
A Foundation for the Model Theory
of Abstract Data Types with

Mutation and Aliasing (preliminary version)

Gary T. Leavens and Krishna Kishore Dhara

TR #92-35

November 1992

Keywords: abstract data type, mutation, aliasing, model theory, simulation relation.

1992 CR Categories: D.3.3 [Programming Languages] Language Constructs — Ab-

stract data types; F.3.2 [Logics and Meanings of Programs] Semantics of Programming

Languages — algebraic approaches to semantics, denotational sematics.

c© Gary T. Leavens and Krishna Kishore Dhara, 1992. All rights reserved.

Department of Computer Science

226 Atanasoff Hall

Iowa State University

Ames, Iowa 50011-1040, USA

A Foundation for the Model Theory of Abstract Data Types

with Mutation and Aliasing

(preliminary version)

Gary T. Leavens∗and Krishna Kishore Dhara
Department of Computer Science, 226 Atanasoff Hall
Iowa State University, Ames, Iowa 50011-1040 USA

leavens@cs.iastate.edu and dhara@cs.iastate.edu

November 23, 1992

Abstract

To aid in understanding object-oriented programming languages, we present some
fundamentals of model theory for languages with mutable abstract data types and
aliasing. Our semantics for such languages is parameterized by an algebraic model
of all the abstract data types involved in the program, including types with mutable
objects. We give an algebraic characterization of simulation between states of such
algebraic models. We present a definition of aliasing that is based on the observable
behavior of objects.

1 Introduction

Despite its importance for object-oriented programming, less is known about the model

theory of mutation and aliasing than about the model theory of abstract data types with

immutable objects. Variables that can change their state by assignment, arrays, records, and

other primitive domains are treated in work on denotational semantics. But the primitive

semantic domains rarely include arbitrary abstract data types, and we know of no such work

that defines aliasing behaviorally. The literature on models of abstract data types, on the

other hand, rarely treats issues such as mutation and aliasing. Yet for a full understanding

of the semantics of object-oriented programming, both abstract data types and mutable

state must be treated.

The work reported here describes some fundamentals of a model theory for abstract data

types whose objects have mutable state. (We call such types mutable types.) In particular,

we give a behavioral description of aliasing, and describe a notion of simulation relation

∗This work was supported in part by the National Science Foundation under Grant CCR-9108654.

1

appropriate for such models. The notion of a simulation relation is similar to the notion of

a congruence relation, except that it is not symmetric; it is also similar to the base case of

the logical relations used in the study of typed lambda calculi [1] [2]. We also show that

our notion of simulation relation incorporates the notion of aliasing.

Our definition of aliasing is unique in that it defines aliasing based on object behavior.

That is, aliasing is only affected by changes in specification, not by changes in representation

details. A treatment of aliasing that only concerned itself with representations would not

qualify as a treatment of aliasing for abstract data types.

2 Algebraic Model

Our models of abstract types with mutable objects are somewhat nonstandard from the

standpoint of denotational semantics, because they do not describe objects in terms of a

few basic types, such as products, sums, and functions. Instead, they more closely resemble

the models of equational algebraic specifications, having carrier sets and operations that are

only constrained to satisfy a specification. Our particular models are most strongly inspired

by the work of Wing [3] and Chen [4].

In a typed language with abstract data types and mutation, such as CLU [5], objects

can be thought of as typed memory cells containing values. The values may contain the

locations of other cells. This resembles Scheifler’s denotational semantics of CLU [6]. It is

also much like LISP, except that cells come in many different types. Abstract values can be

thought of as mathematical abstractions of the concrete representations used in programs

[7]. Locations can be thought of as the names of objects; these are sometimes called object

identifiers. Locations are typed in the same sense that identifiers are typed; a location l : T

can only store an abstract value of type T .

The types in a signature are used in programs. Identifiers are typed, and contain deno-

table values, which can be either locations or abstract values. Following Wing, names of the

corresponding abstract values are called sorts. The mapping TtoS gives the corresponding

sort for a given type.

Definition 2.1 A signature, Σ, is a tuple,

(TYPES ,VIS ,SORTS , IDS ,TtoS ,OPS),

where

2

• TYPES is a non-empty set of type symbols, such that Void ∈ TYPES.

• VIS ⊆ TYPES is a set of visible type symbols, such that Bool ∈ VIS

• SORTS is a non-empty set of sort symbols,

• IDS is a set of identifier symbols, indexed by TYPES,

• an injective mapping, TtoS : TYPES → SORTS,

• a set OPS, of operation symbols, indexed by TYPES ∗ × TYPES.

As usual, we write g : ~S → T for g ∈ OPS 〈~S,T 〉. (We use angle brackets (〈, 〉) to surround

tuples of types, to avoid confusion with tuples of values.)

Figure 1 gives an example signature, ΣE . Its mutable types are Point and Rect. That

the objects of these types are mutable can be seen from the signature of operations such as

addX and horizMove, which have no results.

In what follows, let Σ = (TYPES ,VIS ,SORTS , IDS ,TtoS ,OPS) stand for an arbitrary

signature.

Unlike the usual work in algebraic models, our models not only have a carrier set for

the abstract values (sorts), but also have a carrier set for typed locations.

Definition 2.2 A Σ-algebra is a tuple, (LOCSA, |A|,OPSA), where

• LOCSA =
⋃
T∈TYPES LOCSAT is a family of sets, representing typed locations, and,

• VALSA = |A| =
⋃
S∈SORTS AS is a family of sets, representing the abstract values of

each type, such that ∗ ∈ ATtoS [Void] and {true, false} = ATtoS [Bool], and

• OPSA is a family of functions, indexed by TYPES ∗ × TYPES, such that for each

operation symbol g : 〈S1, . . . , Sn〉 → T , the functionality of gA is

gA : (DVALAS1
× · · · ×DVALASn

)× STORE [A]→ DVALAT × STORE [A],

where STORE [A] is the set of all finite functions from LOCSA to |A|:

STORE [A] = LOCSA
fin→ |A|. (1)

and DVALA is the set of denotable values:

DVALA = LOCSA + VALSA (2)

We write DVALAT for the set of denotable values from either LOCSAT or ATtoS[T].

3

VISE
def
= {Bool, Int}

TYPESE
def
= {Void, Bool, Int, Point, Rect}

SORTSE
def
= {Unit ,Boolean, Integer ,PointSort ,RectSort}

IDS
def
=

⊎
T∈TYPESE

{s | s is a non-empty string of alphanumeric characters}

Type to Sort Mapping (TtoS)
Void 7→ Unit
Bool 7→ Boolean
Int 7→ Integer
Point 7→ PointSort
Rect 7→ RectSort

Operation symbols (OPS)
() : 〈〉 → Void

true : 〈〉 → Bool

false : 〈〉 → Bool

and : 〈Bool, Bool〉 → Bool

or : 〈Bool, Bool〉 → Bool

not : 〈Bool〉 → Bool

0 : 〈〉 → Int

1 : 〈〉 → Int

add : 〈Int, Int〉 → Int

mult : 〈Int, Int〉 → Int

negate : 〈Int〉 → Int

equal : 〈Int, Int〉 → Bool

mkPoint : 〈Int, Int〉 → Point

abscissa : 〈Point〉 → Int

ordinate : 〈Point〉 → Int

addX : 〈Point, Int〉 → Void

addY : 〈Point, Int〉 → Void

mkRect : 〈Point, Point〉 → Rect

botLeft : 〈Rect〉 → Point

topRight : 〈Rect〉 → Point

horizMove : 〈Rect, Int〉 → Void

vertMove : 〈Rect, Int〉 → Void

Figure 1: The signature ΣE .

4

UnitE
def
= {∗}

BooleanE
def
= {true, false}

IntegerE
def
= {0, 1,−1, 2,−2, . . .}

PointSortE
def
= {(lx, ly) | lx, ly ∈ LOCSEInt}

RectSortE
def
= {(lbl, ltr) | lbl, ltr ∈ LOCSEPoint}

Figure 2: Carrier sets for the example ΣE-algebra, E.

The special abstract value ∗ of sort TtoS [Void] is used for the result of an operation that

would otherwise not have a value. An operation is modeled by a function from a sequence

of argument objects and an initial store to a result object and a final store. (We thus do

not model nondeterministic operations.)

Stores are finite functions from a subset of LOCSA to abstract values; in other words,

they are not defined for all locations.

We now describe an example ΣE-algebra, E. In this algebra, all operations take and

return locations. (We will later describe an algebra without this property.) As the locations

have no interesting structure, we adopt the convention that for each type T :

LOCSET
def
= {lTi | i ∈ Nat}. (3)

The carrier sets for this algebra are defined in Figure 2. Our use of pairs in the carrier sets

of rectangles and points in E is simply a convenience; we could also have used functions or

stacks or some other mathematically defined carrier set.

The operations of E are defined in Figure 3. We use nextFree[T] to find the next free

location of type T in a given store.

nextFree[T] : STORE [E]→ LOCSET

nextFree[T](σ)
def
= lT

1+lub{i|lTi ∈dom(σ)}

We use the function alloc[T] to find a free location and initialize it with an abstract value

of type T .

alloc[T] : (TtoS [T]E × STORE [A])→ DVALET × STORE [A]

alloc[T](v, σ)
def
= let l = nextFree[T](σ) in (inLOCS (l), [l 7→ v]σ)

The notation [l 7→ v]σ is the function σ extended to bind l to v; that is [l 7→ v]σ
def
= λl2 .(l2 =

l)→ v[]σ(l2), where the notation b→ e1[]e2 means if b is true, then e1, else e2. The notation

inLOCS (l) means the result of injecting the location l into the LOCS summand of DVAL.

5

We use this notation also to pattern matching when defining functions and picking apart

values, as in the language Standard ML. For example, mult takes 2 denotable values that

are locations as arguments.

In Figure 3, the following operations work on objects of type Point.

• mkPoint, which takes two integers and returns a new point.

• abscissa and ordinate, which return the x and y coordinates of a point.

• addX and addY, which mutate a point by adding an offset to either the x or the y

coordinate.

The following operations work on Rect objects.

• mkRect, which takes two points, that have abstract values (x1, y1) and (x2, y2) such

that x1 ≤ x2 and y1 ≤ y2, and returns a new rectangle having the first point as its

bottom left corner, and with the second as its top right corner. Note that the points

are not copied, but put directly into the abstract value of the rectangle; this is a

dangerous programming practice, but it is useful for our purposes in demonstrating

aliasing.

• botLeft and topRight, which return the points at the bottom left and the top right

corners of a rectangle. Note that these do not return copies of the points, but the

points themselves.

• horizMove and vertMove, which mutates the rectangle, moving it horizontally or

vertically by the amount given in the second argument.

The state of a program is given by two mappings: an environment and a store. An

environment maps identifiers to denotable values. Denotable values are object identifiers

or abstract values. A store maps object identifiers to their abstract values; the type of

stores is given in Equation (1) above. Both stores and environments are necessary for a

full treatment of aliasing and mutation. Both types of mappings are parameterized by an

algebra, A.

ENV [A] = IDS
fin→ DVALA (4)

STATE [A] = ENV [A]× STORE [A] (5)

6

Operations

()E((), σ)
def
= alloc[Void](∗, σ)

trueE((), σ)
def
= alloc[Bool](true, σ)

falseE((), σ)
def
= alloc[Bool](false, σ)

andE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Bool](σ(l1) ∧ σ(l2), σ)

orE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Bool](σ(l1) ∨ σ(l2), σ)

notE(inLOCS (l), σ)
def
= alloc[Bool](¬σ(l), σ)

0E((), σ)
def
= alloc[Int](0, σ)

1E((), σ)
def
= alloc[Int](1, σ)

addE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Int](σ(l1) + σ(l2), σ)

multE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Int](σ(l1)× σ(l2), σ)

negateE(inLOCS (l), σ)
def
= alloc[Int](−σ(l), σ)

equalE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Bool](σ(l1) = σ(l2), σ)

mkPointE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Point]((l1, l2), σ)

abscissaE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l1), σ)

ordinateE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l2), σ)

addXE((inLOCS (lPoint), inLOCS (lInt)), σ)
def
= let (l1, l2) = σ(lPoint) in

let (inLOCS (lx), σ′) =
addE((inLOCS (l1), inLOCS (lInt)), σ) in

alloc[Void](∗, [lPoint 7→ (lx, l2)]σ′)

addYE(inLOCS (lPoint), inLOCS (lInt), σ)
def
= let (l1, l2) = σ(lPoint) in

let (inLOCS (ly), σ
′) =

addE((inLOCS (l2), inLOCS (lInt)), σ) in
alloc[Void](∗, [lPoint 7→ (l1, ly)]σ

′)

mkRectE((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Rect]((l1, l2), σ)

botLeftE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l1), σ)

topRightE(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l2), σ)

horizMoveE((inLOCS (lRect), inLOCS (lInt)), σ)
def
= let (lbl, ltr) = σ(lRect) in

let (inLOCS (l)′, σ′) =
addXE((inLOCS (lbl), inLOCS (lInt)), σ) in

let (inLOCS (l′′), σ′′) =
addXE((inLOCS (ltr), inLOCS (lInt)), σ′) in

alloc[Void](∗, σ′′)
vertMoveE((inLOCS (lRect), inLOCS (lInt)), σ)

def
= let (lbl, ltr) = σ(lRect) in

let (inLOCS (l′), σ′) =
addYE((inLOCS (lbl), inLOCS (lInt)), σ) in

let (inLOCS (l′′), σ′′) =
addYE((inLOCS (ltr), inLOCS (lInt)), σ′) in

alloc[Void](∗, σ′′)

Figure 3: Operations for the example ΣE-algebra, E.

7

Since locations are typed, we use l : T to stand for a location l ∈ LOCSAT when the

algebra A is clear from context. For this we also write “l : T is a location.” Similarly we

use d : T to stand for a denotable value d ∈ DVALAT . Similarly, we denote identifiers by

x : T , and write “x : T is an identifier” to mean x ∈ IDST , when the set IDS is clear from

context.

Just as stores are not defined on all locations, environments are not defined on the whole

of IDS . We denote the extension of an environment η with the binding of x to v as [x 7→ v]η.

We impose the usual restrictions on environments and stores. That is, if η : ENV [A]

is an environment over a Σ-algebra A, and if x : T is an identifier in its domain, then

η(x) ∈ DVALAT . If σ : STORE [A] is a store over A, and if l : T is a location in its domain,

then σ(l) ∈ ATtoS [T].

We sometimes use a function absVal to get an abstract value from a denotable value

and a store. It is defined as follows.

absVal : DVALA × STORE [A]→ VALSA

absVal(d, σ)
def
= cases d of isVALS (v) → v[]isLOCS (l) → σ(l)end

An example state over the ΣE-algebra E is pictured in Figure 4. In the formal model

of this picture, the environment ηE would be defined as follows.

ηE(w) = inLOCS (lRect10)
ηE(x) = inLOCS (lRect9)
ηE(y) = inLOCS (lRect9)
ηE(z) = inLOCS (lPoint8)

In Figure 4, we have arranged the picture so that each location has a unique index across

all types. For this example, the store mapping, σE would be defined as follows.

σE(lRect10) = (lPoint6 , lPoint7)
σE(lRect9) = (lPoint6 , lPoint8)
σE(lPoint8) = (lInt2 , lInt5)
σE(lPoint7) = (lInt3 , lInt4)
σE(lPoint6) = (lInt1 , lInt1)
σE(lInt5) = 5
σE(lInt4) = 4
σE(lInt3) = 3
σE(lInt2) = 2
σE(lInt1) = 1

Note that the abstract values may “contain” locations, as described for the carrier sets of

E. A program, however, does not have direct access to locations that may be contained in

an abstract value, but can only access locations and abstract values in ways permitted by

the operations of the types.

8

?

A
A
A
A
A
A
AAU

),(

A
A
A
A
A
A
AAU?

(,)

-

��
��

�
��

�
��

�
��

�
��

�
��

��*

�
�
�
�
��3

Z
Z
Z
Z
ZZ~ -�

�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
���

H
HHH

HHH
HHH

HHj

A
A
A
A
A
A
AAU

?

l10:Rect

l9:Rect l8:Point

l7:Point

l6:Point

z:Point

y:Rect

x:Rect

w:Rect

4

52

3

),(

1

),(

),(

Figure 4: Picture of the state over the algebra E.

9

UnitD
def
= {∗}

BooleanD
def
= {true, false}

IntegerD
def
= {0, 1,−1, 2,−2, . . .}

PointSortD
def
= {(vx, vy) | vx, vy ∈ IntegerE}

RectSortD
def
= {(lbl, ltr) | lbl, ltr ∈ LOCSEPoint}

Figure 5: Carrier sets for the example ΣE-algebra, D.

In the ΣE-algebra E described above everything is modelled as an object; that is all

values are stored in locations. We now describe another ΣE-algebra, D, where the visible

types are modelled as abstract values directly instead of objects. This is closer to the

semantics of hybrid object-oriented languages, such as C++, CLOS, and Eiffel.

The carrier sets for D is given in Figure 5. We use nextFree and alloc as defined for

E, but with D substituted for E everywhere in their definitions. The operations of D are

shown in Figure 6.

A state like the one in Figure 4, but for the algebra D, is shown in Figure 7. Since the

visible types are modelled as values in D, the components of l6 : Point in D are not shared

locations. However, the aliasing a program can observe, while respecting data abstraction

is the same. We will describe the observable aliasing relationships that are in these figures

below. But first we give an algebraic characterization of how the states in the two figures

are similar.

3 Simulation Relations

Simulation relations on algebras help us to decide when one algebra behaves like another [8]

[9] [10]. If the simulating algebra corresponds to a faster implementation, that implementa-

tion may be used to replace the implementation that corresponds to the simulated algebra.

(See [11] for more intuition and an application to subtyping in object-oriented programming

languages.)

To define simulation relations one might think that the appropriate notion would simply

relate elements in the carrier set of one algebra to those in another. However, that would not

take the locations in our algebras into account. Neither can one simply relate locations, since

one must take the abstract values stored in the locations into account if the relationships are

to preserve observable behavior. Finally, it is not enough to relate locations together with

10

Operations

()D((), σ)
def
= (inVALS (∗), σ)

trueD((), σ)
def
= (inVALS (true), σ)

falseD((), σ)
def
= (inVALS (false), σ)

andD((inVALS (v1), inVALS (v2)), σ)
def
= (inVALS (v1 ∧ v2), σ)

orD((inVALS (v1), inVALS (v2)), σ)
def
= (inVALS (v1 ∨ v2), σ)

notD(inVALS (v), σ)
def
= (inVALS (¬(v)), σ)

0D((), σ)
def
= (inVALS (0), σ)

1D((), σ)
def
= (inVALS (1), σ)

addD((inVALS (v1), inVALS (v2)), σ)
def
= (inVALS (v1 + v2), σ)

multD((inVALS (v1), inVALS (v2)), σ)
def
= (inVALS (v1 × v2), σ)

negateD(inVALS (l), σ)
def
= (inVALS (−v1), σ)

equalD((inVALS (v1), inVALS (v2)), σ)
def
= (inVALS (v1 = v2), σ)

mkPointD((inVALS (v1), inVALS (v2)), σ)
def
= alloc[Point]((v1, v2), σ)

abscissaD(inLOCS (l), σ)
def
= let (v1, v2) = σ(l) in (inVALS (v1), σ)

ordinateD(inLOCS (l), σ)
def
= let (v1, v2) = σ(l) in (inVALS (v2), σ)

addXD((inLOCS (lPoint), inVALS (vInt)), σ)
def
= let (v1, v2) = σ(lPoint) in

(inVALS (∗), [lPoint 7→ (v1 + vInt, v2)]σ)

addYD(inLOCS (lPoint), inVALS (vInt), σ)
def
= let (v1, v2) = σ(lPoint) in

(inVALS (∗), [lPoint 7→ (v1, v2 + vInt)]σ)

mkRectD((inLOCS (l1), inLOCS (l2)), σ)
def
= alloc[Rect]((l1, l2), σ)

botLeftD(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l1), σ)

topRightD(inLOCS (l), σ)
def
= let (l1, l2) = σ(l) in (inLOCS (l2), σ)

horizMoveD((inLOCS (lRect), inVALS (vInt)), σ)
def
= let (lbl, ltr) = σ(lRect) in

let (inVALS (v′), σ′) =
addXD((inLOCS (lbl), inVALS (lInt)), σ) in

let (inVALS (v′′), σ′′) =
addXD((inLOCS (ltr), inLOCS (lInt)), σ′) in

(inVALS (∗), σ′′)
vertMoveD((inLOCS (lRect), inVALS (lInt)), σ)

def
= let (lbl, ltr) = σ(lRect) in

let (inVALS (v′), σ′) =
addYD((inLOCS (lbl), inVALS (lInt)), σ) in

let (inVALS (v′′), σ′′) =
addYD((inLOCS (ltr), inLOCS (lInt)), σ′) in

(inVALS (∗), σ′′)

Figure 6: Operations for the example ΣE-algebra, D.

11

-

�
��

��
��

�
��

�
��

�
��
�*

�
�
�
��3

Z
Z
Z
ZZ~ -�

�
�
�
�
�
�
�
�
��

H
HHH

HHH
HHHj

A
A
A
A
A
AU

l10:Rect

l9:Rect l8:Point

l7:Point

l6:Point

z:Point

y:Rect

x:Rect

w:Rect

),(

),(

),(

(,)

),(

1 1

3 4

2 5

Figure 7: Picture of the state over the algebra D.

stores over the algebras, since that would not take aliasing in the environment into account.

So the formulation of simulation relations we present relates states over one algebra to states

over another algebra.

Definition 3.1 (simulation relation) Let C and A be Σ-algebras. A Σ-simulation rela-

tion R from C to A is a binary relation on states

R ⊆ STATE [C]× STATE [A]

such that for each (ηC , σC) ∈ STATE [C] and for each (ηA, σA) ∈ STATE [A], the following

properties hold:

well-formed: (ηC , σC)R (ηA, σA)⇒ dom(ηC) ⊆ dom(ηA),

bindable: for each type T , for each identifier x : T , and for each identifier y : T ∈

dom(ηC),

(ηC , σC)R (ηA, σA)⇒ ([x 7→ ηC(y)]ηC , σC)R ([x 7→ ηA(y)]ηA, σA), (6)

12

substitution: for each tuple of types ~S, for each type T , for each operation symbol g :

~S → T , for each tuple of identifiers ~x : ~S ∈ dom(ηC), and for each identifier y : T , if

(rC , σ
′
C) = gC(ηC(~x), σC) and (rA, σ

′
A) = gA(ηA(~x), σA), then

(ηC , σC)R (ηA, σA)⇒ ([y 7→ rC]ηC , σ
′
C)R ([y 7→ rA]ηA, σ

′
A). (7)

shrinkable: if (η′C , σ
′
C) ⊆ (ηC , σC), and (η′A, σ

′
A) ⊆ (ηA, σA), and dom(η′C) ⊆ dom(η′A),

then (ηC , σC)R (ηA, σA)⇒ (η′C , σ
′
C)R (η′A, σ

′
A),

VIS -identical: for each type T ∈ VIS, for each identifier x : T ∈ dom(ηC),

(ηC , σC)R (ηA, σA)⇒ absVal(ηC(x), σC) = absVal(ηA(x), σA) (8)

In the substitution property, ~x : ~S ∈ dom(ηC), means that for each i, xi : Si ∈ dom(ηC),

and ηC(~x) means the tuple of ηC(xi) for each i. The tuples ~S and ~x : ~S can be empty.

The VIS -identical property ensures that a simulation is the identity on the carrier sets

of visible types, such as Bool. Such an assumption about the visible types amounts to

requiring that the carrier set of each sort associated with a visible type is the same in each

algebra.

In the shrinkable property, (η′C , σ
′
C) ⊆ (ηC , σC) means that for all types T , and for

all identifiers x : T , x : T ∈ dom(η′C) ⇒ η′C(x) = ηC(x) and for all locations l : T ,

l : T ∈ dom(σ′C)⇒ σ′C(l) = σC(l).

As a trivial example, the identity relation on STATE [E]×STATE [E] is a ΣE-simulation

relation from our example algebra E to itself.

To build a more interesting example, we consider first a formalization of the notion of

similarity of abstract values of two locations and then augment that with some conditions

that ensure well-formedness and that only states with the same aliasing (in a sense to be

made precise in the next section) are related. Given two stores over E and D, the function

S ′ : (STORE [E]× STORE [D])→ ((DVALE ×DVALD)→ Boolean)

returns a relation that tests two denotable values for having the same abstract value in the

corresponding stores. It is defined inductively by requiring locations of the immutable types

to have equal abstract values and by requiring Point and Rect locations to have related

abstract values in each component:

13

basis: For each type T ∈ {Void, Bool, Int}, for each pair of stores (σE , σD), for each

dE ∈ DVALET and dD ∈ DVALDT :

S ′T (σE , σD)(dE , dD)
def
= absVal(dE , σE) = absVal(dD, σD). (9)

Point: For each pair of stores (σE , σD), for each lE : Point ∈ dom(σE) such that σE(lE) =

(lx, ly), and for each lD : Point ∈ dom(σD) such that σD(lD) = (v′x, v
′
y):

S ′Point(σE , σD)(inLOCS (lE), inLOCS (lD))

def
= S ′Int(σE , σD)(inLOCS (lx), inVALS (v′x)) (10)

∧ S ′Int(σE , σD)(inLOCS (ly), inVALS (v′y)).

rectangle: For each pair of stores (σE , σD), for each l : Rect ∈ dom(σE) such that σE(l) =

(lbl, ltr) and for each l′ : Rect ∈ dom(σD) such that σD(l′) = (l′bl, l
′
tr):

S ′Rect(σE , σD)(inLOCS (l), inLOCS (l′))

def
= S ′Point(σE , σD)(inLOCS (lbl), inLOCS (l′bl)) (11)

∧ S ′Point(σE , σD)(inLOCS (ltr), inLOCS (l′tr)).

We can relate two states only if the aliasing present in the first is mimicked in the second.

To this end we introduce the aliasing graph of a state (η, σ) over E. This directed graph

has as its nodes: the identifiers in dom(η), the locations in dom(σ) that have type Point

or Rect. It has directed edges as follows:

• From an identifier x of type Point or Rect to a location l if η(x) = inLOCS (l).

• From a location l : Rect to locations l′, l′′ : Point if (l′, l′′) = σ(l).

We write AliasG(η, σ) for this graph.

For example, the picture in Figure 8 is the aliasing graph of the state (ηE , σE), which is

itself pictured in Figure 4. Figure 8 is also the aliasing graph of the state (ηD, σD), pictured

in Figure 7.

We consider one aliasing graph to be mimicked by another if there is an injective graph

homomorphism from the first to the second. Recall that if (N1, E1) and (N2, E2) are graphs,

then f = (fn, fe) is a graph homomorphism if and only if

(n, n′) ∈ E1 ⇒ fe((n, n
′)) = (fn(n), fn(n′)). (12)

14

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

-

�
�
��	

@
@
@R

HH
HHj

��
��*

-

��
��

�
��

�
��

�
��

��*

S
S
SSo

w:Rect l10:Rect

l8:Pointl9:Rect

z:Point

y:Rect

x:Rect

l6:Point l7:Point

Figure 8: Aliasing structure for the state given in Figure 4

We now have enough machinery to define an interesting ΣE-simulation relation from E

to D, which we will call R′. We let (η1, σ1)R′(η2, σ2) if and only if

• dom(η1) ⊆ dom(η2),

• for each type T , for each x : T ∈ dom(η1), S ′T (σ1, σ2)(η1(x), η2(x)) holds, so that the

abstract values of x in both states are similar, and

• there is a injective1 graph homomorphism from AliasG(η1, σ1) to AliasG(η2, σ2) that

is the identity on dom(η1).

Requiring that there be an injective graph homomorphism ensures that aliasing for the

mutable types Point and Rect is taken into account.

Lemma 3.2 The relation R′ is a ΣE-simulation relation from E to D.

Proof: Let (ηE , σE) ∈ STATE [E], and (ηD, σD) ∈ STATE [D] be given. We prove that

R′ has each of the defining properties of a simulation relation.

well-formed: By construction, R′ is well-formed.

1A graph homomorphism, f = (fn, fe) is injective if and only if fn and fe are injective functions on the
sets of nodes and edges.

15

bindable: To show that R′ satisfies the bindable property, let T be a type of ΣE , let x : T

be an identifier, and let y : T ∈ dom(ηE) be given. Suppose that (ηE , σE)R′ (ηD, σD).

We show that ([x 7→ η(y)]ηE , σE) R′ ([x 7→ ηD(y)]ηD, σD) by using the definition of

R′.

• By the construction ofR′, dom(ηE) ⊆ dom(ηD), and thus dom([x 7→ ηE(y)]ηE) ⊆

dom([x 7→ ηD(y)]ηD).

• By construction of R′, the abstract values of each identifier z in both states are

similar; in particular, the abstract values of y are similar:

S ′T (σE , σD)(ηE(y), ηD(y)). (13)

Since ([x 7→ ηE(y)]ηE)(x) = ηE(y) and similarly for ηD, the abstract values of x

in the extended environment are similar: the following holds:

S ′T (σE , σD)(([x 7→ ηE(y)]ηE)(x), ([x 7→ ηD(y)]ηD)(x)). (14)

Since the only difference between [x 7→ ηE(y)]ηE and ηE is the binding for x (and

similarly for ηD), the following holds for all types S and for all z : S:

S ′T (σE , σD)(([x 7→ ηE(y)]ηE)(z), ([x 7→ ηD(y)]ηD)(z)). (15)

• Also by construction of R′, there is an injective graph homomorphism, f =

(fn, fe) from AliasG(ηE , σE) to AliasG(ηD, σD). We define an injective graph

homomorphism f ′ = (f ′n, f
′
e) from AliasG([x 7→ η(y)]η, σ) to AliasG([x 7→

η′(y)]η′, σ′) as follows. Let f ′n
def
= [x 7→ x]fn; that is, f ′n(x) = x. If ηE(y) =

inLOCS (l) and ηD(y) = inLOCS (l′), then let f ′e
def
= [(x, l) 7→ (x, l′)]fe. Since f ′

is defined by extending f , the following calculation suffices to show that f ′ is a

graph homomorphism.

f ′e((x, l))

= 〈by definition of f ′e〉

(x, l′)

= 〈by definition of f ′n〉

16

(f ′n(x), f ′n(l′))

To show f ′ is injective we need to show f ′n, f ′e are injective. Since fn is injective

and since fn is the identity on the identifiers in dom(ηE), f ′n is injective. The

following calculation shows that f ′e is injective. Let u be any identifier, and lu

be any location in LOCSE .

f ′e((x, l)) = f ′e((u, lu))

⇒ 〈by the homomorphism property〉

(f ′n(x), f ′n(l)) = (f ′n(u), f ′n(lu))

⇒ 〈by definition of equality for edges〉

(f ′n(x) = f ′n(u)) ∧ (f ′n(l) = f ′n(lu))

⇒ 〈by injectivity of f ′n〉

(x = u) ∧ (l = lu)

substitution: To show that R′ satisfies substitution property we must show it for all

operations. Since presenting the proof for all operations would require a considerable

amount of space, we only give an example to show how the proof goes. As take as

our example the operation addX. Let p : Point and i : Int be identifiers in dom(ηE).

The substitution property can be shown in a similar way for the other operations.

The only significant difference is for the mutator operations of Rect,where one must

construct a new graph homomorphism and show that it is injective.

We assume without loss of generality that the following hold.

ηE(p) = inLOCS (lPointE)
ηD(p) = inLOCS (lPointD)
ηE(i) = inLOCS (lIntE)
ηD(i) = inVALS (vIntD)

Let a type T and an identifier y : T be given.

Finally, assuming that

(ηE , σE)R′ (ηD, σD), (16)

17

we must show that the following states, are related by R′.

addXE((ηE(p), ηE(i)), σE) = addXE((inLOCS (lPointE), inLOCS (lIntE)), σE)
def
= let (l1, l2) = σE(lPointE) in

let (inLOCS (lx), σ′E) =
addE((inLOCS (l1), inLOCS (lIntE)), σE) in

alloc[Void](∗, [lPointE 7→ (lx, l2)]σ′E)
addXD((ηD(p), ηD(i)), σD) = addXD((inLOCS (lPointD), inVALS (vIntD)), σD)

def
= let (v1, v2) = σD(lPointD) in

(inVALS (∗), [lPointD 7→ (v1 + vIntD , v2)]σD)

We use σDr and σEr to refer to the stores in these final (or result) states. We will

also refer to the store σ′E to refer to the intermediate store defined in the course of

evaluating addXE((ηE(p), ηE(i)), σE).

With the above notation, what we have to show for the substitution property is as

follows.

([y 7→ ∗]ηE , σEr)R′ ([y 7→ ∗]ηD, σDr) (17)

We show that this holds by showing that it satisfies each of the properties in the

definition of R′.

• By hypothesis, dom(ηE) ⊆ dom(ηD), and thus dom([y 7→ ∗]ηE) ⊆ dom([y 7→

∗]ηD).

• To show that the abstract values each identifier are similar in the final states, let

T be a type and let z : T be a identifier in dom([y 7→ ∗]ηE). We do this by cases.

– Suppose that there is no path from z to lPointE in the graph AliasG(ηE , σE).

Then the abstract value of z is unchanged. Hence, by the hypothesis:

S ′T (σEr , σDr)(ηE(z), ηD(z)). (18)

– If z is the identifier p : Point, we need to show S ′Point(σEr , σDr)(ηE(p), ηD(p)).

It suffices to show the following two conditions, where the names of the lo-

cations and values are as in the defining expressions for the result states.

S ′Int(σ′E , σD)(inLOCS (lx), inVALS (v1 + vIntD)) (19)

S ′Int(σ′E , σD)(inLOCS (l2), inVALS (v2)) (20)

The second condition (20) holds by hypothesis, which implies that the ab-

stract values of p are related by S ′Int in the original states. The first condition

18

(19) follows from the definition of addE , and the relationships of the abstract

values in the original states.

– Otherwise z is a identifier that is not p, but from which p is reachable

along some path of AliasG(ηE , σE). Note that AliasG([y 7→ ∗]ηE , σEr) =

AliasG(ηE , σE). because the environments in the result state only differ

by the binding of y, which does not create any edges, and because of the

definition of addX in both algebras.

∗ If T , the type of z, is Point then z and p must denote the same location in

[y 7→ ∗]ηE . The same situation must hold in [y 7→ ∗]ηE , because there is a

homomorphism from AliasG([y 7→ ∗]ηE , σEr) to AliasG([y 7→ ∗]ηD, σDr).

Since z denotes the same location as p in both final states, the above

case shows that the abstract values of z are similar.

∗ If T is Rect, then one (or both!) of the corners of z is the same location as

denoted by p. Again, the graph homomorphism on the aliasing graphs

ensures that the same situation holds in both algebras, and thus the

abstract values are similar.

• To show that there is an injective graph homomorphism on the result states, we

observe that by definition of R′ and the hypothesis, there is an injective homo-

morphism f = (fn, fe) from AliasG(ηE , σE) to AliasG(ηD, σD). We construct

a new injective homomorphism f ′ = (f ′n, f
′
e) from AliasG([y 7→ ∗]ηE , σEr) to

AliasG([y 7→ ∗]ηD, σDr) by simply letting f ′n = fn and f ′e = fe. This suffices

because the only new identifiers does not have a type that matters, and because

no new locations of type Point or Rect are introduced.

shrinkable: To show that R′ satisfies shrinkable property, suppose (η′E , σ
′
E) ⊆ (ηE , σE),

(η′D, σ
′
D) ⊆ (ηD, σD), and dom(η′E) ⊆ dom(η′D). Suppose further that

(ηE , σE)R′ (ηD, σD). (21)

We must show that

(η′E , σ
′
E)R′ (η′D, σ′D). (22)

We do this by checking the defining properties of R′.

• By hypothesis dom(η′E) ⊆ dom(η′D).

19

• Let T be a type and let x : T ∈ dom(ηE) be given. Then by hypothesis,

S ′T (σE , σD)(ηE(x), ηD(x)) holds. If T is a visible type, then absVal(ηE(x), σE) =

absVal(ηD(x), σD), and so by definition of S ′, S ′T (σ′E , σ
′
D)(η′E(x), η′D(x)). If T is

Point, then the components of the abstract value are of visible type, and so are

related as above. Similarly, if T is Rect the components are related points and

thus are also related.

• By hypothesis, there is an injective graph homomorphism from AliasG(ηE , σE) to

AliasG(ηD, σD) that is the identity on the identifiers of dom(ηE). The restriction

of this homomorphism to the identifiers and locations in the smaller states is thus

an injective homomorphism from AliasG(η′E , σ
′
E) to AliasG(η′D, σ

′
D).

VIS -identical: That R′ satisfies the VIS -identical property follows from basis of the defi-

nition of S ′.

The requirement that there be a graph homomorphism on the aliasing graphs in the

definition of R′ cannot be dropped. In section 5 we show that if two states are related

then the aliasing between any two identifiers must be the same in both the states. (We

give a precise definition of this below.) The injective homomorphism in the third condition

ensures this necessary condition for simulation relations.

3.1 A Simple Term Language

The fundamental property of simulation relations is that simulation relationships are pre-

served by expressions and commands. To state and prove this, we first define an extremely

simple term language, which we will call π. Because of our wish to deal with aliasing and

mutation, the usual terms of nested operations are not adequate for observing our algebraic

models.

In the definition of the semantics of π, we use notations from [12].

The syntax of π is given in Figure 9. For convenience in examples, we consider nullary

operation symbols used in expressions to be syntactic sugar for their invocations. For

example, we consider the expression f(true, 1) to be sugar for the technically correct but

strange looking f(true(), 1()).

The input and output identifiers of a program are defined as follows.

inIds : Program → Declaration-List

20

Abstract Syntax:
P ∈ Program
D* ∈ Declaration-List
D ∈ Declaration
C ∈ Command
E* ∈ Expression-List
E ∈ Expression
I ∈ Identifier
g ∈ Operation
T ∈ Type-Symbol

P ::= program (D*1) observes D*2 ; C
D* ::= | D D*
D ::= const V : T
C ::=E | let const I := E in C end | C1; C2 | if E1 then C1 else C2 fi

E ::= I | g(E*)
E* ::= | E* E

Figure 9: Syntax of π. Both D* and E* can be empty.

inIds[[program (D*1) returns D*2 ; C]] = D*1

outIds : Program → Declaration-List

outIds[[program (D*1) returns D*2 ; C]] = D*2

Each identifer x : T in outIds[[P]] must have a visible type; that is, x : T ∈ outIds[[P]] implies

T ∈ VIS .

The meaning of a program text, P, is a function that takes a Σ-algebra, A, and returns an

A-observation with free identifiers from inIds[[P]]. Observations are defined by the following

domain equation.

OBSERVATION [A] = STATE [A]→ ANSWERS [A]⊥ (23)

The domain of answers is a simply a mapping from each of the program’s output identifiers

to its abstract value. One can think of the program as printing these values (labeled by

each identifier name).

ANSWERS [A] = IDS
fin→ VALSA⊥ (24)

21

The answer a particular program, P, returns has as its domain the output identifiers,

outIds[[P]], of that program. This is accomplished with an auxiliary function

output : Declaration-List→ A : Alg(Σ)→ STATE [A]→ ANSWERS [A],

which is defined by the following properties. An identifier x : T ∈ dom(output[[D∗]](A)(η, σ))

if and only if x : T ∈ toSet(D∗), where the auxiliary function “toSet” extracts the set of

identifier-type pairs from the list D*. Furthermore, for all output identifiers declaration

lists D*, for all Σ-algebras A, for all visible types T , for all identifiers x : T in D*, and for

all states (η, σ):

x : T ∈ dom(η) ⇒ output[[D∗]](A)(η, σ)(x) = absVal(η(x), σ) (25)

x : T 6∈ dom(η) ⇒ output[[D∗]](A)(η, σ)(x) = ⊥. (26)

An observation can bind one of the output identifiers by an assignment command. So the

denotation of a program is defined as follows.

P : Program→ A : Alg(Σ)→ OBSERVATION [A]

P[[program (D*1) observes D*2 ; C]](A)(s) = output[[D∗2]](A)(C[[C]](A)(s))

The meaning of a command text is a function that takes a Σ-algebra, A, and returns

an A-command denotation with free identifiers from D*1, where D*1 is as above.

COMMAND [A] = ENV [A]→ STORE [A]→ STORE [A] (27)

In a command “let const I := E in C end” the type of I must be the same as E. The

identifier “I” in a block command is bound by that command and can only be used within

C. The expression in an if-command must have type Bool. For an algebra A, we also use l

for an element of LOCSA of unspecified type and d for an element of DVALA of unspecified

type.

C : Command→ A : Alg(Σ)→ COMMAND [A]

C[[E]](A)(η)(σ) = let (d, σ′) = E [[E]](A)(η, σ) in σ′

C[[let const I: T := E in C end]](A)(η)(σ) =

let (d, σ′) = E [[E]](A)(η)(σ) in (C[[C]](A)([I 7→ d]η)(σ′))

C[[C1; C2]](A)(η)(σ) = C[[C2]](A)(η, C[[C1]](A)(η)(σ))

C[[if E1 then C1 else C2 fi]](A)(η)(σ) =

let (d, σ′) = E [[E]](A)(η)(σ) in

22

absVal(d, σ′)→ (C[[C1]](A)(η)(σ′))[](C[[C2]](A)(η)(σ′))

An identifier in the above semantics is a constant in the sense that the value it denotes

does not change. However, if that value is a location, then the contents of that location

might change by an operation call. Thus, although the above semantics does not explicitly

treat identifiers and assignment, identifiers can be modeled as mutable objects containing a

value, as in the ref type of Standard ML. In such a model, getting the value of an identifier

would be modeled by calling operations on such objects.

The meaning of an expression is found by either looking up the identifier in the envi-

ronment, or by using the algebra to evaluate the operation with the given arguments. The

auxiliary function “productize” converts a list of n locations into an n-tuple of locations,

preserving the ordering.

E : Expression→ A : Alg(Σ)→ STATE [A]→ DVALA × STORE [A]

E [[I]](A)(η, σ) = (η[[I]], σ)

E [[g(E*)]](A)(η, σ) = let (d̂, σ′) = E∗[[E*]](A)(η, σ) in gA(productize(d̂), σ′)

The meaning of a list of expressions is a list of locations together with the store that

results from their evaluation. The expressions in the list are evaluated from left to right.

E∗ : Expression-List→ A : Alg(Σ)→ STATE [A]→ (List((DVALA))× STORE [A])

E∗[[]](A)(η, σ) = (nil , σ)

E∗[[E* E]](A)(η, σ) =

let (d̂, σ′) = E∗[[E*]](A)(η, σ) in

let (dn, σ
′′) = E [[E]](A)(η, σ′) in

(addToEnd(d̂, dn), σ′′)

The auxiliary function “addToEnd” adds a location to the end of a list of locations; It

satisfies the following property for all 1 ≤ i ≤ length(d̂).

productize(addToEnd(d̂, d′)) ↓ i

= (i = length(d̂))→ d′[](productize(d̂) ↓ i) (28)

Recall that our definition of command denotation and observation mentions a notion

of “free identifiers.” We can define this notion for π as follows. For a non-empty list of

expressions, E* E, FV [[E* E]] = FV [[E*]]∪FV [[E]]; there are no free identifiers in the empty

23

list of expressions. For expressions, FV [[V]] = {I : T} (assuming I is declared to have type

T), and FV [[g(E*)]] = FV [[E*]]. The free identifiers of a command are the identifiers of its

subexpressions, except that

FV [[let const I: T := E in C end]] = (FV [[E]] ∪ FV [[C]]) \ {I : T}. (29)

The free identifiers of a program are declared

FV [[program (D*1) returns D*2 ; C]] = toSet(D*1). (30)

We require that the free identifiers of the command C in a program be a subset of the free

identifiers of the set of free identifiers of the entire program.

3.2 The Fundamental Theorem

The following lemma says that simulation relations are preserved by expression evaluation

in related states.

Lemma 3.3 Let C and A be Σ-algebras. Let R be a Σ-simulation relation from C to A.

For all (ηC , σC) ∈ STATE [C] and for all (ηA, σA) ∈ STATE [A] such that dom(ηC) ⊆

dom(ηA), for each type T , for each expression E : T such that FV [[E]] ⊆ dom(ηC), for each

variable y : T , if (dC , σ
′
C) = E [[E]](C)(ηC , σC) and (dA, σ

′
A) = E [[E]](A)(ηA, σA), then

(ηC , σC)R (ηA, σA)⇒ ([y 7→ dC]ηC , σ
′
C)R ([y 7→ dA]ηA, σ

′
A)

Proof: (by induction on the structure of E).

Let (ηC , σC) ∈ STATE [C] and (ηA, σA) ∈ STATE [A] be given such that dom(ηC) ⊆

dom(ηA). Let T and E : T be given such that FV [[E]] ⊆ dom(ηC). Let y : T be

given. Let (dC , σ
′
C) = E [[E]](C)(ηC , σC) and (dA, σ

′
A) = E [[E]](A)(ηA, σA). Suppose that

(ηC , σC)R (ηA, σA).

(basis) Suppose that E is a identifier I of type T, then the result follows from the

assumption and the bindable property of simulation relations.

(inductive step) Suppose that E has the form g(E*). Since g(E*) has type T , it must

be that g : ~S → T , for some ~S. The inductive hypothesis is that the lemma is true for each

subexpression, Ei of type Si in the list E*. That is, for all (ηC,i−1, σC,i−1) ∈ STATE [C] and

for all (ηA,i−1, σA,i−1) ∈ STATE [A] such that dom(ηC,i−1) ⊆ dom(ηA,i−1), for each type Si

and for each expression Ei of type Si such that FV [[Ei]] ⊆ dom(ηC,i−1), for each identifier

24

zi : Si, if (di, σC,i) = E [[Ei]](C)(ηC,i−1, σC,i−1) and (ei, σA,i) = E [[Ei]](A)(ηA,i−1, σA,i−1), then

(ηC,i−1, σC,i−1)R (ηA,i−1, σA,i−1)
⇒ ([zi 7→ di]ηC,i−1, σC,i)R ([zi 7→ ei]ηA,i−1, σA,i)

The plan is to apply the inductive hypothesis for each expression in E*; for each i,

binding the result of Ei to a distinct fresh identifier zi. The resulting states are related by

the inductive hypothesis, and then the substitution property gives the desired result. More

precisely, we construct new states (ηC,n, σC,n) and (ηA,n, σA,n) such that the following hold

for each 1 ≤ i ≤ n:

(d̂n, σC,n) = E∗[[E*]](C)(ηC , σC) (31)

ηC,n(zi) = productize(d̂n) ↓ i (32)

(ê, σA,n) = E∗[[E*]](A)(ηA, σA) (33)

ηA,n(zi) = productize(ên) ↓ i (34)

(ηC,n, σC,n) R (ηA,n, σA,n) (35)

Once this is done, the following calculation proves the inductive step.

E [[g(E*)]](C)(ηC , σC)

= 〈by definition of E and σC,n〉

let (d̂n, σC,n) = E∗[[E*]](C)(ηC , σC) in gC(productize(d̂n), σC,n)

= 〈by definition of ηC,n〉

let (d̂n, σC,n) = E∗[[~z]](C)(ηC,n, σC,n) in gC(productize(d̂n), σC,n)

= 〈by definition of E〉

E [[g(~z)]](C)(ηC,n, σC,n)

R 〈by the substitution property and Equation (35)〉

E [[g(~z)]](A)(ηA,n, σA,n)

= 〈by the same reasoning as above〉

E [[g(E*)]](A)(ηA, σA)

So it remains to construct the states (ηC,n, σC,n) and (ηA,n, σA,n) and the lists d̂n and

ên with the required properties. These are constructed by induction on n.

For the basis, if n = 0, then E* is empty and we let (ηC,0, σC,0) = (ηC , σC), (ηA,0, σA,0) =

(ηA, σA), d̂0 = nil , ê0 = nil . The required properties hold trivially.

For the inductive step, suppose that E* is E1 · · ·Ej−1 Ej and further suppose that

(ηC,j−1, σC,j−1), (ηA,j−1, σA,j−1), d̂j−1, and êj−1 satisfy the required properties. The re-

25

quired stores, along with locations that will be used shortly, are constructed as follows.

(dj , σC,j)
def
= E [[Ej]](C)(ηC,j−1, σC,j−1) (36)

(ej , σA,j)
def
= E [[Ej]](A)(ηA,j−1, σA,j−1). (37)

We define the required environments and lists as follows.

d̂j
def
= addToEnd(d̂j−1, dj) (38)

êj
def
= addToEnd(êj−1, ej) (39)

ηC,j
def
= [zj 7→ dj]ηC,j−1 (40)

ηA,j
def
= [zj 7→ ej]ηA,j−1. (41)

The properties required of the constructed states and lists are verified as follows. To

show that d̂j and σC,j have the required properties we calculate as follows.

E∗[[E1 · · ·Ej−1 Ej]](C)(ηC , σC)

= 〈by definition of E∗ and inductive hypothesis〉

let (dj , σC,j) = E [[Ej]](C)(ηC , σC,j−1) in (addToEnd(d̂j−1, dj), σC,j)

= 〈by by definition of (d̂j , σC,j)〉

(d̂j , σC,j)

Similarly, êj and σA,j have the required properties.

Let 1 ≤ i ≤ j be given. Then we can verify the required property of ηC,j as follows.

ηC,j(zi)

= 〈by definition of ηC,j and environment extension〉

(zi = zj)→ dj []ηC,j−1(zi)

= 〈by inductive hypothesis for ηC,j−1 and d̂j−1〉

(zi = zj)→ dj []productize(d̂j−1) ↓ i

= 〈by distinctness of the zk〉

(i = j)→ dj []productize(d̂j−1) ↓ i

= 〈by Equation (28)〉

productize(addToEnd(d̂j−1, dj)) ↓ j

= 〈by construction of d̂j〉

productize(d̂j) ↓ j

Similarly, ηA,j has the required property.

26

Equation (35) thus follows directly from the main inductive hypothesis, because of the

inductive assumption that (ηC,j−1, σC,j−1)R(ηA,j−1, σA,j−1).

We do not know whether the converse of the above lemma holds.

The following theorem extends the above lemma to show that simulation relations are

preserved by commands in π.

Theorem 3.4 (fundamental theorem) Let B and A be Σ-algebras. Let R be a Σ-

simulation relation from B to A.

For all (ηB, σB) ∈ STATE [B], for all (ηA, σA) ∈ STATE [A], for all commands C that

type check,

(ηB, σB)R (ηA, σA)⇒ (ηB, C[[C]](B)(ηB)(σB))R (ηA, C[[C]](A)(ηA)(σA)).

Proof: (by induction on the structure of C).

Let (ηB, σB) ∈ STATE [B], let (ηA, σA) ∈ STATE [A], and let C be given. Suppose that

(ηB, σB)R (ηA, σA).

(basis) There are two cases, expressions and assignments.

Suppose that C is an expression, E. Let (dB, σ
′
B) = E [[E]](B)(ηB, σB), and let (dA, σ

′
A) =

E [[E]](A)(ηA, σA). Then we can show the result as follows.

(ηB, σB)R (ηA, σA)

⇒ 〈by previous lemma〉

([y 7→ dB]ηB, σ
′
B)R ([y 7→ dA]ηA, σ

′
A)

⇒ 〈by shrinkable property of simulation relations〉

(ηB, σ
′
B)R (ηA, σ

′
A)

⇔ 〈by definition of command denotation of an expression〉

(ηB, C[[C]](B)(ηB)(σB))R (ηA, C[[C]](A)(ηA)(σA))

(inductive step) Assume, inductively, that the result holds for all subcommands of C.

There are three cases.

1. Suppose C is “let const I:T = E in C1 end”. Then by the Lemma 3.3 the first

formula in the following calculation holds.

(let (vB, σ
′
B) = E [[E]](B)(ηB, σB) in ([I 7→ vB]ηB, σ

′
B))

R (let (vA, σ
′
A) = E [[E]](A)(ηA, σA) in ([I 7→ vA]ηA, σ

′
A))

⇒ 〈by the inductive hypothesis〉

27

([I 7→ vB]ηB, let (v, σ′B) = E [[E]](B)(ηB, σB) in C[[C1]](B)([I 7→ v]ηB)(σ′B))
R ([I 7→ vA]ηA, let (v, σ′A) = E [[E]](A)(ηA, σA) in C[[C1]](A)([I 7→ v]ηA)(σ′A))

⇒ 〈by by the shrinkable property〉
(ηB, let (v, σ′B) = E [[E]](B)(ηB, σB) in C[[C1]](B)([I 7→ v]ηB)(σ′B))
R (ηA, let (v, σ′A) = E [[E]](A)(ηA, σA) in C[[C1]](A)([I 7→ v]ηA)(σ′A))

⇔ 〈by definition of CΣ〉
(ηB, C[[let const I: T = E in C1]](B)(ηB)(σB))
R (ηA, C[[let const I: T = E in C1]](A)(ηA)(σA))

2. Suppose C is “C1; C2”. Let sB = (ηB, σB) and sA = (ηA, σA). Then we can build up

the result from the hypothesis as follows.

sB R sA

⇒ 〈by the inductive hypothesis〉

(ηB, C[[C1]](B)(ηB)(σB))R (ηA, C[[C1]](A)(ηA)(σA))

⇒ 〈by the inductive hypothesis〉

(ηB, C[[C2]](B)(ηB)(C[[C1]](B)(ηB)(σB)))R (ηA, C[[C2]](A)(ηA)(C[[C1]](A)(ηA)(σA)))

⇔ 〈by definition〉

(ηB, C[[C1; C2]](B)(ηB)(σB))R (ηA, C[[C1; C2]](A)(ηA)(σA))

3. Suppose C is “if E then C1 else C2”. Let y : Bool be a fresh variable. Let (dB, σ
′
B) =

E [[E]](B)(ηB, σB) and (dA, σ
′
A) = E [[E]](A)(ηA, σA). Then by the Lemma 3.3

([y 7→ dB]ηB, σ
′
B)R ([y 7→ dA]ηA, σ

′
A). (42)

Since Bool is a visible type, and R is VIS -identical,

absVal(dB, σ
′
B) = absVal(dA, σ

′
A). (43)

Hence the result of the test is the same in both B and in A. So starting with Equa-

tion (42), the result is shown as follows.

([y 7→ dB]ηB, σ
′
B)R ([y 7→ dA]ηA, σ

′
A)

⇒ 〈by the shrinkable property of simulation relations〉

(ηB, σ
′
B)R (ηA, σ

′
A)

⇒ 〈by the inductive hypothesis〉
((ηB, C[[C1]](B)(ηB)(σ′B))R (ηA, C[[C1]](A)(ηA)(σ′A)))
∧ ((ηB, C[[C2]](B)(ηB)(σ′B))R (ηA, C[[C2]](A)(ηA)(σ′A)))

⇔ 〈by Equation (43)〉
(ηB, (absVal(dB, σ

′
B)→ C[[C1]](B)(ηB)(σ′B)[]C[[C2]](B)(ηB)(σ′B)))

R (ηA, (absVal(dA, σ
′
A)→ C[[C1]](A)(ηA)(σ′A)[]C[[C2]](A)(ηA)(σ′A)))

28

⇔ 〈by definition of C〉
C[[(ηB, if E then C1 else C2 fi(B)(ηB)(σB))]]
R (ηA, C[[if E then C1 else C2 fi]](A)(ηA)(σA))

The following corollary to the above theorem follows directly, using the VIS -identical

property of simulation relations, and the semantics of programs.

Corollary 3.5 Let B and A be Σ-algebras. Let R be a Σ-simulation relation from B to A.

For all (ηB, σB) ∈ STATE [B], for all (ηA, σA) ∈ STATE [A], for all programs P that

type check,

(ηB, σB)R (ηA, σA)⇒ P[[P]](B)(ηB, σB) = P[[P]](A)(ηA, σA).

4 Observable aliasing

Aliasing depends not only on objects and identifiers that share locations, but also on the

behavior of the operations that manipulate the objects. For example, a CLU program

cannot tell whether the integer 2 is represented by several copies of a bit pattern or by an

immutable location containing that bit pattern. In the example program state depicted in

Figure 4, the integer location lInt1 is shared by both components of the point lPoint6 , but

there is no way to observe this sharing.

4.1 Observations, Commands, and Free Identifiers

We formalize aliasing in a way that is independent of any particular programming language.

That is, although our definitions apply to aliasing and mutation as observed by the language

π, they also would apply to subsets of π and to other languages. To make our definitions

independent of the programming language, we parameterize our definitions by sets of ob-

servations and command denotations. The reader may then specialize these definitions to

all of π, a subset of π, or to some other language.

Because the domain STATE [A] is defined by reference to the algebra A, not the program-

ming language, the domains OBSERVATION [A] and COMMAND [A], defined in Equa-

tions (23) and (27), are meaningful for both π, subsets of π, and other programming

languages. We only need the following assumptions about the domain ANSWERS [A],

29

which is specific to each programming language. We assume that we can compare ele-

ments of the domain ANSWERS [A] for equality (=), and that for all Σ-algebras A and B,

ANSWERS [A] = ANSWERS [B]. This last assumption is plausible, if one considers the

answer domain to be fixed by the programming language. It amounts to saying that the

carrier sets of the visible types are fixed.

A command or observation has a set of free identifiers that it can access. The set of free

identifiers is important because to observe aliasing between two identifiers x : T and y : S

one must be able to mutate x and observe the change through y, and vice versa. One must

be careful not to use any other identifiers to do the mutation or observation. Otherwise if

z : U is aliased to y but x has nothing to do with y, then “mutating x” by a command that

has z as a free variable could simply act on the object through z.

To speak precisely about such matters, we make the following definitions. If a com-

mand’s set of free identifiers is X, the command needs a state that has those identifiers

defined in its environment. So if X ⊆ dom(η) (i.e., for each type T , XT ⊆ dom(ηT)), we

call a state (η, σ) an X-state. An observation is restricted to returning answers.

Definition 4.1 (command denotation, observation) Let X be a TYPES-indexed set

of variable symbols. Let A be a Σ-algebra. An A-command denotation with free iden-

tifiers from X is an element of COMMAND [A] that takes a X-environment, a X-store

and returns a X-store. An A-observation with free identifiers from X is an element of

OBSERVATION [A] that takes a X-state and returns an element of ANSWERS [A].

For example, in π, the denotation of a program P applied to an algebra A, P[[P]](A) is

an A-observation with free identifiers from FV [[P]]. Similarly, the denotation of a command

C applied to an algebra A is an A-command denotation with free identifiers from FV [[C]].

4.2 Mutation

As a first step towards such a definition of observable aliasing, we define when a command

mutates an identifier. Our intuition is that a command mutates an identifier if there is

an observation that shows a change in the identifier. Thus the “bits” may change without

mutation taking place in our sense, if there is no way to observe it. Changes to the rep-

resentation of an object that cannot be observed are benevolent side effects [13]. Even the

abstract value may change without there being a mutation, if the abstract values before

and after the command’s execution are observably equivalent.

30

Definition 4.2 (mutates an identifier, mutable identifier) Let A be a Σ-algebra. Let

the state, (η, σ) ∈ STATE [A], be given. Let T ∈ TYPES be a type symbol. Let x : T be a

identifier in dom(η).

Then c mutates x : T in (η, σ) with respect to O if and only if either

• O is a set of A-observations with free identifiers from {x : T} and c is an A-command

denotation with free identifiers from dom(η), or

• O is a set of A-observations with free identifiers from dom(η) and c is an A-command

denotation with free identifiers from {x : T},

and for some o ∈ O, o(η, c(η)(σ)) 6= o(η, σ).

Let C be a set of A-command denotations. Then x : T is mutable in (η, σ) with respect

to C and O if and only if there is some c ∈ C that mutates x : T with respect to O.

Notice that either the free identifiers of the command or the free identifiers of the obser-

vations are limited to the identifier in question, while the other is essentially unrestricted.

It is not sensible to allow both to have access to all identifiers, for then the denotation of the

command z := 1 could be said to mutate the identifier x, because one could also observe

the change in z. Also recall that an observation returns an answer, which is a mapping

from identifiers of visible types to abstract values.

It might seem that every identifier is mutable, because it can be assigned to; but the

point of the definition of when an identifier in mutable is to say when the given commands

can mutate it in a way that can be observed. That is, the definition of a mutable identifier

is more a description of the sets of commands and observations than it is a description of

the identifier.

Example 4.3 Consider the algebra E and the state (ηE , σE) given in Figure 4. In π,

C[[addX(z,1)]](E) is an E-command denotation with free identifiers from {z:Point}. Call

this command denotation cE. Consider the observation

P[[program(z:Point) returns y:Int; y := abscissa(z)]](E),

which is an E-observation with free identifiers from {z:Point}. Call this observation oE.

Then cE mutates z:Point in (ηE , σE) with respect to {oE}. It also follows that z is mutable

in (ηE , σE) with respect to {cE} and {oE}.

Similarly, C[[vertMove(y,1)]](E), which is an E-command denotation with free identi-

fiers from {y:Rect}, mutates z:Point in (ηE , σE) with respect to {oE}.

31

In the above example, the observations are limited to the identifier in question. This

suffices for most normal types. However, one can imagine types for which another object

is needed to observe the mutation. Allowing the observations to have access to other

identifiers is then required. For example, imagine a “deposition” object, which anyone can

write, but which only someone with holding a capability object can read. Let dep: Depo

be a identifier that is bound to the deposition object, and let key: Capa be the capability

identifier. Imagine that the object bound to dep contains the location of the object to which

key is bound. Then the read operation on the type Depo would take a Depo object and a

Capa object and compare the locations of the Capa object and the one it contains; if they

are the same, the read operation returns the value, otherwise it returns a constant. In this

case, one cannot observe the mutation of dep without an observation that has access to

key.

We can extend the above definition of mutation of identifiers to mutation of objects.

Technically we define what it means for a location to be mutated. If there is no identifier

bound to the location, then a fresh identifier is bound to the location for purposes of

observation; in this case the command has no access to the identifier (and the observations

have access only to this identifier). If there is a identifier already bound to the location,

that can also be used to make observations, but then the definition reduces to mutation

of that identifier, with the stipulation that the command leave the identifier bound to the

location.

Definition 4.4 (mutates an object, mutable object) Let A be a Σ-algebra. Let a state

(η, σ) ∈ STATE [A] be given. Let T ∈ TYPES be a type symbol. Let l : T be a location in

dom(σ). Let x : T be a identifier. Let c be an A-command denotation and let O be a set of

A-observations.

Then c mutates l : T in (η, σ) with respect to O if and only if

• the free identifiers of c are a subset of dom(η),

• c mutates x : T in ([x 7→ inLOCS (l)]η, σ) with respect to O, and

• if (η′, σ′) = c([x 7→ inLOCS (l)]η, σ), then η′(x) = inLOCS (l).

Let C be a set of A-command denotations. Then l : T is mutable in (η, σ) with respect

to C and O if and only if there is some c ∈ C that mutates l : T with respect to O.

32

The second condition in the definition of when a command mutates an object may seem

a bit odd. But consider that in π the first assignment to an output identifier of a program

extends the environment. So this condition is necessary to ensure that the observations can

still access the location through the identifier x.

In Example 4.3, the E-command denotation, C[[addX(z,1)]](E) mutates the location

l8 : Point (of Figure 4) in (ηE , σE) with respect to {oE}. To see this, for the identifier x of

the definition, take z: Point, which works because it is the only free identifier in oE . In

the same example, the E-command denotation C[[vertMove(y,1)]](E) mutates the locations

l8 : Point and l9 : Rect in (ηE , σE) with respect to {oE}.

There are two parameters in our definitions of “mutates.” The state cannot be disre-

garded, as a identifier or object may not be able to make state changes in certain states,

but can make changes in other states. Such behavior may seem strange, but as an example

consider an object that can count up to 10, and thereafter, when the increment operation

is applied, simply stays at 10. Error states of objects often have this character. We also

consider the state to determine the algebra in the definition, as the range of the environ-

ment, and the domain and range of the store are both parts of the algebra. The set of

observations also cannot be ignored. For example, no identifier or object can be mutated

with respect to the empty set of observations.

Nevertheless, it is often convenient to fix a particular set of observations. So when the

set of observations is clear from context it may safely be omitted. One way to fix a set

of observations is by fixing a particular programming language, such as π. In such a case

the set of observations is the set of all observations (appropriate for the definition) that are

denotations of programs in the language; for example, if we are discussing the language π and

say that c mutates x : T in (η, σ), we mean with respect to the denotations of all programs

in π that have the free identifiers from {x : T}. This kind of contextual abbreviation

is particularly helpful when saying that a location is mutable in a given state, since the

appropriate sets of command and observation denotations are given by all appropriate

commands and programs in the language.

Example 4.5 In this example, consider the language π. Then all the locations of types

Point and Rect are mutable in the state (ηE , σE) of Figure 4.

If an object l : T is not mutable in a state, (η, σ), with respect to some set of observations,

O, then l : T is immutable in (η, σ) with respect to O.

33

We often describe a type as mutable or immutable if it has mutable or immutable objects.

To be precise about this we have to bring states and observations into the definition. Let

A be an algebra, and let C and O be sets of A-command denotations and A-observations.

A type T is mutable with respect to C and O if and only if there is some state (η, σ) over

A, and some location l : T ∈ dom(σ) such that l : T is mutable in (η, σ) with respect to O;

otherwise, T is immutable with respect to C and O.

Even more generally, if one has a fixed set of algebras, SPEC , such as the semantics of

some specification, and functions fC and fO from algebras to sets of command denotations

and observations, such as the functions that map an algebra A to the sets of all denotations

of appropriate commands and programs of π, then one says that a type T is mutable with

respect to fC and fO if for some A ∈ SPEC , T is mutable with respect to fC(A) and fO(A);

otherwise one says that T is immutable with respect to fC and fO. For example, in the

context of the language π, the type Point is mutable, and the type Int is immutable.

4.3 Aliasing

The intuition behind aliasing is that two identifiers are aliased when the mutation of one

can be observed as mutation of the other. Note that this intuition allows identifiers of

different types to be aliased. For example, if x denotes a stack of arrays and y denotes a set

of arrays that share a component array, then x and y can be aliased despite the difference

in types. To see this, one mutates the shared component array through either identifier.

Our definition is a bit more general than the above intuitive statement. We only require

that a command with access limited to x can be observed to change y and vice versa; the

command with access to x need not be observed to change x itself.

Definition 4.6 (observably aliased) Let A be a Σ-algebra. Let T, S ∈ TYPES be type

symbols. Let x : T and y : S be identifiers. Let (η, σ) ∈ STATE [A] be a {x : T, y : S}-state.

Then x : T and y : S are observably aliased in (η, σ) with respect to Cx, Cy, Ox, and

Oy if and only if

• Cx and Cy are sets of A-command denotations with free identifiers from {x : T} and

{y : S} respectively,

• Ox and Oy be sets of A-observations with free identifiers from {x : T} and {y : S}

respectively,

• y : S is mutable in (η, σ) with respect to Cx and Oy, and

34

• x : T is mutable in (η, σ) with respect to Cy and Ox.

Example 4.7 Consider the algebra E and the state (ηE , σE) given in Figure 4. In π,

C[[addX(z,1)]](E) is an E-command denotation with free identifiers from {z:Point}; call

this cz, and let Cz = {cz}. Let cy be C[[horizMove(y,2)]](E), which is an E-command

denotation with free identifiers from {y:Rect}; let Cy = {cy}. For observing z, let

oz = P[[program(z:Point) returns q:Int; q := abscissa(z)]](E),

which is an E-observation with free identifiers from {z:Point}; let Oz = {oz}. For observing

y, let

oy = P[[program(y:Rect) returns r:Int; r := abscissa(topRight(y))]](E),

which is an E-observation with free identifiers from {y:Rect}; let Oy = {oy}. Then y : Rect

and z : Point are observably aliased in (ηE , σE) with respect to Cy, Cz, Oy, and Oz.

If one of the sets Cx, Cy, Ox, or Oy are empty in the above definition, then x : T and

y : S are not considered observably aliased. If no mutation can be effected or observed, then

there is no observable aliasing. Hence an immutable object cannot be observably aliased

with another object.

More interesting is that in a language like π, where identifiers denote values or objects,

but identifier cells are not objects, for x and y to be aliased the commands in Cx and Cy

must be able to invoke operations that accomplish mutation. This is because in π a simple

assignment to a identifier cannot produce an observable effect on another object (or value

that contains objects). That would not be the case in a language like C, where identifiers

are considered locations.

The following theorem states that observable aliasing is reflexive and symmetric.

Theorem 4.8 Let A be a Σ-algebra. Let T, S, U ∈ TYPES be type symbols. Let (η, σ) ∈

STATE [A]. Let x : T ∈ dom(η) and y : T ∈ dom(η) be identifiers. Then:

• If Cx is a set to A-command denotations with free identifiers from {x : T}, if Ox is

a set to A-observations with free identifiers from {x : T}, and if x : T is mutable in

(η, σ) with respect to Cx and Ox, then x : T and x : T are observably aliased in (η, σ)

with respect to Cx, Cx, Ox, and Ox.

35

• The identifiers x : T and y : S are observably aliased in (η, σ) with respect to Cx, Cy,

Ox, and Oy if and only if y : S and x : T are observably aliased in (η, σ) with respect

to Cy, Cx, Oy, and Ox.

In general observable aliasing is not a transitive relation. To see this consider commands

and observations defined by π and the identifiers x : Rect, w : Rect, and z : Point in

Figure 4. Then in the pictured state, (ηE , σE), identifiers z and x are observably aliased

and x and w are observably aliased, but identifiers z and w are not observably aliased.

4.4 Contained and Component Objects

Traditionally, one says that an object l contains an object l′ when the representation of l

contains a pointer to l′ [13]. In terms of our model, we could say that l contains l′ when

the abstract value of l contains the location l′. However, that definition would not be

satisfactory, because it does not take into account the behavior of the objects. For example,

it would say that the point l8 in Figure 4 contains the integer 2, but it would not say the

same thing about Figure 7. So to get a notion of object containment that is independent

of particular representations, our definition is based solely on observations.

Our definition is an abstraction of examples such as records and arrays. An object

contained in a record, for example, has none of its interface hidden, since the observations

on the contained object can be composed with extraction of the object from the record.

Since every mutation of the contained object is observable as a mutation of the record, we

take this as the defining characteristic of contained objects. That is, our definition says that

an object lx contains an object ly if all mutations of ly can be observed as changes in lx.

This implies that immutable objects are never observable contained in other objects, since

immutable objects have no observable connection with locations, but act as pure values.

Definition 4.9 (object containment) Let A be a Σ-algebra. Let T, S ∈ TYPES be type

symbols. Let (η, σ) ∈ STATE [A] be a state. Let lx : T ∈ dom(σ) and ly : S ∈ dom(σ) be

locations.

Then lx : T contains ly : S in (η, σ) with respect to Cy, Ox, and Oy if and only if for

each cy in Cy that mutates ly : S in (η, σ) with respect to Oy, cy mutates lx : T with respect

to Ox.

For example, if one considers all applicable commands and observations written in π and

the algebra E given in Figure 4, then the location l9 : Rect contains l8 : Point in (ηE , σE).

36

However, l8 : Point does not contain l9 : Rect in (ηE , σE). The E-command denotation,

C[[addX(botLeft(y),1)]](E) mutates l9 but this mutation cannot be observed by programs

that have only z : Point as a free identifier.

According to the above definition, every object contains itself. To distinguish the inter-

esting components of an object from the object itself, we say that lx : T properly contains

ly : S in (η, σ) with respect to Cy, Ox, and Oy if lx : T contains ly : S in (η, σ) with respect

to Cy, Ox, and Oy, but lx 6= ly. We sometimes call properly contained objects component

objects. The above examples of object containment are also examples of proper object

containment.

4.5 Direct and Indirect Aliasing

We can make a gross distinction between two kinds of aliasing: direct and indirect. For

example, in Figure 4 identifiers x and y are directly aliased, but the aliasing between w

and x is indirect. Intuitively, direct aliasing of identifiers means that both denote the same

location. However, it will not do to say that “identifiers x and y are directly aliased in

(η, σ) if and only if they denote the same location in η,” because the location might be

immutable (e.g., an integer). So instead we say that two identifiers x and y directly aliased

if all mutations of x can be observed through y and vice versa.

Definition 4.10 (directly aliased) Let A be a Σ-algebra. Let T, S ∈ TYPES be type

symbols. Let (η, σ) ∈ STATE [A] be a state. Let lx : T ∈ dom(σ) and ly : S ∈ dom(σ) be

locations.

Then lx : T and ly : S are directly aliased in (η, σ) with respect to Cx, Cy, Ox, and Oy if

and only if lx : T contains ly : S with respect to Cy, Ox, and Oy, and ly : S contains lx : T

with respect to Cx, Oy, and Ox.

Let x : T and y : S be identifiers such that η(x) = inLOCS (lx : T) and η(y) =

inLOCS (ly : S). Then x : T and y : S are directly aliased in (η, σ) with respect to

Cx, Cy, Ox, and Oy if and only if lx : T and ly : S are directly aliased in (η, σ) with respect

to Cx, Cy, Ox, and Oy.

Note that locations can be directly aliased without being identical. One way this can

happen is if they both are “front ends” for some object that is the only object they contain.

Locations or identifiers that are observably aliased but not directly aliased are said to

be indirectly aliased.

37

For example, if one considers all applicable commands and observations written in π

and the algebra E given in Figure 4, then the identifiers x : Rect and y : Rect are directly

aliased in (ηE , σE). In the same state, the identifiers x : Rect and z : Point are indirectly

aliased, and the identifiers w : Rect and x : Rect are indirectly aliased. Also l9 : Rect and

l8 : Point are indirectly aliased in (ηE , σE), because l8 is a component of l9. The locations

l9 : Rect and l10 : Rect are indirectly aliased in (ηE , σE), although neither contains the

other. The location l8 : Point is directly aliased to itself.

These direct and indirect aliasing relationships change as one changes the set of obser-

vations and commands. For example, consider for observations programs in π that do not

use the operation topRight. Let Ow be the set of all such observations with free identifiers

from w : Rect, let Oy be the set of all such observations with free identifiers from y : Rect.

Let Cw be the set of all command denotations in π with free identifiers from w : Rect, and

let Cy be the set of all command denotations in π with free identifiers from y : Rect. Then

w and y are directly aliased in (ηE , σE) with respect to Cw, Cy, Ow, and Oy. In this setup,

locations l10 : Rect and l9 : Rect are directly aliased in (ηE , σE) with respect to Cw, Cy, Ow,

and Oy, even though they are not identical.

The definition of direct aliasing for identifiers builds on several layers of definition. A

more direct definition is given in the following lemma.

Lemma 4.11 Let A be a Σ-algebra. Let T, S ∈ TYPES be type symbols. Let (η, σ) ∈

STATE [A] be a state. Let x : T ∈ dom(η) and y : S ∈ dom(η) be identifiers.

Then x : T and y : S are directly aliased in (η, σ) with respect to Cx, Cy, Ox, and Oy if

and only if for each cx ∈ Cx that mutates x : T with respect to Ox, cx mutates y : S with

respect to Oy, and for each cy ∈ Cy that mutates y : S with respect to Oy, cy mutates x : T

with respect to Ox.

4.6 Aliasing Graph

We can summarize the containment and aliasing relationships in a given state by a graph,

called the aliasing graph of the given state. It is convenient to do this in the context of a

particular programming language, and so the rest of this section takes place in the context

of π.

Definition 4.12 (aliasing graph) Let A be a Σ algebra. Let (η, σ) ∈ STATE [A] be a

state. For each type T , for each identifier x : T , let fC(x : T) be a set of A-command

38

denotations with free identifiers from {x : T}, and let fO(x : T) be a set of A-command

observations with free identifiers from {x : T}.

The aliasing graph of (η, σ) with respect to fC and fO is a directed graph with nodes in

dom(η) ∪ dom(σ) and edges defined as follows.

• For each type T , there is an edge (x, l), from each identifier x : T ∈ dom(η) to the

location l : T ∈ dom(σ), if η(x) = inLOCS (l) and x : T is mutable in (η, σ) with

respect to fC(x : T) and fO(x : T).

• For each pair of types T and S there is an edge from each location l : T to each location

l′ : S if there are identifiers x : T and y : S such that l : T properly contains l′ : S in

(η, σ) with respect to fC(x : T), fO(y : S), and fO(x : T).

Figure 8 shows the aliasing graph of the state (ηE , σE), which is pictured in Figure 4,

with respect to the functions that map identifiers to the set of all E-command denotations

and E-observations of commands and programs in π with that free identifier.

5 Discussion

5.1 Simulation and Aliasing

If we have a simulation relation that relates two states, then those states must have the

similar aliasing graphs with respect to commands and observations defined by π. By similar

aliasing graphs we mean that if two identifiers are observably aliased in one state then they

are observably aliased in the other state. The idea of the proof is that a difference in

aliasing could be observed, which would contradict the assumption that they are related by

a simulation.

In the following theorem, when Cx is a set of commands written in π, we use the

notation Cx[A] to mean {C[[C]](A) | C ∈ Cx}. Similarly for sets of programs, Ox, the

notation Ox[A] = {P[[P]](A) | P ∈ Ox}.

Theorem 5.1 Let B and A be Σ-algebras. Let R be a Σ-simulation relation from B to A.

Let states (ηB, σB) ∈ STATE [B] and (ηA, σA) ∈ STATE [A] be given. Let T and S be types.

Let x : T and y : S be identifiers in dom(ηB). Let Cx ∈ Command and Cy ∈ Command be

sets of commands in π, and let Ox ∈ Program and Oy ∈ Program be sets of programs in π.

If (ηB, σB) R (ηA, σA), then x : T and y : T are observably aliased in (ηB, σB) with

respect to Cx[B], Cy[B], Ox[B], Oy[B] if and only if then x : T and y : T are observably

39

aliased in (ηA, σA) with respect to Cx[A], Cy[A], Ox[A], Oy[A].

Proof: Suppose (ηB, σB)R (ηA, σA).

Suppose We show that x : T and y : T are observably aliased in (ηA, σA) with respect

to Cx[A], Cy[A], Ox[A], Oy[A].

By definition x : T and y : S are observably aliased in (ηB, σB) with respect to Cx[B],

Cy[B], Ox[B], Oy[B] if and only if:

• Cx[B] and Cy[B] are sets of B-command denotations with free identifiers from {x : T}

and {y : S}, respectively,

• Ox[B] and Oy[B] are sets of B-observations with free identifiers from {x : T} and

{y : S}, respectively,

• y : S is mutable in (ηB, σB) with respect to Cx[B], and Oy[B], and

• x : T is mutable in (ηB, σB) with respect to Cy[B], and Ox[B].

By the semantics of π, the first two items are true if and only if:

• Cx[A] and Cy[A] are sets of A-command denotations with free identifiers from {x : T}

and {y : S}, respectively, and

• Ox[A] and Oy[A] are sets of A-observations with free identifiers from {x : T} and

{y : S}, respectively.

The following calculation shows that for all commands cx ∈ Cx, and for all programs

oy ∈ Oy the composition of the program with the command gives the same results in B as

in A.

(ηB, σB)R (ηA, σA)

⇒ 〈by the fundamental theorem〉

(C[[cx]](B)(ηB)(σB))R (C[[cx]](A)(ηA)(σA))

⇒ 〈by Corollary 3.5〉

P[[oy]](B)(ηB, C[[cx]](B)(ηB, σB)) = P[[oy]](A)(ηA, C[[cx]](A)(ηA, σA))

Similarly, by the hypothesis and Corollary 3.5, the following holds for all programs oy ∈ Oy.

P[[oy]](B)(ηB, σB) = P[[oy]](A)(ηA, σA) (44)

40

By definition, y : S is mutable in (ηB, σB) with respect to Cx[B] and Oy[B], if and only

if there is some command cx ∈ Cx and some program oy ∈ Oy such that

P[[oy]](B)(ηB, C[[cx]](B)(ηB, σB)) 6= P[[oy]](B)(ηB, σB) (45)

So by the calculations above and Equation (44), the above equation is true if and only if

y : S is mutable in (ηA, σA) with respect to Cx[A] and Oy[A].

In exactly the same way, x : T is mutable in (ηB, σB) with respect to Cy[B], and Ox[B]

if and only if x : T is mutable in (ηA, σA) with respect to Cy[A], and Ox[A].

Though the above theorem says that the observable aliasing of the identifiers in the

two related states is identical, it is an open question whether there is any other necessary

relationship between aliasing graphs of related algebras. Although we once thought there

might be an injective graph homomorphism between the aliasing graphs of related states,

this seems not to be the case. The problem is that the implementations of the abstract

types in each algebra might use mutable locations in completely different ways.

Nevertheless, the above theorem does vindicate the intuition that simulation relations

take aliasing into account.

5.2 Immutable Types with Mutable Components

Our treatment of mutation allows us to make sense out of an old puzzle: whether an

immutable collection of mutable elements in mutable or immutable. To explain, in CLU

[13], there is a type generator sequence. Being a type generator means that sequence[int]

is a type and sequence[array[int]] is another type. The type array[int] has objects

that are mutable; for example, one can store integers in the elements of an array. A CLU

sequence is like an array in that it is an indexed collection of objects, but unlike an array,

once the elements of a sequence are fixed, they cannot be changed. Thus clearly the type

sequence[int] is immutable, because the objects cannot be changed. So the literature on

CLU refers to types sequence[T] as immutable, for all types T .

However the type sequence[array[int]] is clearly mutable with respect to CLU pro-

grams. For example, if one has access to a identifier x of this type, then one can extract

one of the array elements, store into it, and observe the change through x. So according to

our definition, x is mutable in CLU.

The puzzle is how one can think of sequence as a generator of immutable types, when

some of its instances are clearly mutable.

41

The traditional answer to this puzzle is that while mutation of the component objects of

sequence may be possible, the abstract value of the sequence does not change. The idea here

is that the abstract value of a sequence[array[int]] object is an ordered list of locations

(of arrays). Although one can model sequences with such abstract values in our theory,

such an answer does not refute the observations — one can still see the object changing.

We can provide a more satisfactory answer to this puzzle that still builds on the

same intuition. The answer is that there is a formal sense in which an object of se-

quence[array[int]] is immutable. It is immutable with respect to all CLU programs that

do not mutate the elements of the sequence — that is, with respect to CLU programs that

treat the elements as objects without operations. Since this point of view is appropriate

when considering the specification of sequence[T] for arbitrary types T , it is sensible to

think of the types sequence[T] as immutable. We can adopt such a point of view, in-

stead of being forced to consider all CLU programs, because our theory allow us to discuss

mutation with respect to varying sets of observations.

The ability to consider varying sets of commands and observations is also useful in

treating subtyping and protection, but those topics are outside the scope of this paper.

Some work on extending the theory to subtyping is reported in [14].

6 Conclusions

The work in this paper provides a foundation for the model theory of mutable abstract data

types.

Our models of abstract data types blend aspects of denotational semantics (locations,

environment and store mappings) with traditional algebraic models. We believe that this

blend gives a satisfactory foundation for the model theory of abstract data types with

mutation. In support of this we offer a notion of homomorphic relation (our simulation

relations) and show that it is preserved by commands in a simple term language. The

addition of more realistic features to the language, such as loops, does not seem to destroy

this fundamental property [14].

Careful examination of our example algebras shows that models like ours could have

been used to model mutable types long ago. All that is needed to equationally character-

ize mutable types is to adopt the old denotational semantics trick of explicitly passing a

store around. This is another sense in which our models unify denotational and algebraic

techniques.

42

We also believe that our approach to describing the semantics of languages with abstract

data types — computing over a model of the types — is a fruitful way to do semantics for

such languages. Traditional denotational semantics “compiles” the definitions of abstract

data types into an undifferentiated mass of functions, cartesian products, etc. (For example,

see [6].) The mess that results from this “compilation” process is difficult to compare to the

specifications of the abstract types, and difficult to extract from the rest of a program. If it

were possible to take a CLU program and give meaning to the clusters in as an algebra in a

way similar to what we have done, many of the algebraic tools that are useful in the study

of absract data types could be applied in the study of such programs. Such a separation

would also allow the semantics of the user-defined types to be studied in isolation from the

rest of the program.

Because of our focus on observable behavior, mutation and aliasing are defined in a

way that is representation independent. While the terms “mutation” and “aliasing” are

commonly defined in terms of bits, we believe that our definitions are more appropriate when

studying languages with data abstraction. Two identifiers that both point to an immutable

object are not observably aliased. This point of view can be exploited to perform various

optimizations; for example, sharing large immutable objects to save space, or representing

small integers as bit patterns instead of as locations containing those bit patterns.

Finally, we have shown that our model theory ties in well our observational view of

mutation and aliasing. In particular we have shown that our simulation relations, because

they are relations on states, can deal with aliasing and preserve aliasing. Thus our simulation

relations are ideal tools for the study of abstract data types with mutation and aliasing.

References

[1] R. Statman, “Logical relations and the typed λ-calculus,” Information and Control,

vol. 65, pp. 85–97, May/June 1985.

[2] G. T. Leavens and D. Pigozzi, “Typed homomorphic relations extended with subtypes,”

Tech. Rep. 91-14, Department of Computer Science, Iowa State University, Ames,

Iowa, 50011, June 1991. Appears in the proceedings of Mathematical Foundations

of Programming Semantics ’91, Springer-Verlag, Lecture Notes in Computer Science,

volume 598, pages 144-167, 1992.

43

[3] J. M. Wing, “A two-tiered approach to specifying programs,” Tech. Rep. TR-299,

Massachusetts Institute of Technology, Laboratory for Computer Science, 1983.

[4] J. Chen, “The Larch/Generic interface language,” tech. rep., Massachusetts Institute

of Technology, EECS department, May 1989. The author’s Bachelor’s thesis. Available

from John Guttag at MIT (guttag@lcs.mit.edu).

[5] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, and A. Snyder,

CLU Reference Manual, vol. 114 of Lecture Notes in Computer Science. New York,

N.Y.: Springer-Verlag, 1981.

[6] Scheifler, “A denotational semantics of CLU,” Tech. Rep. TR-201, Massachusetts In-

stitute of Technology, Laboratory for Computer Science, May 1978.

[7] C. A. R. Hoare, “Proof of correctness of data representations,” Acta Informatica, vol. 1,

no. 4, pp. 271–281, 1972.

[8] O. Schoett, “Behavioural correctness of data representations,” Science of Computer

Programming, vol. 14, pp. 43–57, June 1990.

[9] T. Nipkow, “Non-deterministic data types: Models and implementations,” Acta Infor-

matica, vol. 22, pp. 629–661, Mar. 1986.

[10] G. T. Leavens and D. Pigozzi, “Typed homomorphic relations extended with subtypes,”

in Mathematical Foundations of Programming Semantics ’91 (S. Brookes, ed.), vol. 598

of Lecture Notes in Computer Science, pp. 144–167, New York, N.Y.: Springer-Verlag,

1992.

[11] G. T. Leavens, “Modular specification and verification of object-oriented programs,”

IEEE Software, vol. 8, pp. 72–80, July 1991.

[12] D. A. Schmidt, Denotational Semantics: A Methodology for Language Development.

Boston, Mass.: Allyn and Bacon, Inc., 1986.

[13] B. Liskov and J. Guttag, Abstraction and Specification in Program Development. Cam-

bridge, Mass.: The MIT Press, 1986.

[14] K. K. Dhara, “Subtyping among mutable types in object-oriented programming lan-

guages,” Master’s thesis, Iowa State University, Department of Computer Science,

Ames, Iowa, May 1992.

44

