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Abstract

Subtype relationships in object-oriented programming languages are studied to aid code
reuse and reasoning about programs that use subtype polymorphism. We define what it means
for one abstract data type to be a subtype of another. This definition allows for both mutation
and aliasing. This work gives intuition for programmers and guidance to language designers.

1 Introduction

We believe that mutation, aliasing, and subtyping should be semantic notions[1], [14]. That is,

they should depend on specifications and observable behavior. In this paper we present observable

definition of subtype relationships for arbitrary deterministic, abstract data types. Unlike previous

work on subtyping our definition allows for both mutation and aliasing.

In the next section we show why deciding whether one type is a subtype of another is a non-

trivial issue. In section 3 we briefly describe related work and in section 4 we describe our model.

In sections 5 and 6 we define a simulation relations and legal subtyping. In section 7 we define a

polymorphic object-oriented language and in the next section we give some properties of subtype

relationships. We end with a discussion on subtyping between different commonly used abstract

data types and present our conclusions.

2 Examples of the Problem

The following discussion highlights the problem of reasoning about object-oriented programs that

use subtyping, and shows that arbitrary types cannot be in a subtype relationship. Further, we

discuss why subtyping among mutable types is different than subtyping among immutable types.

As an example of the kinds of mutable types we wish to treat formally, consider the specifications

of the types Point(points), cPoint(colored points), and Rect(rectangle) as shown in Figures 1, 2,

and 3.

∗This work was supported in part by the United States of America’s National Science Foundation under Grant
CCR-9108654.

1



Point

class ops [p-new]
instance ops [abscissa, ordinate, set-abscissa, set-ordinate]
based on sort P from PointTrait

op p-new(i:int, j:int) returns(p:Point)
ensures p = <i,j>

op abscissa(p:Point) returns(x:int)
ensures x = first(<i,j>)

op ordinate(p:Point) returns(y:int)
ensures y = ordinate(<i,j>)

op addX(p:Point, i:int) returns(Void)
modifies at most p
ensures p′ = <i + first(p),second(p)>

op addY(p:Point, i:int) returns(Void)
modifies at most p
ensures p′ = <first(p), second(p) + i>

Figure 1: The type specification Point.

cPoint

subtype of Point
class ops [cp-new]
instance ops [color, set-color]
based on sort C from CPointTrait

op cp-new(i:int, j:int, code:int) returns(c:cPoint)
ensures c = <i,j, code>

op color(c:cPoint) returns(code:int)
ensures code = third(c)

op set-color(c:cPoint, code:int) returns(Void)
modifies at most c
ensures c′ = <first(p), second(p), code>

Figure 2: The type specification cPoint.
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Rect

class ops [r-new]
instance ops [lower-left, upper-right, set-lleft, set-uright]
based on sort R from RectangleTrait

op p-new(p1:Point, p2:Point) returns(r:Rect)
ensures r = <p1, p2>

op lower-left(r:Rect) returns(p:Point)
ensures p = first(r)

op upper-right(r:Rect) returns(p:Point)
ensures p = second(r)

op set-lleft(r:Rect, p:Point) returns (Void)
modifies at most r
ensures r′ = <p, second(r)>

op set-uright(r:Rect, p:Point) returns (Void)
modifies at most r
ensures r′ = <first(r), p>

Figure 3: The type specification Rect.

For legal subtyping among immutable types, it is enough that every instance of a subtype behaves

like an instance of a supertype object. Since there is no mutation of immutable types, if instances

of subtype behave as expected in one state, they will behave that way in all states. However, for

mutable types this is no longer true. Subtype objects acting like supertype objects should respond

to messages that mutate the object in a similar way to the objects of supertype. That is, instances

of subtypes should behave as expected in all states and across state transformations. If this is not

the case and we reason based on the supertype’s specification, we get unexpected results from a

program. This is shown in the following example.

Example 2.1 Consider a type wcPoint which is like cPoint except for the following operation.

op abscissa(w:wcPoint) returns (i:Int)

modifies at most w

ensures i = first(w) ∧ w′ = <first(w) + 1, second(w),third(w)>

This says that the operation abscissa on wcPoint returns abscissa of wcPoint object and increments

it by 1. Let us suppose that wcPoint is a subtype of Point. Consider the following code which

mutates a variable of type Point.

program ( p:Point) returns ( old:Int, i:Int);
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begin

old := abscissa(p);

addX(p, 10);

i := abscissa(p);

end;

If we call program with p an object of Point we see that its abscissa is incremented by 10. If we

call program with p an object of wcPoint, then we see that its abscissa is incremented by 11.

When p denotes an object of type wcPoint, the value returned, i, does not conform to what we

expected would happen for of Point. If wcPoint were a valid subtype of Point, then the operation

abscissa would increment its abscissa component by 10. If wcPoint were a subtype of Point then

the values of old and i would be the same. So the first problem is to define legal subtyping for

mutable types that rules out such surprising behavior.

Subtypes can have extra operations on them and, some of these might be mutators. In the

presence of these extra mutators, aliasing can result in a surprising behavior. As an example of this

consider the following.

Example 2.2 Consider a type mcPoint which is like cPoint except for the following operation.

op set-color(m:mcPoint,c:Int) returns (Void)

modifies at most m

ensures m′ = <first(m) + c, second(m) + c, c>

This operation mutates the argument m, setting all its components. Let us suppose that mcPoint is

a subtype of Point. Consider the following program.

program ( p:Point, m:mcPoint) returns ( i:Int, j:Int);

begin

j := abscissa(p);

set-color(m, 1);

i := abscissa(p);

end;

Passing the program p and m that are not aliased gives same values for i and j. But, passing it a

point p and an mcpoint m that are aliased directly (denoting the same object), we see that the values

of i and j are different.

The results shown in the above example are surprising in that when m is an mcPoint and, p and

m are aliased then p := m does not act like a Point. Should we conclude that mcPoint cannot be

a subtype of cPoint or is this a problem with the states in which we are executing? That is, is this

a problem with subtyping or with aliasing between the subtype object and the supertype object?
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So the questions are: how do we decide subtype relationships in general? What are the require-

ments needed for two abstract data types to have a subtype relationship in the presence of mutation

and aliasing? In this paper we define a behavioral notion of subtyping to answer these questions.

3 Related Work

Bruce and Wegner [2] define subtyping in terms of binary relations on an algebra. They do not

deal with incompletely specified data types. Leavens in [11], [14] defines subtyping using relations

between algebras. These simulation relations were also extended to handle non-determinism. It was

shown that no surprising results can occur when subtype objects are used in place of supertype

objects. However, none of these deal with mutation.

In contrast to the above model-theoretic approaches, America uses a proof-theoretic approach to

subtyping [1]. America defines subtyping with a transfer function and using pre and post conditions

of the subtype and supertype operations.

In this paper we approach subtyping from a model-theoretic point of view. Simulation relations

between algebras [11] are extended to deal with mutable types. This extension is not trivial as it

also handles aliasing.

4 Algebraic Model

Our models of abstract types with mutable objects are somewhat nonstandard from the standpoint

of denotational semantics, because they do not describe objects in terms of a few basic types, such

as products, sums, and functions. Instead, they more closely resemble the models of equational

algebraic specifications, having carrier sets and operations. Our particular models are most strongly

inspired by the work of Wing [21] and Chen [5].

We take the view that objects can be thought of as typed memory cells containing abstract

values. The values may contain locations, which are the names of memory cells. Abstract values

can be thought of as mathematical abstractions of the concrete representations used in programs [9].

Locations can be thought of as the names of objects; these are sometimes called object identifiers.

Locations are typed in the same sense that variables are typed; a location l : T can store an abstract

value of a subtype of T .

The types in a signature are used in programs. Variables are typed, and contain denotable values

which are either locations or abstract values. Following Wing, names of the corresponding abstract

values are called sorts. The mapping TtoS gives the corresponding sort for a given type.

Definition 4.1 A signature, Σ, is a tuple (TYPES ,VIS ,SORTS ,VARS ,TtoS ,OPS ,≤,ResType),

where

• TYPES is a non-empty set of type symbols, such that Void ∈ TYPES.
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• VIS ⊆ TYPES is a set of visible type symbols, such that Bool ∈ VIS

• SORTS is a non-empty set of sort symbols,

• VARS is a set of variable symbols, indexed by TYPES,

• TtoS : TYPES → SORTS, is an an injective mapping,

• OPS, is a set of operation symbols, indexed by TYPES∗ × TYPES,

• ≤, is a preorder on types, called the presumed subtype relation,

• ResType : OPS ,TYPES∗ → TYPES, is a a partial function which returns the nominal type

of an operation symbol applied to a tuple of arguments with the given types. ResType should

be monotone, in the following sense [18]: for all g ∈ OPS, and for all tuple of types ~S≤~T , if

ResType(g, ~T ) is defined, then so is ResType(g, ~S)≤ResType(g, ~T ).

As usual, we write g : ~S → T for g ∈ OPS 〈~S,T 〉. (We use angle brackets (〈, 〉) to surround tuples

of types, to avoid confusion with tuples of values.)

The monotonicity requirement, taken from Reynold’s category sorted algebras [18], allows oper-

ations to model message passing. It permits a style of message passing similar to CLOS, with all

the argument types determining the operation called [14].

Figure 4 gives an example signature, ΣE . Its mutable types are Point, cPoint and Rect. That

the objects of these types are mutable can be seen from the signature of operations such as addX

and set-ll, which have no results.

In what follows, let Σ = (TYPES ,VIS ,SORTS ,VARS ,TtoS ,OPS ,≤,ResType) stand for an

arbitrary signature.

Unlike the usual work in algebraic models, our models not only have a carrier set for the abstract

values (sorts), but also have a carrier set for typed locations.

Definition 4.2 A Σ-algebra is a tuple, (LOCSA, |A|,OPSA), where

• LOCSA =
⋃

T∈TYPES LOCSA
T is a family of sets, representing typed locations, and,

• VALUESA = |A| =
⋃

S∈SORTS AS is a family of sets, representing the abstract values of each

type, such that ∗ ∈ ATtoS [Void] and {true, false} = ATtoS [Bool], and

• OPSA is a family of functions, indexed by TYPES∗ × TYPES, such that for each operation

symbol g ∈ OPS, for each tuple of types 〈S1, · · · , Sn〉, for each type T, if ResType(g, 〈S1, · · · , Sn〉)

= T, then

gA : (DVALA
S1
× · · · ×DVALA

Sn
)× STORE [A]→

⋃
U≤ T

DVALA
U × STORE [A],
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VISE
def
= {Bool, Int}

TYPESE
def
= {Void, Bool, Int, Point, cPoint, Rect}

SORTSE
def
= {Unit, Boolean, Integer, PointSort, cPointSort, RectSort}

VARS
def
=

⊎
T∈TYPESE

{s | s is a non-empty string of alphanumeric characters}

Type to Sort Mapping (TtoS )
Void 7→ Unit

Bool 7→ Boolean

Int 7→ Integer

Point 7→ PointSort

cPoint 7→ cPointSort

Rect 7→ RectSort

Operation symbols (OPS ) and (ResType)
() : 〈〉 → Void

true : 〈〉 → Bool

false : 〈〉 → Bool

and : 〈Bool, Bool〉 → Bool

or : 〈Bool, Bool〉 → Bool

not : 〈Bool〉 → Bool

0 : 〈〉 → Int

1 : 〈〉 → Int

add : 〈Int, Int〉 → Int

mult : 〈Int, Int〉 → Int

negate : 〈Int〉 → Int

equal : 〈Int, Int〉 → Bool

p− new : 〈Int, Int〉 → Point

abscissa : 〈Point〉 → Int

ordinate : 〈Point〉 → Int

addX : 〈Point, Int〉 → Void

addY : 〈Point, Int〉 → Void

c− new : 〈Int, Int, Int〉 → cPoint

abscissa : 〈cPoint〉 → Int

ordinate : 〈cPoint〉 → Int

addX : 〈cPoint, Int〉 → Void

addY : 〈cPoint, Int〉 → Void

color : 〈cPoint〉 → Int

set− color : 〈cPoint, Int〉 → Void

mkRect : 〈Point, Point〉 → Rect

lower− left : 〈Rect〉 → Point

upper− right : 〈Rect〉 → Point

set− lleft : 〈Rect, Int〉 → Void

set− uright : 〈Rect, Int〉 → Void

Figure 4: The signature ΣE .
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UnitE
def
= {∗,⊥}

BooleanE
def
= {true, false,⊥}

IntegerE
def
= {⊥, 0, 1,−1, 2,−2, . . .}

PointSortE
def
= {(lx, ly) | lx, ly ∈ LOCSE

Int} ∪ {⊥}
cPointSortE

def
= {(lx, ly, lz) | lx, ly, lz ∈ LOCSE

Int} ∪ {⊥}
RectSortE

def
= {(lbl, ltr) | lbl, ltr ∈ LOCSE

Point} ∪ {⊥}

Figure 5: Carrier sets for the example ΣE-algebra, E.

where STORE [A] is the set of all finite functions from LOCSA to |A|,

STORE [A] = LOCSA fin→ |A|. (1)

and DVALA is the set of denotable values,

DVALA = LOCSA + VALUESA. (2)

We write DVALA
T for the set of denotable values from either LOCSA

T or ATtoS[T ].

The operations of an algebra are polymorphic, because they must be defined wherever ResType

says they are defined. One can imagine that gA looks at the actual types, and decides what to do,

as in CLOS. This is easiest to understand if the sets of denotable values of each type are disjoint,

but can be made to work even if they overlap [15]. We do not require carrier sets of subtypes be

subsets of the carrier sets of supertypes in contrast to [4],[8].

The special abstract value ∗ of sort TtoS [Void] is used for the result of an operation that would

otherwise not have a value. An operation is modeled by a function from a sequence of denotable

values and an initial store to a denotable value and a final store.

Stores are finite functions from a subset of LOCSA to abstract values; in other words, they are

not defined for all locations.

We now describe an example ΣE-algebra, E. In this algebra, all operations take and return

locations. As the locations have no interesting structure, we adopt the convention that for each type

T :

LOCSE
T

def
= {lTi | i ∈ Nat}. (3)

The carrier sets for this algebra are defined in Figure 5. Our use of pairs in the carrier sets of

rectangles and points in E is simply a convenience; we could also have used functions or stacks or

some other mathematically defined abstract value set.

The operations of E are defined in Figure 6. We use nextFree[T ] to find the next free location

of type T in a given store.

nextFree[T ] : STORE [E]→ LOCSE
T

nextFree[T ](σ)
def
= lT

1+lub{i|lT
i
∈dom(σ)}
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We use the function alloc[T ] to find a free location and initialize it with an abstract value of type T .

alloc[T ] : (TtoS [T ]
E × STORE [A])→ DVALE

T × STORE [A]

alloc[T ](v, σ)
def
= let l = nextFree[T ](σ) in (inLOCS (l), [l 7→ v]σ)

The notation [l 7→ v]σ is the function σ extended to bind l to v; that is [l 7→ v]σ
def
= λl2 . (l2 = l)→

v[]σ(l2), where the notation b→ e1[]e2 means if b is true, then e1, else e2. The notation inLOCS (l)

means the result of injecting a location l into the LOCS summand of DVAL. We use this notation

also in pattern matching as in Standard ML. For example, add takes two denotable values that are

locations as arguments. Figure 6 gives a description of some of the operations of the algebra E. The

omitted ones are defined similarly.

The state of a program is given by two mappings: an environment and a store. An environment

maps variables to denotable values. Denotable values are object identifiers or abstract values. The

store maps object identifiers to their abstract values; it is defined in Equation 1 above. Both are

necessary for a full treatment of aliasing and mutation. Both types of mappings are parameterized

by an algebra, A.

ENV [A] = VARS
fin→ DVALA (4)

STATE [A] = (ENV [A]× STORE [A])⊥ (5)

In a state, variables of a supertype may denote objects of their subtypes. To capture this notion

in the environment and store we place additional requirements on environments and stores.

Definition 4.3 Let Σ be a signature, whose set of type symbols is TYPES, set of variable symbols

is VARS and whose presumed subtype relation is ≤. Let A be a Σ-algebra. Let X be a subset of

VARS. A mapping η:X → DVALA, is an environment mapping if and only if for every type T ∈

TYPES and for every x : T in X, η(x) has a type S such that S ≤ T.

Similarly, a store mapping can map locations to abstract values of different sorts. To describe

this subsorting, we define ≤sort, as follows. For all types U and W , TtoS (U)≤sortTtoS (W ) if and

only if U≤W .

Definition 4.4 Let Σ be a signature. Let TYPES be its set of type symbols. Let A be a Σ-algebra.

A mapping σ : LOCSA → VALUESA, is a store mapping if and only if for every type S ∈ TYPES,

and for every l : S ∈ LOCSA, σ(l) has a sort U such that U ≤sort TtoS(S).

Nominal stores and environments are useful for reasoning about programs and are used in defining

simulation relations.

Definition 4.5 A state (η, σ) is nominal if both η and σ are nominal. An environment η is nominal

if and only if for all x : T ∈ dom(η), η(x) has type T . Similarly a store σ is nominal if and only if

for all l : U ∈ dom(σ), σ(l) has sort TtoS (U).
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Operations

()E((), σ)
def
= alloc[Void](∗, σ)

trueE((), σ)
def
= alloc[Bool](true, σ)

orE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Bool](σ(l1) ∨ σ(l2), σ)

0E((), σ)
def
= alloc[Int](0, σ)

addE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Int](σ(l1) + σ(l2), σ)

p− newE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Point]((l1, l2), σ)

abscissaE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l1), σ)

addXE((inLOCS (lPoint), inLOCS (lInt)), σ)
def
= let (l1, l2) = σ(lPoint) in

let (inLOCS (lx), σ′) =
in addE((inLOCS (l1), inLOCS (lInt)), σ)

alloc[Void](∗, [lPoint 7→ (lx, l2)]σ′)

cp− newE((inLOCS (l1), inLOCS (l2), inLOCS (l3)), σ)
def
= alloc[cPoint]((l1, l2, l3), σ)

abscissaE(inLOCS (l), σ)
def
= let (l1, l2, l3) = σ(l) in (inLOCS (l1), σ)

addXE((inLOCS (lcPoint), inLOCS (lInt)), σ)
def
= let (l1, l2, l3) = σ(lcPoint) in

let (inLOCS (lx), σ′) =
in addE((inLOCS (l1), inLOCS (lInt)), σ)

alloc[Void](∗, [lcPoint 7→ (lx, l2, l3)]σ′)

colorE(inLOCS (l), σ)
def
= let (l1, l2, l3) = σ(l) in (inLOCS (l3), σ)

set− colorE((inLOCS (l), lInt), σ)
def
= let (l1, l2, l3) = σ(l)

alloc[Void](∗, [l 7→ (l1, l2, l
Int)]σ)

mkRectE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Rect]((l1, l2), σ)

botLeftE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l1), σ)

horizMoveE((inLOCS (lRect), inLOCS (lInt)), σ)
def
= let (lbl, ltr) = σ(lRect) in

let (inLOCS (l)′, σ′) =
in addXE((inLOCS (lbl), inLOCS (lInt)), σ)

let (inLOCS (l′′), σ′′) =
in addXE((inLOCS (ltr), inLOCS (lInt)), σ′)

alloc[Void](∗, σ′′)

Figure 6: Some operations for the example ΣE-algebra, E.
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Figure 7: Picture of a non-nominal state over the algebra E

The significance of nominal and non-nominal states is that in a nominal state the location bound

to a variable of type U and its abstract value, are of type U and sort TtoS (U) respectively. In a

non-nominal environment the variable’s abstract value can belong to a sort TtoS (W ), where W≤U .

A non-nominal state is shown in Figure 7. Non-nominal states arise when one exploits subtyping.

Since locations are typed, we use l : T to stand for a location l ∈ LOCSA
T when the algebra A is

clear from context. For this we also write “l : T is a location.” Similarly we use d : T to stand for a

denotable value d ∈ DVALA
T . Similarly, we denote variables by x : T , and write “x : T is a variable”

to mean x ∈ VARST , when the set VARS is clear from context.

We sometimes use a function absVal to get an abstract value from a denotable value and a store.

It is defined as follows.

absVal : DVALA × STORE [A]→ VALUES [A]

absVal(d, σ)
def
= cases d of isVALUES (v) → v[]isLOCS (l) → σ(l)end

An example of a non-nominal state over the ΣE-algebra E is pictured in Figure 7. In the formal

model of this picture, the environment ηE would be defined as follows.

ηE(x) = inLOCS (lRect1 )
ηE(y) = inLOCS (lRect1 )
ηE(z) = inLOCS (lcPoint4 )

In Figure 7, we have arranged the picture so that each location has a unique index across all types.
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For this example, the store mapping, σE would be defined as follows.

σE(lRect1 ) = (lPoint2 , lcPoint4 )
σE(lPoint2 ) = (lInt3 , lInt3 )
σE(lcPoint6 ) = (lInt5 , lInt6 , lInt7 )
σE(lInt3 ) = 1
σE(lInt5 ) = 2
σE(lInt6 ) = 3
σE(lInt7 ) = 4

Note that the abstract values may “contain” locations, as described for the carrier sets of E. A

program, however, does not have direct access to the locations that may be contained in an abstract

value, but can only access the abstract value in ways permitted by the operations of the type of the

location in which the abstract value is stored.

In the example algebra E all variables point to locations. We could describe another algebra

which has the same signature with variable of type integer and boolean pointing directly to abstract

values instead of locations.

5 Simulation Relations

The intuitive idea of subtyping is that each object of subtype should behave like some object of each

of its supertypes. The notion “behaves like” is expressed as a relation on the states that contain

the objects. The reason for expressing the notion “behaves like” as relation on states is because we

not only want the abstract values to be related but the states should also have the similar aliasing.

What we mean by similar aliasing is that if state s1 is related to s2, and if variables x, y are aliased

in s1, then x and y must be aliased in s2. Without this, operations that change the state would

not preserve the relationships. The main property of such relationships is that they are preserved

by operations of algebras so that after the operation is applied the resultant states behave similarly.

This is captured in the “substitution” property.

Definition 5.1 (simulation relation) Let C and A be Σ-algebras. A Σ-simulation relation R

from C to A is a binary relation on states

R ⊆ STATE [C]× STATE [A]

such that for each (ηC , σC) ∈ STATE [C] and for each (ηA, σA) ∈ STATE [A], the following properties

hold:

well-formed: (ηC , σC)R (ηA, σA)⇒ dom(ηC) ⊆ dom(ηA),

bindable: for each type T for each type S such that S≤ T , for each variable x : T , and for each

variable y : S ∈ dom(ηC),

(ηC , σC)R (ηA, σA)⇒ ([x 7→ ηC(y)]ηC , σC)R ([x 7→ ηA(y)]ηA, σA) (6)
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Substitution: Let g be a program operation such that ResType(g, ~S) = T. Let ~x : ~S ∈ dom(ηC).

Let gC(ηC(~x), σC) = (dC , σ
′
C) and let gA(ηA(~x), σA) = (dA, σ

′
A). Then for all y : T ,

(ηC , σC)R (ηA, σA)⇒ ([y 7→ dC ]ηC , σ
′
C)R ([y 7→ dA]ηA, σ

′
A)) (7)

shrinkable: if (η′C , σ
′
C) ⊆ (ηC , σC), (η′A, σ

′
A) ⊆ (ηA, σA), and dom(η′C) ⊆ dom(η′A), then

(ηC , σC)R (ηA, σA)⇒ (η′C , σ
′
C)R (η′A, σ

′
A), (8)

VIS-identical: for all T ∈ VIS, for all x : T ∈ dom(ηC),

(ηC , σC)R(ηA, σA) ⇒ absVal(ηC(x), σC) = absVal(ηA(x), σA) (9)

Coercion: there exists a nominal state (η′A, σ
′
A) ∈ STATE [A], such that

(ηC , σC)R (η′A, σ
′
A) (10)

Bistrict: (ηC , σC)R⊥ ⇔ (ηC , σC) = ⊥ and ⊥R (ηA, σA)⇔ (ηA, σA) = ⊥.

The substitution property ensures that homomorphic relationships between states are preserved

by operations. It is expressed by binding a variable to the denotable value returned by the operation

in each algebra, and then requiring that the resulting extended final states be related.

The “VIS-identical” property ensures that a simulation relation is the identity on objects of

visible types. Distinct elements of visible type cannot be related. Further, at each visible type V,

RTtoS(V ) is the identity on the carrier set of V.

The “Coercion property” is similar to the requirement that each object of a subtype simulate

some object of the supertype for immutable types. The coercion property ensures that each non-

nominal state simulates a nominal state.

The “bistrict” condition ensures that the relation is preserved in the case of non-termination.

Since our simulation relations are defined on states instead of abstract values they preserve

aliasing between any two variables. That is, if two variables are aliased in one state then they must

be aliased in a related state. This is because if two variables, say x : T and y : S were aliased in

a state sA and not aliased in sN , one could observe a change in x by using operations on y in sA

while there would be no change in x in sN when y is mutated. This would violate the substitution

property. So such states cannot be related.

Though we allow aliasing between different types, the coercion property does not allow direct

aliasing between variables of a proper subtype and variables of a supertype; that is, variables of a

proper subtype and its supertype cannot denote the same object. If this kind of aliasing were present,

there could not be a nominal environment with similar aliasing between those two variables, because

in the nominal environment only variables of the same type can be directly aliased. Similarly, at

the component level also we cannot have a direct aliasing between objects of proper subtypes and
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objects of supertypes. However, all other kinds of direct aliasing are allowed, for example, direct

aliasing between variables of the same type or direct aliasing between variables of unrelated types.

A trivial example of a simulation relation is the identity relation on states of E. The full version

of this paper will show a non-trivial simulation relation between two different algebras.

6 Legal Subtype Relationships

In this section we define what it means for mutable, abstract data types to have a legal subtype

relationship. We use simulation relations to define legal subtype relations. Legal subtype relations

are defined among deterministic, first-order, mutable, abstract types as characterized by type speci-

fications — not just the built-in types of a particular programming language. The formal definition

of subtype relations is parameterized by the semantics of a specification. This allows the subtype

definition to be independent of particular specification languages. Furthermore, since the semantics

of a specification is a set of algebraic models, this definition handles incompletely specified types.

Definition 6.1 (Legal Subtyping) Let SPEC be a set of Σ-algebras. The presumed subtype re-

lationship ≤ on types is a legal subtype relation for SPEC if and only if for each B ∈ SPEC there

is some A ∈ SPEC such that there is a Σ-simulation from B to A.

The requirement that Σ-simulation property on states of the two algebras B,A ∈ SPEC does

test the properties of presumed subtype relationships. This is because the coercion property of

simulation relations ensures that every non-nominal state in B simulates a nominal state in A.

The identity relation on types is trivially a subtype relation on types because simulation is

reflexive.

Example 6.2 Let SPEC be a set {E}, then the presumed subtype relationship between Point and

cPoint is a legal subtype relationship for SPEC .

7 A polymorphic object-oriented language, π

We define a polymorphic object-oriented language π to show some properties of simulation relation-

ships and legal subtypes. Operations of π support message passing, and variables in π may denote

objects of a subtype of the declared type, thus allowing subtype polymorphism.

7.1 The Language π

The syntax of π is given in Figure 8. The semantics of π is given in Figure 9. The main no-

tations in this section are from [19]. Expressions, commands and programs in π are strict. The

notation (C[[C]](A)(s))|D*2 means that if C[[C]](A)(s) = (η, σ), then (C[[C]](A)(s))|D*2 = λx ∈

D*2.absVal(x, σ). That is, a program returns a function from its result values to their abstract val-

ues. This can be thought of as a labeled printing of the results. The output variables of a program,
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Abstract Syntax:
P ∈ Program
D* ∈ Declaration-List
D ∈ Declaration
C ∈ Command
E* ∈ Expression-List
E ∈ Expression
V ∈ Variable
g ∈ Operation
T ∈ Type-Symbol

P ::= program (D*1) returns (D*2) ; C
D* ::= | D D*
D ::= V : T
C ::=E | V := E | begin V : T := E; C end | C1; C2 | if E1 then C1 else C2 fi

| while E do C od | skip
E ::= V | g(E*)
E* ::= | E* E

Figure 8: Syntax of π.

D*2, must have a visible type; that is, x : T ∈ D*2 implies T ∈ VIS . We define the input variables

and the output variables of a program as follows.

inV ars[[program (D*1) returns D*2; C]] = D*1

outV ars[[program (D*1) returns D*2; C]] = D*2

We use π to show properties of simulation relationships and subtype relationships in the next

section.

8 Legal Subtyping means no surprises

In this section we state some important properties of simulation relations and using these we show

that legal subtyping means “no surprises”. By no surprises we mean that the results expected

from a program according to the supertype’s specification, should also happen when the program is

executed in a non-nominal state.

The following lemma is similar to the fundamental theorem of logical relations, or the homomor-

phism theorem for standard algebras.

Lemma 8.1 Let C and A be Σ-algebras. Let R be a Σ-simulation relations from C to A. Then the

simulation relation R is preserved by expressions and commands in π.

We have an important corollary for this theorem that simulation is preserved by programs.
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ANSWERS[A] = V ARSA → V ALA

P : program→ A : Alg(Σ)→ STATE [A]→ ANSWERS [A]
P[[program (D*1) returns D*2; C]](A)(s) = (C[[C]](A)(s))|D*2

C : Command→ A : Alg(Σ)→ STATE [A]→ STATE [A]
C[[E]](A)(η, σ) = let (l, σ′) = E [[E]](A)(η, σ) in (η, σ′)
C[[V := E]](A)(η, σ) = let (l : T, σ′) = E [[E]](A)(η, σ) in

([V 7→ l]η, σ′)
C[[begin V : T := E; C end]](A)(η, σ) = let (l, σ′) = E [[E]](A)(η, σ) in

C[[C]](A)([V 7→ l]η, σ′)−V
C[[C1; C2]](A)(s) = C[[C2]](A)(C[[C1]](A)(s))
C[[if E1 then C1 else C2 fi]](A)(η, σ) =

let (l, σ′) = E [[E]](A)(η, σ) in
absVal(l, σ′)→ (C[[C1]](A)(η, σ′))[](C[[C2]](A)(η, σ′))

C[[While E do C od]](A)(η, σ) =
fix(λf.(let (l, σ′) = E [[E]](A)(η, σ) in

absVal(l, σ′)→ f(A, (C[[C]](A)(η, σ′)))[](η, σ′)))
C[[skip]](A)(η, σ) = (η, σ)

E : Expression→ A : Alg(Σ)→ STATE [A]→ LOCSA × STATE [A]
E [[V]](A)(η, σ) = (η[[V]], σ)

E [[g(E*)]](A)(η, σ) = let (l̂, σ′) = E∗[[E*]](A)(η, σ) in gA(productize(l̂), σ′)

E∗ : Expression-List→ A : Alg(Σ)→ STATE [A]→ (List((LOCSA))× STATE [A])
E∗[[]](A)(η, σ) = (nil , σ)
E∗[[E* E]](A)(η, σ) =

let (l̂, σ′) = E∗[[E*]](A)(η, σ) in
let (ln, σ

′′) = E [[E]](A)(η, σ′) in

(addToEnd(l̂, ln), σ′′)

∀1 ≤ i ≤ length(d̂).productize(addToEnd(d̂, d′)) ↓ i = (i = length(d̂))→ d′[](productize(d̂) ↓ i)

FV [[E* E]] = FV [[E*]] ∪ FV [[E]]
FV [[V]] = {V : T} (assuming V is declared to have type T), and
FV [[g(E*)]] = FV [[E*]]
FV [[begin V:T := E; C end]] = (FV [[E]] ∪ FV [[C]]) \ {V:T}
FV [[program (D*1) returns (D*2); C]] = toSet(D*1)

Figure 9: Semantics of π
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Corollary 8.2 Let C and A be Σ-algebras. Let sC ∈ STATE [C] and sA ∈ STATE [A] be given. For

each program P, if sC R sA, then P[[P ]](C)(sC) = P[[P ]](A)(sA).

The result of a program P in a state s over an algebra A is defined as P[[P ]](A)(s). To make

judgments whether subtype relationships give us the right kind of results or not we need to define

a set of expected results. The set of expected results of a program P for SPEC is the union over all

A ∈ SPEC and nominal states s ∈ STATE [A] of P[[P ]](A)(s).

Since the set of expected results of an observation is defined using nominal states, it is possible

that in a non-nominal state one might observe surprising results.

Definition 8.3 (Surprising result) Let SPEC be a set of Σ-algebras. Let A ∈ SPEC . A result,

P[[P ]](A)(η, σ), is surprising with respect to SPEC if and only if P[[P ]](A)(η, σ) is not an element

of the set of expected results of P for SPEC .

As discussed in section 2, instances of legal subtype when passed as instances of supertypes

cannot give surprising results.

Theorem 8.4 (Subtyping means no surprises) Let SPEC be a set of Σ-algebras. Let P be a

program in π. Let C ∈ SPEC . Suppose ≤ is a legal subtype relationship for SPEC. Then for all

states (ηC , σC) ∈ STATE[C], P[[P ]](C)(ηC , σC) is not surprising for SPEC .

Proof: Let P be a program and let (ηC , σC) ∈ STATE(C).

Since ≤ is a legal subtype relation for SPEC, there is some A ∈ SPEC and some Σ-simulation

relation R′ from C to A. By the coercion properties we know that there is a nominal environment

(ηA, σA) ∈ STATE(A) such that (ηC , σC)R′ (ηA, σA).

Let r′C = P[[P ]](C)(ηC , σC) and r′A = P[[P ]](A)(ηA, σA). By corollary 8.2, r′C = r′A. But r′A is an

expected result as it is the result of P taken over a nominal state. So r′C is also an expected result.

The conclusion of Theorem 8.4 may not hold if the subtype relationship is not legal. Suppose

there is a presumed subtype relationship between Point and wcPoint as given in Example 1.2. From

the observation of a similar program in π we get the values of i and j to be 10, while the actual

results are 10 and 11 respectively.

9 Discussion

Since simulation relations take care of aliasing and mutation we can study subtype relations between

a variety of abstract data types with mutable objects. Though subtype relations depend on the exact,

formal specification of these types, nevertheless we discuss the insights that our formal framework

gives us informally.
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9.1 Tuple types

Our definition of legal subtype relations also applies to immutable types. With appropriate models,

we can show that Cardelli’s rules for immutable record subtyping are in accord with our definitions.

That is, his rules in [3] for subtyping of immutable record types follow as a special case from our

definition of legal subtype relationships.

If we consider mutable pairs and triples, then a mutable triple type whose elements are of the

same types as corresponding elements of a mutable pair type is a legal subtype in our sense. This

agrees with Cardelli’s rules for mutable record subtyping in [3]. Cardelli justifies his rule on grounds

of type theory, while ours follows from the model theory of the associated specifications.

We can consider three dimensional objects as subtypes of two dimensional objects. That is, if a

three dimensional point can be a subtype of a two dimensional point. The z component of the three

dimensional point is unobservable from the specification of a two dimensional point. Extending the

same intuition to other objects, a cube can be a subtype of a square.

9.2 Mutable Vs Immutable types

A mutable type can be a subtype of an immutable types obtained by disallowing mutation on its

objects. This corresponds to a similar discussion that a semi-mutable triple is a subtype of an

immutable pair by Liskov and Wing [17]. They define subtyping from a proof-theoretic point of

view.

An immutable type cannot mutate or observe the mutation in objects of its mutable subtype with

respect to its operations. So, according to our definition, objects of its subtype when viewed from

supertype’s perspective are immutable. This works because we also prohibit direct aliasing between

supertype and its mutable subtype. So every object of a mutable subtype acts like an instance of

this immutable supertype. This notion also generalizes to partially mutable types as follows.

Consider a set of matrix types Ai,j , where the subscripts i and j denote a level of mutation.

That is, A0,0 indicate that no components of A are mutable and A2,3 indicate that the first two

rows and first two columns are mutable. The subtype hierarchy for this is shown in the Figure 10.

In the figure an arrow from Ai+1,j+1 to Ai,j+1 indicate that Ai+1,j+1 is a subtype of Ai,j+1. This is

because objects of type Ai+1,j+1 when viewed from the specification of Ai,j+1 act as if only i rows

and j+1 columns are mutable. There is no relationship between Ai,j+1 and Ai+1,j as objects of type

Ai+1,j can mutate observe the i + 1 row of objects of type Ai,j+1 which is surprising for Ai+1,j+1

and vice versa.

9.3 Collection Hierarchy

Our definition of subtyping allows relationships between various collections. As an example consider

a Set, Stack, Queue and Bag. Stack, Queue and Bag can be subtypes of Set. Standard subtype

relationships in the collection hierarchy [6] are legal in our sense.
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Figure 10: Subtyping in different kinds of mutable arrays

10 Conclusions

The important contribution of this work is a new definition of subtyping for arbitrary deterministic

abstract data types in the presence of mutation and aliasing. Our definition of subtype relations

are based on the intuitive notion that each instance of a subtype simulates some instance of each

of its supertypes. Based on our formalization, we prove that legal subtype relationships preclude

surprising behavior.

The significant feature of our work is that we allow for both mutation and aliasing in our definition

of legal subtype relationships. Most previous studies only dealt with immutable data, and hence

were not directly applicable to the majority of object-oriented programs. The work of Bertrand

Meyer and Pierre America on subtyping finds model-theoretic support here.

A new aspect of subtyping which we have drawn attention to is the utility of limiting direct alias-

ing between a subtype and a proper supertype. While we allow aliasing among component objects

(indirect aliasing), the prohibition of direct aliasing between a subtype and a supertype gives more

legal subtype relationships then would otherwise be possible. For example, the type mcPoint can

be a legal subtype of the type Point (see section 2). Although the extra mutator of mcPoint would

cause surprising behavior if an mcPoint variable were directly aliased to Point variable, since this

cannot arise, no surprising behavior is possible. Without this restriction on aliasing, one either

needs a stronger definition of legal subtype relations [17] or a different way of reasoning about the

correctness of programs.

Because of our restrictions on aliasing, one can reason about object-oriented programs in a

modular fashion [14], [11]. That is, to prove the correctness of a program that uses subtyping and

message passing one:

• proves the program meets its pre and post-conditions using the static (nominal) type informa-

tion in the program text, reasoning essentially as usual,

• proves that the subtype relationships are legal, and
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• proves that the aliasing restrictions hold.

Such reasoning is modular in the sense that when new subtypes are added to the program, the

proof that the program meets its pre and post-conditions does not have to be repeated. That proof

remains valid if the new subtypes are legal.
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