and for accessing their �elds, are taken
out of the signature by auxiliary function hideInternalMessages , which is de�ned above in
the auxiliary functions for signatures. The notation A0j(hideInternalMessages �0) is the reduct
of A0 without these primitives; this notation is de�ned above in the auxiliary functions for
algebras.

As a simpli�cation in the semantics, we use ? both for nontermination and for any error
condition. As in [57], we use a strict let construct; for example, the value of let x = ? in 3
is ?.

P : Program! ((�00 : SIGS)� (A00 : Alg(�00))� STATE[A00]
�((B : Alg(�00))! OBSERVATION [B]))?

P [[TD MD M]] =
let (�;A) = T D[[TD]] �� A� in
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let (�0;A0) =MD[[MD]] � A in
let (�00;A00) = (hideInternalMessages �0; A0j(hideInternalMessages �0)) in
let (s1; f) =M �00 [[M]] A00 in
(�00;A00; s1; f)

As noted earlier, the \output" of a program can be recovered from the information in
the denotation of the program. One can use the following auxiliary function to do that.

run : Program! ANSWERS?
run [[P]] = let (�00;A00; s1; f) = P [[P]] in f A00 s1

2.3.2 Type Declarations

The elaboration of a type declaration produces an \updated" signature and algebra. It adds
messages to the signature, and operations to the algebra, for creating objects of the type,
and getting and setting their �elds. Such messages are used by the denotational semantics
only; to prevent their being used by programs, we give them names that are not nameable
by programmers. The method for creating objects of a type T is named \creator(T )", and
the methods for getting and setting a �eld named I are named \getter(I)" and \setter(I)"
respectively. Note also that types cannot be recursive as the formal list that is elaborated
with a signature does not contain an object of the same type. The lack of recursive types
is a simpli�cation; to allow recursive types we would either have to add built-in support for
variant representations (tagged unions) or mutually recursive type declarations, and also
use a �x-point construction for constructing the carrier sets.

In the de�nition below, F� is the semantic function for formal lists (given below), the
addType function is from the auxiliary functions for signatures, and the other auxiliary
functions are described below.

T D : Type-Declaration! (� : SIGS)! Alg(�)! ((�0 : SIGS)�Alg(�0))?
T D[[]] � A = (�;A)

T D[[type I fields (F̂)]] � A =

let F̂ 0 = F� � [[F̂]] in

let �0 = addMessagesForTypeDecl[[I]] F̂ 0 (addType[[I]] �) in

(�0; compileTypeDecl �0 [[I]] F̂ 0 A)
T D[[TD1 ; TD2]] � A = let (�0;A0) = T D[[TD1]] � A in T D[[TD2]] �

0 A0

Auxiliary functions used to update the signature There are two sets of auxiliary
functions used in the elaboration of type declarations. The �rst set of auxiliary functions
is for adding messages to the signature. The function addMessagesForTypeDecl adds the
creator message, and the messages to get and set each �eld, to the signature.

addMessagesForTypeDecl : Identi�er ! List(Identi�er � Type-Name)! SIGS ! SIGS?
addMessagesForTypeDecl[[I]] F̂ � =

addGetsAndSets[[I]] F̂ (addMessage[[creator(I)]] (formalTypes F̂ ) [[I]] �)

The function formalTypes extracts the types from the denotation of a formal list.

formalTypes : List(Identi�er � Type-Name)! List(Type-Name)
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formalTypes F̂ = map (�(I; T ) : T ) F̂

The function addGetsAndSets adds messages to get and set each �eld to the signature.
Recall that \getter(I0)" and \setter(I0)" are just special names that are not nameable by
programmers.

addGetsAndSets : Identi�er ! List(Identi�er � Type-Name)! SIGS ! SIGS?
addGetsAndSets[[I]] F̂ � =

(foldright
(�((I0; T0);�

0) :
(addMessage[[getter(I0)]] ([[I]]) [[T0]]

(addMessage[[setter(I0)]] ([[I]]; [[T0]]) [[Void]] �
0)))

�

F̂ )

Auxiliary functions used to update the algebra The second set of auxiliary func-
tions is used to produce the new algebra with the methods for creating objects of the type,
and accessing their �elds. Aside from making up the methods, the work is done in compile-
TypeDecl itself. It uses formalTypes from above, the set. . . auxiliary functions on algebras
de�ned above, and the functions addGetAndSetOps and addCreatorOp de�ned just below.
For each type, the values of the type are locations, which the store maps to tuples of values
of the �elds (in the order in which they were declared). Each user-de�ned type is thus
represented as an object type, and its objects are locations and thus potentially mutable.
The domain of abstract values for the type (V below) is a tuple of the values of the �elds of
the object. Recall that \sortFor(I)" is just a way of forming a sort name from a type name.

compileTypeDecl : (� : SIGS)! Identi�er ! List(Identi�er � Type-Name)
! Alg(�)! Alg(�)?

compileTypeDecl � [[I]] F̂ A =

let ~T = productize (formalTypes F̂ ) in
let L = flIi j i 2 Natg in

let V = VALSA~T in

let A0 = (setTtoS ([I 7! sortFor(I)]TtoSA)

(setVALS ([sortFor(I) 7! V ]([I 7! L]VALSA))

(setLOCS ([I 7! L]LOCSA)

(setObjectTypes (fIg [ObjectTypesA)

(setSORTS (fsortFor(I)g [ SORTSA) A))))) in

addGetAndSetOps � [[I]] F̂ (addCreatorOp � [[I]] ~T A)

The auxiliary function addGetAndSetOps uses the addOp auxiliary function de�ned
for algebras to add each get and set operation. The operation interpretations (methods)
themselves are created by passing appropriate parameters to the auxiliary functions fetch
and set .

addGetAndSetOps : (� : SIGS)! Identi�er ! List(Identi�er � Type-Name)
! Alg(�)! Alg(�)?

addGetAndSetOps � [[I]] F̂ A =
(foldright
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(�((I0; T0);A
0) :

let A00 = addOp[(I)][T0] � A0 [[getter(I0)]] (fetch[I][T0] [[I0]] F̂ ) in

addOp [(I; T0)][Void] � A00 [[setter(I0)]] (set [I][T0] [[I0]] F̂ ))
A

F̂ )

The �elds of an object are tuples of values, stored in the order in which the �elds are
declared. The denotation of the �eld declarations is used by the auxiliary function on lists,
indexOf, to obtain the index into the tuple. Both fetch and set return a function which
can be used in an algebra to interpret a method. The function produced by set updates
the store, and returns nothing. Returning nothing is denoted by returning *, which the
reader will recall is the only abstract value of the type Void in A� (Figure 6). It is
�ne to assume that the algebra in question is based on A�, because set is only used in
giving denotations to methods, and so is not involved in giving the denotation of the main
procedure. Alternatively, we could have written \nothingA((); [l 7! ~v]�)" below instead of
\(�; [l 7! ~v]�)", which is equivalent (because A must be based on A� in this context).

fetch [T ][T 0] : Identi�er ! List(Identi�er � Type-Name)

! VALSAT � STORE [A]! (VALSAT 0 � STORE [A])?
fetch [T ][T 0] [[I]] F̂ =

�(l; �) : if (l 62 LOCSAT ) then ?

else let i = indexOf (I; T 0) F̂ in

((� l) # i; �)
set [T ][T 0] : Identi�er ! List(Identi�er � Type-Name)

! (VALSAT � VALSAT 0)� STORE [A]! (VALSAT 0 � STORE [A])?
set [T ][T 0] [[I]] F̂ =

�((l; v); �) : if (l 62 LOCSAT ) then ?

else let i = indexOf (I; T 0) F̂ in
let ~v0 = [i 7! v](� l) in
(�; [l 7! ~v0]�)

The function addCreatorOp adds an operation interpretation for the operation that
creates an object. The operation interpretation, f below, uses the alloc function de�ned
above on stores to allocate a location of the type holding the tuple of arguments of the
creator.

addCreatorOp : (� : SIGS)! Identi�er ! Type-Name� ! Alg(�)! Alg(�)?
addCreatorOp � [[I ]] ~T A =

let f = (�(~v; �) : if ~v 62 VALSA~T then ? else alloc[I](~v; �)) in

addOp[~T ][I] � A [[creator(I)]] f

2.3.3 Formal Lists, Formals, and Type Names

The denotations of formal lists, formals, and type names are all relatively straightforward.
The error checking they perform is encapsulated in T , which checks to be sure the type
named is de�ned in the signature. We assume that a Formal-List is actually a list.

F� : SIGS ! Formal-List! List(Identi�er � Type-Name)?
F� � [[F̂ ]] = map (F �) [[F̂ ]]
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F : SIGS ! Formal! (Identi�er � Type-Name)?
F � [[I : T]] = let T 0 = T � [[T]] in (I; T 0)

T : SIGS ! Type-Name! Identi�er?
T (TYPES ;OPS ;ResType) [[T ]] = if T 2 TYPES then T else ?

2.3.4 Method Declarations

The valuation function for method declarations does not allow recursive methods, although
this could be corrected by using a �xed-point construction. It uses the semantic function
for bodies, B, and an auxiliary function bindActuals , both of which are de�ned below.

MD : Method-Declaration! (� : SIGS)! Alg(�)! ((�0 : SIGS)�Alg(�0))?
MD[[]] � A = (�;A)

MD[[method I(F̂):T fBg]] � A =

let F̂ 0 = F� � [[F̂]] in
let T 0 = T � [[T]] in

let f = (�(~v; �) :B � [[B]] A (bindActuals[A] ~v F̂ 0; �)) in

let ~S = productize (formalTypes F̂ 0) in

let �0 = addMessage[[I]] ~S T 0 � in

let A0 = addOp[~S][T 0] �0 A [[I]] f in

(�0; A0)
MD[[MD1 ; MD2]] � A = let (�0;A0) =MD[[MD1]] � A in MD[[MD2]] �0 A0

The binding of actuals to formals creates an environment. The folding process in the
call to foldright passes the �-abstraction an element of F̂ , which is a pair of an identi�er and
a type name, the forming environment, and the index of the element of the list F̂ ; hence
the notation (Ii; Si) used below is accurate.

bindActuals[A] : (VALSA)
�
! List(Identi�er � Type-Name)! ENV [A]?

bindActuals[A] ~v F̂ =

let ~S = productize (formalTypes F̂ ) in

if ~v 62 VALSA~S then ?

else let (�0; n) =
(foldright

(�((Ii; Si); (�; i)) : ([Ii 7! (~v # i)]�; i� 1))

(emptyEnviron; length F̂ )

F̂ )
in �0

2.3.5 Bodies

The denotation of a method body could also be used for the bodies of procedures or lo-
cal blocks, if � had procedures or local blocks. As such it is written in the tradition of
denotational semantics, and relies on an algebra to do its work, and does not change the
algebra.

B : (� : SIGS)! Body! (A : Alg(�))! STATE[A]! (VALSA � STORE [A])?
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B � [[D C ; return E]] A s =
let (�1; �1) = D � [[D]] A s in
let �2 = C � [[C]] A (�1; �1) in
E � [[E]] A (�1; �2)

2.3.6 Declarations of Constants

A constant declaration evaluates its expression, and returns a new state with a binding of
the declared identi�er to the expression's value. The signature is used to check that the
type has been declared.

D : (� : SIGS)! Declaration! (A : Alg(�))! STATE[A]! STATE[A]?
D � [[]] A s = s

D � [[const I:T = E]] A (�; �) =
let T 0 = T � [[T]] in
let (v; �0) = E � [[E]] A (�; �) in

if v 62 VALSAT 0 then ? else ([I 7! v]�; �0)
D � [[D1 ; D2]] A s = D � [[D2]] A (D � [[D1]] A s)

2.3.7 Expressions, Expression Lists

The meaning of an expression is found by either looking up an identi�er in the environment,
or by using the algebra and store to evaluate an operation. The semantic function for
numerals, N , has the following type.

N : (� : SIGS)! Numeral! (A : Alg(�))! STORE [A]! (VALSAInt � STORE [A])?.

The store is needed by algebras that represent integers using locations, as the denotations
for numerals should be independent of the algebra. The details of N are left an exercise for
the reader. The denotations for true, false, and nothing use the appropriate method in
the algebra; hence these semantic equations are also independent of the particular algebra.
Similarly, the meaning of a method call uses an operation in an algebra. While object
creation and �eld access use operations in the algebra also, these are the specially named
operations \creator(T)" and \getter(I)" that are speci�c to this semantics; hence calls to
these special operations reect a dependence of those expressions on the algebra. This is
why such expressions are not allowed in the main procedure.

E : (� : SIGS)! Expression! (A : Alg(�))! STATE[A]! (VALSA � STORE [A])?
E � [[I]] A (�; �) = (let v = �[[I]] in (v; �))
E � [[N]] A (�; �) = N � [[N]] A �

E � [[true]] A (�; �) = trueA((); �)

E � [[false]] A (�; �) = falseA((); �)

E � [[nothing]] A (�; �) = nothingA((); �)

E � [[g(Ê)]] A (�; �) =

let (v̂; �0) = E� � [[Ê]] A (�; �) in gA(productize v̂; �0)

E � [[new T(Ê)]] A (�; �) =
let T 0 = T � [[T]] in

let (v̂; �0) = E� � [[Ê]] A (�; �) in creator(T 0)A(productize v̂; �0)
E � [[I1 . I2]] A (�; �) =
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let (v; �0) = E � [[I1]] A (�; �) in getter(I2)
A(v; �0)

The meaning of a list of expressions is a list of values together with the store that results
from their evaluation. The expressions are evaluated left to right.

E� : (� : SIGS)! Expression-List ! (A : Alg(�))! STATE[A]

! (List(VALSA)� STORE [A])?
E� � [[]] A (�; �) = (nil ; �)

E� � [[Ê En]] A (�; �) =

let (v̂; �0) = E� � [[Ê]] A (�; �) in
let (vn; �n) = E � [[En]] A (�; �0) in
((addToEnd v̂ vn); �n)

2.3.8 Commands

The semantic functions for commands are fairly straight-forward. Note, however that the
denotation of the �eld update command depends on the special operation \setter(I)", and
thus is speci�c to this semantics. Hence the �eld update command is not allowed in the
main procedure. On the other hand, in an if-command, the external value of the test is
used, which makes the semantics for if independent of the algebra.

C : (� : SIGS)! Command! (A : Alg(�))! STATE[A]! STORE [A]?
C � [[E]] A (�; �) = let (v; �0) = E � [[E]] A (�; �) in �0

C � [[I1.I2 := E]] A (�; �) =
let (v0; �0) = E � [[E]] A (�; �) in
let (v1; �1) = E � [[I1]] A (�; �0) in

let (v�; �2) = setter(I2)
A((v1; v

0); �1) in
�2

C � [[C1; C2]] A (�; �) =
let �1 = C � [[C1]] A (�; �) in C � [[C2]] A (�; �1)

C � [[if E1 then C1 else C2 fi]] A (�; �) =
let (v; �0) = E � [[E1]] A (�; �) in

if externValABool(v; �
0) then (C � [[C1]] A (�; �0)) else (C � [[C2]] A (�; �0))

2.3.9 Main Procedure

The meaning of the main procedure is a pair of a state and a function from algebras to
observations. The state returned, (�; �0), is produced by the �rst part of the main procedure,
D1 and C1. The function from algebras to observations is de�ned by the second part of the
main procedure, C2 and D2; this function takes an algebra, B, and a state over B, and,
starting from the given state, computes a �nal state, and returns a �nite function. The �nite
function is de�ned on the names declared in D2, and for each such name gives its external
value in the �nal state. The auxiliary function typeEnvAndCheckVisible, de�ned below,
checks that all the declarations in D2 are declarations of constants of visible type, and if so
returns a type environment. This type environment is a �nite function from identi�ers to
their types. Since the domain of this �nite function, H , is just the names in D2, this ensures
that only those names are \output" by the program. (The domain OBSERVATION [B] is
de�ned in Section 2.2.4 above.)

M : (� : SIGS)! Program! (A : Alg(�))
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! (STATE[A]� (B : Alg(�)! OBSERVATION [B]))?
M � [[ main fobserve D1 C1 by C2 D2g]] A =

let (�; �) = D � [[D1]] A (emptyEnviron; emptyStore) in
let �0 = C � [[C1]] A (�; �) in
let H = typeEnvAndCheckVisible[[D2]] in
let f = (�B : �(�B; �B) :

let �0
B
= C � [[C2]] B (�B; �B) in

let �00
B
; �00
B
= D � [[D2]] B (�B; �

0
B
) in

�[[I ]] : let T = H [[I ]] in externValBT (�
00
B
[[I ]]; �00

B
))

in ((�; �0); f)

The following auxiliary function returns checks declarations to see that they are declaring
constants of types Bool or Int, and returns a �nite function from the names declared to
their types. Since this kind of �nite function is a \type environment" (as opposed to a value
environment), we use the auxiliary functions on environments de�ned above (and ask the
reader's pardon for not rede�ning them with new types).

typeEnvAndCheckVisible : Declaration! (Identi�er
�n
! VIS)?

typeEnvAndCheckVisible[[]] = emptyEnviron
typeEnvAndCheckVisible[[const I:T = E]] = if T 62 VIS then ? else bind(I;T)
typeEnvAndCheckVisible[[D1 ; D2]] =

overlay(typeEnvAndCheckVisible[[D2]]; typeEnvAndCheckVisible[[D1]])

2.4 Discussion

In this section we give an example of the semantics, and discuss some issues relating to our
semantics of � and our semantic technique.

First we bring together the pieces of our running example, the program in Figure 2. The
denotation of this program is a four-tuple. Recall that the �rst element of this tuple is the
signature, �D, which was shown in Figure 5, and that the second element is the algebra, D,
which was shown in Figures 7 and 8. The third element is a state over D, and the fourth is
a function from states over �D-algebras to observations. The state is (�D; �D), where the
environment �D satis�es:

�D(w) = lRect3

�D(x) = lRect4

�D(y) = lRect4

�D(z) = lPoint0

and the store, �D satis�es:

�D(l
Rect
3 ) = (lPoint1 ; lPoint2 )

�D(l
Rect
4 ) = (lPoint1 ; lPoint0 )

�D(l
Point
0 ) = (2; 5)

�D(l
Point
2 ) = (3; 4)

�D(l
Point
1 ) = (1; 1):

This state is pictured in Figure 9. The function, fobs , that is the fourth element of the
denotation of the program in Figure 2 is given in Figure 10.
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Figure 9: Picture of the state (�D; �D) over the algebra D.
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fobs = let H = �[[I ]] : if I 2 fshouldBe1; shouldBe5; shouldBe4g then Int else ? in
(�B : �(�; �0) :

let vy = � y in

let (vtr(y); �1) = topRightB((vy); �0) in
let (v2; �

0
1) = N � [[2]] B �1 in

let (v5; �
00
1) = N � [[5]] B �01 in

let (vp; �2) = mkPointB((v2; v5); �001) in

let (vb; �3) = pointEqualB((vtr(y); vp); �2) in
let �5 =

if externValBBool(vb; �3)
then

let vw = � w in

let v1 = N � [[1]] B in

let (vax; �4) = addXB((vw; v1); �3) in
�4

else

let (v�; �4) = nothingB((); �3) in
�4

let (vbl(y); �6) = botLeftB((vy); �5) in

let (va(bl(y)); �7) = abscissaB((vbl(y)); �6) in
let �7 = [shouldBe1 7! va(bl(y))]� in
let vz = �7 z in

let (vo(z); �8) = ordinateB((vz); �7) in
let �8 = [shouldBe5 7! vo(z)]�7 in
let vw = �8 w in

let (vtr(w); �9) = topRightB((vw); �8) in

let (va(tr(w)); �10) = abscissaB((vtr(w)); �9) in
let �10 = [shouldBe4 7! va(tr(w))]�8 in

�[[I ]] : let T = H [[I ]] in externValBT (�10[[I ]]; �10)

Figure 10: The function, fobs , that is produced as the fourth element of the semantics of
the example program. Note that �5 is the store after executing the if-command following
the by in the example program, and (�10; �10) is the state after elaborating the declarations
at the end of the program.
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The above semantics may seem complex, and there is certainly more notation than in a
traditional denotational semantics. Clearly the algebraic structures are also more complex
than is traditional in the study of, for example, equational speci�cation. Some of the
notational complexities arise from our penchant for multi-sorted algebras and fairly exact
types. But the majority come from the split in the semantics. First, we split the usual
environment in two | the two pieces being the algebra (which can be thought of as an
environment for methods, as it gives an interpretation to each operation symbol) and the
usual (value) environment. We also split the domains in two { the two pieces being the
carrier sets of the algebra and the usual domains for expressions, answers, etc. (which are
not much in evidence in such a simple language). The notation is also made more complex by
our passing the signature around explicitly, as a thing to be manipulated by the semantics;
this could be easily �xed by writing the signature as a subscript, as in \C�[[C1;C2]] A s",
but the signature is explicitly manipulated by the semantic functions for programs, type
declarations, and method declarations, so we prefer the notation used in the paper.

What justi�es this notational complexity, the split semantics, and ultimately any se-
mantic description technique1, is its usefulness in furthering the study of programming
languages. We o�er an example of the utility of the technique in the next section, where we
study implementation concepts for ADTs. The main advantage of this framework is that
one can study the semantics of either half of the semantics somewhat separately.

Although we have not done so, studying ways to give semantics to type and method
declarations, or other languages for specifying such algebras might be fruitful. One could, for
example, de�ne the algebras not by programming, but by some speci�cation method [18] or
logic programming technique. Note especially that in Figure 8, we have given what amounts
to an equational presentation of an algebra with mutable objects. The kind of mutation
allowed is not just one-level mutation either; that is, it is not just variables containing
pure values. Because of the store, one can have interesting aliasing relationships. Thus we
believe the conventional view that equational speci�cations are not suitable for studying
mutation might need revision. This idea is, of course, inspired by denotational semantics and
functional programming ideas. However, we are not aware of any work studying equational
speci�cations of mutable types which uses it. (Relationships with related work we do know
about is discussed in Section 4 below.)

Our main interest, however, is in studying the denotational half of the semantics |
the semantics of expressions, commands, etc. We are especially interested in studying
behavioral properties of algebraic models with mutable types in the context of object-
oriented programming. In such studies we often de�ne languages that compute over models
of ADTs, allowing us to start with the algebraic structures and compare their properties
(for example, [30]). A small example of such a study appears in the next section.

However, we hasten to point out that others are also interested in questions of behavioral
properties of programs. For example, full abstraction is such a question. Recent work on full
abstraction has focused on the semantics of blocks and local variables. The work of O'Hearn
and Tennent [47] [48] [65] and the work of Sieber [62] [63] [61] use logical relations (i.e.,
higher-order extensions of the kind of simulation relations we study in the next section), to
obtain a restricted domain of procedure denotations. The idea is to restrict the domain of
procedure denotations so that a procedure can only a�ect certain variables, not the entire
store [39]. Reddy has investigated another approach to the full abstraction problem for local
variables that uses techniques akin to object-oriented programming to prevent unwanted

1Yuri Gurevich, personal communication, March 1994.
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modi�cations to the store [52]. We speculate that it might be possible to characterize,
perhaps algebraically, varieties of algebras that have behavior that is appropriate, and that
this might be of some interest in the study of full abstraction for programming languages
with local variables. More probably, such a split semantics will be of use for studies of
full abstraction for programming languages with ADT constructs and for object-oriented
languages.

Granting the potential interest in our semantic description technique, the next logical
question to ask is whether it has intrinsic limitations compared to standard ways of doing
denotational semantics. We leave the detailed study of such questions for future work, but
briey raise some obvious issues.

The �rst issue is whether some of the features we left out of � are intrinsically beyond
our techniques. While not exhausting this question by any means, we discuss two such
extensions here: procedures and block structure.

We believe that it would be possible to add procedure declarations to the language with
little conceptual di�culty. One simply has to pass a separate environment for procedures,
or modify the domain of environments by introducing a domain of denotable values, one of
whose summands would be a domain for procedures. Indeed, we have worked out such an
extension, and it is interesting to note that the domain for (call-by-value) procedures (that
return a result) would be something like the following.

Procedure[�] = (A : Alg(�))! (VALSA
�
� STORE [A])! (VALSA � STORE [A])?

This emphasizes that such procedures would take an algebra (of the appropriate signature)
as an argument, and compute over it. Such a domain would also serve for �rst-class proce-
dures (call-by-value �-expressions), except that instead of passing and returning only values
from the algebra, one would pass and return denotable values, which would include such
procedures as a summand. Alternatively, one could model �rst-class procedures as objects,
and give them types and values in the algebra. (This would more closely correspond to
Smalltalk [19].) We leave it as future work to work out the details of such approaches.
Recursive procedures seem to pose no particular di�culties; and we leave as future work
the working out of the appropriate domain theory for constructing algebras with recursive
methods and recursive data. Work on continuous algebras may be of use in solving such
problems [16] [70] [20] [43] [74, Section 3.3.3].

Another feature not in � is block structure, more speci�cally local declarations of types
and methods. The semantics could be modi�ed to allow the declaration of types and
methods in local blocks without conceptual di�culties; however, in doing so it is more
di�cult to see the separation between the two halves of the semantics, as they would both
be present in each block in the same way they are present in � as a whole.

3 Simulation Relations

As an example of the utility of our split semantics, we o�er the following simple study of
simulation between states over algebraic models. In this study we ignore type and method
declarations, and focus on the behavior of their denotations, as observed by commands
and declarations in the main procedure. Since we will be ignoring the details of type
and method declarations, in what follows, let � = (TYPES ;OPS;ResType) stand for an
arbitrary signature.

The simulation relations we study help one decide when one ADT behaves like an-
other [59] [46] [28] [31]. This is useful in theoretical contexts [42]; also the general idea of
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simulation and re�nement of ADTs is important for optimization. If the abstraction of a
faster implementation simulates a slower one's behavior, then one can replace the slower
implementation by the faster implementation.

To de�ne simulation relations appropriate for � and its semantics, one might think that
the appropriate notion would simply relate abstract values. However, that would not take
locations, and hence aliasing, into account. Neither can one simply relate locations, since
one must take the abstract values stored in the locations into account if the relationships are
to preserve observable behavior. Even relating locations together with stores is not enough,
since that would not take aliasing among identi�ers into account. So the formulation of
simulation relations we present relates states over one algebra to states over another algebra.
(In this respect it is similar to the base case of the logical relations used, for example, in
[47] [48] [65]. They are extensions of the relations used in [33].)

De�nition 3.1 (simulation relation) Let C and A be �-algebras. A �-simulation rela-
tion R from C to A is a binary relation on states

R � STATE[C]? � STATE[A]?

such that for each (�C; �C) 2 STATE[C] and for each (�A; �A) 2 STATE[A], the following
properties hold:

well-formed: (�C; �C)R (�A; �A)) (dom �C) � (dom �A),

bindable: for each type T , for each identi�er x : T , and for each identi�er y : T 2
(dom �C),

(�C; �C)R (�A; �A)) ([x 7! (�C y)]�C; �C)R ([x 7! (�A y)]�A; �A); (14)

bistrict: ?R?, and whenever sR s0 and either s or s0 is ?, then so is the other,

substitution: for each tuple of types ~S, for each type T , for each operation symbol g : ~S !
T , for each tuple of identi�ers ~x : ~S 2 (dom �C), and for each identi�er y : T ,

(�C; �C)R (�A; �A))

(let (rC; �
0
C
) = gC((�C ~x); �C) in ([y 7! rC]�C; �

0
C
))

R (15)

(let (rA; �
0
A) = gA((�A ~x); �A) in ([y 7! rA]�A; �

0
A));

shrinkable: if (�0
C
; �0
C
) � (�C; �C), and (�

0
A
; �0
A
) � (�A; �A), and (dom �0

C
) � (dom �0

A
),

then (�C; �C)R (�A; �A)) (�0
C
; �0
C
)R (�0

A
; �0
A
),

EXTERNALS-identical: for each type T 2 VIS, for each identi�er x : T 2 (dom �C), if
(�C; �C)R (�A; �A), then

externValC((�C x); �C) = externValA((�A x); �A):

In the substitution property, ~x : ~S 2 (dom�C), means that for each i, xi : Si 2 (dom�C),
and (�C ~x) means the tuple of (�C xi). The tuples ~S and ~x : ~S can be empty.

The EXTERNALS-identical property ensures that a simulation is the identity on ex-
ternal representations.

In the shrinkable property, (�0
C
; �0
C
) � (�C; �C) means that for all types T , and for

all identi�ers x : T , x : T 2 (dom �0
C
) ) (�0

C
x) = (�C x) and for all locations l : T ,

l : T 2 (dom �0
C
)) (�0

C
l) = (�C l).
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3.1 Examples of Simulation Relations

As a trivial example, the identity relation on STATE[D]?�STATE[D]? is a �D-simulation
relation from our example algebra D to itself.

To build a more interesting example, we give a di�erent �D-algebra, E, in Figures 12
and 13. This algebra is built on a di�erent ��-algebra, B� given in Figure 11. These
algebras use objects for the booleans and integers. In this sense they represent what a
\pure object-oriented" semantics might produce, and thus would be more faithful models
of languages like Smalltalk, where everything is (at least conceptually) an object.

An example of a state over E that we would relate to our example state (�D; �D) is the
state (�E; �E), where �E is such that

(�E w) = lRect10

(�E x) = lRect9

(�E y) = lRect9

(�E z) = lPoint8

and �E is de�ned as follows.

(�E lRect10 ) = (lPoint6 ; lPoint7 )
(�E lRect9 ) = (lPoint6 ; lPoint8 )
(�E lPoint8 ) = (lInt2 ; lInt5 )
(�E lPoint7 ) = (lInt3 ; lInt4 )
(�E lPoint6 ) = (lInt1 ; lInt1 )
(�E lInt5 ) = 5
(�E lInt4 ) = 4
(�E lInt3 ) = 3
(�E lInt2 ) = 2
(�E lInt1 ) = 1

A picture of this state is given in Figure 14.
We now give an example of a simulation relation between states of E and states of D

that would relate, for example, (�E; �E) to (�D; �D). We consider �rst a formalization of
the notion of similarity of abstract values of two locations and then augment that with
some conditions that ensure well-formedness and that only states with the same aliasing
are related. Given two stores over E and D, the function

S0 : (STORE [E]� STORE [D])! ((VALSE � VALSD)! Boolean)

returns a predicate that tests two values for having the same abstract value in the corre-
sponding stores. It is de�ned inductively by requiring locations of the immutable types
to have equal abstract values and by requiring Point and Rect locations to have related
abstract values in each component:

basis: For each type T 2 fBool; Intg, for each pair of stores (�E; �D), for each vE 2
VALSET and vD 2 VALSDT :

S 0T (�E; �D)(vE; vD)
def
= (externValET (vE; �E) = externValDT (vD; �D)): (16)

For clarity, we emphasize that we are using a nonstrict interpretation of equality in
which, for example, ? = 3 is false. Therefore, if externValET (vE; �E) is ? and if
externValDT (vD; �D) is proper, then the result of S0T (�E; �D)(vE; vD) is false.
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SORTSB
� def

= TYPES [ fsortFor(Bool); sortFor(Int)g

ObjectTypesB
� def

= fBool; Intg

LOCSB
�

T
def
= flTi j i 2 Natg; for each T 2 ObjectTypesB

�

Type to Sort Mapping (TtoSB)
Bool 7! sortFor(Bool)
Int 7! sortFor(Int)

VALSB
�

Void

def
= f�g

VALSB
�

sortFor(Bool)
def
= ftrue; falseg

VALSB
�

sortFor(Int)
def
= f0; 1;�1; 2;�2; . . .g

and for T 2 ObjectTypesB
�
, VALSB

�
T

def
= LOCSB

�
T

externValB
�

Bool(l; �)
def
= (� l)

externValB
�

Int(l; �)
def
= (� l)

Operation Interpretations

nothingB
�
((); �)

def
= (�; �)

trueB
�
((); �)

def
= alloc[Bool](true; �)

falseB
�
((); �)

def
= alloc[Bool](false; �)

andB
�
((l1; l2); �)

def
= alloc[Bool]((� l1) ^ (� l2); �)

orB
�
((l1; l2); �)

def
= alloc[Bool]((� l1) _ (� l2); �)

notB
�
((l); �)

def
= alloc[Bool](:(� l); �)

0B
�
((); �)

def
= alloc[Int](0; �)

1B
�
((); �)

def
= alloc[Int](1; �)

addB
�
((l1; l2); �)

def
= alloc[Int]((� l1) + (� l2); �)

multB
�
((l1; l2); �)

def
= alloc[Int]((� l1)� (� l2); �)

negateB
�
((l); �)

def
= alloc[Int](�(� l); �)

equalB
�
((l1; l2); �)

def
= alloc[Bool]((� l1) = (� l2); �)

lessB
�
((l1; l2); �)

def
= alloc[Bool]((� l1) < (� l2); �)

leqB
�
((l1; l2); �)

def
= alloc[Bool]((� l1) � (� l2); �)

Figure 11: The ��-algebra B� . Recall that TYPES means the TYPES of ��.
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SORTSE
def
= TYPES [ fsortFor(Int); sortFor(Bool); sortFor(Point); sortFor(Rect)g

ObjectTypesE
def
= ObjectTypesB

�
[ fPoint; Rectg

LOCSET
def
= flTi j i 2 Natg; for each T 2 ObjectTypesE

Type to Sort Mappings (TtoSE) added to TtoSB
�

Point 7! sortFor(Point)
Rect 7! sortFor(Rect)

Abstract values added to VALSB
�

VALSEsortFor(Point)
def
= f(lx; ly) j lx; ly 2 LOCSEIntg

VALSEsortFor(Rect)
def
= f(lbl; ltr) j lbl; ltr 2 LOCSEPointg

and for T 2 ObjectTypesE, VALSET
def
= LOCSET

externValE
def
= externValB

�

Figure 12: The �D-algebra E (part 1). In this �gure, TYPES is from �D.
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Operation Interpretations that are not also in B�

mkPointE((l1; l2); �)
def
= alloc[Point]((l1; l2); �)

abscissaE((l); �)
def
= let (l1; l2) = (� l) in (l1; �)

ordinateE((l); �)
def
= let (l1; l2) = (� l) in (l2; �)

addXE((lPoint; lInt); �)
def
= let (l1; l2) = (� lPoint) in

let (lnew ; �
0) = addE((l1; l

Int); �) in
(�; [lPoint 7! (lnew ; l2)]�

0)

addYE((lPoint; lInt); �)
def
= let (l1; l2) = (� lPoint) in

let (lnew ; �0) = addE((l2; lInt); �) in
(�; [lPoint 7! (l1; lnew)]�

0)

upRightOfE((lPoint1 ; lPoint2 ); �)
def
= let (l11; l12) = (� lPoint1 ) in

let (l21; l22) = (� lPoint2 ) in

let (lb1; �0) = (leqB(l11; l21)) in

let (lb2; �
00) = (leqB(l12; l22)) in

andB((lb1; lb2); �
00)

pointEqualE((lPoint1 ; lPoint2 ); �)
def
= let (l11; l12) = (� lPoint1 ) in

let (l21; l22) = (� lPoint2 ) in

let (lb1; �0) = (equalB(l11; l21)) in

let (lb2; �0) = (equalB(l12; l22)) in

andB((lb1; lb2); �
00)

mkRectE((l1; l2); �)
def
= let (lr; �0) = alloc[Rect]((l1; l2); �) in

let (lb; �00) = upRightOfE(l1; l2) in

if externValEBool(lb; �
00) then (lr; �00)

else (lr; [lr 7! (l2; l1)]�
00)

botLeftE((l); �)
def
= let (l1; l2) = (� l) in (l1; �)

topRightE((l); �)
def
= let (l1; l2) = (� l) in (l2; �)

horizMoveE((lRect; lInt); �)
def
= let (lbl; ltr) = (� lRect) in

let (v0; �0) = addXE((lbl; lInt); �) in

let (v00; �00) = addXE((ltr; lInt); �0) in
(�; �00)

vertMoveE((lRect; lInt); �)
def
= let (lbl; ltr) = (� lRect) in

let (v0; �0) = addYE((lbl; lInt); �) in

let (v00; �00) = addYE((ltr; lInt); �0) in
(�; �00)

Figure 13: The �D-algebra E (part 2).
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Figure 14: Picture of the state (�E; �E) over the algebra E.
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For each pair of stores (�E; �D), for each vE 2 VALSEVoid and vD 2 VALSDVoid:

S0Void(�E; �D)(vE; vD)
def
= true (17)

Point: For each pair of stores (�E; �D) and locations (lE; lD) 2 (LOCSEPoint�LOCS
E
Point),

S0Point(�E; �D)(lE; lD)

def
=

8>>><
>>>:

true ; if lE 62 dom(�E) ^ lD 62 dom(�D)
false; if (lE 2 dom(�E)) 6= (lD 2 dom(�D))
b; if (�E lE) = (lx; ly), (�D lD) = (v0x; v

0
y), and

b = (S0
Int

(�E; �D)(lx; v
0
x)^ S

0
Int

(�E; �D)(ly; v
0
y)):

(18)

Rect: For each pair of stores (�E; �D) and locations (lE; lD) 2 (LOCSERect � LOCSERect),

S0Rect(�E; �D)(l; l
0)

def
=

8>>><
>>>:

true ; if lE 62 dom(�E) ^ lD 62 dom(�D)
false; if (lE 2 dom(�E)) 6= (lD 2 dom(�D))
b; if (�E lE) = (lE;bl; lE;tr), (�D lD) = (lD;bl; lD;tr), and

b = (S0
Point

(�E; �D)(lE;bl; lD;bl) ^ S
0
Point

(�E; �D)(lE;tr; lD;tr)):

(19)

We can relate two states only if the aliasing present in the �rst is mimicked in the
second. To this end we introduce the aliasing graph of a state (�; �) over a �D-algebra.
This directed graph has as its nodes: the identi�ers in (dom �), the locations in (dom �)
that have type Point or Rect. It has directed edges as follows:

� From an identi�er x of type Point or Rect to a location l if (� x) = l.

� From a location l : Rect to locations l0; l00 : Point if (l0; l00) = (� l).

We write AliasG(�; �) for this graph. As an example, the AliasG(�D; �D) is shown in
Figure 15. It is also a picture of AliasG(�E; �E).

We consider one aliasing graph to be mimicked in another if there is an injective graph
homomorphism from the �rst to the second. Recall that if (N1; E1) and (N2; E2) are pairs
of node and edge sets representing two graphs, then f = (fn; fe) is a graph homomorphism
if and only if

(n; n0) 2 E1 ) (fe (n; n
0)) = ((fn n); (fn n0)): (20)

We now have enough machinery to de�ne an interesting �E-simulation relation from E
to D, which we will call R0.

De�nition 3.2 (R0) The �D-simulation relation R0 � STATE[E]? � STATE[D]? is de-
�ned such that ?R0? and (�1; �1)R

0(�2; �2) if and only if the following conditions all hold:

� (dom �1) � (dom �2),

� for each type T , for each x : T 2 (dom �1), S0T (�1; �2)((�1 x); (�2 x)) holds, so that
the abstract values of x in both states are similar, and

� there is an injective graph homomorphism from AliasG(�1; �1) to AliasG(�2; �2) that
is the identity on (dom �1).

Requiring that there be an injective graph homomorphism ensures that aliasing for the
mutable types Point and Rect is taken into account.

Lemma 3.3 The relation R0 is a �D-simulation relation from E to D.

Proof Sketch: See Appendix A.
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Figure 15: Aliasing graph for the states (�D; �D) and (�E; �E).

3.2 Simulation is Preserved in the Main Procedure

In this section we show that simulation relations are preserved by the constructs of � that
can appear in the main procedure, and thus by observations written in �. Since object
creation expressions, �eld access expressions, and �eld update commands use primitives of
the algebra that are speci�c to the semantics given in Section 2, they cannot be applied to
all algebras and cannot appear in the main procedure. To avoid constantly describing the
expressions, commands, and declarations that can appear in the main procedure, we make
the following de�nition.

De�nition 3.4 (main procedure expression, command, declaration) In �, an ex-
pression (command) is a main procedure expression (command) if and only if it satis�es
the grammar for E0 (C0) in Figure 16. A declaration of � is a main procedure declaration
if and only if it satis�es the grammar for D0 in Figure 16 and in addition declares only
constants of types Bool or Int.

We also need a simple type system for �. The type of a main procedure expression is
based on the type information in the algebra's signature, and a type environment, writtenH ,
obtained from the constant declarations in the main procedure. The notation �;H ` E : T
means E has type T in H ; in this case we say that E is well H-typed. A command is
well H-typed if and only if each of its subexpressions is well H-typed. We use the notation
�;H ` [[D]] =) H 0 to mean that D is well H-typed, and produces the type environment
H 0 when elaborated. See Appendix B for details.

We relate type environments to value environments in the following way.
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Abstract Syntax of Main Procedure Expressions, Commands, Declarations:

E0 2 Main-Proc-Expression E0* 2 Main-Proc-Expression-List
C0 2 Main-Proc-Command D0 2 Main-Proc-Declaration

E0 ::= I j N j true j false j nothing j g(E0*)
E0* ::= j E0* E0

C0 ::= E0 j C0
1; C0

2 j if E0
1 then C0

1 else C0
2 fi

D0 ::= j const I : T = E0 j D1 ; D2

Figure 16: Syntax of main procedure expressions, commands and declarations. All other
syntax is as in the standard abstract syntax for �.

De�nition 3.5 (H-environment, H-state) Let A be a �-algebra and let H be a type
environment. A value envionment, � 2 ENV [A], is an H-environment if and only if for
each I 2 dom(H), and for each type T , if H [[I ]] = T then �[[I ]] 2 VALSAT . A state, (�; �) is
an H-state if and only if � is an H-environment.

The following lemma says that simulation relations are preserved by the evaluation of
a main procedure expression in related states. Recall that we use let as a strict binding
mechanism.

Lemma 3.6 Let B and A be �-algebras. Let R be a �-simulation relation from B to A.
Let H be a type environment.

Then for all H-states (�B; �B) 2 STATE[B] and (�A; �A) 2 STATE[A] such that
(dom �B) � (dom �A), for each type T , for each main procedure expression E such that
�;H ` E : T , for each identi�er y : T ,

(�B; �B)R (�A; �A))

(let (vB; �
0
B) = E � [[E]] B (�B; �B) in ([y 7! vB]�B; �

0
B))

R

(let (vA; �
0
A
) = E � [[E]] A (�A; �A) in ([y 7! vA]�A; �

0
A
)):

Proof: (by induction on the structure of E).
Let H-states (�B; �B) 2 STATE[B] and (�A; �A) 2 STATE[A] be given such that

(dom �B) � (dom �A). Let T and E be given such that �;H ` E : T . Let y : T be given.
Suppose that (�B; �B)R (�A; �A).

(basis) If E is an identi�er I of type T , then the result follows from the assumption and
the bindable property. If E is a numeral, N, or one of true, false, or nothing, then the
result follows from the substitution property.

(inductive step) Suppose that E has the form g(E*). Since g(E*) has type T , it must
be that �;H ` E� : ~S and ResType(g; ~S) = T , for some ~S. The inductive hypothesis
is that the lemma is true for each subexpression, Ei of type Si in the list E*. That is,
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for all (�B;i�1; �B;i�1) 2 STATE[B] and for all (�A;i�1; �A;i�1) 2 STATE[A] such that
(dom �B;i�1) � (dom �A;i�1), for each type Si and for each expression Ei such that �;H `
Ei : Si, and for each identi�er zi : Si,

(�B;i�1; �B;i�1)R (�A;i�1; �A;i�1))
(let (di; �B;i) = E � [[Ei]] B (�B;i�1; �B;i�1) in ([zi 7! di]�B;i�1; �B;i))
R
(let (ei; �A;i) = E � [[Ei]] A (�A;i�1; �A;i�1) in ([zi 7! ei]�A;i�1; �A;i)):

The plan is to apply the inductive hypothesis for each expression in E*; for each i,
binding the result of Ei to a distinct fresh identi�er zi. If at any stage, one result is ?,
then by the bistrict property, so is the other; otherwise the resulting states are related by
the inductive hypothesis, and then the substitution property gives the desired result. The
details are found in Appendix C.

We do not know whether the converse of the above lemma holds. However, because the
binding of the result of an expression to an identi�er and a dynamic type check is what
happens in the semantics of a constant declaration, the following corollary is immediate
from the above lemma.

Corollary 3.7 Let B and A be �-algebras, and R be a �-simulation relation from B to
A. Let H be a type environment.

For all H-states (�B; �B) 2 STATE[B] and for all (�A; �A) 2 STATE[A] such that
(dom �B) � (dom �A), for each main procedure declaration, D, such that �;H ` [[D]] =)
H 0,

((�B; �B)R (�A; �A)))

(D � [[D]] B (�B; �B)) R (D � [[D]] A (�A; �A)):

The following theorem extends the above lemma to show that simulation relations are
preserved by main procedure commands in �.

Theorem 3.8 Let B and A be �-algebras. Let R be a �-simulation relation from B to A.
Let H be a type environment.

For all H-states (�B; �B) 2 STATE[B] and (�A; �A) 2 STATE[A], for all main proce-
dure commands C such that C is well H-typed,

(�B; �B)R (�A; �A))

(let �0
B
= C � [[C]] B (�B; �B) in (�B; �

0
B
))

R

(let �0
A
= C � [[C]] A (�A; �A) in (�A; �

0
A
))

Proof: (by induction on the structure of C).
Let H-states (�B; �B) 2 STATE[B] and (�A; �A) 2 STATE[A] be given. Let C be

given such that C is well H-typed. Suppose that (�B; �B)R (�A; �A).
(basis) Suppose that C is an expression, E. By Lemma 3.6, the result in one algebra

is ? if and only if it is ? in the other. If the result is ?, the required property follows.
Otherwise, let (vB; �

0
B
) = E � [[E]] B (�B; �B), and let (vA; �

0
A
) = E � [[E]] A (�A; �A).

Then we can show the result as follows.

(�B; �B)R (�A; �A)
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) hby Lemma 3.6i
([y 7! vB]�B; �

0
B
)R ([y 7! vA]�A; �

0
A
)

) hby shrinkable property of simulation relationsi
(�B; �

0
B
)R (�A; �

0
A
)

, hby de�nition of command denotation of an expressioni
(let �0

B
= C � [[E]] B (�B; �B) in (�B; �B0))

R
(let �0

A
= C � [[E]] A (�A; �A) in (�A; �

0
A
))

(inductive step) Assume, inductively, that the result holds for all subcommands of C.
There are two cases.

1. Suppose C is \C1; C2". Then the result follows by two applications of the inductive
hypothesis.

2. Suppose C is \if E then C1 else C2 fi". Let y : Bool be a fresh identi�er. Again,
by Lemma 3.6, the result of E is ? in one algebra if and only if it is ? in the other,
and again if it is ? we are done. Otherwise, let (vB; �

0
B
) = E � [[E]] B (�B; �B) and

(vA; �
0
A
) = E � [[E]] A (�A; �A). Then by the Lemma 3.6,

([y 7! vB]�B; �
0
B
)R ([y 7! vA]�A; �

0
A
): (21)

Since Bool is a visible type, and R is EXTERNALS-identical,

externValBBool(vB; �
0
B
) = externValABool(vA; �

0
A
): (22)

Hence the result of the test is the same in both B and in A. So starting with
Equation (21), the result is shown as follows.

([y 7! vB]�B; �
0
B
)R ([y 7! vA]�A; �

0
A
)

) hby the shrinkable property of simulation relationsi
(�B; �

0
B
)R (�A; �

0
A
)

) hby the inductive hypothesis for C1 and C2i
((let �00

B
= C � [[C1]] B (�B; �

0
B
) in (�B; �

00
B
))

R (let �00
A
= C � [[C1]] A (�A; �

0
A
) in (�A; �

00
A
)))

^ ((let �00
B
= C � [[C2]] B (�B; �

0
B
) in (�B; �

00
B
))

R (let �00
A
= C � [[C2]] A (�A; �

0
A
) in (�A; �

00
A
)))

, hby Equation (22)i

(let �00
B

= if externValBBool(vB; �
0
B
)

then C � [[C1]] B (�B; �
0
B
) else C � [[C2]] B (�B; �

0
B
)

in (�B; �
00
B
))

R (let �00
A

= if externValABool(vA; �
0
A
)

then C � [[C1]] A (�A; �
0
A
) else C � [[C2]] A (�A; �

0
A
)

in (�A; �
00
A
))

, hby de�nition of Ci
(let �0

B
= C � [[if E then C1 else C2 fi]] B (�B; �B) in (�B; �

0
B
))

R (let �0
A
= C � [[if E then C1 else C2 fi]] A (�A; �A) in (�A; �

0
A
))

To summarize this section, with the split semantics one can investigate simulation re-
lations between states using only the semantics of expressions, constant declarations, and
commands in �. The detailed semantics of type and method declarations are suppressed,
because one only deals with their denotations: algebras of a given signature.
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4 Related Work

Our algebraic models are based, in part, on the work of Wing [73] and Chen [8]. These au-
thors did not investigate simulation relations, or the use of mixed algebraic and denotational
semantics.

Several authors use Kripke (i.e., possible world) models to give semantics to mutation
and object identities [18] [1] [72] [25]. One could consider our algebras to be Kripke models
if we were to include the store as part of the algebra. However, we believe that keeping the
store outside the algebra leads to a cleaner separation of the algebra and the semantics of �.
More importantly, it allows the denotational semantics to retain its characteristic referential
transparency. Since Kripke models form a category, there are homomorphic functions on
such models; however we do not know of anyone who has investigated relationships preserved
by programs for Kripke models. For homomorphic relationships on Kripke models to be
preserved by programs, the environment would also have to be included in the Kripke
model, which would further destroy our separation between the language semantics and the
semantics of the data types.

Evolving algebras [21] [22] are algebraic structures whose operations may be updated.
The relationship between our algebraic models and evolving algebras seems to be that our
state plus our algebra is very similar to an evolving algebra. The di�erences are that
in giving a semantics to type and method declarations, the signature and everything else
about our algebras changes, then in giving semantics to expressions and commands, only
the state's environment and store can change. Once the type and method declarations are
processed, in the \denotational half" of the semantics one can think of identifying the part
of the Gurevich's algebra that evolves with our environment and store. Fixing one part of
the \algebra" that evolves, namely not our algebra but our environment and store, makes
our semantics more of a blend of denotational semantics and algebraic model theory than
evolving algebras, as one can see by comparing our semantics with the evolving algebra
semantics for C given in [23].

Action semantics [45] [71, Chapters 7{8] also uses algebraic techniques to specify data
more abstractly than standard denotational semantics. However, in action semantics, the
locations are not part of the algebra, and so the datatypes that one speci�es must be
immutable. Our semantic techniques allow one to obtain some of the bene�ts of action
semantics without adopting its idiosyncratic notation. The idea of computing over an
algebra is also found in [66].

Our separation between the algebra and the semantics of � is similar to what Mason
and Talcott have studied the semantics of LISP [36] and other languages with mutation
[37] [38]. Their work mainly uses operational semantics, and as such is complimentary
to our denotational/algebraic approach. Mason and Talcott focus on equational logics for
reasoning about programs that use mutation, whereas our work has not progressed to a
reasoning calculus.

5 Future Work

In view of the use of dynamic logic [26] in some of the related work on Kripke models
[72] [25], it would be interesting to investigate the relationship between our techniques and
dynamic logic. Perhaps dynamic logic or other related axiomatic speci�cation techniques [6]
would be useful in specifying our models, or in developing their theory. Another possibility
is developing the theory more fully by de�ning the appropriate category or institution [55].
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Another direction for future work is to extend our results to more interesting languages.
We mentioned some language extensions that would be interesting for investigating the
utility of the split semantics in Section 2.4 above. One could also extend our results about
simulation relations to languages with higher types; that is, one could investigate logical
relations that use something like our simulation relations for a base case.

Our models have features for investigating observability notions, such as observable
equivalence; we are trying to use these features to precisely de�ne a notion of \observable
aliasing" for objects of abstract data types [29]. But the main thrust of our investigations
with these techniques is to extend our notions of legal behavioral subtyping in object-
oriented programming to types with mutable objects [12] [13]. As a �rst step, one could use
something like our simulation relations to algebraically characterize when one set of ADTs
with mutable objects implements another.

6 Conclusions

The \split semantics" technique presented in this paper is a blend of algebraic and deno-
tational semantics. We hope that it o�ers some of the advantages of both techniques, and
that it might prove bene�cial when investigating the semantics of languages with ADTs
and mutable objects.

Our models of ADTs blend aspects of denotational semantics (locations, environment
and store mappings) with traditional algebraic models. We believe that this blend gives a
satisfactory foundation for the model theory of ADTs with mutation. In support of this we
have o�ered a notion of homomorphic relation (our simulation relations) and have shown
that it is preserved by expressions and commands in a simple language. The addition of
more realistic features to the language, such as loops, does not destroy this fundamental
property [12] [13]. The semantics of the simple language, and the proof of this property
demonstrate the utility of these techniques. When doing the proof, we ignored half the
language's semantics, and started with the denotations of type and method declarations
| that is, we started with our algebraic models and only used the (denotational-style)
semantics of expressions and commands.

Careful examination of our example algebras shows that models like ours could have
been used to model mutable types long ago. All that is needed to equationally character-
ize mutable types is to adopt the old denotational semantics trick of explicitly passing a
store around. This is another sense in which our models unify denotational and algebraic
techniques.

We believe that our approach to describing the semantics of languages with ADTs |
the split semantics | is a fruitful way to do semantics for such languages. Traditional
denotational semantics \compiles" the implementations of ADTs into an undi�erentiated
mass of functions, Cartesian products, etc. (For example, see [56].) The mess that results
from this \compilation" process is di�cult to compare to the speci�cations of the abstract
types, and di�cult to extract from the rest of a program. This has made it di�cult to
apply the ideas of algebraic model theory to such languages, and has separated the worlds
of algebraic and denotational semantics. By adding more structure to the semantics of a
language with ADTs, that is, by compiling to an algebraic structure, one can have both a
better organized semantics, and the possibility of using algebraic techniques to study the
properties of either half of the language.
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Appendices

A Postponed Proof Sketch for Lemma 3.3

The following is the proof sketch of Lemma 3.3, which was postponed from the text. Recall
thatR0 is de�ned in De�nition 3.2, that �D is de�ned in Figure 5, and that the �D-algebras
D and E are de�ned in Figures 7, 8, 12, and 13.

Proof Sketch: Let (�E; �E) 2 STATE[E], and (�D; �D) 2 STATE[D] be given. The
proof proceeds by showing that R0 has all the properties of a simulation relation.

well-formed: By construction, R0 is well-formed.

bindable: Let T be a type of �D, let x : T be an identi�er, and let y : T 2 (dom �E) be
given. Suppose that (�E; �E)R

0(�D; �D). We show that ([x 7! (�E y)]�E; �E)R
0([x 7!

(�D y)]�D; �D) by using the de�nition ofR
0. The only tricky part is to show that there

is an injective graph homomorphism fromAliasG([x 7! (�E y)]�E; �E) toAliasG([x 7!
(�D y)]�D; �D). By construction of R0, there is an injective graph homomorphism
f = (fn; fe) from AliasG(�E; �E) to AliasG(�D; �D). We de�ne the required injective

graph homomorphism f 0 = (f 0n; f
0
e) as follows. Let f

0
n

def
= [x 7! x]fn; that is, f

0
n(x) = x.

If (�E y) = l and (�D y) = l0, then let f 0e
def
= [(x; l) 7! (x; l0)]fe. By de�nition, f 0 is

a graph homomorphism. To show that f 0 is injective, we must show that f 0n and f 0e
are injective. Since fn is injective and since fn is the identity on the identi�ers in
(dom �E), f

0
n is injective. The following calculation shows that f 0e is injective. Let u

be any identi�er, and lu be any location in LOCSE .

(f 0e (x; l)) = (f 0e (u; lu))
) hby the homomorphism propertyi

((f 0n x); (f 0n l)) = ((f 0n u); (f 0n lu))
) hby de�nition of equality for edgesi

((f 0n x) = (f 0n u))^ ((f 0n l) = (f 0n lu))
) hby injectivity of f 0ni

(x = u) ^ (l = lu)

bistrict: By construction, R0 is bistrict.

substitution: To show that R0 satis�es substitution property we must show it for all op-
erations. The following example shows how the proof goes. The substitution property
can be shown in a similar way for the other operations. The only signi�cant di�er-
ence is for the mutator operations of Rect,where one must construct a new graph
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homomorphism and show that it is injective. We take as our example the operation
addX.

We assume without loss of generality that the following hold.

(�E p) = lPoint
E

(�D p) = lPoint
D

(�E i) = lInt
E

(�D i) = vInt
D

Let a type T and an identi�er y : T be given.

Suppose that
(�E; �E)R

0 (�D; �D): (23)

Consider the results of the calling addX in each algebra.

addXE((�E p; �E i); �E)
def
= addXE((lPoint

E
; lInt
E

); �E)
= let (l1; l2) = (�E lPoint) in

let (lnew ; �
0
E
) = addE((l1; l

Int

E
); �E) in

(�; [lPoint
E

7! (lnew ; l2)]�
0
E
)

addXD((�D p; �D i); �D) = addXD((lPoint
D

; vInt
D

); �D)
def
= let (v1; v2) = (�D lPoint

D
) in

(�; [lPoint
D

7! (v1 + vInt
D

; v2)]�D)

If the result of calling addX in E is ?, this can only be because lPoint
E

, l1, or l
Int

E
is not

in the domain of �E. If l
Point

E
62 dom(�E), then by de�nition of R0, in particular the

de�nition of S0
Point

, it must be that lPoint
D

62 dom(�D). Similarly using the de�nition
of S0, one can show that if the result of calling addX in E is ?, then the result of calling
addX in D must also be ?. If both are ?, then the substitution property holds; so we
need not consider this case further.

The remaining case is if the result of calling addX in E is proper. There are two
subcases: one is when the result in D is ?, and the other when the result in D is
proper. Suppose the result inD is ?. Then by de�nition ofD, it must be that lPoint

D
62

dom(�D), but then by de�nition of S0, lPoint
E

62 dom(�E), which is a contradiction,
because (it is now assumed) the result of calling addX in E is proper. Hence it must
be that, in this case, both results are proper.

In the case that both results are proper, we use �Er
and �Dr

to refer to the stores in
these �nal (or result) states, i.e., �E;r = [lPoint

E
7! (lnew ; l2)]�0E and �D;r = [lPoint

D
7!

(v1 + vInt
D

; v2)]�D. We will also refer to the store �0
E
to refer to the intermediate store

de�ned in the course of evaluating addXE((�E p; �E i); �E). With this notation, what
we have to show for the substitution property is as follows.

([y 7! �]�E; �Er
)R0 ([y 7! �]�D; �Dr

) (24)

We show that this holds by showing that it satis�es each of the properties in the
de�nition of R0.

� By hypothesis, (dom �E) � (dom �D), and thus

(dom ([y 7! �]�E)) � (dom ([y 7! �]�D)):
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� To show that the abstract values for each identi�er are similar in the �nal states,
let T be a type and let z : T be an identi�er in (dom ([y 7! �]�E)). We do this
by cases.

{ Suppose that there is no path from z to lPoint
E

in the graph AliasG(�E; �E).
Then the abstract value of z is unchanged. Hence, by the hypothesis:

S0T (�Er
; �Dr

)((�E z); (�D z)): (25)

{ If z is p : Point, we need to show S0
Point

(�Er
; �Dr

)(�E p; �D p)). It su�ces
to show the following two conditions, where the names of the locations and
values are as in the de�ning expressions for the result states.

S0Int(�
0
E
; �D)(lnew ; v1 + vInt

D
) (26)

S0
Int

(�0
E
; �D)(l2; v2) (27)

Condition (27) holds by hypothesis, which implies that the abstract values
of p are related by S0

Int
in the original states. Condition (26) follows from

the de�nition of addE, and the relationships of the abstract values in the
original states.

{ Otherwise z is an identi�er that is not p, but from which p is reachable
along some path of AliasG(�E; �E). Note that AliasG([y 7! �]�E; �Er

) =
AliasG(�E; �E), because the environments in the result state only di�er by
the binding of y, which does not create any edges, and because of the de�-
nition of addX in both algebras.

� If T , the type of z, is Point then z and pmust denote the same location in
[y 7! �]�E. The same situation must hold in [y 7! �]�E, because there is a
homomorphism fromAliasG([y 7! �]�E; �Er

) toAliasG([y 7! �]�D; �Dr
).

Since z denotes the same location as p in both �nal states, the above
argument shows that the abstract values of z are similar.

� If T is Rect, then one (or both!) of the corners of z is the same location as
denoted by p. Again, the graph homomorphism on the aliasing graphs
ensures that the same situation holds in both algebras, and thus the
abstract values are similar.

� To show that there is an injective graph homomorphism on the result states, we
observe that by de�nition of R0 and the hypothesis, there is an injective homo-
morphism f = (fn; fe) from AliasG(�E; �E) to AliasG(�D; �D). We construct
a new injective homomorphism f 0 = (f 0n; f

0
e) from AliasG([y 7! �]�E; �Er

) to
AliasG([y 7! �]�D; �Dr

) by simply letting f 0n = fn and f 0e = fe. This su�ces
because the only new identi�er does not have a type that matters, and because
no new locations of type Point or Rect are introduced.

shrinkable: That R0 satis�es the shrinkable property follows in a straightforward manner
from its de�nition.

EXTERNALS-identical: That R0 satis�es the EXTERNALS-identical property follows
from basis of the de�nition of S0.
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[ident] �;H ` I : T if H [[I ]] = T

[numeral] �;H ` N : Int

[true] �;H ` true : Bool

[false] �;H ` false : Bool

[nothing] �;H ` nothing : Void

[method call]
�;H ` E� : ~S; � ` ResType(g; ~S) = T

�;H ` g(E*) : T

[empty decl] �;H ` [[]] =) emptyEnviron

[const decl]
�;H ` E : T

�;H ` [[const I:T = E]] =) [I 7! T ]H

[decls]
�;H ` [[D1]] =) H1; �;H ` [[D2]] =) H2

�;H ` [[D1; D2]] =) H2

Figure 17: Type Inference Rules for � main procedure expressions and rules for inferring
type environments for constant declarations.

B Types of Main Procedure Expressions and Declarations

Formal type inference rules for main procedure expressions and declarations are given in
Figure 17. In the �gure, H is a type environment, which is a �nite function from identi�ers
to types. Such a type environment is produced by constant declarations; the formal rules
for deriving a type environment from a constant declaration are given in the �gure. The
notation � ` ResType(g; ~S) = T indicates that ResType comes from �.

C Omitted Details of the Proof of Lemma 3.6

The following proof has the omitted details for lemma 3.6. It picks up in the inductive step
right where the proof in the main text leaves o�.

Proof: Let the zi : Si be distinct identi�ers. We construct new states (�B;n; �B;n) and
(�A;n; �A;n) such that the following hold for each 1 � i � n:

(d̂n; �B;n) = E� � [[E*]] B (�B; �B) (28)

�B;n(zi) = (productize d̂n) # i (29)

(ên; �A;n) = E� � [[E*]] A (�A; �A) (30)

�A;n(zi) = (productize ên) # i (31)
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(�B;n; �B;n) R (�A;n; �A;n) (32)

Once this is done, we can calculate as follows.

E � [[g(E*)]] B (�B; �B)
= hby de�nition of E and �B;ni

let (d̂n; �B;n) = E� � [[E*]] B (�B; �B) in gB((productize d̂n); �B;n)
= hby de�nition of �B;ni

let (d̂n; �B;n) = E� � [[~z]] B (�B;n; �B;n) in gB((productize d̂n); �B;n)
= hby de�nition of Ei

E � [[g(~z)]] B (�B;n; �B;n)

Similarly,
E � [[g(~z)]] A (�A;n; �A;n) = E � [[g(E*)]] A (�A; �A):

Therefore, by the substitution property and Equation (32), the desired result follows.

(let (vB; �
0
B
) = E � [[g(E*)]] B (�B; �B) in ([y 7! vB]�B; �

0
B
))

R
(let (vA; �

0
A
) = E � [[g(E*)]] A (�A; �A) in ([y 7! vA]�A; �

0
A
))

(33)

So it remains to construct the states (�B;n; �B;n) and (�A;n; �A;n) and the lists d̂n and
ên with the required properties. These are constructed by induction on n. The construction
only mentions the case where all the subexpressions have proper results; if at any stage one
of the subexpressions has ? for a result in one algebra, by the bistrictness of R it must also
be ?, in the other, and then by the de�nition of �, the required relationship would hold.

For the basis, if n = 0, then E* is empty, so let (�B;0; �B;0) = (�B; �B), (�A;0; �A;0) =

(�A; �A), d̂0 = nil , and ê0 = nil . The required properties hold trivially.
For the inductive step, suppose that E* is E1 � � � Ej�1 Ej and further suppose that

(�B;j�1; �B;j�1), (�A;j�1; �A;j�1), d̂j�1, and êj�1 satisfy the required properties. The re-
quired stores, along with values that will be used shortly, are constructed as follows.

(dj ; �B;j)
def
= E � [[Ej ]] B (�B;j�1; �B;j�1) (34)

(ej ; �A;j)
def
= E � [[Ej ]] A (�A;j�1; �A;j�1): (35)

We de�ne the required environments and lists as follows.

d̂j
def
= (addToEnd d̂j�1 dj) (36)

êj
def
= (addToEnd êj�1 ej) (37)

�B;j
def
= [zj 7! dj ]�B;j�1 (38)

�A;j
def
= [zj 7! ej ]�A;j�1: (39)

The properties required of the constructed states and lists are veri�ed as follows. To
show that d̂j and �B;j have the required properties we calculate as follows.

E� � [[E1 � � �Ej�1 Ej ]] B (�B; �B)
= hby de�nition of E� and inductive hypothesisi

let (dj; �B;j) = E � [[Ej]] B (�B; �B;j�1) in (addToEnd d̂j�1 dj); �B;j)
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= hby by de�nition of (d̂j; �B;j)i

(d̂j ; �B;j)

Similarly, êj and �A;j have the required properties.
Let 1 � i � j be given. Then we can verify the required property of �B;j as follows.

�B;j(zi)
= hby de�nition of �B;j and environment extensioni

if (zi = zj) then dj else �B;j�1(zi)

= hby inductive hypothesis for �B;j�1 and d̂j�1i

if (zi = zj) then dj else productize(d̂j�1) # i
= hby distinctness of the zki

if (i = j) then dj else productize(d̂j�1) # i
= hby Equation (13), i.e., the de�ning property of productize and addToEndi

(productize(addToEnd d̂j�1 dj)) # i

= hby construction of d̂ji

(productize d̂j) # i

Similarly, �A;j has the required property.
Equation (32) thus follows directly from the main inductive hypothesis, because of the

inductive assumption that (�B;j�1; �B;j�1)R(�A;j�1; �A;j�1).
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