Introduction to the Literature
n Programming Language Design

Gary T. Leavens

TR #93-01c
Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999

Keywords: programming languages, semantics, type systems, polymorphism, type theory, data abstrac-
tion, functional programming, object-oriented programming, logic programming, declarative programming,
parallel and distributed programming languages.

1992 CR Categories: D.1.1 [Programming Techniques] Applicative (Functional) Programming; D.1.3
[Programming Techniques] Concurrent Programming; D.1.5 [Programming Techniques] Object-oriented Pro-
gramming; D.1.6 [Programming Techniques] Logic Programming; D.2.2 [Sofiware Engineering] Tools and
Techniques — Modules and interfaces; D.2.4 [Software Engineering] Program Verification; D.2.4 [Software
FEngineering] Program Verification; D.3.1 [Programming Languages] Formal Definitions and Theory; D.3.2
[Programming Languages] Language Classifications; D.3.3 [Programming Languages] Language Constructs
and Features; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning about pro-
grams; F.3.2 [Logics and Meaning of Programs] Semantics of Programming Languages; F.3.3 [Logics and
Meaning of Programs] Studies of Program Constructs; H.2.3 [Database Management] Languages—Database
(persistent) programming languages; 1.2.5 [Artificial Intelligence] Programming Languages and Software.

(© Gary T. Leavens, 1993, 1994, 1996, 1999. Permission is granted for you to make copies for educational
and scholarly purposes, but not for direct commercial advantage, provided this notice appears on all copies.
All other rights reserved.

Department of Computer Science
226 Atanasoff Hall
Towa State University

Ames, lowa 50011-1040, USA

Introduction to the Literature
On Programming Language Design

Gary T. Leavens™
Department of Computer Science, lowa State University

Ames, TA, 50011-1040 USA

leavens@cs.iastate.edu

July 29, 1999

Abstract

This 1s an introduction to the literature on programming language design and related topics. It is
intended to cite the most important work, and to provide a place for students to start a literature search.

This is a selective introduction to the literature on programming language design. The intended audience
is graduate students beginning a study of programming languages. Instead of trying to be comprehensive,
references are given that are to works of lasting value, up-to-date surveys, or that seem to be important
or interesting at the moment.! Besides references that have intrinsic interest, a few are included because
they are the original sources and are likely to be referenced by others doing related work (e.g. [Chu4l]). To
probe an area more deeply, start with the papers mentioned, follow their references, and also use the Science
Citation Index to see what papers have referenced the ones mentioned.

As a general aid to finding papers, many older references are reprinted in a collection called TUTORIAL
Programmang Language Design edited by A. 1. Wasserman and available from the IEEE Computer Society
[Was80]. Readers with web browsers may also want to look at the following web page, titled “Programming
Language and Compiler Bibliographies.”

http://wuw.cs.cmu.edu/ "mleone/language/bibliographies.html

However, this tends to have better coverage of recent technical reports, and its coverage of older journal
papers and other published material 1s spotty.

1 Generalities

There are several excellent undergraduate texts on programming languages, including: [PZ96] [Seb96] [Set96]
[FWH92] [Hen90] [Kam90] [Wat90] [GJ87] [Mac99] [Ten81]. Graduate texts include: [SK95] [Sta9db] [Sch94]
[Win93] [Wat91] [Mey90] [Gor88].

Volume B of the Handbook of Theoretical Computer Science contains many detailed surveys relevant to
formal models and semantics [vL90].

Journals include a substantial coverage of programming languages include ACM Transactions on Pro-
gramming Languages and Systems (abbreviated TOPLAS), ACM Letters on Programming Languages and
Systems (abbreviated LOPLAS), ACM SIGPLAN Notices, Computer Languages (Pergamon Press), Journal
of Programming Languages (Chapman and Hall), Information and Computation (formerly Information and
Control Academic Press), and Acta Informatica (Springer-Verlag). Applied areas, such as specification and

*This work was supported in part by the National Science Foundation under Grants CCR-9108654, CCR-9593168, and
CCR-9503168.

INaturally these judgements are personal, but it is hoped that authors of that vast bulk of papers that are not cited here
will not take offense.

verification have their own journals (e.g., IEEE Transactions on Software Engineering, Science of Computer
Programming, Formal Aspects of Computing). Other journals can be found by scanning the bibliography.

Conferences devoted to topics related to programming languages include the Annual ACM Symposium on
Principles of Programming Languages (POPL), the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), the ACM SIGPLAN International Conference on Functional Program-
ming (formerly called the Symposium on LISP and Functional Programming, LFP), and the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP). Conferences with a more the-
oretical bent include the IEEE Annual Symposium on Logic in Computer Science (LICS), Mathematical
Foundations of Programming Semantics (MFPS), the European Symposium on Programming (ESOP), the
International Colloquium on Automata, Languages, and Programming (ICALP), and the International Sym-
posium on Mathematical Foundations of Computer Science. Conferences not sponsored by the ACM or IEEE
are often available in the Springer-Verlag series of Lecture Notes in Computer Science (LNCS). The above
list does not include conferences devoted to software engineering (e.g. TAPSOFT) or particular methods
(e.g., category theory) where other important work is found.

Both Hoare and Wirth have written guidelines for programming language designers [Hoa80] [Wir74].
Floyd’s Turing Award lecture discusses his view of programming languages as capturing paradigms of pro-
gramming [Flo79]. Another viewpoint is that language design should proceed from semantic principles
[Ten77] [Bac78al.

The truism that bad programs can be written in any programming language is described as “Flon’s
Axiom” in a paper written at the height of the structured programming controversy [Flo75]. Shaw and Wulf
point out that language designers can provide reasonable defaults while still giving programmers the ability
to change them [SW8(].

The idea of the expressiveness of a language is just starting to receive satisfactory formal treatments

[Fel90] [Mit91].

2 Semantics

Some texts that cover many different approaches to semantics are: [NN92] [Win93] [SK95].

2.1 Operational Semantics

Landin’s SECD machine is defined in his paper “The Mechanical Evaluation of Expressions” [Lan64] (see
also Henderson’s book [Hen80]).

A more systematic style of operational semantics based on rewrite rules is found in Plotkin’s structural
operational semantics [Plo77] [Hen90] [Ast91].

Several meta-circular interpreters for variants of LISP are discussed in Steele and Sussman’s paper The
Art of the Interpreter [SST8a]. An excellent and more readily accessible discussion is found in Abelson and
Sussman’s book [ASS96], which uses Scheme. A more detailed treatment of interpreters is found in [Kam90]
[FWHO92]. See [KdRBI1] for an approach using the CLOS meta-object protocol. More recently, structuring
mechanisms for semantics based on monads [Mog90] [Wad92] [Wad97] have lead to more modular structuring
of definitional interpreters [Ste94] [LHJ95].

2.2 A-Calculus

A standard reference on Church’s A-calculus [Chu41] is Barendregt’s book [Bar84]. Informal introductions
include [Gor88]. For the typed A-calculus, see [GLT89] or [Mit90b].

The use of A-calculus for describing programming languages and as the inspiration for programming
language design has been investigated by Landin [Lan65] [Lan66].

2.3 Denotational Semantics

A short summary of the denotational approach to programming language semantics [Sco81] can be found in
Tennent’s article “The Denotational Semantics of Programming Languages” [Ten76]. A survey is found in

[Mos90].

Introductory texts include [Gor79], [All86], [Wat91] [Sch94]. An excellent text with mathematical depth
is [Gun92]. Standard works on denotational semantics are the books by Stoy [Sto77] and Schmidt [Sch86],
both of which offer a comprehensive and mathematical treatment. Schmidt’s book [Sch86] can be consulted
for references to denotational descriptions of real languages.

To read some of the most technical works, one will need some familiarity with category theory [LanT71]
[Gol84] [LS91]; the following are good introductions that emphasize semantic applications [Hoa89] [BW90a]
[ALO1b] [Pie91] [Wal91] [Gun92].

One can use a typed functional programming language, such as Standard ML, to implement a denotational
semantics. Two descriptions of this are [Wat86] [MA89).

Action semantics, an offshoot of denotational semantics, is described in [Wat91] and more fully in [Mos92].

2.4 Axiomatic Semantics

An early presentation of axiomatic semantics is Hoare’s paper “An Axiomatic Basis for Computer Program-
ming” [Hoa69].

An example of the use of axiomatic semantics to define a programming language is Hoare and Wirth’s
axiomatic definition of Pascal [HW73]. A book on axiomatic semantics slanted towards programming lan-
guage theory (as opposed to verification) is Hesselink’s monograph [Hes92]. Foundational material that may
help in reading this monograph is found in [DS90], which goes over notational issues as well as the underlying
mathematics.

A very introductory tutorial on verification from the software engineering perspective is [L(G86, chapter
11]. The idea of developing a proof of a program at the same time the program is being developed has been
eloquently advocated by Dijkstra and Gries [Dij76] [Gri81]. More recent treatments in this style advocate
a calculational approach [Mor94] [Coh90] [GS94]. See [Al91a] for an introduction that discusses concurrent
and distributed programs.

A survey of program verification for imperative programs is [Cou90].

A language designed to support program verification is Euclid [LGH*78] [PHL*77]. Another such lan-
guage is Alphard [SWL77] [Sha81].

2.5 Algebraic Semantics

Another approach to the semantics of programming languages is the algebraic approach; specifying the
behavior of programs instead of directly specifying the function computed. A book-length treatment is

[BHK89], which uses tools described in [Kli93]. Examples include [MA86] [BWP87] [PGM90] [SK95, Chapter
12].

3 Type Systems

3.1 Background

The purpose of type checking is nicely summarized by Morris as a mechanism that allows program modules
to protect objects from unwanted discovery, modification, and impersonation [Mor73]. Wegbreit’s discussion
of the extensible language EL1, is also good background [Weg74].

3.2 Polymorphism

An introductory survey of modern polymorphic type systems and research results 1s Cardelli and Wegner’s
paper “On Understanding Types, Data Abstraction and Polymorphism” [CW85]. See also [Har84] [Car91]
[DT88]; the latter two have much material related to object-oriented programming. A still more recent
survey is [Mit90b].

Standard references include Girard’s system Fw [Gir71] (see also [Gir86] [GLT89]), and Reynolds indepen-
dent work [Rey74], sometimes called the Girard-Reynolds second order lambda calculus (or SOL). Modern
expositions are found in [MP85] [MHS88] [Rey85] [Mit90b] [Car9l] [Sch94].

Other kinds of type information may be incorporated into a type system and checked at the same time

as types [GL86] [LG88] [OG8Y].

3.3 Type Inference

Type inference 1s also sometimes called type reconstruction The basic idea 1s described in Milner’s paper
“A Theory of Type Polymorphism in Programming” [Mil78]. A more modern exposition of Milner’s ideas is
[Car87]. A top-down variation of the standard algorithm is studied in [LY98].

This type inference system is used in the programming language Standard ML [GMWT79] [MTH90]
[MT91]. Textbooks about programming in Standard ML include [Pau91] [Sok91] [Sta92] [Ull94]. ML also
has a very interesting module system [HL94] [Ler94] [Mac84].

An important research problem [HM95] has been extending this type system to handle subtyping [EST95]
[Nor99] [OSW99] [PT98] [Pot99].

An extension of this type system to handle static overloading (ed hoc polymorphism) is described
in[WBB89] and further refined in [Jon95] [NP94]. One way to handle mutation in this type system is de-
scribed in [Har94]. There are also object-oriented extensions to ML [RV98] [RR96] [FR99).

The language Poly [Mat85b] [Mat85a] uses type inference to infer type parameters. An algorithm for
inferring operation parameters is described in [CW90]. Other extensions to the basic type inference algorithm
are described in [OG89] [TJ94] [Boe89]. Along similar lines, one can use a mix of type annotations and
inference to allow polymorphic functions to be passed as arguments [OL96].

The computational complexity of various type checking and type inference problems has also been an

active area of research [Wel94] [Sch98] [Hen99]. See [Tiu90] for a survey.

3.4 Type Theory

Type theory, narrowly defined, uses the tools of constructive logic to study type systems such as the above.
Logical inference systems can often be translated directly into type systems due to the “Formula as Types”
notion or the “Curry-Howard isomorphism” [How80] [GLT89, Chapter 3] [Con89]. Thus much research
in type theory lies on the border of mathematics and computer science. Another motivation is to use
type information to capture behavioral specifications, thus allowing one to reason about programs in the
programming language [NP83] [Dyb90].

After reading the references above, one will still need an introduction to some of the more technical aspects
of type theory. Good book-length treatments are [Tho91] and [Sch94]. Those wishing a shorter introduction
might try [Rey85] (which is not comprehensive, but is tutorial) [Bac89] (which especially focuses on Martin-
Lof style type theory) and [Sce90] (which focuses more on the calculus of constructions). After reading one
of these the student may want to read [PDM89] for some practical hints.

In the past, some groups working on type theory have included deBruijn and others working on AU-
TOMATH [dB80], Martin-Lof’s and followers [ML75] [ML82] [Bac89] [BCMS89], Constable’s group at Cor-
nell [CZ84], and Coquand and Huet’s group [CH88] has also been influential for modern language design.

Some of the latest work on type theory uses linear logic [Gir93] instead of a more standard logic. A linear
type system allows a value to be used only once [Bak91] [Mac93] [SBvEP94] [Kob99].

There are also connections between type theory and abstract interpretation [Cou97] [PP98].

3.5 Data Abstraction and Types

A good introductory treatment of the idea of data abstraction is found in [LG86]. A more technically oriented
introduction is [CL90]. Another excellent paper is [Coo91], which distinguishes between programming with
abstract data types and object-oriented programming.

CLU is a language designed around data abstraction [LSAS77] [LAB*81] [LG86]. Tt also has an interesting
control abstraction and exception handling mechanisms [LS79].

Alphard, designed around the same time as CLU and with many of the same goals, has surprising

differences [SWL77] [Sha81].

The language Russell was developed at Cornell to investigate how types can be treated as values. There
are many papers that have appeared about Russell, but perhaps the best introduction to the language is the
paper “Data Types are Values” [DD85], which can be consulted for other references.

Much recent work involves object-oriented languages. For example, Trellis/Owl [SCB*86] features strong
type checking and a declared (i.e., by-name) subtype relation. By contrast many other languages feature
structural subtyping, including Emerald [BHJL86] [BHJ*87] [BH90] [BH91] [Car91]. Two excellent books,
one by Abadi and Cardelli [AC96] and another by Castagna [Cas97], are a good starting point in this area.
Other theoretical work in this area includes the following [BCP96] [Car88b] [Car88a] [AC93] [CMMS94]
[CCHT89] [CHCY0] [Coo89] [BTGSI0] [BCMT93] [BM92] [Bru93] [BCMT93] [PS94] [Bru94] [PT94] [Abad4]
[AC94] [ACO5] [ESTI5] [FM98]. (Cardelli has been one of the most active in this area, and most of the
literature will cite one of his papers.) For work that directly bears on multimethods (as in CLOS), see
[Rey80] [Ghe9la] [Ghedlb] [CGLI2] [Cha92] [CGLIS] [Casd3] [Casd5] [Cas97] [CLI5] [LP99] [MC99]. For
adding multimethods to conventional languages see [BC97] [LM98]. For a tutorial discussion of the problems
of typing binary methods, see [BCC*95].

Programming languages with separate compilation do some of their type checking at link-time [LAB*81]
[Ler94] [Str91]. This interaction of types, separate compilation, linking, and modules has recently been
formalized [Car97] [GM99]. Some recent theoretical work been on combining modules and object-oriented

programming features [FF99] [FR99] [MC99].

4 Alternative Programming Models

4.1 Functional Programming

A survey of functional programming is [Hud89], which also discusses the language Haskell [HF92] [HJW*92]
[Sno92] [Dav92]. Another survey is [Bar90]. There are several good books on functional programming,
including [Hen87] [BW88] [Hen80] [SF89] [Oka9d8]. For an introduction that also treats language imple-
mentation issues, see [Pey87]. The articles in [Tur90b] make an interesting introduction to some research
topics.

John Backus, one of the designers of Fortran, proposed a new language for functional programming
without any names called FP in his Turing Award Lecture [Bac78a]. A functional programming style using
a more congenial notation based on Landin’s ISWIM [Lan66] is developed in Henderson’s book Functional
Programming: Application and Implementation [Hen80].

One axis of variation in functional languages is between the lazy and strict (eager) languages [Wad96].
ML is eager, but Haskell and its predecessor Miranda [Tur90a] are lazy. Miranda also has an interesting
notion of data abstraction.

Recently, various approaches to incorporating state information in a safe way into functional languages
have centered around the use of monads [LS97] [Mog90] [Wad92] [Wad97]. There is syntactic support for
monads in Haskell. Others are exploring alternatives to monads [CH97] [Kag97] [Ode99] [SBvEP94] [Wad99].

Erlang [AWWYV95] is used by Ericsson telephone company in several commercial products.

4.2 Logic Programming

Kowalski’s paper “Algorithm = Logic + Control” is a good introduction to logic programmingin an idealized
setting [Kow79]. A classic textbook on Prolog is the book by Clocksin and Mellish [CM81]; another good
text is Sterling and Shapiro’s [SS94]. A short description and evaluation of Prolog is found in the paper
“The Prolog Phenomenon” [McD80]. A survey is [Apt90].

Several “Al languages” preceded the development of Prolog; for example, Planner [SWCT1] and Conniver
[MS74].

Much work has focused on concurrent logic programming languages [Sha89], which are perhaps more like
CSP than logic programming. An evaluation of the Fifth-Generation project and some history of concurrent
logic programming languages is found in [SW93]. A related language is Andorra Prolog [BHW89].

Work on type checking for logic programming languages is surveyed in the collection [Pfe92]. The language
AProlog features type inference, type checking, and higher-order programming constructs [Mil90a] [Mil89a]
[NM90] [MNPSI1].

4.3 Other Declarative Programming Paradigms

Constraint-based languages will probably be important in the future. An early attempt was embodied in
Steele and Sussman’s work, as described in [SS80]. An overview is given in Leler’s book [Lel88]. A survey is
found in [vVHST96]. The language CLP(R) is a well-known constraint logic programming language [JMSY92].
Some higher-order equational logic languages based on variations of narrowing [Sla74] have started to
appear in research languages [Mil91] [Pfe91] [Qia94].
Languages based on term rewriting without logic variables also allow for parallelism. A standard example
is OBJ [FGJMS85], which also has an interesting module system [Gog84].

4.4 Object-Oriented Programming

A good, but not very technical, introduction to object-oriented concepts is given by Cox [Cox86]; his book
also discusses the language Objective-C. A more technical introduction is Budd’s book [Bud91b]. Meyer’s
book on Eiffel also has more technical meat [Mey88], as well as a focus on software engineering concerns.
Another fairly complete treatment is given in Goldberg and Robson’s book on Smalltalk-80 [GR83]. A
graduate-level introduction is [BGHS91].

Descriptions of object-oriented design methods are found in [Boo91] [WBWW90] [dCLF92] [dCF92]
[dCLF93]. Both [Boo91] and [dCLF93] have many references. A treatment of object-oriented design that
focuses more on C++ is found in [Mul89]. See also the survey by [WBJ90]. Much recent work in this area
has focused on design patterns [Joh92] [GHIV95].

A collection of papers is found in [Pet87]. More collections of edited research papers are [SW87] [KL89].

The major annual conferences on object-oriented programming are the European Conference on Object-
Oriented Programming (ECOOP) and Object-Oriented Programming Systems, Languages and Applications
(OOPSLA). The ECOOP tends to be more academic, while OOPSLA is more practical. The OOPSLA
proceedings have been published as special issues of ACM SIGPLAN Notices (November 1986, December
1987 with an addendum in May 1988, and November 1988, and October of the following years). ECOOP
and OOPSLA had a joint conference in 1990.

There are now three journals devoted to object-oriented programming. The Journal of Object-Oriented
Programming (JOOP) is the oldest. Two more academic journals are Theory and Practice of Object Systems
(TAPOS), and Object-Oriented Systems.

The best documented and the cleanest object-oriented programming language is Smalltalk-80 [Tng81]
[GRR3]. Squeak is a recent dialect [T[KM*97].

A more widely used language is C++ [ES90]. Good introductions to C++ include [Str97] and [Lip91].

Multiple inheritance, a feature not found in Smalltalk-80, seems to be quite useful. Snyder’s analysis of
the design issues involved is insightful [Sny86], although his viewpoint is different from that of most advocates
of multiple inheritance.

Semantics of inheritance (as opposed to type theory or semantics of subtyping) appear in [Kam88] [BC90]
[CP89]. See [Tai96] for a survey on the notion of inheritance.

My own views on the subject of object-oriented specification, verification, and subtyping can be found
in [LW90] [Lea91b] [LW95]. For a contrast, see also [BW90b] [Ame87] [AvdL.90] [Mey88] [MOMI0] [Co092]
[UR92] [LW94].

The concept of delegation is explored in [Lie86], in Actra [LTP86] [LaL89], and in Ungar’s language
“Self” [US87].

The contrast between message passing and other kinds of polymorphism is one of binding time. Some
relevant semantic models are discussed in [Mit90a] and [CHC90].

A dated survey of the literature on object-oriented programming is [Lea9lal.

4.5 Blends of Various Paradigms

Various authors have tried to blend various paradigms. Blends of functional and logic programming are
found in [GM86] [JG89]. Blends of imperative and logic programming ideas are found in [Bud91a] [AS98].
Goguen and Meseguer even try to unify everything [GM8T].

Another approach is a multiparadigm language. Leda is one example [Bud95].

5 Language Case Studies

The following entries are intended to be selective rather than comprehensive. Instead they are biased towards
the most interesting languages and references for the programming language designer. Thus, although
COBOL [ANS74] was (is?) the most widely used language on the planet, its influence on programming
language design has been small. While the languages discussed below are often obscure, they demonstrate
interesting issues in language design.

Those interested in history for its own sake, or in delving further into early languages, should look at
the proceedings of the two History of Programming Languages Conferences [Wex78] [Wex93]. The first
conference covers the earliest languages, including COBOL, BASIC, and many others not discussed below.
Many of the more established languages have their definitions standardized. These are often published by
the American National Standards Institute (ANSI), the International Standards Organization (ISO), or the
IEEE.

Other resources for case studies include Kamin’s book [Kam90], which has several case studies put in
a common framework. The “Grand Tour” book by Horowitz has articles about specific languages as well
[Hor87]. See also the languages mentioned under the various paradigms above.

5.1 FORTRAN

The first widely used programming language was FORTRAN. See [Bac78b] for a discussion of the history
of FORTRAN, what early versions of FORTRAN were like, and early references. The development of
FORTRAN 1V is discussed in [BH64].

John Backus, who headed the team that developed FORTRAN, later became dissatisfied with the influ-
ence that FORTRAN had on programming languages [Bac78a].

5.2 Algol 60

The Algol 60 report is a true classic NBBT63]. Among other innovations, it introduced the syntax formalism
now known as BNF. Despite the precise use of English in the report, Knuth and others were able to find
problems with the language definition [Knu67].

5.3 Algol 68

Algol 68 1s a direct descendent of Algol. It is a more powerful and more complete language than Algol 60;
for example, it has user-defined types, overloading of operators, and mechanisms for parallel processing. The
language design is fascinating and bristles with examples of orthogonality (one of many terms coined in the
Algol 68 design). The revised report is a forbidding document, which has an innovative formal mechanism for
defining the language’s semantics [vWMPT77]. Because the revised report is difficult to follow, Tanenbaum’s
tutorial is probably a better place to start [Tan76]. Those seriously interested in Algol 68 will want to consult
[LvdM77].

54 C

A popular descendent of Algol 68 is the lower-level language C [KR78]. C represents the best of several
languages that support low-level programming while maintaining the portability of the resulting program.
The language has recently been standardized, and incorporates several changes from its variant C4++ [Str91].

5.5 Algol W, Pascal, Modula-2, and Oberon

Wirth and Hoare’s language known as Algol W can be thought of as an improved version of Algol 60 [WHG66].
Wirth’s language Pascal [Wir7l] [JW74] has been enormously popular, attracting detractors [Hab73] and
defenders [LD75]. Pascal is, in part, a response to the complexity of Algol 68. All this attention has provoked
Wirth to reassessing Pascal [Wir75] and to the design of Modula-2 [Wir85], and Oberon [Wir88]. Oberon
has object-oriented features, as does the (non-Wirth) language Modula-3 [CDJ*89] [Nel91].

5.6 FEuclid

Euclid is an attempt to improve on Pascal in a different direction [PHL*77] [LGHT78]. Specifically, it
attempts to support program verification.

5.7 Ada

Ada was designed by first setting out requirements for the language [Hig78] and then designing and revising
a language to meet those requirements [IBH'79] [Ada83] [[BFW91]. Recently, the language was revised to
add some object-oriented features [BB195] [Ada95].

5.8 Java

Java [GJS96] [AG98] is an object-oriented language with a syntax similar to C4++. However underneath, it
1s like Lisp, as it features garbage collection and implicit pointers. It also has reflective features, including
dynamic class loaders [LB98]. Although it has a strong, static, and safe [DEK99] [NvO98] type system,
because it has a universal type (Object) that is a supertype of (almost) all the other types and an operation
to dynamically check types (instanceof, with checked type casts), it can be programmed as if it were a
dynamically-typed language. Several authors have proposed extensions to add parametric polymorphism to

the language [BOSW98] [CS98] [MBLI7] [OW97] [Tho97b).

5.9 Lisp-like Languages

The original LISP is described in the LISP 1.5 Programmer’s Manual [MAET65]. The language has since
evolved in many directions. MaclLisp is a main-stream dialect that provided many system building tools
[Pit83]. The successor to MacLisp is Common Lisp [Ste84] [Ste90]. Unlike most earlier dialects of Lisp,
Common Lisp has static scoping.

Scheme was the first dialect of Lisp to emphasize static scoping [SS78b] [ASS96]. See also the references
in the Revised® report [KCE9S].

ZetaLisp (as found on Symbolics Lisp Machines) includes the influential Flavors mechanism for object-
oriented programming [WM80] [SMW84] [Sym84]. The Flavors mechanism evolved into the Common Lisp
Object System [Kee89] [Ste90] [Pac93]. The meta-object system of Common Lisp is described in [KdRB91];
it provides a very flexible way to extend the language. The ideas in the meta-object system have led to
Aspect-Oriented Programming [KLM197] that is designed to allow the isolation of concerns that would
otherwise be spread throughout a program.

5.10 Snobol, SL5, and Icon

SNOBOLA is a language for string processing that is unlike any other [GPP71]. Because it is so unstructured,
its designers have tried to place its powerful features in a more structured framework. The language SL5,
one attempt in this direction, is notable for its flexible procedure mechanism [HG78]. Another descendent of
SNOBOLA4, Icon, is a more conventional programming language with innovative control structures [GG83].

5.11 APL

Another unconventional language is APL [Ive62] [Ive91]. APL has array processing features without equal
and generic operators that can be combined in interesting ways [Ive79]. More references on APL can be found
by consulting the proceedings of the yearly International Conference on APL (sponsored by the ACM). (In
the past this was often just called APL 83 or some such name.)

The most recent version of APL, APL2, is described in [Bro88] [BC91].

6 Parallel and Distributed Programming Languages

Parallel programming languages are a hot topic of current research, and one with considerable overlap with
operating systems, networking, and database systems. Many of the above areas and articles have implications

for parallel programming. This area also has several journals and conferences of its own. Some journals that
publish programming language related materials but which were not mentioned above include Distributed
Computing, IEEE Transactions on Parallel and Distributed Systems, and International Journal of Parallel
Programmang. See also ACM SIGOPS Operating Systems Review. Important conferences not mentioned
above include the annual ACM Symposium on Operating Systems Principles, ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming, and the ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing.

A recent survey is [ST98]. An older, but still good, survey on parallel programming language issues is
[AS83]. A survey that focuses on the Linda model appears in [CG89]. (See [BZ91] [BZ92] [GC92] for more
work on Linda.) An older survey that focuses on object-oriented aspects is [WKH92], and a more recent
survey [BGLI8] also discusses distributed object-oriented programs. A survey that focuses on distributed
programs is [And91b]. Andrew’s textbook on concurrent programming languages also contains material on
program verification as well as some survey material [And91a]. Data flow languages are surveyed in [Ack82].
A useful collection of papers is [ST95]. An introduction to concurrent programming techniques is [Sno92].

Actor languages are discussed in [Agh91]. A concurrent version of ML is described in [Rep93]. Some
aspects of data parallel programming languages are described in [HS86] [Gri93]. The language Jade is
described in [R1L92] [RSLI3].

Data-parallel languages allow one to split data among processors, and to execute the same code for each.
A prominent example is High Performance Fortran [Lov93]. The language Orca combines both data and
task parallelism [HBJ98].

Distributed programming is a subarea of parallel programming with its own set of problems [Mul93].
A survey appears in [BST89], which can be consulted for other references. A survey, with a focus on
object-orientation is [CC91]. Other sources of references are is the collection of reprints [AS91], and the
book [GR93]. Of particular interest are the languages Argus [LS83] [Wei90] and SR [AOC*88] [AO93], The
Amoeba distributed operating system also has interesting implications for language designers [TvRvST9(]
[TKB92].

Mobile code is a recent research interest. It was featured in Emerald [BHJL86] [BHJ*87] [BH90] [BH91],
and of course is part of Java. Some other mobile languages of interest include Obliq [Car95], Mobile UNITY
[Rom98], and Distributed Oz [vRHBT97]. A recent survey of the field is [Tho97a].

An older but still heavily used approach to the semantics of concurrent processes is Petri nets [Pet77]
[PCI92]. A classic reference for the operational semantics of concurrent processes is Milner’s book on CCS
[Mil89b]. Another widely used approach is Hoare’s CSP [Hoa78] [BHRS84] [L.S84] [Hoa85]. See [Hen88]
[BM90] [Mil90b] [MPW92] for more work in the semantics of concurrency, and [LL90] and [Bro91] for work
in the semantics of distributed systems.

7 The Future

A (by now a bit dated) summary of research directions for language design is given in [LLM89].

Consumers of programming languages (programmers and language standardization committees) seem to
be fairly conservative, and interested more in performance than elegance or expressive power. See [Gab93]
for a pessimistic view of what this means for language design.

Acknowledgements

Thanks to my teachers. Thanks especially to Lawrence Flon, who introduced me to the literature on
programming languages. Thanks also to Barbara Liskov, David Gifford, and William Weihl, who helped
shape my attitudes towards it. Thanks to students of the class Com S 541 at Iowa State University who
have given me feedback on the literature recommendations contained herein.

References

[Aba94]

[AC93]

[ACO4]

[AC95]

[AC96]

[Ack82]
[Adag3]

[Ada95]

[AGOS]

[Agh91]

[Al91a]

[AL91b]

[A1186]

[Ame8T]

[And91a]

[And91b)]

[ANST4]

Martin Abadi. Baby Modula-3 and a Theory of Objects. Journal of Functional Programming,
4(2):249-283, April 1994.

Roberto M. Amadio and Luca Cardelli. Subtyping Recursive Types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, September 1993.

Martin Abadi and Luca Cardelli. A Theory of Primitive Objects — Untyped and First-Order
Systems. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer
Software, volume 789 of Lecture Notes in Computer Science, pages 296-320. Springer-Verlag,
April 1994.

Martin Abadi and Luca Cardelli. On Subtyping and Matching. In Walter Olthoff, editor,
ECOOP ’95: Object-Oriented Programmang 9th Furopean Conference, Aarhus, Denmark, num-
ber 952 in Lecture Notes in Computer Science, pages 145-167. Springer-Verlag, New York, N.Y .,
1995.

Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, New York, N.Y., 1996.

W. B. Ackerman. Data Flow Languages. Computer, 15(2):15-25, February 1982.

American National Standards Institute. Reference Manual for the Ada Programming Language,

February 1983. ANSI/MIL-STD 1815A. Also published by Springer-Verlag as LNCS 155.

International Organization for Standardization. Ada 95 Reference Manual. The Language. The
Standard Libraries, January 1995. ANSI/ISO/TEC-8652:1995.

Ken Arnold and James Gosling. The Java Programming Language. The Java Series. Addison-
Wesley, Reading, MA | second edition, 1998.

Gul Agha. The Structure and Semantics of Actor Languages. In J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX
School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture
Notes in Computer Science, pages 1-59. Springer-Verlag, New York, N.Y., 1991.

Krzysztof R. Apt and Ernst-Rudiger Olderog. Introduction to Program Verification. In E. J.
Neuhold and M. Paul, editors, Formal Description of Programming Concepts, IFIP State-of-
the-Art Reports, pages 363-429. Springer-Verlag, New York, N.Y., 1991.

Andrea Asperti and Guiseppe Longo. Categories, Types and Structures. The MIT Press,
Cambridge, Mass, 1991.

Lloyd Allison. A Practical Introduction to Denotational Semantics. Cambridge University
Press, New York, N.Y., 1986.

Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented Language. In Jean
Bezivin et al., editors, ECOOP 87, European Conference on Object-Oriented Programming,
Paris, France, pages 234-242, New York, N.Y., June 1987. Springer-Verlag. Lecture Notes in
Computer Science, Volume 276.

Gregory R. Andrews. Concurrent Programming: Principles and Practice. The Ben-
jamin/Cummings Publishing Company, 1991.

Gregory R. Andrews. Paradigms for Process Interaction in Distributed Programs. ACM Com-
puting Surveys, 23(1):49-90, March 1991.

American National Standards Institute, New York, N.Y. American National Standard Pro-
gramming Language COBOL, 1974. ANS X3.23-1974.

10

[AO93]

[AOCT88]

[Apt90]

[AS83]

[AS91]

[AS98]

[ASS96]

[Ast91]

[AvdL90]

[AWWV95]

[BacT78a]

[Bac78b]

[Bac89]

[Bak91]

[Barg4]

[Bar90]

[BB+95]

Gregory R. Andrews and Ronald A. Olsson. The SR Programming Language: Concurrency in
Practice. The Benjamin/Cummings Publishing Company, Redwood City, CA, 1993.

Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen, Titus
Purdin, and Gregg Townsend. An Overview of the SR Language and Implementation. ACM
Transactions on Programming Languages and Systems, 10(1):51-86, January 1988.

Krzysztof R. Apt. Logic Programming. In J. van Leewen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 10, pages 493-574. The
MIT Press, New York, N.Y., 1990.

Gregory R. Andrews and Fred B. Schneider. Concepts and Notations for Concurrent Program-
ming. ACM Computing Surveys, 15(1):3-43, March 1983.

Akkihebba L. Ananda and Balasubramaniam Srinivasan. Distributed Computing Systems: Con-
cepts and Structures. IEEE Computer Society Press Reprint Collection. IEEE Computer Soci-
ety Press, Los Alamitos, California, 1991.

Krzysztof Apt and Andrea Schaerf. Alma-O: An Imperative Language that Supports Declara-
tive Programming. ACM Transactions on Programming Languages and Systems, 20(5):1014—
1066, September 1998.

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of
Computer Programs. McGraw Hill, Cambridge, Mass., second edition, 1996.

Edigio Astesiano. Inductive and Operational Semantics. In E. J. Neuhold and M. Paul, editors,
Formal Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 51-136.
Springer-Verlag, New York, N.Y., 1991.

Pierre America and Frank van der Linden. A Parallel Object-Oriented Language with In-
heritance and Subtyping. ACM SIGPLAN Notices, 25(10):161-168, October 1990. OOPSLA
ECOOP °90 Proceedings, N. Meyrowitz (editor).

J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. R. Virding. Concurrent Programming
i Erlang. Prentice Hall, 2nd edition edition, 1995.

John Backus. Can Programming Be Liberated from the von Neumann Style? A Functional

Style and Tts Algebra of Programs. Communications of the ACM, 21(8):613-641, August 1978.

John Backus. The History of FORTRAN I, 11, and ITI. ACM SIGPLAN Notices, 13(8):165-180,
August 1978.

R. C. Backhouse. Constructive Type Theory — An Introduction. In Manfred Broy, editor,
Constructive Methods in Computing Science, volume F55 of NATO ASI Series, pages 9-60.
Springer-Verlag, New York, N.Y., 1989.

Henry G. Baker. Lively Linear Lisp — ‘Look Ma, No Garbage!’”. ACM SIGPLAN Notices,
27(8):89-98, August 1991.

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland Publishing
Co., New York, N.Y., 1984. Revised Edition.

H. P. Barendregt. Functional Programming and Lambda Calculus. In J. van Leewen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 7,

pages 321-363. The MIT Press, New York, N.Y., 1990.

John Barnes, Ben Brosgol, et al. Ada 95 Rationale. The Language. The Standard Libraries.
Technical report, Intermetrics Inc., 733 Concord Av, Cambridge, MA 02138, January 1995.

11

[BCYO]

[BC91]

[BCY7]

[BCC*95]

[BCM+93]

[BCMS89]

[BCP96]

[BGHS91]

[BGLIS]

[BH64]

[BHY0]

[BHY1]

[BHI*+87]

[BHILS6]

[BHKS9]

[BHRS4]

[BHWSY]

Gilad Bracha and William Cook. Mixin-Based Inheritance. ACM SIGPLAN Notices,
25(10):303-311, October 1990. OOPSLA ECOOP ’90 Proceedings, N. Meyrowitz (editor).

J. A. Brown and H. P. Crowder. APL2: Getting Started. IBM Systems Journal, 30(4):433-445,
1991.

John Boyland and Giuseppe Castagna. Parasitic Methods: Implementation of Multi-Methods
for Java. In Conference Proceedings of OOPSLA 97, Atlanta, volume 32(10) of ACM SIGPLAN
Notices, pages 66-76. ACM, October 1997.

Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group, Gary T. Leavens,
and Benjamin Pierce. On Binary Methods. Theory and Practice of Object Systems, 1(3):221-
242, 1995.

Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Allyn Dimock, and Robert
Muller. Safe and decidable type checking in an object-oriented language. ACM SIGPLAN
Notices, 28(10):29-46, October 1993. OOPSLA ’93 Proceedings, Andreas Paepcke (editor).

Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman. Do-it-Yourself Type
Theory. Formal Aspects of Computing, 1(1):19-84, January — March 1989.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing Object Encodings. In
Invited lecture at Third Workshop on Foundations of Object Oriented Languages (FOOL
3), July 1996. Available electronically through http://www.cs.williams.edu/~kim/FOOL/
Abstracts.html.

Gordon Blair, John Gallagher, David Hutchison, and Doug Shepherd, editors. Object-Oriented
Languages, Systems and Applications. Pitman Publishing, London, 1991. ISBN 0-273-03132-5.

Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency and Distribution in
Object-Oriented Programming. ACM Computing Surveys, 30(3):291-329, September 1998.

J. W. Backus and W. P. Heising. FORTRAN. IEEF Transactions on Electronic Computers,
EC-13(4):382-385, 1964.

Andrew P. Black and Norman C. Hutchinson. Typechecking Polymorphism in Emerald. Tech-
nical Report TR 90-34, Department of Computer Science; The University of Arizona, Tucson,
A7 85721, December 1990.

Andrew P. Black and Norman Hutchinson. Typechecking Polymorphism in Emerald. Tech-
nical Report CRL 91/1 (Revised), Digital Equipment Corporation, Cambridge Research Lab,
Cambridge, Mass., July 1991.

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distribution
and Abstract Types in Emerald. IEEE Transactions on Software Engineering, SE-13(1):65-76,
January 1987.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the Emerald
System. ACM SIGPLAN Notices, 21(11):78-86, November 1986. OOPSLA ’86 Conference
Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

J. A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM Press and Addison-
Wesley, 1989.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating Sequential
Processes. Journal of the ACM, 31(3):560-599, July 1984.

P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog. New Generation Computing, 7(2-
3):109-129, 1989.

12

[BM90]

[BM92]

[Boe89]

[Boo91]

[BOSW9S]

[Bro88]

[Bro91]

[Bru93]

[Bru94]

[BSTS9)

[BTGS90]

[Bud9la]

[Bud91b]
[Bud95]

[BWS8S]

[BW90a]

[BW90b]

[BWPS7]

Bard Bloom and Albert R. Meyer. Experimenting with Process Equivalence. In M. Z.
Kwiatkowska, M. W. Shields, and R. M. Thomas, editors, Semantics for Concurrency, Le-
tcester, Workshops in Computing, pages 81-95. Springer-Verlag, New York, N.Y., 1990.

Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types and higher-order
polymorphism. In Conference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 316-327. ACM, January 1992.

Hans-J. Boehm. Type Inference in the Presence of Type Abstraction. ACM SIGPLAN No-
tices, 24(7):192-206, July 1989. Proceedings of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation, Portland, Oregon, June.

Grady Booch. Object-Oriented Design: With Applications. Benjamin Cummings, New York,
N.Y., 1991.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language. In OOPSLA 98
Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 183-200, October
1998.

James A. Brown. APL2 at a glance. Prentice Hall, Englewood Cliffs, N.J., 1988.

Manfred Broy. Formalization of Distributed, Concurrent, Reactive Systems. In E. J. Neuhold
and M. Paul, editors, Formal Description of Programming Concepts, IFIP State-of-the-Art
Reports, pages 319-361. Springer-Verlag, New York, N.Y., 1991.

K. Bruce. Safe Type Checking in a Statically Typed Object-Oriented Programming Language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 285-298, 1993.

K. B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design, Static Typing
and Semantics. Journal of Punctional Programming, 4(2):127-206, April 1994.

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming Languages for
Distributed Computing Systems. ACM Computing Surveys, 21(3):261-322, September 1989.

V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with Coercions. In Proceedings of
the 1990 ACM Conference on LISP and Functional Programming, Nice, France, pages 44-60.
ACM, June 1990.

Timothy Budd. Blending Imperative and Relational Programming. IEEFE Software, 8(1):58-65,
January 1991.

Timothy Budd. Object-Oriented Programming. Addison-Wesley, New York, N.Y., 1991.

Timothy A. Budd. Multiparadigm Programming in LEDA. Addison-Wesley, New York, N.Y.,
1995.

Richard J. Bird and Philip Wadler. Introduction to Functional Programming. International
Series in Computer Science. Prentice-Hall, New York, N.Y., 1988.

Michael Barr and Charles Wells. Category Theory for Computing Science. International Series
in Computer Science. Prentice-Hall, Inc.; Englewood Cliffs; N.J., 1990. ISBN 0-13-120486-6.

Kim B. Bruce and Peter Wegner. An Algebraic Model of Subtype and Inheritance. In Francois
Bangilhon and Peter Buneman, editors, Advances in Database Programming Languages, pages

75-96. Addison-Wesley, Reading, Mass., August 1990.

Manfred Broy, Martin Wirsing, and Petter Pepper. On the Algebraic Definition of Programming
Languages. ACM Transactions on Programming Languages and Systems, 9(1):54-99, January
1987.

13

[BZ91]

[BZ92]

[Car87]

[Car88a]

[Car88b]

[Car91]

[Car95]

[Car97]

[Cas93]

[Cas95]

[Cas97]

[CCY1]

[CCH*89)

[CDI*+89]

[CG8Y]

[CGLY2]

Paul Butcher and Hussein Zedan. Lucinda—An Overview. ACM SIGPLAN Notices, 26(8):90—
100, August 1991.

Paul Butcher and Hussein Zedan. Lucinda - A Polymorphic Linda. In J. P. Banatre and
D. Le Metayer, editors, Research Directions in High-Level Parallel Programming Languages,
Mont Saint-Michel, France, June 1991, Proceedings, volume 574 of Lecture Notes in Computer
Science, pages 126-146. Springer-Verlag, New York, N.Y., 1992.

Luca Cardelli. Basic Polymorphic Typechecking. Science of Computer Programming, 8(2):147-
172, April 1987.

Luca Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76(2/3):138-164, February/March 1988. A revised version of the paper that appeared in the
1984 Semantics of Data Types Symposium, LNCS 173, pages 51-66.

Luca Cardelli. Structural Subtyping and the Notion of Power Type. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programmaing Languages, San Diego,
Calif., pages 70-79. ACM, January 1988.

Luca Cardelli. Typeful Programming. In E. J. Neuhold and M. Paul, editors, Formal Descrip-
tion of Programming Concepts, IFIP State-of-the-Art Reports, pages 431-507. Springer-Verlag,
New York, N.Y., 1991.

Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59, January
1995. A preliminary version appeared in POPL ’95.

Luca Cardelli. Program Fragments, Linking, and Modularization. In Conference Record of
POPL 97: The 24TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Paris, France, pages 266-277—, New York, N.Y., January 1997. ACM.

G. Castagna. A Meta-Language for Typed Object-Oriented Languages. In R. K. Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Science, volume 761 of
Lecture Notes in Computer Science, pages 52-71. Springer-Verlag, October 1993.

Giuseppe Castagna. Covariance and contravariance: conflict without a cause. ACM Transac-
tions on Programming Languages and Systems, 17(3):431-447,1995.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in Theo-
retical Computer Science. Birkhauser, Boston, 1997.

Roger S. Chin and Samuel T. Chanson. Distributed Object-Based Programming Systems. ACM
Computing Surveys, 23(1):91-124, March 1991.

Peter Canning, William Cook, Walter Hill; John Mitchell, and Walter Olthoff. F-Bounded
Polymorphism for Object-Oriented Programming. In Fourth International Conference on Func-
tional Programming and Computer Architecture. ACM, September 1989. Also technical report
STL-89-5, from Software Technology Laboratory, Hewlett-Packard Laboratories.

Luca Cardelli, Jim Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The Modula-3
Type System. In Conference Record of the Sizteenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Tezxas, pages 202-212. ACM, January 1989.

Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A Guide for the
Perplexed. ACM Computing Surveys, 21(3):323-357, September 1989.

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. In ACM Conference on LISP and Functional Programming, pages 182-192.
ACM, June 1992. To appear in Information and Computation.

14

[CGLI5]

[CTISS)

[CH97]

[Cha92]

[CHC90]

[Chu4l]

[CT1.90]

[C1.95]

[CM81]

[CMMS94]

[Coh90]

[Con89]

[Coo89]

[Coo91]

[Co092]

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. Information and Computation, 117(1):115-135, February 1995. A preliminary
version appeared in ACM Conference on LISP and Functional Programming, June 1992 (pp.
182-192).

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Compu-
tation, 76(2/3):95-120, February /March 1988.

Chih-Ping Chen and Paul Hudak. Rolling Your Own Mutable ADT — A Connection Between
Linear Types and Monads —. In Conference Record of POPL 97: The 24TH ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Paris, France, pages 54-66,
New York, N.Y., January 1997. ACM.

Craig Chambers. Object-Oriented Multi-Methods in Cecil. In Ole Lehrmann Madsen, editor,
ECOOP 92, European Conference on QObject-Oriented Programmaing, Utrecht, The Nether-
lands, volume 615 of Lecture Notes in Computer Science, pages 33-56. Springer-Verlag, New
York, N.Y., 1992.

William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is Not Subtyping. In
Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, pages 125-135, January 1990. Also STL-89-17, Software
Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto, Calif., July 1989.

A. Church. The Calculi of Lambda Conversion, volume 6 of Annals of Mathematics Studies.
Princeton University Press, Princeton, N.J., 1941. Reprinted by Klaus Reprint Corp., New
York in 1965.

Luca Cardelli and Xavier Leroy. Abstract Types and the Dot Notation. Technical Report 56,
Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301, March 1990. Order from src-report@src.dec.com.

Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods.
TOPLAS, 17(6):805-843, November 1995.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New York, N.Y.,
1981.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An Extension of System
F with Subtyping. Information and Computation, 109(1/2):4-56, Feb 1994.

Edward Cohen. Programmaing in the 1990s: An Introduction to the Calculation of Programs.
Springer-Verlag, New York, N.Y., 1990.

Robert L. Constable. Assigning Meaing to Proofs: a semantic basis for problem solving envi-
ronments. In Manfred Broy, editor, Constructive Methods in Computing Science, volume F55

of NATO ASI Series, pages 63-91. Springer-Verlag, New York, N.Y., 1989.

W. R. Cook. A Proposal for Making Eiffel Type-safe. The Computer Journal, 32(4):305-311,
August 1989.

William R. Cook. Object-Oriented Programming Versus Abstract Data Types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Lan-
guages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume
489 of Lecture Notes in Computer Science, pages 151-178. Springer-Verlag, New York, N.Y.,
1991.

W. R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. ACM
SIGPLAN Notices, 27(10):1-15, October 1992. OOPSLA ’92 Proceedings, Andreas Paepcke
(editor).

15

[Cou90]

[CoudT]

[Cox86]

[CP8Y]

[CS98]

[CW85]

[CW90]

[CZ84]

[Dav92]

[dB8O]

[ACF92]

[ACLF92]

[dCLF93]

[DDS5]

[DEK99]

[Dij76]

[DS90]

[DT88]

Patrick Cousot. Methods and Logics for Proving Programs. In J. van Leewen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 15, pages

841-993. The MIT Press, New York, N.Y., 1990.

Patrick Cousot. Types as Abstract Interpretation. In Conference Record of POPL 97: The
24TH ACM SIGPLAN-SIGACT Sympostum on Principles of Programming Languages, Paris,
France, pages 316-331, New York, N.Y., January 1997. ACM.

Brad J. Cox. Object Oriented Programmang: an FEvolutionary Approach. Addison-Wesley
Publishing Co., Reading, Mass., 1986.

William Cook and Jens Palsberg. A Denotational Semantics of Inheritance and its Correctness.
ACM SIGPLAN Notices, 24(10):433-443, October 1989. OOPSLA 89 Conference Proceedings,

Norman Meyerowitz (editor), October 1989, New Orleans, Louisiana.

Robert Cartwright and Guy L. Steele Jr. Compatible Genericity with Run-time Types for the
Java Programming Language. In OOPSLA "98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 201-215, October 1998.

Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction and Polymor-
phism. ACM Computing Surveys, 17(4):471-522, December 1985.

G. V. Cormack and A. K. Wright. Type-dependent Parameter Inference. ACM SIGPLAN
Notices, 25(6):127-136, June 1990. Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, White Plains, NY.

Robert L. Constable and Daniel R. Zlatin. The Type Theory of PL/CV3. ACM Transactions
on Programming Languages and Systems, 6(1):94-117, January 1984.

Anthony J. T. Davie. An Introduction to Functional Programming Systems Using Haskell.
Cambridge Computer Science Texts. Cambridge University Press, New York, N.Y., 1992.

N. G. de Bruijn. A Survey of the Project AUTOMATH. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
579-606. Academic Press, Inc., New York, N.Y., 1980.

Dennis de Champeaux and Penelope Faure. A Comparative Study of object-oriented analysis
methods. Journal of Object-Oriented Programming, 5(1):21-33, March 1992.

Dennis de Champeaux, Doug Lea, and Penelope Faure. The Process of Object-Oriented Design.
ACM SIGPLAN Notices, 27(10):45-62, October 1992. OOPSLA 92 Proceedings, Andreas

Papecke (editor).

Dennis de Champeaux, Doug Lea, and Penelope Faure. Object Oriented System Development.
Addison-Wesley Publishing Co., Mass,, 1993.

James Donahue and Alan Demers. Data Types are Values. ACM Transactions on Programming
Languages and Systems, 7(3):426-445, July 1985.

Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the Java Type System Sound?
Theory and Practice of Object Systems, 5(1):3-24, 1999.

Edsger W. Dijkstra. A Discipline of Programmang. Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1976.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program semantics. Springer-
Verlag, NY, 1990.

Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented Programming. ACM
Computing Surveys, 20(1):29-72, March 1988.

16

[Dyb90]

[ES90]

[EST95)]

[Fel90]

[FF99]

[FGIMS5]

[Flo75]

[Flo79]

[FM9g]

[FROY]

[FWH92]

[Gab93]

[GC92]

[GGS3]

[Ghe9la)

[Ghe91b]

[GHIV95]

Peter Dybjer. Comparing Integrated and External Logics of Functional Programs. Science of
Computer Programming, 14(1):59-79, June 1990.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Co., Reading, Mass., 1990.

J. FEifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In OOPSLA
’95 Conference Proceedings, volume 30(10) of ACM SIGPLAN Notices, pages 169-184, 1995.

Matthias Felleisen. On the Expressive Power of Programming Languages. In N. Jones, editor,
ESOP ’90 3rd European Symposium on Programming, Copenhagen, Denmark, volume 432 of
Lecture Notes in Computer Science, pages 134-151. Springer-Verlag, New York, N.Y., May
1990.

Robert Bruce Findler and Matthew Flatt. Modular Object-Oriented Programming with Units
and Mixins. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP °98), volume 34(1) of ACM SIGPLAN Notices, pages 94-104. ACM, June
1999.

Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Principles
of OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programmaing Languages, pages 52-66. ACM, January 1985.

Lawrence Flon. On Research in Structured Programming. ACM SIGPLAN Notices, 10(10):16—
17, October 1975.

Robert W. Floyd. The Paradigms of Programming. Communications of the ACM, 22(8):455—
460, August 1979.

Kathleen Fischer and John C. Mitchell. On the Relationship Between Classes, Objects and
Data Abstraction. Theory and Practice of Object Systems, 4(1):3-25, 1998.

Kathleen Fischer and John Reppy. The design of a class mechanism for Moby. ACM SIGPLAN
Notices, 34(5):37-49, May 1999. Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming
Languages. McGraw-Hill Book Co.; New York, N.Y., 1992.

Richard P. Gabriel. The end of history and the last programming language. Journal of Object-
Oriented Programming, 6(4):90-94, July 1993.

David Gelernter and Nicholas Carriero. Coordination Languages and their Significance. Com-

munications of the ACM, 35(2):97-107, February 1992.

Ralph E. Griswold and Madge T. Griswold. The Icon Programmaing Language. Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1983.

Giorgio Ghelli. Modelling Features of Object-Oriented Languages in Second Order Functional
Languages with Subtypes. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, ed-
itors, Foundalions of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, volume 489 of Lecture Notes in Compuler Science, pages
311-340. Springer-Verlag, New York, N.Y., 1991.

Giorgio Ghelli. A Static Type System for Message Passing. ACM SIGPLAN Notices,
26(11):129-145, November 1991. OOPSLA 91 Conference Proceedings, Andreas Paepcke (ed-
itor), October 1991, Phoenix, Arizona.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

17

[GirTl]

[Gir86]

[Gir93]

[GI8T]

[GIS96]

[GL86]

[GL TS89

[GMS6]

[GM87]

[GM99)]

[GMWTY]

[Gog84]

[Gol84]

[Gor79]

[Gor88]

[GPPT1]

[GR83]

Jean-Yves Girard. Une extension de 'interprétation de Godel a ’analyse, et son application a
I’élimination des coupures dans ’analyse et la théorie des types. In Proceedings 2nd Scandina-
vian Logic Symposium, pages 63-92, Amsterdam, 1971. North-Holland.

J. Y. Girard. The System F of variable types, fifteen years later. Theoretical Computer Science,
45:159-192, 1986.

Jean-Yves Girard. Linear Logic: A Survey. In F. L. Bauer, W. Brauer, and H. Schwichtenberg,
editors, Logic and Algebra of Specification, volume 94 of NATO ASI Series. Series F : Computer
and System Sciences, pages 63-112. Springer-Verlag, New York, N.Y., 1993.

Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts 2/E. John Wiley and
Sons, New York, N.Y., 1987.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series.
Addison-Wesley, Reading, MA, 1996.

David K. Gifford and John M. Lucassen. Integrating Functional and Imperative Programming.
In ACM Conference on LISP and Functional Programming, pages 28-38. ACM, August 1986.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, New York, N.Y., 1989.

Joseph A. Goguen and José Meseguer. Eqlog: Equality, Types, and Generic Modules for
Logic Programming. In Douglas DeGroot and Gary Lindstrom, editors, Functional and Logic
Programmang, pages 295-363. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986. An earlier
version appeared in the Journal of Logic Programming, 1984, Volume 1, Number 2, Pages

179-209.

Joseph A. Goguen and José Meseguer. Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programmang, pages 417-477. The MIT Press, Cambridge, Mass.,
1987.

Neal Glew and Greg Morrisett. Type-Safe Linking and Modular Assembly Language. In
Conference Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, Texas, pages 250-261, New York, N.Y., January
1999. ACM.

Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer-Verlag, New York, N.Y., 1979. The second
author is listed on the cover as Arthur J. Milner, which is clearly a mistake.

Joseph A. Goguen. Parameterized Programming. [FEE Transactions on Software Engineering,

SE-10(5):528-543, September 1984.

R. Goldblatt. Topoi: The Categorical Analysis of Logic (Revised Edition), volume 98 of Studies
i Logic and the Foundations of Mathematics. North-Holland, New York, N.Y., 1984.

Michael J. C. Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, New York, N.Y., 1979.

Michael J. C. Gordon. Programmang Language Theory and its Implementation. Prentice Hall
International Series in Computer Science. Prentice-Hall, Inc., New York, N.Y., 1988.

R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL/ Programming Language (second
edition). Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971.

Adele Goldberg and David Robson. Smalltalk-80, The Language and its Implementation.
Addison-Wesley Publishing Co., Reading, Mass., 1983.

18

[GR93]

[Grig1]
[Gri93)]

[GS94]

[Gun92]
[Hab73]
[Har84]
[Har94]

[HBI98]

[Hen80]

[Hen87]

[Hen88]
[Hen90]

[Hen99]

[Hes92)

[HF92]

[HGT78]

[Hig78]

[HIW+92]

[HL94]

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

David Gries. The Science of Programming. Springer-Verlag, New York, N.Y. 1981.

Andrew S. Grimshaw. Easy-to-Use Object-Oriented Parallel Processing with Mentat. [EFEE
Computer, 26(5):39-51, May 1993.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts and Mono-
graphs in Computer Science. Springer-Verlag, New York, N.Y., 1994.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations
of Computing. The MIT Press, Cambridge, Mass., 1992.

A.N. Habermann. Critical Comments on the Programming Language Pascal. Acta Informatica,

3(1):47-57, 1973.

D. M. Harland. Polymorphic Programming Languages: Design and Implementation. John
Wiley and Sons, New York, N.Y., 1984.

Robert Harper. A Simplified Account of Polymorphic References. Information Processing
Letters, 51:201-206, 1994.

Saniya Ben Hassan, Henri E. Bal, and Ceriel J. H. Jacobs. A Task- and Data-Parallel Pro-
gramming Language Based on Shared Objects. ACM Transactions on Programming Languages

and Systems, 20(6):1131-1170, November 1998.

Peter Henderson. Functional Programming: Application and Implementation. International
Series in Computer Science. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

Martin C. Henson. Elements of Functional Languages. Blackwell Scientific Publications; Ox-
ford, England, 1987.

Matthew Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass., 1988.

Matthew Hennessy. The Semantics of Programming Languages: an Elementary Introduction
using Structural Operational Semantics. John Wiley and Sons, New York, N.Y., 1990.

Fritz Henglein. Breaking Through the n3 Barrier: Faster Object Type Inference. Theory and
Practice of Object Systems, 5(1):57-72, 1999.

Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, New York, N.Y., 1992.

Paul Hudak and Joseph H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices,
27(5), May 1992.

David R. Hanson and Ralph E. Griswold. The SL5 Procedure Mechanism. Communications
of the ACM, 21(5):392-400, May 1978.

High Order Language Working Group, Department of Defense. Department of Defense Re-
quirements for High Order Computer Programming Languages: Steelman. Technical report,
U. S. Department of Defense, June 1978.

Paul Hudak, Simon Peyton Jones, Philip Wadler, et al. Report on the Programming Language
Haskell: A Non-strict, Purely Functional Language, version 1.2. ACM SIGPLAN Notices,
27(5), May 1992.

Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order Modules
with Sharing. In Conference Record of POPL °94: 215T ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Portland, Oregon, pages 123-137, New York, N.Y.,
January 1994. ACM.

19

[HM95]

[Hoa69]

[HoaT78]

[Hoa80]

[Hoa85]

[Hoa89]

[Hor87]

[How80]

[HS36]

[Huds9]

[HW73]

[IBFWO1]

[IBH*79]

[TKM+97]

[Tng81]
[Tve62]
[TveT79]

[Tve9l]
[JG89]

My Hoang and John C. Mitchell. Lower bounds on type inference with subtypes. In Conference
Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programmang Languages, San Francisco, Calif., pages 176-185, New York, N.Y., January 1995.
ACM.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12(10):576-583, October 1969.

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666—
677, August 1978.

C. A. R. Hoare. Hints on Programming Language Design. In Anthony I. Wasserman, editor,
Tutorial Programmaing Language Design, pages 43-52. IEEE, October 1980.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1985.

C. A. R. Hoare. Notes on an Approach to Category Theory for Computer Scientists. In Manfred
Broy, editor, Constructive Methods in Computing Science, volume Fb5 of NATO ASI Series,
pages 245-305. Springer-Verlag, New York, N.Y., 1989.

Ellis Horowitz. Programming Languages: A Grand Tour (Third Edition). Computer Science
Press, Rockville, Maryland, 1987.

W. A. Howard. The Formulae-as-Types notion of Construction. In J. P. Seldin and J. R. Hind-
ley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479-490. Academic Press, Inc., New York, N.Y., 1980.

W. Daniel Hillis and Guy L. Steele Jr. Data Parallel Algorithms. Communications of the ACM,
29(12):1170-1183, December 1986.

Paul Hudak. Conception, Evolution, and Application of Functional Programming Languages.

ACM Computing Surveys, 21(3):359-411, September 1989.

C. A. R. Hoare and N. Wirth. An Axiomatic Definition of the Programming Language Pascal.
Acta Informatica, 2(4):335-355, 1973.

J. Ichbiah, J. Barnes, R. Firth, and M. Woodger. Rationale for the Design of the Ada Pro-
gramming Language. Cambridge University Press, New York, N.Y., 1991. ISBN 0-521-39267-5.

J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner, O. Roubine, and B. A.
Wichmann. Reference Manual and Rationale for the Ada Programming Language. ACM
SIGPLAN Notices, 14(6), June 1979. This version of the language is now obsolete, but the
rationale (part B) is still valuable.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the Future: The
Story of Squeak, A Practical Smalltalk Written in Itself. In Conference Proceedings of OOPSLA
97, Atlanta, volume 32(10) of ACM SIGPLAN Notices, pages 318-326. ACM, October 1997.

D. H. H. Ingalls. Design Principles Behind Smalltalk. BYTE, 6(8):286-298, August 1981.
K. Iverson. A Programming Language. John Wiley and Sons, New York, N.Y., 1962.

Kenneth E. Iverson. Operators. ACM Transactions on Programming Languages and Systems,

1(2):161-176, October 1979.
Kenneth E. Iverson. A Personal view of APL. IBM Systems Journal, 30(4):582-593, 1991.

Bharat Jayaraman and Gopal Gupta. EqL: The Language and Its Implementation. [EEFE
Transactions on Software Engineering, 15(6):771-779, June 1989.

20

[TMSY92]

[Joh92]

[Jon95]

[TW74]

[Kag97]

[Kam88]

[Kam90]

[KCE98]

[KARBY1]

[Kee89]

[KL8Y]

[K1i93]

[KLM*97]

[Knu67]

[Kob99]

[Kow79]

[KR78]

Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R) Language
and System. ACM Transactions on Programming Languages and Systems, 14(3):339-395, July
1992.

Ralph E. Johnson. Documenting Frameworks using Patterns. ACM SIGPLAN Notlices,
27(10):63-76, October 1992. OOPSLA 92 Proceedings, Andreas Paepcke (editor).

Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymor-
phism. Journal of Punctional Programming, 5(1):1-35, Jan 1995. An earlier version appeared

in FPCA ’93.

Kathleen Jensen and Niklaus Wirth. PASCAL User Manual and Report (second edition).
Springer-Verlag, New York, N.Y., 1974.

Koji Kagawa. Compositional References for Stateful Functional Programming. In Proceedings of
the ACM SIGPLAN International Conference on Functional Programming (ICFP ’97), volume
32(8) of ACM SIGPLAN Notices, pages 217-226. ACM, August 1997.

Samuel Kamin. Inheritance in Smalltalk-80: A Denotational Definition. In Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego,
Calif., pages 80-87. ACM, January 1988.

Samuel N. Kamin. Programming Languages: An Interpreter-Based Approach. Addison-Wesley
Publishing Co., Reading, Mass., 1990.

Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised® Report on the Algo-
rithmic Language Scheme. ACM SIGPLAN Notices, 33(9):26-76, September 1998.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
The MIT Press, Cambridge, Mass., 1991.

Sonya E. Keene. QObject-Oriented Programming in Common Lisp. Addison Wesley, Reading,
Mass., 1989.

Won Kim and Frederick H. Lochovsky, editors. Object-Oriented Concepts, Databases, and
Applications. Addison-Wesley Publishing Co., Reading, Mass., 1989.

Paul Klint. A Meta-Environment for Generating Programming Environments. ACM Transac-
tions on Software Engineering and Methodology, 2(2):176-201, April 1993.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, ECOOP '97 — Object-Oriented Programming 11th European Con-
ference, Jyvaskyla, Finland, volume 1241 of Lecture Notes in Computer Science, pages 220-242.
Springer-Verlag, New York, N.Y., June 1997.

Donald E. Knuth. The Remaining Trouble Spots in Algol 60. Communications of the ACM,
10(1):611-617, October 1967.

Naoki Kobayashi. Quasi-Linear Types. In Conference Record of POPL 99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, Tezxas,
pages 29-42, New York, N.Y., January 1999. ACM.

Robert Kowalski. Algorithm = Logic 4+ Control. Communications of the ACM, 22(7):424-435,
July 1979.

Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Language. Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1978.

21

[LAB*81]

[LaL89]

[Lan64]

[Lan65]

[Lan66]

[LanT71]

[LBYS]

[LD75]

[Lea9la]

[Lea9lb]

[Lel88]

[Ler94]

[LGS6]

[LG8S]

[LGH+78]

[LHJ95]

[Lie86]

Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler,
and Alan Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer Science.
Springer-Verlag, New York, N.Y., 1981.

Wilf R. LaLonde. Designing Families of Data Types Using Exemplars. ACM Transactions on
Programming Languages and Systems, 11(2):212-248, April 1989.

P. J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6:308-320, 1964.
See also Landin’s paper “A Lambda-Calculus Approach” in Advances in Programming and
Non-Numerical Computation, L. Fox (ed.), Pergamon Press, Oxford, 1966.

P. J. Landin. A Correspondence Algol 60 and Church’s Lambda Notation. Communications of
the ACM, 8:89-101, 158-165, 1965.

P. J. Landin. The Next 700 Programming Languages. Communications of the ACM, 9(3):157—
166, March 1966.

Saunders Mac Lane. Categories for the Working Mathematician, volume b of Graduate Texts
. Mathematics. Springer-Verlag, New York, N.Y. 1971.

Sheng Liang and Gilad Bracha. Ownership Types for Flexible Alias Protection. In OOPSLA
"98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 36-47. ACM,
October 1998.

O. Lecarme and P. Desjardins. Reply to a paper by A. N. Habermann on the Programming
Language Pascal. Acta Informatica, 4(3):231-243, 1975. An earlier version appeared in ACM
SIGPLAN Notices, October, 1974.

Gary T. Leavens. Introduction to the Literature on Object-Oriented Design, Programming,
and Languages. OOPS Messenger, 2(4), October 1991.

Gary T. Leavens. Modular Specification and Verification of Object-Oriented Programs. /EEFE
Software, 8(4):72-80, July 1991.

Wm Leler. Constraint Programmang Languages: Their Specification and Generation. Addison-

Wesley Publishing Co., Reading, Mass., 1988.

Xavier Leroy. Manifest types, modules, and separate compilation. In Conference Record of
POPL °94: 21ST ACM SIGPLAN-SIGACT Symposium on Principles of Programmaing Lan-
guages, Portland, Oregon, pages 109-122, New York, N.Y., January 1994. ACM.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The
MIT Press, Cambridge, Mass., 1986.

John M. Lucassen and David K. Gifford. Polymorphic Effect Systems. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programmaing Languages, San Diego,
Calif., pages 47-57. ACM, January 1988.

R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J. Popek.
Proof Rules for the Programming Language Euclid. Acta Informatica, 10(1):1-26, 1978.

Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and Modular Interpreters.
In Conference Record of POPL °94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Francisco, California, pages 333-343. ACM, January 1995.

Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems. ACM SIGPLAN Notices, 21(11):214-223, November 1986. OOPSLA ’86 Con-
ference Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

22

[Lip91]

[LL90]

[LLM89]

[LM9g]

[Lov93]

[LP99]

[LS79]

[1.583]

[1.584]

[LS91]

[LS97]

[LSASTT]

[LTP86]

[LvdM77]

[LW90]

[LW94]

[LW95]

Stanley B. Lippman. C++ Primer: 2nd Fdition. Addison-Wesley Publishing Co., Reading,
Mass., 1991.

Leslie Lamport and Nancy Lynch. Distributed Computing: Models and Methods. In J. van
Leewen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, chapter 19, pages 1157-1199. The MIT Press, New York, N.Y., 1990.

Gary Lindstrom, Barbara Liskov, and David MacQueen. Critical Research Directions in Pro-
gramming Languages. ACM SIGPLAN Notices, 24(11):10-25, November 1989.

Gary T. Leavens and Todd D. Millstein. Multiple Dispatch as Dispatch on Tuples. In OOPSLA
"98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 374-387, October
1998.

D. B. Loveman. High Performance Fortran. IEEFE Parallel and Distributed Technology: Systems
and Applications, 1(1):25-42, 1993.

Gary T. Leavens and Don Pigozzi. Class-Based and Algebraic Models of Objects. In Rance
Cleaveland, Michael Mislove, and Philip Mulry, editors, US—Brazil Joint Workshops on the
Formal Foundations of Software Systems, volume 14 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 1999. http://www.elsevier.nl/locate/entcs/volumel4.html.

Barbara H. Liskov and Alan Snyder. Exception Handling in CLU. IEEFE Transactions on
Software Engineering, SE-5(6):546-558, November 1979.

Barbara Liskov and Robert Scheifler. Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. ACM Transactions on Programming Languages and Systems, 5(3):381—
404, July 1983.

Leslie Lamport and Fred B. Schneider. The "Hoare Logic” of CSP and All That. ACM
Transactions on Programming Languages and Systems, 6(2):281-296, April 1984.

F. W. Lawvere and Stephen H. Schanuel. Conceptual Mathematics: a first introduction to
categories. Buffalo Workshop Press, Buffalo, NY, 1991.

John Launchbury and Amr Sabry. Monadic State: Axiomatization and Type Safety. In Pro-
ceedings of the ACM SIGPLAN International Conference on Functional Programming (ICFP
’97), volume 32(8) of ACM SIGPLAN Notices, pages 227-238. ACM, August 1997.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction Mechanisms
in CLU. Communications of the ACM, 20(8):564-576, August 1977.

Wilf R. LalLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based Smalltalk. ACM
SIGPLAN Notices, 21(11):322-330, November 1986. OOPSLA ’86 Conference Proceedings,
Norman Meyrowitz (editor), September 1986, Portland, Oregon.

C. H. Lindsey and S. G. van der Meulen. Informal Introduction to ALGOL 68 (revised edition).
North-Holland Publishing Co., New York, N.Y., 1977.

Gary T. Leavens and William E. Weihl. Reasoning about Object-oriented Programs that use
Subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP ’90 Proceedings,
volume 25(10) of ACM SIGPLAN Notices, pages 212-223. ACM, October 1990.

Barbara Liskov and Jeannette Wing. A Behavioral Notion of Subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811-1841, November 1994.

Gary T. Leavens and William E. Weihl. Specification and Verification of Object-Oriented
Programs Using Supertype Abstraction. Acta Informatica, 32(8):705-778, November 1995.

23

[LY98]

[MAS6]

[MAS9]

[Mac84]

[Mac93]

[Mac99]

[MAE*+65]

[Mat85al

[Mat85b]
[MBL97]

[MC99]

[McD80]

[Mey88]
[Mey90]

[MHS8]

[Mil78]

[Mil89a]

[Mil89b]

Oukseh Lee and Kwangkeun Yi. Proofs about a Folklore Let-Polymorphic Type Inference
Algorithm. ACM Transactions on Programming Languages and Systems, 20(4):707-723, July
1998.

Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Program Semantics. Springer-
Verlag, New York, N.Y., 1986.

C. McDonald and L. Allison. Denotational Semantics of a Command Interpreter and their
Implementation in Standard ML. The Computer Journal, 32(5):422-431, October 1989.

David MacQueen. Modules for Standard ML. In Proceedings of the Symposium on LISP and
Functional Programming, Austin, Tezas, pages 198-207. ACM, August 1984.

Tan Mackie. Lilac — A Functional Programming Language Based on Linear Logic. Journal of
Funetional Programming, 4(4):395-433, 1993.

Bruce J. MacLennan. Principles of Programming Languages. Oxford University Press, New

York, N.Y., third edition, 1999.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and Michael I.
Levin. LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge, Mass., 1965.

David C. J. Matthews. An overview of the Poly Programming Language. In Persistence and
Data Types: Papers for the Appin Workshop, pages 265-274. Universities of Glasgow and St.
Andrews, Departments of Computer Science, August 1985. Persistent Programming Research
Report 16.

David C. J. Matthews. Poly Manual. ACM SIGPLAN Notices, 20(9):52-76, September 1985.

Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized Types for Java. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 132-145, New York, N.Y., January 1997. ACM.

Todd Millstein and Craig Chambers. Modular Statically Typed Multimethods. In Rachid
Guerraoui, editor, ECOOP ’99 — Object-Oriented Programming 15th European Conference,
Lisbon Portugal, volume 1628 of Lecture Notes in Computer Science, pages 279-303. Springer-
Verlag, New York, N.Y., June 1999.

Drew McDermott. The Prolog Phenomenon. ACM SIGART Newsletter, pages 16-20, July
1980. Number 72.

Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, N.Y., 1988.

Bertrand Meyer. Introduction to the Theory of Programming Languages. International Series
in Computer Science. Prentice Hall, New York, N.Y., 1990.

John C. Mitchell and Robert Harper. The Essence of ML. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, San Diego, Calif., pages
28-46. ACM, January 1988.

Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and
System Sciences, 17(3):348-375, December 1978.

Dale Miller. Abstractions in Logic Programs. In P. Odifreddi, editor, Logic and Computer
Science, pages 329-359. Academic Press, 1989.

Robin Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, New York, N.Y., 1989.

24

[Mil90a]

[Mil90b]

[Mil91]

[Mit90a]

[Mit90b]

[Mit91]

[MLT75]

[ML82]

[MNPS91]

[Mog90]

[MOM90]

[Mor73]

[Mor94]

[Mos90]

[Mos92]

[MP85]

Dale Miller. A Logic Programming Language with Lambda-Abstraction Function Variables,
and Simple Unification. In Peter Schroeder-Heister, editor, Ezxtensions of Logic Programming,
International Workshop, Tubingen, FRG, December, 1989, volume 475 of Lecture Notes in
Computer Science, pages 253-282. Springer-Verlag, New York, N.Y., 1990.

Robin Milner. Operational and Algebraic Semantics of Concurrent Processes. In J. van Leewen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 19, pages 1201-1242. The MIT Press, New York, N.Y., 1990.

Dale Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables,
and Simple Unification. Journal of Logic and Computation, 1(4):497-536, 1991.

John C. Mitchell. Toward a typed foundation for method specialization and inheritance. In
Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, Calif., pages 109-124. ACM, January 1990.

John C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 8,

pages 365-458. North-Holland, New York, N.Y., 1990.

John C. Mitchell. On abstraction and the expressive power of programming languages. In
Conference on Theoretical Aspects of Computer Software, Sendi Japan, September 1991.

P. Martin-Lof. An Intuitionistic Theory of Types: Predictive Part. In H. E. Rose and J. C.
Sheperdson, editors, Logic Colloguium ’73, volume 80 of Studies in Logic, pages 73-118. North-
Holland Publishing Co., New York, N.Y., 1975.

Per Martin-Lof. Constructive Mathematics and Computer Programming. In L. J. Cohen
et al., editors, Logic, Methodology, and Philosophy of Science VI (Proceedings of the Sizth
International Congress; Hannover, 1979), volume 104 of Studies in Logic and the Foundations
of Mathematics, pages 153-175. North Holland, Amsterdam, 1982.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform Proofs as a Foundation for
Logic Programming. Annals of Pure and Applied Logic, 51(1-2):125-158, March 1991.

Eugenio Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-
90-113, Laboratory for Foundations of Computer Science, Department of Computer Science,

University of Edinburgh, Edinburgh, EH9 3JZ, 1990.

Narciso Marti-Oliet and Jose Meseguer. Inclusions and Subtypes. Technical Report SRI-CSL-
90-16, Computer Science Laboratory, SRI International, 333 Ravenswood Ave., Menlo Park,
Calif.; December 1990.

James H. Morris, Jr. Protection in Programming Languages. Communications of the ACM,

16(1):15-21, January 1973.

Carroll Morgan. Programmang from Specifications: Second Fdition. Prentice Hall International,
Hempstead, UK, 1994.

Peter D. Mosses. Denotational Semantics. In J. van Leewen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 11, pages 577-631. The
MIT Press, New York, N.Y., 1990.

Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, New York, N.Y., 1992.

John C. Mitchell and Gordon D. Plotkin. Abstract Types have Existential Type. In Conference
Record of the 12th Annual ACM Symposium on Principles of Programming Languages, New
Orleans, Louisana, pages 37-51. ACM, January 1985.

25

[MPW92]

[MS74]

[MT91]

[MTH90]

[Mul89]

[Mul93]

[NBB*63]

[Nel91]
[NM9O]

[NN92]

[Nor99]

[NP83]

[NP94]

[NvO98]

[Ode99]

[0GS9]

[Oka98]

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, (Parts T and II).
Information and Computation, 100:1-77, 1992.

Drew V. McDermott and Gerald Jay Sussman. The CONNIVER Reference Manual. AT Memo
295a, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, January 1974.

Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, Cambridge,
Mass., 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Mass., 1990.

Mark Mullin. Object Oriented Program Design With Ezamples in C++. Addison-Wesley
Publishing Co., Reading, Mass., 1989.

Sape Mullender, editor. Distributed Systems. Addison-Wesley, New York, N.Y., second edition,
1993.

Peter Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and
M. Woodger. Revised Report on the Algorithmic Language ALGOL 60. Communications
of the ACM, 1(17), January 1963.

Greg Nelson. Systems Programmang with Modula-3. Prentice-Hall, 1991.

G. Nadathur and D. Miller. Higher-Order Horn Clauses. Journal of the ACM, 37(4):777-814,
October 1990.

F. Nielson and H.R. Neilson. Semantics with Applications - A Formal Introduction. John Wiley
and Sons, New York, N.Y., 1992.

Johan Nordlander. Pragmatic Subtyping in Polymorphic Languages. In Proceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP ’98), volume
34(1) of ACM SIGPLAN Notices, pages 216-227. ACM, June 1999.

Bengt Nordstrom and Kent Peterson. Types and Specifications. In R. E. A. Mason, editor,
Information Processing 83, pages 915-920. Elsevier Science Publishers B.V. (North-Holland),
September 1983. Proceedings of the IFIP 9th World Computer Congress, Paris, France.

Tobias Nipkov and Christian Prehofer. Type Reconstruction for Type Classes. Journal of
Functional Programming, 5(2):201-224, April 1994.

Tobias Nipkow and David von Oheimb. Javagpns is Type-Safe — Definitely. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Sympositum on Principles of Pro-
grammaing Languages, San Diego, California, pages 161-170, New York, N.Y., January 1998.
ACM.

Martin Odersky. Programming with Variable Functions. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP "98), volume 34(1) of ACM SIG-
PLAN Notices, pages 105-116. ACM, June 1999.

James William O’Toole and David K. Gifford. Type Reconstruction with First-Class Polymor-
phic Values. ACM SIGPLAN Notices, 24(7):207-217, July 1989. Proceedings of the SIGPLAN

89 Conference on Programming Language Design and Implementation, Portland, Oregon,
June.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, Cambridge,
UK, 1998.

26

[OL96]

[OSW99]

[OW97]

[Pae93]
[Pau9l]

[PC92]

[PDMS]

[Pet77]

[Pet87]

[Pey87]

[Pfe91]

[Pfe92]

[PGMO0]

[PHL*77]

[Pie91]
[Pit83)]
[Plo77]

[Pot99]

Martin Odersky and Konstantin Laufer. Putting Type Annotations to Work. In Conference
Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, St. Petersberg Beach, Florida, pages 54-67, New York, N.Y., January
1996. ACM.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type Inference with Constrained Types.
Theory and Practice of Object Systems, 5(1):35-55, 1999.

Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory into Practice. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 146-159, New York, N.Y., January 1997. ACM.

Andreas Paepcke. Object-Oriented Programming: The CLOS Perspective. The MIT Press,
1993.

Laurence C. Paulson. ML for the Working Programmer. Cambridge University Press, New
York, N.Y., 1991.

Yiannis E. Papelis and Thomas L. Casavant. Specification and Analysis of Parallel /Distributed
Software and Systems by using Petri Nets with Transition Enabling Functions. IEEE Trans-
actions on Software Engineering, 18(3):252-261, March 1992.

Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in Higher-Order Typed
Lambda-Calculi. Technical Report CMU-CS-89-111, School of Computer Science, Carnegie
Mellon University, March 1989.

J. L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):221-252, September 1977.

Gerald E. Peterson, editor. Tutorial: Object-Oriented Computing. IEEE Computer Society
Press, Los Angeles, Calif., 1987. Volume 1: concepts; volume 2: implementations.

S. L. Peyton Jones. The Implementation of Functional Programmaing Languages. Prentice-Hall,

Englewood Cliffs, N.J., 1987.

Frank Pfenning. Logic Programmingin the LF Logical Framework. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

Frank Pfenning, editor. Types wn Logic Programming. Logic Programming Series. The MIT
Press, Cambridge, Mass., 1992.

S. Prasad, A. Giacalone; and P. Mishra. Operational and algebraic semantics of Facile: A
symmetric integration of concurrent and functional programming. In Proceedings of the 17th
International Colloquium on Automata, Languages and Programming (ICALP’90), volume 443
of LNCYS, pages 765-780. Springer-Verlag, July 1990.

G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, and R. L. London. Notes on the
Design of Euclid. ACM SIGPLAN Notices, 12(3):11-18, March 1977. Proceedings of an ACM
Conference on Language Design for Reliable Software, Raliegh, North Carolina, March, 1977.

Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press, Cam-
bridge, Mass, 1991.

Kent M. Pitman. The Revised MacLisp Manual. Technical Report TR-295, Massachusetts
Institute of Technology, Laboratory for Computer Science, May 1983.

G. D. Plotkin. LCF Considered as a Programming Language. Theoretical Computer Science,
5:223-255, 1977.

Francois Pottier. A Framework for Type Inference with Subtyping. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98), volume 34(1) of
ACM SIGPLAN Notices, pages 228-238. ACM, June 1999.

27

[PP9g]

[PS94]

[PT94]

[PTO8]

[PZ96]

[Qia94]

[Rep93]

[Rey74]

[Rey80]

[Rey85]

[RL92]

[Rom98]

[RR6]

[RSL93]

[RV9S]

Jens Palsberg and Christina Pavlopoulou. From Polyvariant Flow Information to Intersection
and Union Types. In Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California, pages 197-208,
New York, N.Y., January 1998. ACM.

Jens Palsberg and Michael 1. Schwartzbach. Object-Oriented Type Systems. John Wiley and
sons, 1994.

Benjamin C. Pierce and David N. Turner. Simple Type-Theoretic Foundations for Object-
Oriented Programming. Journal of Functional Programming, 4(2):207-248, April 1994. A
preliminary version appeared in POPL 1993.

Benjamin C. Pierce and David N. Turner. Local Type Inference. In Conference Record of
POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, pages 2562-265, New York, N.Y., January 1998. ACM.

Terrence W. Pratt and Marvin V. Zelkowitz. Programming Languages: Design and Implemen-
tation. Prentice-Hall, Englewood Cliffs, NJ, third edition edition, 1996.

Zhenyu Qian. Higher-Order Equational Logic Programming. In Conference Record of POPL
94: 21ST ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, pages 254-267, New York, N.Y., January 1994. ACM.

John H. Reppey. Concurrent Programming with Events - The Concurrent ML, Manual. Techni-
cal report, AT&T Bell Labs, February 1993. Available by anonymous ftp from research.att.com.

J. C. Reynolds. Towards a Theory of Type Structure. In Programming Symposium, Proceedings,
Collogue sur la Programmation, Paris, April 1974, volume 19 of Lecture Notes in Computer
Science, pages 408-425. Springer-Verlag, New York, N.Y., 1974.

John C. Reynolds. Using Category Theory to Design Implicit Conversions and Generic Op-
erators. In Neil D. Jones, editor, Semantics-Directed Compiler Generation, Proceedings of a
Workshop, Aarhus, Denmark, volume 94 of Lecture Notes in Computer Science, pages 211-258.
Springer-Verlag, January 1980.

John C. Reynolds. Three Approaches to Type Structure. In Hartmut Ehrig, Christiane Floyd,
Maurice Nivat, and James Thatcher, editors, Mathematical Foundations of Software Develop-
ment, Proceedings of the International Joint Conference on Theory and Practice of Software
Development (TAPSOFT), Berlin. Volume 1: Colloquium on Trees in Algebra and Program-
ming (CAAP ’85), volume 185 of Lecture Notes in Computer Science, pages 97-138. Springer-
Verlag, New York, N.Y., March 1985.

Martin C. Rinard and Monica S. Lam. Semantic Foundations of Jade. In Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 105-118. ACM, January 1992.

Peter J. McCann Gruia-Catalin Roman. Compositional Programming Abstractions for Mobile
Computing. IEEE Transactions on Software Engineering, 24(2):97-110, February 1998.

John Reppy and Jon Riecke. Simple Objects for Standard ML. ACM SIGPLAN Notices,
31(5):171-180, May 1996. Proceedings of the 1996 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI).

Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A High Level Machine Inde-
pendent Language for Parallel Programming. COMPUTER, 26(6):28-38, June 1993.

Didier Rémy and Jérome Vouillon. Objective ML: An Effective Object-Oriented Extension of
ML. Theory and Practice of Object Systems, 4(1):27-52, 1998.

28

[SBVEPY4]

[SCB*86]

[Sced0]

[Sch86]

[Sch94]

[Sch9s8]

[Sco81]

[Seb96]

[Set96]

[SF89)

[Sha81]
[Sha9)]

[SK95]

[Sla74]

[SMW84]

[Sno92]

[Sny86]

[Sok91]

S. Smetsers, E. Barendsen, M. v. Eekelen, and R. Plasmeijer. Guaranteeing Safe Destructive
Updates Through a Type System with Uniqueness Information for Graphs. Lecture Notes in
Computer Science, 776:358-379, 1994.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An Intro-
duction to Trellis/Owl. ACM SIGPLAN Notices, 21(11):9-16, November 1986. OOPSLA ’86
Conference Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

Andre Scedrov. A Guide to Polymorphic Types. In P. Odifreddi, editor, Logic and Computer
Science, volume 31 of APIC Series, pages 387-420. Academic Press, New York, N.Y., 1990.

David A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn
and Bacon, Inc., Boston, Mass., 1986.

David A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1994.

Aleksy Schubert. Second-order unification and type inference for Church-style polymorphism.
In Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Diego, California, pages 279-288, New York, N.Y.,
January 1998. ACM.

Dana Scott. Lectures on a Mathematical Theory of Computation. Technical Monograph PRG-
19, Oxford University Computing Laboratory, Programming Research Group, 1981. Appears
in Theoretical foundations of programming methodology : lecture notes of an international
summer school, directed by F.L. Bauer, E.-W. Dijkstra, and C.A.R. Hoare (Ridel, 1982).

Robert W. Sebesta. Concepls of Programming Languages. Benjamin/Cummings, Redwood
City, Calif., third edition, 1996.

Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley, Reading,
Mass., second edition, 1996.

George Springer and Daniel P. Friedman. Scheme and the Art of Programming. McGraw-Hill,
New York, N.Y., 1989.

Mary Shaw. ALPHARD: Form and Content. Springer-Verlag, New York, N.Y., 1981.

Ehud Shapiro. The Family of Concurrent Logic Programming Languages. ACM Computing
Surveys, 21(3):413-510, September 1989.

Kenneth Slonneger and Barry L. Kurtz. Formal Syntaz and Semantics of Programming Lan-
guages. Addison-Wesley, New York, N.Y., 1995.

James R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity,

and Associativity. Journal of the ACM, 21(4):622-642, October 1974.

Richard Stallman, David Moon, and Daniel Weinreb. Lisp Machine Manual (sizth edition).
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, Mass.,
June 1984.

C. R. Snow. Concurrent Programming, volume 26 of Cambridge Computer Science Texts.
Cambridge University Press, New York, N.Y., 1992.

Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages.
ACM SIGPLAN Notices, 21(11):38-45, November 1986. OOPSLA 86 Conference Proceedings,
Norman Meyrowitz (editor), September 1986, Portland, Oregon.

S. Sokolowski. Applicative High Order Programming. Chapman and Hall Computing Series.
Chapman & Hall Computing, New York, N.Y., 1991.

29

[SST8a)

[SS78b]

[SS80]

[SS94]

[ST95]

[ST98]

[Stad2]
[Stag5]

[Ste84]
[Ste90]

[Ste94]

[Sto77]

[Strol]

[Str97]

[SWS0]

[SW87]

[SW93]

[SWCT1]

[SWL77]

[Sym84]

Guy Lewis Steele Jr. and Gerald Jay Sussman. The Art of the Interpreter or, The Modularity
Complex (Parts Zero, One, and Two). AT Memo 453, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, May 1978.

Guy Lewis Steele Jr. and Gerald Jay Sussman. Revised Report on SCHEME A Dialect of
LISP. AT Memo 452, Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
January 1978.

G. Sussman and G. Steele. Constraints: a Language for Expressing Almost-Hierarchical De-
scriptions. Artificial Intelligence, 14:1-39, 1980.

Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, Cambridge, Mass., second
edition, 1994.

David B. Skillicorn and Domenico Talia. Programmaing Languages for Parallel Processing. IEEE
Computer Society Press, 1995.

David B. Skillicorn and Domenico Talia. Models and Languages for Parallel Computation.

ACM Computing Surveys, 30(2):123-169, June 1998.
Ryan Stanisfer. ML Primer. Prentice Hall, Englewood Cliffs, NJ, 1992.

Ryan Stanisfer. The Study of Programming Languages. Prentice Hall, Englewood Cliffs, NJ,
1995.

Guy L. Steele Jr. Common LISP: The Language. Digital Press, Burlington, Mass., 1984.

Guy L. Steele Jr. Common LISP: The Language. Digital Press, Bedford, Mass., second edition,
1990.

Guy L. Steele, Jr. Building Interpreters by Composing Monads. In Conference Record of POPL
94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, pages 472-492. ACM, January 1994.

J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. The MIT Press, Cambridge, Mass., 1977.

Bjarne Stroustrup. The C++ Programming Language: Second Edition. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1991.

Bjarne Stroustrup. The C++ Programming Language: Third Fdition. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1997.

Mary Shaw and William A. Wulf. Toward Relaxing Assumptions in Languages and Their
Implementations. ACM SIGPLAN Notices, 15(3):45-61, March 1980.

Bruce Shriver and Peter Wegner, editors. Research Directions in Object-Oriented Programming.

The MIT Press, Cambridge, Mass., 1987.

Ehud Shapiro and David H.D. Warren. The Fifth Generation Project: Personal Perspectives.
Commaunications of the ACM, 36(3):46-48, March 1993.

Gerald Jay Sussman, Terry Winograd, and Eugene Charniak. Micro-PLANNER, Reference
Manual. AT Memo 203A, Massachusetts Institute of Technology, Artificial Intelligence Labo-
ratory, December 1971.

Mary Shaw, William A. Wulf, and R. L. London. Abstraction and Verification in Alphard:
Defining and Specifying Tteration and Generators. Communications of the ACM, 20(8):553—
564, August 1977.

Symbolics, Inc. Lisp Machine Manual. Cambridge, Mass., March 1984. Fight volumes.

30

[Tai96]

[Tan76]
[Ten76]

[Ten77]

[Ten81]

[Tho91]

[Tho97a]

[Tho97b]

[Tiu90]

[TI94]

[TKBY2]

[Tur90a]

[Tur90b]

[TvRvST90]

[U1194]
[UR92]

[US87]

[VHST96]

Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys, 28(3):438-479,
September 1996.

Andrew S. Tanenbaum. A Tutorial on Algol 68. ACM Computing Surveys, 8(2), June 1976.

R. D. Tennent. The Denotational Semantics of Programming Languages. Communications of

the ACM, 19:437-453, August 1976.

R. D. Tennent. Language Design Methods Based on Semantic Principles. Acta Informatica,
8:97-112, 1977.

R. D. Tennent. Principles of Programming Languages. Prentice-Hall International, Englewood

Cliffs, N.J., 1981.

Simon Thompson. Type Theory and Functional Programmaing. International Computer Science

Series. Addison-Wesley Publishing Co., 1991.

Tommy Thorn. Programming Languages for Mobile Code. ACM Computing Surveys,
29(3):213-239, September 1997.

Kresten Krab Thorup. Genericity in Java with Virtual Types. In Mehmet Aksit and
Satoshi Matsuoka, editors, ECOOP '97 — Object-Oriented Programming 11th European Con-
ference, Jyvaskyla, Finland, volume 1241 of Lecture Notes in Computer Science, pages 444-471.
Springer-Verlag, New York, N.Y., June 1997.

Jerzy Tiuryn. Type Inference Probelms: A Survey. In B. Rovan, editor, Mathematical Foun-
dations of Computer Science 1990, Banska Bystrica, Czechoslovakia, volume 452 of Lecture
Notes in Computer Science, pages 105-120. Springer-Verlag, New York, N.Y., 1990.

Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. Information and
Computation, 111(2):245-296, June 1994.

Andrew S. Tanenbaum, M. Frans Kaashoek, and Henri E. Bal. Parallel Programming Using
Shared Objects and Broadcasting. Computer, 25(8):10-19, August 1992.

David A. Turner. An Overview of Miranda. In David A. Turner, editor, Research Topics in
Functional Programming, University of Texas at Austin Year of Programming Series, pages

1-16. Addison-Wesley Publishing Co., New York, N.Y., 1990.

David A. Turner, editor. Research Topics in Functional Programming. University of Texas at
Austin Year of Programming Series. Addison-Wesley Publishing Co., New York, N.Y., 1990.

Andrew S. Tanenbaum, Robert van Renesse, Hans van Staveren, Gregory J. Sharp, Sape J.
Mullender, Jack Jansen, and Guido van Rossum. Experience with the Amoeba Distributed
Operating System. Communications of the ACM, 33(12):46-63, December 1990.

Jeffry D. Ullman. FElements of ML Programming. Prentice Hall, Englewood Cliffs, NJ, 1994.

Mark Utting and Ken Robinson. Modular Reasoning in an Object-Oriented Refinement Cal-
culus. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, Mathematics of Program
Construction, Second International Conference, Ozford, U.K., June/July, volume 669 of Lec-
ture Notes in Computer Science, pages 344-367. Springer-Verlag, New York, N.Y., 1992.

David Ungar and Randall B. Smith. Self: The Power of Simplicity. ACM SIGPLAN Notices,
22(12):227-241, December 1987. OOPSLA ’87 Conference Proceedings, Norman Meyrowitz
(editor), October 1987, Orlando, Florida.

Pascal van Hentenryck, Vijay Saraswat, et al. Strategic Directions in Object-Oriented Pro-
gramming. ACM Computing Surveys, 28(4):701-726, December 1996.

31

[vL90]

[VRHB*97]

[VWMP+77]

[Wad92]
[Wad96]
[Wad97]

[Wad99]

[Wal91]

[Was80]

[Wat86]
[Wat90]
[Wat91]

[WB8Y]

[WBJ90]
[WBWW90]
[WegT4]
[Wei90]

[Wel94]

Jan van Leeuwen. Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics. The MIT Press, New York, N.Y., 1990.

Peter van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer.
Mobile Objects in Distributed Oz. ACM Transactions on Programming Languages and Systems,
19(5):804-851, September 1997.

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. Koster, M. Sintzoff, C. H. Lindsey,
L. G. L. T. Meertens, and R. G. Fisker. Revised Report on the Algorithmic Language ALGOL
68. ACM SIGPLAN Notices, 12(5):1-70,1977. This has also been published by Springer-Verlag,
New York, N. Y., and in Acta Informatica, volume 5, pages 1-236 (1975).

Philip Wadler. The Essence of Functional Programming. In Conference Record of the Nineteenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
1-14. ACM, January 1992.

Philip Wadler. Lazy Versus Strict. ACM Computing Surveys, 28(2):318-320, June 1996.

Philip Wadler. How to declare an Imperative. ACM Computing Surveys, 29(3):240-263,
September 1997.

Philip Wadler. The marriage of effects and monads. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP "98), volume 34(1) of ACM SIG-
PLAN Notices, pages 63-74. ACM, June 1999.

R. F. C. Walters. Categories and Computer Science, volume 28 of Cambridge Computer Science
Texts. Cambridge University Press, New York, N.Y., 1991.

Anthony I. Wasserman. TUTORIAL Programming Language Design. IEEE Computer Society
Press, Los Alamitos, Calif., 1980. Initally presented at Compsac80, The IEEE Computer

Society’s Fourth International Computer Software & Applications Conference, October 27-31,
1980. The IEEE catalog number 1s EHO 164-4.

D. A. Watt. Executable Denotational Semantics. Software: Practice and Experience, 16(1):13—
43, 1986.

David A. Watt. Programming Language Concepts and Paradigms. Prentice Hall International
Series in Computer Science. Prentice-Hall, New York, N.Y., 1990.

David A. Watt. Programming Language Syntaz and Semantics. Prentice Hall International
Series in Computer Science. Prentice-Hall, New York, N.Y., 1991.

Philip Wadler and Stephen Blott. How to make ad-hoc Polymorphism less ad hoc. In Conference
Record of the Sizteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, Tezas, pages 60-76. ACM, January 1989.

Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying Current Research in Object-Oriented
Design. Communications of the ACM, 33(9):105-124, September 1990.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Soft-
ware. Prentice-Hall, Englewood Cliffs, NJ 07632, 1990.

Ben Wegbreit. The Treatment of Data Types in EL1. Communications of the ACM, 17(5):251—
264, May 1974.

William E. Weihl. Linguistic Support for Atomic Data Types. ACM Transactions on Program-
ming Languages and Systems, 12(2):178-202, April 1990.

J. B. Wells. Typability and Type Checking in the Second-Order A-Calculus Are Equivalent and
Undecidable. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science,
Paris, pages 176185, 1994.

32

[WexT8]

[Wex93]

[WH66]

[Win93]

[Wir71]
[Wir74]

[Wir75]

[Wir85]

[Wir88]

[WKH92]

[WMS0]

Richard L. Wexelblat, editor. Preprints — History of Programming Languages Conference,
Los Angeles, California. ACM, June 1978. ACM SIGPLAN Notices, Volume 13, Number 8,
August 1978.

Richard L. Wexelblat, editor. ACM SIGPLAN History of Programming Languages Conference
(HOPL II), Preprints, Cambridge, MA, USA. ACM, March 1993. ACM SIGPLAN Notices,
Volume 28, Number 3.

N. Wirth and C. A. R. Hoare. A Contribution to the development of ALGOL. Communications
of the ACM, 9(6):413-432, June 1966.

Glynn Winskel. The Formal Semantics of Programming Languages. Foundations of Computer
Science Series. The MIT Press, Cambridge, Mass., 1993.

N. Wirth. The Programming Language Pascal. Acta Informatica, 1(1):35-63, 1971.

Niklaus Wirth. On the Design of Programming Languages. In Information Processing 74,
pages 386-393, New York, N.Y., 1974. North-Holland Publishing Co.

Niklaus Wirth. An Assessment of the Programming Language Pascal. IFEFE Transactions on
Software Engineering, pages 192-198, June 1975.

Niklaus Wirth. Programming in Modula-2 (3rd corrected edition). Springer-Verlag, New York,
N.Y., 1985.

N. Wirth. Type Extensions. ACM Transactions on Programming Languages and Systems,
10(2):204-214, April 1988.

Barbara B. Wyatt, Krishna Kavi, and Steve Hufnagel. Parallelism in Object-Oriented Lan-
guages: A Survey. IEEFE Software, 9(6):56-66, November 1992.

Daniel Weinreb and David Moon. Flavors: Message Passing in the Lisp Machine. Al Memo
602, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, November 1980.

33

