
Computer Science Technical Reports Computer Science

9-1994

Subtyping, Modular Specification, and Modular
Verification for Applicative Object-Oriented
Programs
Gary T. Leavens
Iowa State University

William E. Weihl
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Systems Architecture Commons, and the Theory and Algorithms Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T. and Weihl, William E., "Subtyping, Modular Specification, and Modular Verification for Applicative Object-Oriented
Programs" (1994). Computer Science Technical Reports. Paper 121.
http://lib.dr.iastate.edu/cs_techreports/121

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/121?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Subtyping, Modular Speci�cation,
and Modular Veri�cation

for Applicative Object-Oriented Programs

Gary T. Leavens and William E. Weihl

TR #92-28d
September 1992, revised September, October 1993,

and January, September 1994

Keywords: veri�cation, speci�cation, supertype abstraction, subtype, message passing,
polymorphism, type checking, modularity, soundness, object-oriented, abstract data type.

1992 CR Categories: D.2.1 [Software Engineering] Requirements/Speci�cations |
Languages; D.2.4 [Software Engineering] Program Veri�cation | Correctness proofs; D.3.3
[Programming Languages] Language Constructs | Abstract data types, procedures, func-
tions, and subroutines; F.3.1 [Logics and Meanings of Programs] Specifying and verifying
and reasoning about programs | logics of programs, pre- and post-conditions, speci�cation
techniques; F.3.2 [Logics and Meanings of Programs] Semantics of Programming Languages
| algebraic approaches to semantics, denotational semantics.

c Gary T. Leavens and William E. Weihl, 1992, 1993, 1994. All rights reserved. Much
of this report will appear in Acta Informatica, and so the copyright for those portions will
be assumed by the Springer-Verlag.

Department of Computer Science
226 Atanaso� Hall
Iowa Sate University

Ames, Iowa 50011-1040, USA

Subtyping, Modular Speci�cation, and Modular Veri�cation

for Applicative Object-Oriented Programs

Gary T. Leavens�

Department of Computer Science, Iowa State University

229 Atanaso� Hall, Ames, Iowa 50011-1040 USA

leavens@cs.iastate.edu

William E. Weihl

Laboratory for Computer Science, Massachusetts Institute of Technology

545 Technology Square, Cambridge, Mass. 02139 USA

weihl@lcs.mit.edu

September 6, 1994

Abstract

We present a formal speci�cation language and a formal veri�cation logic for a sim-

ple object-oriented programming language. The language is applicative and statically

typed, and supports subtyping and message-passing. The veri�cation logic relies on a

behavioral notion of subtyping that captures the intuition that a subtype behaves like

its supertypes. We give a formal de�nition for legal subtype relations, based on the

speci�ed behavior of objects, and show that this de�nition is su�cient to ensure the

soundness of the veri�cation logic. The veri�cation logic reects the way programmers

reason informally about object-oriented programs, in that it allows them to use static

type information, which avoids the need to consider all possible run-time subtypes. We

also show that the logic does not require reveri�cation of unchanged code when legal

subtypes are added to a program.

�The work of both authors was supported in part by the National Science Foundation under Grant CCR-
8716884, and in part by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-
89-J-1988. While a graduate student at MIT, Leavens was also supported in part by a GenRad/AEA Faculty
Development Fellowship, and at ISU he has been partially supported by the ISU Achievement Foundation
and by the National Science Foundation under Grant CCR-9108654.

1

1 Introduction

In object-oriented programming, message passing allows the manipulation of objects with-
out knowledge of their exact run-time types. This causes di�culties in veri�cation, because
many di�erent operations may be invoked by a single message at di�erent times, and these
operations may have di�erent speci�cations. The technique of supertype abstraction [40]
[38] [35] overcomes this problem by reasoning using static (what we call nominal) type
information, and restricting the run-time types of the objects denoted by expressions to be
subtypes of their nominal types. That is, supertype abstraction means using supertypes to
stand for all their subtypes.

Supertype abstraction has the advantage of modularity : one does not have to respecify
or reverify unchanged program parts when new subtypes of existing types are added to a
program [38] [39]. Our results can thus provide formal support for the common informal
practice of object-oriented programming, as it shows conditions under which programmers
do not have to rethink unchanged code, and those which might be dangerous. The danger
comes when a new type is not a legal subtype of some existing type. We give a formal
de�nition of legal subtyping that guarantees that veri�cation using supertype abstraction is
sound. To make such a guarantee, the notion of a legal subtype relation has to be stronger
than the implementation inheritance (or subclass) relation [58] [31] [55]. The notion of legal
subtyping must even be stronger than the syntactic guarantee that the new type will not
cause type checking (or \message not understood") errors (see, for example, [8]). It must
instead be a behavioral notion, based on the speci�cation of an abstract data type [1] [42]
[40] [30] [15] [2] [44] [45]. (See Section 8 for a discussion of related work.)

As an example of the distinction between legal subtyping and subclassing, consider two
types IntSet and Interval, where Interval is a type of closed intervals of integers, and
IntSet is a type of integer sets. (Both types of objects are immutable|they have no
time-varying state; see Section 2 for their speci�cations). Since Interval is a subtype of
IntSet, a program can use Interval objects as if they were IntSet objects. However, one
might choose to represent Interval objects with two integers (the end-points), instead of
inheriting the implementation from a class that implements the type IntSet. Thus the type
Interval may be a legal subtype of IntSet without their implementations being related.
Similarly, one can implement a subclass of the class IntSet in such a way that some of the
operations go into in�nite loops. The objects of such a class would not behave like objects
of type IntSet, despite the inheritance of data structures and some code; hence such a class
would be a subclass that did not implement a legal subtype.

1.1 Contribution

The main technical contributions of this paper are a formal de�nition of legal subtype
relations and a sound veri�cation logic for object-oriented programs with message passing
and subtyping.1 The programming language to be veri�ed is the Little Object-Oriented
Applicative Language, called LOAL (described in Section 5). In more detail the important
contributions are as follows.

� A formal interface speci�cation language, called Larch/LOAL (in Section 2), and its
model-theoretic semantics (in Section 3).

1This veri�cation logic is the �rst to formally treat code that uses both subtyping and message passing
[40].

2

fun inBoth(s1,s2: IntSet) returns(i:Int)
requires :(isEmpty(s1 \ s2))
ensures (i 2 s1) ^ (i 2 s2)

Figure 1: Speci�cation of the function inBoth.

� A model-theoretic de�nition of legal subtype relations (in Section 4), which is based
on the semantics of type speci�cations. Since it is based on the semantics of type
speci�cations, it takes the behavior of objects into account, but is not speci�c to
Larch/LOAL.

� A Hoare logic for LOAL that uses supertype abstraction, and most importantly, a
proof of its soundness (both in Section 6). We also formally prove some aspects of
Larch/LOAL's modularity.

The key to the soundness of the Hoare logic is the semantic restrictions placed on legal
subtype relations. Our de�nition of legal subtyping can handle incomplete speci�cations|
speci�cations that may have observably distinguishable implementations. For example,
IntSet with its choose operation is incompletely speci�ed when the speci�cation does not
say what element of a set choose should return. Such speci�cations are important because
they leave design decisions open for both implementors and subtypes. Our de�nition of
legal subtype relations also provides additional intuition beyond the informal motto that
each object of a subtype should act like some object of its supertypes [55], for certain kinds
of incomplete speci�cations. For incomplete speci�cations which do not have a \best"
implementation, the informal motto allows surprising behavior| several objects of the
subtype could collectively act di�erently than what one would expect from the supertype's
speci�cation.

Less importantly, we present a model theory for speci�cations that generalizes the work
of [53] and [6]. Our simulation relations are tailored to handle incomplete speci�cations
and are preserved by assertions in Larch/LOAL and by LOAL expressions and programs.
Simulation relations are the main technical tool used to de�ne legal subtype relations.

Note, however, that we only deal with �rst-order2, immutable, abstract data types.
Subtyping for mutable types (types whose objects have time-varying state) is still a subject
of research [17] [44] [45]. By ruling out mutation, attention is focused on two other features
that make reasoning di�cult in object-oriented languages: message passing and subtyping.

1.2 An Example of the Reasoning Problem

This section motivates the need for supertype abstraction and modularity. (See also [38]
and [35] for more background.)

Consider the speci�cation of Figure 1. In that �gure, the meaning of the operators
used in the pre-condition (following requires) and the post-condition (following ensures)
is expressed using trait functions from the speci�cation of IntSet, for example 2, \, and
\isEmpty". What does \i 2 s1" mean if \s1" is an Interval?

Suppose that, before adding the type Interval to a program, one has veri�ed that
the implementation of inBoth in Figure 2 is correct (when it is passed arguments of type

2A �rst-order abstract data type is one without type parameters.

3

fun inBoth (s1,s2:IntSet) =

testFor(choose(s1), s1, s2);

fun testFor (i:Int, s1,s2:IntSet) =

if elem(s2, i)

then i

else testFor(choose(remove(s1,i)), remove(s1,i), s2)

�

Figure 2: Implementation of inBoth.

fun inBoth[T1,T2: IntSetLikeType] (s1:T1, s2: T2) returns(i:Int)
requires :(isEmpty(s1 \ s2))
ensures (i 2 s1) ^ (i 2 s2)

Figure 3: Traditional speci�cation of inBoth.

IntSet). Does one have to go back and reverify the implementation of inBoth when it
becomes possible to pass it arguments of type Interval?

The standard technique used to specify a polymorphic module is to specify the behavior
of the operations that the polymorphic module needs to do its work [25, Page 21] [64,
Section 4.2.3] [20, Page 537]. The speci�cation of such operations is often collected into
the speci�cation of a \type parameter". For example, roughly following Goguen, one might
specify the function inBoth as in Figure 3. The conditions that a type would have to
satisfy to be an IntSetLikeType would be stated elsewhere, but would certainly include
a speci�cation that such a type must have operations choose, remove, and elem with
appropriate signatures and semantics.

The problem with the speci�cation of Figure 3 is that to check that an instantiation is
correct during design or veri�cation, the actual type parameter must be statically shown to
satisfy the formal's speci�cation. In a language with message passing, such as Smalltalk-80
[22] or LOAL, the actual type parameter cannot, in general, be uniquely determined during
design or veri�cation. One might try an exhaustive case analysis by doing the veri�cation
for each possible type parameter. However, this case analysis would have to be extended
when new subtypes are added to the program. Therefore this approach is not modular and
must be generalized to deal with message passing.

Conventional techniques for program veri�cation su�er from similar problems, because
they assume that each expression of type T denotes an object of type T. Thus they assume
that the properties of objects of type T can be used to reason about expressions of type T.
However, to exploit subtype polymorphism in a typed language, one must allow expressions
of type T to denote objects of subtypes of T.

1.3 Overview of the Method

To solve the speci�cation and veri�cation problem discussed above, we use the following
method [38].

4

� One speci�es the data types to be used along with their subtype relationships.

� One speci�es the operations of data types and functions using supertype abstraction.
That is, one assumes that each argument has a speci�ed type, which is that formal's
nominal type. However, such a speci�cation means that arguments whose types are
subtypes of the corresponding formal's nominal type are allowed.

� The semantics of the type speci�cations must be checked to ensure that the speci�ed
subtype relation is legal.

� One veri�es that a program meets its speci�cation by reasoning about expressions as
if they denoted objects of their nominal types, despite message passing.

In LOAL, each expression's static type is its nominal type. Any static type would do as
the nominal type for an expression in a language without a type system, provided that it
had the property that the nominal type is an upper bound (in the subtype ordering) on the
types of objects the expression can denote.

The use of supertype abstraction in speci�cations brings up the question of how to reason
about a call to a function with arguments whose types are subtypes of the formals' nominal
types. The Hoare logic for LOAL requires an assertion describing actual arguments, written
in terms of these subtypes, to be translated into the terms of the formals' nominal types.
This is because in the logic one reasons at the level of the nominal types of expressions;
that is, one uses supertype abstraction. But one would also like to give a direct meaning
to such a speci�cation, as a consistency check that this style of reasoning makes sense, and
as a way to exploit more exact type information when it is available. One can give such a
direct meaning if one can interpret assertions, written in terms tailored to the supertypes,
for any subtype. Terms in Larch/LOAL are composed of identi�ers, \=", and various trait
functions , such as 2 for the values of IntSet. The trait functions come from the traits of
the Larch Shared Language [26]. We require that each trait function de�ned on arguments
of a supertype be overloaded for each possible subtype. In this way we can give a meaning
to function and type speci�cations that is independent of any assumption of legal subtyping.

Because \=" is treated di�erently than trait functions, to avoid anomalies, assertions
cannot use \=" freely. That is, Larch/LOAL prohibits speci�cations from using \=" be-
tween terms of user-de�ned types (but allows \=" to be used between terms of visible types :
Int and Bool). Such terms are called subtype-constraining. We show that if one can prove
a subtype-constraining assertion using the theory of a supertype, then the assertion is also
valid for subtype objects, provided the conditions on legal subtyping are met.

5

IntSetTrait: trait
includes Set(Int for E),
introduces eqSet : C,C ! Bool

isEmpty: C ! Bool
asserts 8 s1, s2: C

(s1 eqSet s2) == (s1 = s2)
isEmpty(s1) == (s1 = fg)

Figure 4: The trait IntSetTrait.

2 Polymorphic Type Speci�cations

The interface speci�cation language Larch/LOAL is adapted from Wing's interface speci�-
cation language for CLU [64] [43, Chapter 10] [24] [63] and Chen's Larch/Generic interface
speci�cation language [11]. However, unlike Larch/CLU, Larch/LOAL speci�cations deal
only with immutable types.

An interface speci�cation describes both the behavior of abstract types and how they
can be used in a program [33] [26]. In Larch/LOAL, the interface describes how a LOAL
program can use the types. The program sees a polymorphic method, which is implemented
by the operations of all the abstract types with the same name and number of arguments.

2.1 Traits

Larch/LOAL speci�cations describe behavior in terms of the abstract values of objects [29]
[43] [35] [26]. In Larch/LOAL, the abstract values of objects are speci�ed by a trait writ-
ten in the Larch Shared Language [28] [27] [26]. (The Larch Shared language is used by
Larch/LOAL, but is a distinct language. Both are distinct from LOAL itself. A LOAL pro-
gram uses the abstract types speci�ed in Larch/LOAL, and the assertions in a Larch/LOAL
speci�cation are stated using the trait functions described in a trait.) For example, the ab-
stract values of the type IntSet (�nite sets of integers) are described by the trait IntSetTrait
found in Figure 4. The trait functions described in a trait cannot be used by programs,
but are only available in speci�cations; conversely, abstract type operations and methods
cannot be used in speci�cations.

2.2 Meaning of Traits

A trait is similar to a �rst-order equational algebraic speci�cation. The trait IntSetTrait

de�nes the usual notation for sets. It does this by importing the trait Set found in the Larch
Shared Language Handbook [26, Appendix A], renaming the sort \E" in Set to \Int" in
IntSetTrait. (A sort is a name for a kind of abstract value, which may be de�ned by a trait.)
In IntSetTrait the names and signatures of additional trait functions are described after the
keyword introduces. For example, IntSetTrait introduces the trait function \eqSet", which
can be invoked with an in�x-syntax (the characters \ " show the positions of arguments).
The asserts section presents equational speci�cations of the trait functions. The �rst
assertion in IntSetTrait says that \eqSet" means the same thing as \=" when one compares
terms of sort \C" (i.e., sets).

6

The traits of a speci�cation can have hidden sorts; that is, sorts that are used for
convenience in speci�cation, but which are not related to any type. Such sorts are not
types, and hence cannot be used in programs.

2.2.1 Traits and Modularity of Speci�cations

In Larch/LOAL, operation and function speci�cations are written as if each argument and
result had an abstract value of the speci�ed type. However, to allow use of subtypes,
actual arguments and results are allowed to have types that are subtypes of the speci�ed
types. An example is the interface speci�cation of inBoth, found in Figure 1. It speci�es
that the arguments may be instances of any subtype of IntSet, but its post-condition is
written using the trait functions of IntSetTrait, which describe the abstract values of the
type IntSet. The advantage of this approach is that it is modular | new subtypes added
to the program do not a�ect the speci�cation, since subtypes are not mentioned explicitly.

The problem is to give meaning to such speci�cations when actual arguments do not have
the speci�ed types (for example, when an argument to inBoth has the type Interval). Our
approach is to require that the trait functions de�ned on abstract values of the supertype
must also be de�ned on abstract values of the subtype. For example, the trait IntSetTrait

describes trait functions such as \insert," \delete," \size," etc., all of which must be appli-
cable to the abstract values of a subtype such as Interval. Binary operations, such as [,
must be de�ned for each combination of argument types.

One way to de�ne all the needed trait functions for abstract values of Interval objects
is to use a coercion function. In Figure 5, the trait IntervalTrait does this by using the co-
ercion function \toSet" which maps intervals constructed with \[,]" to sets. The necessary
de�nitions of the trait functions \insert," \delete," \size," etc., are found in the trait, Inter-
valSubTrait, where these trait functions are de�ned on arguments of sort C (i.e., Interval)
by �rst coercing the abstract values using \toSet". The trait IntervalSubTrait is separated
from IntervalTrait so that one may more easily see how it relates to the shorthand version
of IntervalTrait in Figure 6, which would expand into Figure 5. The trait IntervalTrait also
de�nes some new trait functions. Its implies section states a consequence that the speci�er
wants to highlight. The trait function \eqSet" is de�ned for combinations of IntSet and
Interval arguments so that the arguments are viewed as sets.

The way that the trait IntervalSubTrait de�nes the trait functions that in IntSetTrait take
IntSet arguments is standard. With some additional syntax, such traits could be de�ned
automatically, as in Figure 6, which would expand into Figure 5. The subtrait of line says
that the IntervalSubTrait in Figure 5 is to be created and included. Another way to avoid
the work of de�ning the trait functions that apply to the supertype for the subtype would
be to use a language for specifying abstract values that had an explicit notion of subsorts;
for example, one might use order-sorted algebra [21].

2.3 Type Speci�cations

Examples of Larch/LOAL type speci�cations are given in Figures 7 and 10.

To follow Smalltalk and other object-oriented languages we specify types in pairs; for
example, in Figure 7 we specify both a type for instances (i.e., IntSet) and a type for the
class object (i.e., IntSetClass). These two types together make what is usually thought of
as a type in a language like CLU or Ada, since only the class object can be sent messages
to create instances from scratch.

7

IntervalTrait: trait
includes IntervalSubTrait
introduces [,]: Int, Int ! C

leastElement, greatestElement: C ! Int
asserts 8 x, y: Int

[x,y] == if x � y then [x,y] else [x,x] �
leastElement([x,y]) == x
greatestElement([x,y]) == if x � y then y else x �

toSet([x,y]) == if y � x then fxg else insert(toSet([x,y� 1]), y) �
implies 8 x, y: Int

isEmpty([x,y]) == false

IntervalSubTrait: trait
includes IntSetTrait(IntSet for C)
introduces toSet: C ! IntSet

insert, delete: C, Int ! IntSet
size: C ! Int
2 : C,Int ! Bool

isEmpty: C ! Bool
[, \: C,C ! IntSet
[, \: C,IntSet ! IntSet
[, \: IntSet,C ! IntSet
eqSet : C,C ! Bool
eqSet : C,IntSet ! Bool
eqSet : IntSet,C ! Bool

asserts 8 c, c1: C, s: IntSet, i: Int
insert(c, i) == insert(toSet(c),i)
delete(c, i) == delete(toSet(c,i))
size(c) == size(toSet(c))
(i 2 c) == (i 2 toSet(c))
isEmpty(c) == isEmpty(toSet(c))
(s [c) == (s [toSet(c))
(c[s) == (s [toSet(c))
(c[c1) == (toSet(c) [toSet(c1))
(s \ c) == (s \ toSet(c))
(c\ s) == (s \ toSet(c))
(c\ c1) == (toSet(c) \ toSet(c1))
(s eqSet c) == (s eqSet toSet(c))
(c eqSet s) == (s eqSet toSet(c))
(c eqSet c1) == (toSet(c) eqSet toSet(c1))

Figure 5: The traits IntervalTrait and IntervalSubTrait.

8

IntervalTrait: trait
subtrait of IntSetTrait(IntSet for C) by toSet subsort C supersort IntSet
introduces [,]: Int, Int ! C

leastElement, greatestElement: C ! Int
asserts 8 c, c1: C, s: IntSet, x, y, i: Int

[x,y] == if x � y then [x,y] else [x,x] �
leastElement([x,y]) == x

greatestElement([x,y]) == if x � y then y else x �
toSet([x,y]) == if y � x then fxg else insert(toSet([x,y� 1]), y) �

implies 8 x, y: Int
isEmpty([x,y]) == false

Figure 6: A short-hand version of the trait IntervalTrait.

In our type speci�cations each class type, such as IntSetClass, is implicitly speci�ed
as a one-object type with a nullary operation, such as IntSet, and any class operations
speci�ed. The one object is the class object. The trait that speci�es its abstract value for
this example is given in Figure 9. Figure 8 shows what a type speci�cation for IntSetClass
would look like, but this would not be explicitly written in Larch/LOAL (and does not follow
the Larch/LOAL syntax exactly). In Figure 7, the class operation null is speci�ed to take
the class object and return an empty IntSet. It is invoked as null(IntSet), which is sugar
for null(IntSet()). The expression IntSet() denotes the IntSet class object (of type
IntSetClass), and thus null(IntSet()) means to pass this class object to the method
null, which returns an empty IntSet instance.

The instance operations of IntSet are also speci�ed in Figure 7. None of the operations
changes the state of an existing IntSet; hence instances of IntSet are immutable. Note
that:

� choose can return an arbitrary element of a nonempty IntSet (that is, an implemen-
tation can be nondeterministic), and

� the \size" in the post-condition of size means the trait function \size", as message
names cannot be referred to in assertions.

The instance operations of IntSet's subtype Interval (see Figure 10) have the same
names as those for IntSet. However, the class operations are di�erent; instead of null there
is an operation create that takes the IntervalClass object and two integer arguments and
returns an Interval object representing all the integers between the arguments (inclusive).
The integer arguments to createmust be ordered as speci�ed in the pre-condition. The ins
and remove operations may return either objects of type IntSet or Interval, depending
on their arguments. When applied to an Interval, the choose operation is deterministic,
and will always return the least element of the Interval.

Having choose be more deterministic on Interval than on IntSet is desirable for
several reasons. If one represents an IntSet by a linked list of integers, one might want to
return the �rst element of the list as the result of choose. Since this has little to do with
the abstract values, it will appear non-deterministic to clients. But it would be strange to
specify Interval so that choose was required to be so non-deterministic. Indeed, making

9

IntSet immutable type

class ops [null]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntSetTrait
op null(c:IntSetClass) returns(s:IntSet)

ensures s eqSet fg
op ins(s:IntSet, i:Int) returns(r:IntSet)

ensures r eqSet (s [fig)
op elem(s:IntSet, i:Int) returns(b:Bool)

ensures b = (i 2 s)
op choose(s:IntSet) returns(i:Int)

requires : isEmpty(s)
ensures i 2 s

op size(s:IntSet) returns(i:Int)
ensures i = size(s)

op remove(s:IntSet, i:Int) returns(r:IntSet)
ensures r eqSet delete(s,i)

Figure 7: The type speci�cation IntSet.

IntSetClass immutable type
meta ops [IntSet] instance ops [null]
based on sort IntSetClass from IntSetClassTrait
op IntSet() returns(c:IntSetClass)

ensures c eq IntSet
op null(c:IntSetClass) returns(s:IntSet)

ensures s eqSet fg

Figure 8: The implicit type speci�cation of IntSetClass, which is the type of the class
object denoted by IntSet().

IntSetClassTrait: trait
introduces IntSet: ! IntSetClass

eq: IntSetClass, IntSetClass ! Bool
asserts 8 c1,c2: IntSetClass

c1 == c2
c1 eq c2

Figure 9: The implicit trait IntSetClassTrait, which describes the abstract value of the class
object denoted by IntSet().

10

Interval immutable type

subtype of IntSet by [l; u] simulates toSet([l; u])
class ops [create] instance ops [ins, elem, choose, size, remove]
based on sort C from IntervalTrait
op create(c:IntervalClass, lb,ub:Int) returns(i:Interval)

requires lb � ub
ensures i eqSet [lb,ub]

op ins(s:Interval, i:Int) returns(r:IntSet)
ensures r eqSet (s [fig)

op elem(s:Interval, i:Int) returns(b:Bool)
ensures b = (i 2 s)

op choose(s:Interval) returns(i:Int)
ensures i = leastElement(s)

op size(s:Interval) returns(i:Int)
ensures i = size(s)

op remove(s:Interval, i:Int) returns(r:IntSet)
ensures r eqSet delete(s,i)

Figure 10: The type speci�cation Interval.

choose deterministic for Interval can be thought of as the record of a design decision.
Similarly, one can think of non-determinism in a speci�cation as leaving room for later
design decisions, so subtypes should be allowed to be more deterministic.

The Larch/LOAL syntax for type speci�cations is given in Figure 11. The set of types
that can be used in a program is speci�ed in a htype spec listi. In this paper we refer to
di�erent sets of type speci�cations by names.

Example 2.1 The set of type speci�cations consisting of IntSet and Interval (Figures 7
and 10), is called II.

If we had not given a shorter name to II, we would denote it by \IntSet + Interval".

Each individual type speci�cation has a hheaderi followed by speci�cations for each of
the operations provided by the type. The nonterminal htypei represents type symbols, such
as IntSet. The nonterminal hidenti�eri represents message names and other identi�ers.

For convenience, the following syntactic sugars are de�ned. A declaration such as
\f,s: Int" is syntactic sugar for the declaration list \f: Int, s: Int." An omitted pre-condition
is syntactic sugar for \requires true".

In the header of a type speci�cation the operations are divided into class and instance
operations; this distinction is important for subtyping, since message passing only exercises
an object's instance operations. The header of a type's speci�cation includes two additional
clauses: a based on clause, and an optional subtype of clause. The based on clause
describes the abstract values of the objects of the type, by naming a sort and a Larch trait
that speci�es that sort. For example, the abstract values of objects of type IntSet are
elements of the sort C, which is taken from the trait IntSetTrait.

11

htype spec listi ::= htype speci j htype spec listi htype speci
htype speci ::= htypei immutable type hheaderi hop spec listi
hheaderi ::= hsubtype listi hclass opsi hinstance opsihbasisi

hsubtype listi ::= hemptyi j hsubtype clausei hsubtype listi
hemptyi ::=
hsubtype clausei ::= subtype of htypei by hsimulation listi
hsimulation listi ::= hsimulationi j hsimulationi , hsimulation listi
hsimulationi ::= htermi simulates htermi

hclass opsi ::= hemptyi j class ops [hident listi]
hinstance opsi ::= instance ops [hident listi]
hident listi ::= hidenti�eri j hident listi , hidenti�eri

hbasisi ::= based on sort hidenti�eri from hidenti�eri

hop spec listi ::= hop speci j hop spec listi hop speci

Figure 11: Syntax of Type Speci�cations. The syntax for hop speci is given below.

2.4 Specifying the Subtype and Simulation Relations

In a type speci�cation, the optional subtype of clauses describe the immediate supertype(s)
of the speci�ed type. The \subtype of" relationship among all type symbols is called the
subtype relation and is written �. Formally, the relation � speci�ed by a set of type
speci�cations is the reexive, transitive closure of the subtype of relationships given in the
type speci�cations. This is the subtype relation used in type-checking a LOAL program
against the type speci�cations.

For each immediate supertype listed, the speci�cation also states how each object of the
subtype simulates at least one object of the supertype. For example, the speci�cation of
the type Interval states that Interval is a subtype of IntSet, and that an interval with
value [l; u] simulates an integer set with value toSet([l; u]), where the trait function \toSet"
is described in Figure 5. The family of all such simulation relations, R, indexed by the
supertype and made reexive, is called a simulation relation.

There is a relation RT for each type T. The relation RT says how the abstract values
of objects of each type S � T are to be viewed as objects of type T. For example, for
each interval value [l; u], the relationship [l; u] RIntSet toSet([l; u]) holds, as speci�ed in
Interval's subtype of clause. By convention, the following additional relationships are
implicit in such speci�cations. For each type T, the relation RT includes both the identity
relation on the abstract values of objects of type T and all relations RS such that S � T;
for example, the integer set f1g is related by RIntSet to itself and RInterval relates the
interval [1; 2] to itself. Furthermore, the relationships compose transitively in the following
sense: if S � T and aRS bRT c, then aRT c.

The family R is used to verify that � has the necessary semantic properties to be a
legal subtype relation, but does not a�ect the meaning of the speci�cation. The relation

12

Interval immutable type

subtype of IntSet by [l; u] simulates toSet([l; u])
class ops [create]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntervalTrait

op create(c:IntervalClass, lb,ub:Int) returns(i:Interval)
requires lb � ub
ensures i eqSet [lb,ub]

op choose(s:Interval) returns(i:Int)
ensures i = leastElement(s)

Figure 12: The type speci�cation Interval, inheriting operation speci�cations from IntSet.

� can also be viewed as summarizing information about R. That is, if S � T, then legal
subtyping requires that for every object of type S, its abstract value is related by RT to the
abstract value of some object of type T, and that R has the semantic properties described
in Section 3.3. Informally these properties require that the relationships be preserved by
assertions and programs.

Inheritance of speci�cations by a subtype speci�cation is a useful extension to a practical
speci�cation language. With operations speci�ed by inheritance, one can specify a subtype
by specifying only the subtype's class operations and those instance operations that are
added by the subtype or that need to be further constrained. This is accomplished in
Larch/LOAL by governing the behavior of each method by the most speci�c applicable
operation speci�cation that is consistent with the argument types (De�nition 3.2). For
example, the speci�cations of the Interval operations ins, elem and size, and remove

are the same as their speci�cation for IntSet arguments and can thus be omitted from
the speci�cation of Interval, as in Figure 12. Then, for example, when ins is passed an
Interval argument, the speci�cation from IntSet would apply. This is similar to copying
the operation speci�cation from the supertype and changing the argument types to the
subtype.

2.5 Operation Speci�cations

The syntax of operation speci�cations is given in Figure 13. The terms used in the pre- and
post-conditions of a type speci�cation may use the trait functions from the traits named in
the type speci�cation's hbasisi, and the traits on which any type mentioned is based.

The terms used in the pre- and post-conditions of a type speci�cation may use the
trait functions from the traits named in the type speci�cation's hbasisi, and the traits on
which any type mentioned is based (such as Int and Bool). Arguments having a subtype
of the speci�ed type of a formal argument, are not mentioned explicitly, but are premitted
whenever the corresponding supertype is mentioned. For example, if an operation were
speci�ed to take an IntSet as an argument, then the speci�cation permits passing an
Interval. The idea behind legal subtyping is to ensure that passing such subtypes is
sensible.

13

hop speci ::= op hnominal signaturei requires hpre-conditioni ensures hpost-conditioni

hnominal signaturei ::= hidenti�eri (hdecl listi) returns (hdecli)
hdecl listi ::= hdecli j hdecl listi , hdecli
hdecli ::= hidenti�eri : htypei

hpre-conditioni ::= hassertioni
hpost-conditioni ::= hassertioni
hassertioni ::= htermi

htermi ::= if htermi then htermi else htermi j hsecondaryi
hsecondaryi ::= hpre�x operatori hsecondaryi j hsecondaryi hpost�x operatori

j hsecondaryi hin�x operatori hsecondaryi j hsecondaryi = hsecondaryi
j hmix�x operator starti hsecondaryi hmix�x continuedi j hprimaryi

hmix�x continuedi ::= hmix�x operator endi
j hmix�x operator continuedi hsecondaryi hmix�x continuedi

hprimaryi ::= hconstanti j hidenti�eri j (htermi)
j htrait functioni () j htrait functioni (hterm listi)

htrait functioni ::= hidenti�eri
hterm listi ::= htermi j hterm listi , htermi

Figure 13: Syntax of operation speci�cations and the concrete syntax of terms.

14

htermi ::= hidenti�eri j htrait functioni (hterm listi) j htrait functioni () j htermi = htermi

Figure 14: Abstract syntax of terms.

For convenience, the following syntactic sugars are de�ned. A declaration such as
\f,s: Int" is syntactic sugar for the declaration list \f: Int, s: Int." An omitted pre-condition
is syntactic sugar for \requires true".

An hassertioni is a boolean-valued term. A term is boolean-valued if its sort is boolean,
as described in Section 3.2.1. The concrete syntax of terms is simpli�ed from the Larch
Shared Language [27]. Essentially, terms are as in the predicate calculus with equality, over
the language of the traits.

In the concrete syntax, a term can be a hconstanti (\27", \empty"), an identi�er that
names a formal argument or result of an operation (\x"), invocations of trait functions
(\f(x, 27)"), invocations of pre�x, in�x, and post�x operators (\: isEmpty(s),", \lb � ub",
\p.�rst"), and invocations of mix�x operators (\if b then e1 else e2 �"). Trait function
symbols (such as [) are declared to be in�x operators (etc.) in the introduces section of
a trait. We consider the usual boolean connectives (^, etc.) to be in�x operators.

The concrete syntax of terms is unnecessarily complex for the semantic studies to follow.
In these studies we use the abstract syntax for terms given in Figure 14. In this abstract
syntax, if then else is considered a trait function; that is \if b then e1 else e2" is con-
sidered syntactic sugar for \if then else (b,e1,e2)". Similarly, all pre�x, in�x, post�x,
and mix�x forms are considered syntactic sugars. Furthermore, we consider all constants
to be nullary trait functions; that is, a trait function such as \f" used in a htermi without
arguments is syntactic sugar for \f()." This eliminates the special case for constants in
proofs by induction on the structure of terms.

In a Larch/LOAL speci�cation, the equals sign (=) can only be used between terms of
visible sorts. The visible sorts are Bool and Int, both of which are built-in to LOAL. The
need for this restriction on \=" is described in Section 3.2.2.

15

3 A Model Theory for Type Speci�cations

In this section algebraic models are de�ned and used to give a formal semantics to sets of
type speci�cations. We also de�ne simulation relations between algebraic models. Simula-
tion relations are crucial to the de�nition of subtype relations.

3.1 Algebraic Models

Algebraic models are what a set of abstract data type speci�cations speci�es. They are
mathematical abstractions of the objects and procedures of the code that one would write
to implement such type speci�cations. For brevity, we call algebraic models algebras.

Our algebras are an extension of the usual algebraic structures found in the study of
equational logic or algebraic speci�cations [18]. As such, an algebra includes a carrier set
and a set of trait functions ; to these are added a set of methods. The trait functions are
used to generate the carrier sets as speci�ed in the used traits [26]; they are also used in the
evaluation of the assertions used in speci�cations [64, Chapter 2]. The methods are used
by LOAL programs for computation. The trait functions cannot be invoked by programs,
and the methods cannot be used in speci�cations.

To model nondeterministic procedures, the methods are set-valued functions; that is, a
method returns a set of the possible results [51] [52]. The special value ? is used to model
procedure calls that do not halt or that encounter run-time errors. So a procedure that
might either return 3 or never halt on some argument q would be modeled by a method
that has f3;?g as its set of possible results.

As in object-oriented programming languages, methods may be polymorphic. Message
passing is thus modeled by simply invoking a method.

Although the trait functions in LSL are not polymorphic, our semantics of type spec-
i�cations uses them as if they were. Thus we give a careful explanation of the dynamic
overloading resolution used to give the illusion that trait functions are polymorphic.

In an algebra there is no separate representation for abstract values and objects. That
is, the objects of a type are identi�ed with their abstract values. This is adequate for
immutable types, which are the only ones we consider.

3.1.1 Signatures

The algebras that satisfy a set of type speci�cations will all have the same syntactic interface
to a LOAL program; this syntactic interface is called a signature.

De�nition 3.1 (signature) A signature

� = (SORTS;TYPES ;V ;�;TFUNS;MN ;ResSort)

consists of:

� Sets of sort, type, and visible type symbols, such that SORTS � TYPES � V and V
is nonempty.

� A binary relation, �, which is a preorder on SORTS, such that for all visible types
T 2 V , if S � T then S = T.

16

� Disjoint sets, TFUNS of trait function symbols, and MN of message names. Their
union, the set of all operation symbols, is denoted OPS:

OPS
def
= TFUNS [MN : (1)

� A partial function ResSort:OPS ; SORTS� ! SORTS, which returns an upper bound
on the result sort of a trait function or message name applied to a tuple of argu-
ments with the given sorts. ResSort must be monotone in the following sense: for
all g 2 OPS, and for all tuples of sorts ~S � ~T, if ResSort(g;~T) is de�ned, then so is
ResSort(g;~S), and furthermore ResSort(g;~S) � ResSort(g;~T) [53, Page 217].

The restriction on � prohibits subtypes of a visible type. This restriction is reasonable,
because only visible types can appear as the output of programs, so an object of some
other type cannot behave quite like an object of a visible type. It is not clear whether this
restriction is absolutely necessary; we view it as a simplifying assumption.

3.1.2 Derivation of a Signature from a Set of Type Speci�cations

In this section we discuss how a set of type speci�cations determines a signature.
We use the set of type speci�cations II (which includes IntSet and Interval, see

Example 2.1) as our example. We write SIG(II) for the signature determined by II, and
subscript each part of SIG(II) by II.

For all signatures, the set of visible types, V , is as follows:

VII = V
def
= fBool; Intg: (2)

In general, the set of type symbols, TYPES , determined by a type speci�cation consists
of the visible types, the type symbols named at the beginning of each htype speci, and a
class type for each of the types already mentioned, formed by adding \Class" as a su�x
to each of the other type symbols. For example, the set of type symbols determined by II,
TYPES II, includes IntSet, Interval, IntSetClass, and IntervalClass, in addition to
the visible types and their associated class types.

In general, the set of sorts, SORTS, and the set of trait function symbols, TFUNS , are
determined by the traits referenced in the hbasisi clauses of a speci�cation and the traits
included (recursively) in those traits, plus a trait of the following form for each class type
TClass:

TClass: trait
introduces T: ! TClass

eq: TClass, TClass ! Bool
asserts 8 c1,c2: TClass

c1 == c2
c1 eq c2

(The �rst axiom says that all TClass values are equal, and the second says that all are \eq".
The trait function \eq" is speci�ed so that one may write subtype-constraining assertions
about the TClass value.) The set SORTS consists of all the sorts named in those traits,
except that each sort name that follows the keywords based on sort in the speci�cation
of a type named T is renamed to T in the trait named following from. For example, the set
of sorts determined by II, SORTSII is TYPES II, as there are no auxiliary sorts. The set

17

TFUNS consists of all the trait function symbols mentioned in those traits. For example,
the set TFUNS II includes \IntSet"3, \fg", \insert", \size", 2 , and \toSet", among
others.

In general, the subtype relation, �, is the reexive, transitive closure of the relationships
mentioned in the hsubtype clauseis of each type speci�cation. For example, II states that
Interval is a subtype of IntSet. Hence Interval �II IntSet. By taking the reexive,
transitive closure, the relationship IntSet �II IntSet holds, as does Bool �II Bool, and so
on.

The set of message names MN of a set of type speci�cations consists of the symbols
following op in hop specis, all type symbols that are not class types (recall that these are
nullary operations that return the class object for the type), and message names for the
visible types. For example, the MN II includes null, create, ins, elem, IntSet, Interval,
Bool, Int, and message names for the visible types such as true, false, not, and add. (See
[34, Appendix B] for details on the visible types.)

The requirement on signatures that the ResSort mapping is monotone in � does not
a�ect the construction of ResSort . However, if this requirement is not met, then the set
of type speci�cations is invalid, as it will not determine a proper signature. Thus it is left
to the designer to specify the trait functions and methods of subtypes so that signature
restrictions are met. (Some automation of this task would be needed in practice.)

In general, the result sort mapping ResSort for trait function symbols is determined as
follows. Each trait function symbol is introduced in a trait along with a signature (e.g.,
~S ! T). The mapping ResSort is simply another representation for this information. So,
if the trait function symbol f is introduced with signature ~S ! T, then ResSort maps the
symbol f and tuple of sorts ~S to T. For example, the following shows how ResSort II works
for the trait function symbols \IntSet", \fg", \insert", and the in�x \2".

ResSort II(IntSet; hi) = IntSetClass

ResSort II(fg; hi) = IntSet

ResSort II(insert; hIntSet; Inti) = IntSet

ResSort II(insert; hInterval; Inti) = IntSet

ResSort II(2 ; hInt; IntSeti) = Bool

ResSort II(2 ; hInt; Intervali) = Bool

That is, \IntSet" denotes the abstract value of the class object, which has sort IntSetClass.
Similarly, \fg" denotes an (empty) IntSet. The trait function \insert" can take an IntSet

and an Int and return an IntSet, as well as taking an Interval and an Int and returning
an IntSet. The in�x trait function \2" takes an Int and either an IntSet or an Interval

and returns a Bool.
To de�ne the ResSort map for message names we need some terminology to describe the

types associated with an operation speci�cation. A message name may be present in many
di�erent type speci�cations. This allows programmers to use message passing and subtype
polymorphism. However, unlike the trait functions, the message names are not speci�ed
with all possible combinations of argument types. Each hop speci for a given message name
presents a di�erent nominal signature, which is a pair consisting of a tuple of type symbols
of the formal arguments and a type symbol for the result, written S1; . . . ; Sn ! T or ~S! T

or ! T if there are no arguments. The nominal signature for a given hop speci is formed

3Recall that each type name is also the name of a nullary trait function that returns the abstract value
of the class object for the type

18

by placing an arrow between the list of the types in the arguments part of the operation
signature and the type in the return part. For example, the nominal signature of choose in
the type speci�cation IntSet is IntSet ! Int, while the nominal signature of choose in
the type speci�cation Interval is Interval! Int. Each type symbol, such as IntSet, is
also implicitly speci�ed as an operation (see Figure 8), and hence is also a nullary message
name; its nominal signature is such that there are no arguments and the result type is the
corresponding class type (which is the type of the class object for that type). For example,
the nominal signature of the IntSet operation is: ! IntSetClass.

In general, the result sort map, ResSort , for message names is determined from the
nominal signature of each hop speci, and the subtype relation �. This determination uses
most speci�c applicable operation speci�cation, as de�ned below. (In the de�nition, the
subtype ordering � is extended to tuples of types pointwise; that is, the formula ~S � ~T
means that for each i, Si � Ti.)

De�nition 3.2 (most speci�c applicable operation speci�cation) Let SPEC be a set
of type speci�cations. Let ~S be a tuple of types.

An operation speci�cation with nominal signature ~T! U is the most speci�c applicable
operation speci�cation for ~S if and only if its tuple of formal arguments types, ~T, is such that
~S � ~T and it is the unique least, in the � ordering, tuple of formal argument types for all
operation speci�cations in SPEC with the same message name and number of arguments.

For example, the speci�cation of choose in the type speci�cation Interval is the most
applicable operation speci�cation in II for hIntervali. The speci�cation of choose in the
type speci�cation IntSet is the most applicable operation speci�cation in II for hIntSeti.

For each message name g, and each tuple of sorts ~S, ResSort(g;~S) is de�ned to be equal
to T if and only if ~U! T is the nominal signature of the most speci�c applicable operation
speci�cation for ~U whose operation symbol is g. Hence the unique operation speci�cation
with the most speci�c argument type requirements that apply to ~S determines the nominal
result type. Furthermore, unless such a most speci�c applicable operation speci�cation
exists for a tuple of argument types, ResSort is not de�ned on that tuple of argument
types.

For example, the following shows how ResSortII acts on the message names IntSet,
Interval, null, create, ins, and choose.

ResSortII(IntSet; hi) = IntSetClass

ResSortII(Interval; hi) = IntervalClass

ResSortII(null; hIntSetClassi) = IntSet

ResSortII(create; hIntervalClass; Int; Inti) = Interval

ResSortII(ins; hIntSet; Inti) = IntSet

ResSortII(ins; hInterval; Inti) = IntSet

ResSortII(choose; hIntSeti) = Int

ResSortII(choose; hIntervali) = Int

The use of ResSort for determining the result sort of a method allows the speci�cation of
binary operations where the code executed depends on the types of more than one argument.
An example is given in [38].

19

3.1.3 Subsignatures

The notion of subsignature is used in the study of modular veri�cation, and for technical
purposes in this paper. When a new type speci�cation is added to a set of type speci�cations,
the old speci�cation's signature is a subsignature of the new signature.

De�nition 3.3 (subsignature) We say that �0 is a subsignature of � if SORTS 0 �
SORTS, TYPES 0 � TYPES, V 0 � V , TFUNS 0 � TFUNS, MN 0 � MN, �0 is the
restriction of � to SORTS 0, ResSort(OPS 0 � (SORTS0)

�
) � SORTS 0, ResSort 0 is the re-

striction of ResSort to OPS 0 � (SORTS0)
�
, and for all sorts S0; T0 2 SORTS 0, if there is a

sort U0 that is the least upper bound of S0 and T0 in �0, then for all sorts S; T 2 SORTS,
whenever S � S0 and T � T0, then the least upper bound of S and T exists and is a sort
U � U0.

For example, SIG(IntSet) is a subsignature of SIG(II).
The restriction about least upper bounds is necessary because in LOAL, the type of an

expression if b then e1 else e2 � is the least upper bound of the types of e1 and e2. When
new types are added to a program, one needs to be sure the least upper bound still exists
and is no larger than the original least upper bound. (See Lemma 5.2.)

3.1.4 Algebras

An algebra with signature � is called a �-algebra. In an algebra A, the interpretation of a
message name g is written gA, and the interpretation of a trait function \f" with nominal
signature ~S! T is written f~S!T

A.
To allow recursive functions to be de�ned over algebras, we require that each \carrier set"

be a at domain and that each trait function and method be monotonic and continuous.
(See, for example, [56] for de�nitions of these terms.) Since a method is a set-valued
function, we need to de�ne precisely what we mean by \monotonic" and \continuous" for
set-valued functions.

We �rst extend the domain ordering to sets of possible results. Let v be the domain
ordering on a carrier set. For sets of possible results, the ordering vE is de�ned so that
Q vE R if for each q 2 Q there is some r 2 R such that q v r [4, Page 13].

De�nition 3.4 (monotonic) A set-valued function g is monotonic if and only if for all
~q1, ~q2, if ~q1 v ~q2, then g(~q1) vE g(~q2).

That is, g is monotonic if whenever ~q1 v ~q2 and r1 2 g(~q1), then there is some r2 2 g(~q2)
such that r1 v r2.

A continuous method will be de�ned as preserving least upper bounds of sequences. A
sequence in v is a nonempty set Q = fqi j i 2 Ig indexed by some well-ordered set [23,
Page12] I (whose elements are ordered by �) with the property that, if i � j, then qi v qj .

De�nition 3.5 (continuous) A monotonic set-valued function g is continuous if and only
if for every sequence in v, Q = fqig, whenever R = frig is a sequence in v indexed by the
same set as Q such that for all indexes i, ri 2 g(~qi), then lub(R) 2 g(lub(Q)).

The reader not familiar with denotational semantics is urged to ignore the parts of the
following de�nition of algebras that refer to monotonicity and continuity. Such a reader can
replace \at domain" by \set" in the following.

20

De�nition 3.6 (�-algebra) Let � be a signature.
A �-algebra, A = (jAj;TFUNSA;MNA), consists of:

� a carrier set, jAj, which is a SORTS-indexed family of at domains: jAj
def
= fAT j T 2

SORTSg, such that for each sort T, ? 2 AT,

� a family of trait functions, TFUNSA, which is a (TFUNS � SORTS� � SORTS)-
indexed family of monotonic and continuous functions such that for each f 2 TFUNS,
for each tuple of sorts ~S, if there is some sort T such that ResSort(f ;~S) = T, then:

{ the trait function f~S!T
A has ? as its result if and only if at least one of its

arguments is ?,

{ for each tuple ~q 2 A~S
, f~S!T

A(~q) 2 AT, and

{ for all tuples of sorts ~U, for all sorts W, if ResSort(f ;~U) = W, then for all tuples
~q 2 (A~S \A~U), f~S!T

A(~q) = f~U!W
A(~q),

� a family of methods, MNA, which is a MN-indexed family of monotonic and contin-
uous set-valued functions such that for each g 2 MN, for each tuple of types ~S, and
for each tuple ~q 2 A~S

, if ResSort(g;~S) = U, then:

{ gA(~q) is a nonempty set, and

{ for each r 2 gA(~q), there is some type T � U such that r 2 AT.

We now make some general remarks about the de�nition of algebras, de�ne our notion
of dynamic overloading for trait functions, and then give an example algebra.

Because trait functions only return ? when one of their arguments is ? and vice versa,
we can think of ? as added to the set of abstract values de�ned in the traits. An element
of a carrier set that is not ? is a proper element.

To allow more intuitive discussions, we use the following phrases in a stylized way. The
phrase \q has sort T" means that q 2 AT; furthermore, if T is also a type, the phrases \q
has type T" and \q is an instance of type T" also mean q 2 AT.

To be unambiguous, we need to describe more of our vector notation for tuples. Tuples
can be zero-length. The tuple ~q has type ~S, written ~q 2 A~S, if each qi has type Si. The

notation A~S stands for AS1 � � � � �ASn , and Ahi
def
= fhig.

The last restriction on trait functions in the de�nition of an algebra ensures that we
can think of each trait function symbol, such as \insert", as interpreted by a polymorphic
function. In an algebra, the trait functions are not polymorphic. However, for our semantics
of speci�cations, we need to do dynamic overloading resolution for trait functions. For
example, given a term such as \insert(s, i)", we need to know what it means, even though
its meaning depends on the sort of the value of s. There is no problem in determining which
trait function to call if the carrier sets of each sort, such as Interval and IntSet are disjoint
(ignoring ?). However, we also permit models where the carrier sets are not disjoint. Such
models have been used by Cardelli and others to discuss subtyping [8] [6] [5] [21]. In such a
model, when one is given a tuple of arguments to a trait function ~q, there may be no unique
tuple of sorts ~S such that ~q 2 A~S. So the last requirement on trait functions says that the
algebra must be such that if ~q has more than one tuple of sorts, then the algebra must
be arranged so that invoking the trait function associated with any of the tuples of sorts
that ~q has gives the same result. So in particular, if U � S, AU � AS, ResSort(f ; hSi) = T,

21

ResSort(f ; hUi) = W, and q 2 AU, then we can think of fA(q) as fS!T
A(q) = fU!W

A(q). In
this case it must be that the range of fU!W

A is a subset of AW \ AT, and so the result has
both sort W and sort T. Therefore, by this restriction on trait functions, we can write fA(~q)
without ambiguity.

De�nition 3.7 (dynamic overloading of trait functions) Let ~S be a tuple of sorts. If

~q 2 A~S
and ResSort(f ;~S) is de�ned and equals T, then fA(~q)

def
= f~S!T

A(~q).

The return type of a method is more loosely constrained than the return sort of a trait
function. That is, a method can return an element of some other carrier set than the one
predicted by ResSort.

Another di�erence from the trait functions is that the methods of algebras can be non-
strict. An operation is strict if whenever one of its arguments is ?, then the only possible
result is ?. Non-strict methods are useful for modeling types with lazy evaluation, such as
streams.

As an example, we describe some parts of a SIG(II)-algebra, AII. The carrier sets
of the visible types are �xed by convention, for example, AII

Bool = f?; true; falseg and
AII

Int = f?; 0; 1;�1; 2;�2; . . .g. The carrier sets of the non-visible types are given in
Figure 15. These carrier sets are disjoint. The trait functions are largely determined by the
traits, so only a few examples are presented in Figure 15. On the other hand, we present
all of the methods associated with the non-visible types in Figure 15; we use trait functions
in some of the de�nitions of the methods in AII. We omit cases where the arguments are
?, but for these cases the only possible result is ?.

The choose operation of AII is de�ned on nonempty arguments of type IntSet to have
the entire set argument as its set of possible results, but is deterministic for arguments of
type Interval. Also, if choose is applied to an empty IntSet, then the possible results
are the entire carrier set of Int, including ?. The method insA

II

has an interval as its only
possible result whenever it can. In contrast, removeA

II

only has sets as possible results.

3.1.5 Visible Types are the Same in All Algebras

Sets of type speci�cations written in Larch/LOAL all have the same set of visible (i.e.,
built-in) types. Thus we will assume from now on that the visible types are the same in all
algebras. To state this assumption precisely requires the notion of the reduct of an algebra
[18, Section 6.8] [34]. Briey, the reduct A(�0) has as its carrier sets the carrier sets of the
sorts in A that appear in �0, and as its trait functions and methods those named in �0.

For Larch/LOAL, there is a �xed signature �B and a �xed �B-algebra, B, that de�nes
the visible types [34, Appendix B]. We assume that all signatures have �B as a subsignature
and all algebras have B as their �B-reduct.

3.2 Formal Semantics of Type Speci�cations

In this section we formalize the semantics of sets of type speci�cations. We �rst formalize the
static semantic constraints: sort-checking and the notion of subtype-constraining assertions.
Then we describe the usual model-theoretic concepts of evaluation of assertions and validity.

22

Carrier Sets for the Non-visible Types

AII
IntSet

def
= f?g [\�nite sets of proper elements of AII

Int"

AII
IntSetClass

def
= f?; IntSetg

AII
Interval

def
= f?g [f[x; y] j x; y 2 AII

Int; x 6= ?; y 6= ?; x � yg

AII
IntervalClass

def
= f?; Intervalg

A sampling of Trait Functions

IntSet!IntSetClass
AII

()
def
= IntSet

insertIntSet;Int!IntSet
AII

(fi1; . . . ; ing; i)
def
= fi1; . . . ; ing [fig, for n � 0

insertInterval;Int!IntSet
AII

([x; y]; i)
def
= toSetA

II

([x; y])[fig

[;]Int;Int!Interval
AII

(x; y)
def
=

(
[x; y] if x � y
[x; x] if x > y

toSetInterval!IntSet
AII

([x; y])
def
=

(
fx; x+ 1; . . . ; yg if x < y

fxg otherwise

Methods for the Non-visible Types

IntSetA
II

()
def
= fIntSetg

IntervalA
II

()
def
= fIntervalg

nullA
II

(IntSet)
def
= ffgg

createA
II

(Interval; x; y)
def
= f[;]A

II

(x; y)g

insA
II

(s; i)
def
=

8>>><
>>>:
f[x; y]g if s = [x; y], x � i � y

f[i; y]g if s = [x; y], i = x� 1
f[x; i]g if s = [x; y], i = y + 1

finsertA
II

(s; i)g otherwise.

elemA
II

(s; i)
def
= f 2 AII

(s; i)g

chooseA
II

(s)
def
=

8><
>:

IntA
II

if s 2 AII
IntSet, s = fg

s if s 2 AII
IntSet, s 6= fg

fxg if s 2 AII
Interval, s = [x; y]

sizeA
II

(s)
def
= fsizeA

II

(s)g

removeA
II

(s; i)
def
= fdeleteA

II

(s; i)g

Figure 15: An algebra AII for the speci�cation II.

23

[ident] �;H; x : T ` x : T

[t�nvoc]
�;H ` ~E : ~S; � ` ResSort(f ;~S) = T

�;H ` f(~E) : T

[=]
�;H ` E2 : T; �;H ` E3 : T

�;H ` E1 = E2 : Bool

Figure 16: Sort Inference Rules for Larch/LOAL terms.

3.2.1 Sort-Checking of Assertions

Sort checking for terms depends on a signature, �, and a sort-environment, H . The sig-
nature gives the sorts of constants and trait functions (through ResSort). The sort envi-
ronment gives the nominal sort of each identi�er declared in a surrounding hop speci (as a
formal argument or formal result). The nominal sort of a trait function application of the
form f(~e) is T if the nominal sort of ~e is ~S, ResSort(f ;~S) is de�ned, and ResSort(f ;~S) = T,
otherwise the term does not sort-check. The nominal sort of an equation e1 = e2 is Bool if
e1 and e2 have the same nominal sort, otherwise the equation does not sort-check.

Formal sort inference rules for sort-checking terms are given in Figure 16. The �gure
is based on the abstract syntax for terms (see Figure 14), and so does not make a special
case for in�x, etc. trait functions. A sort environment H can be thought of as a set of
sort assumptions, which are the pairs of the mapping. An assumption of the form x : T
means that the identi�er x has nominal sort T. The notation ~x : ~S means that each xi
has nominal sort Si. The notation H; x : T means H [T=x]; that is, H extended with the
assumption x : T (where the extension replaces all assumptions about x in H). The notation
�;H ` E : T means that given the signature � and the sort environment H one can
prove that the expression E has nominal sort T using the inference rules. The notation
� ` ResSort(f ;~S) = T means that the ResSort mapping of � maps \f" and ~S to the sort T.
An inference rule of the form:

h1; h2
c

means that to prove the conclusion c one must �rst show that both hypotheses h1 and h2
hold. Rules written without hypotheses and the horizontal line are axioms.

Using the sort inference rules we can make the following de�nitions.

De�nition 3.8 (�-term, �-assertion, nominal sort) Let � be a signature. Let SORTS
be the sorts of �.

A htermi E is a �-term if and only if there is some sort environment H and some sort
T 2 SORTS such that �;H ` E : T.

A �-term is a �-assertion if and only if there is some sort environment H such that
�;H ` E : Bool.

If �;H ` E : T, then T is the nominal sort of the �-term E in H.

Usually the environment needed for determining the nominal sort of a term is determined
from the surrounding declarations in the speci�cation. We leave o� the phrase \in H" when
the sort environment is clear from context, as is always the case for assertions.

24

3.2.2 Subtype-Constraining Assertions

In Larch/LOAL speci�cations, equality (=) may only be used between terms of visible sort.
We call such terms subtype-constraining.

De�nition 3.9 (subtype-constraining) Let � be a signature.

A �-term is subtype-constraining if and only if it uses \=" only between subterms whose
nominal sort is a visible sort.

For example, \x = 27" is subtype-constraining, because Int is a visible sort, but \s =
fg" is not subtype-constraining.

We say \subtype-constraining" because a subtype-constraining term should mean ap-
proximately the same thing (see Section 6 for details) when some of its identi�ers denote
abstract values of subtypes of their nominal types. The following lemma looks at the
sort-checking of terms and what happens when some identi�ers in a term are replaced by
identi�ers whose types are subtypes of the types of the identi�ers they replace. Such sub-
stitutions are used in the veri�cation logic. The lemma states that the nominal sort of the
substituted term is a subtype of the original term's nominal sort. For an assertion that is
not subtype-constraining, such as \s = fg", substituting \iv" of sort Interval for \s" pro-
duces \iv = fg", which does not sort-check (because the sort of \fg" is IntSet). However,
if in E1 = E2 the terms E1 and E2 have a visible sort, then there is no problem, because
the only subtype of a visible sort is itself.

In the following, the notation f~x : ~Tg means the set fxi : Ti j i an index of ~xg. The
notation Q[~v=~x] means the assertion Q with the vi simultaneously substituted for free
occurrences of the xi.

Lemma 3.10 Let � be a signature. Let � be the subtype relation of �. Let X be a set
of identi�ers containing f~x : ~Tg. Let Y be a set of identi�ers containing f~v : ~Sg such that
(Y [f~x : ~Tg) � X. Let Q be a �-term with free identi�ers from X . Let H be a sort
environment containing the assumptions ~x : ~T and ~v : ~S.

Suppose Q is subtype-constraining and ~S � ~T. If �;H ` Q : U, then there is some sort
V � U such that �;H ` Q[~v=~x] : V.

Proof Sketch: The proof is by induction on the structure of terms4.

The basis is if that Q is an identi�er. If Q is an identi�er di�erent from the vi, Q is the
same as Q[~v=~x]. If y is xi for some i, then by de�nition of substitution, Q[~v=~x] is vi. The
result then follows by the hypothesis, that Si � Ti.

For the inductive step, assume that the lemma holds for all subterms of Q. There are
the following cases.

� Suppose Q has the form f(~E), where \f" is a trait function. Since Q has nominal sort U,
it must be that the tuple ~E has nominal sort ~� and ResSort(f ; ~�) = U. By the inductive
hypothesis, the tuple ~E[~v=~x] has a nominal sort ~� such that ~� � ~� . Since ResSort
is monotonic, ResSort(f ; ~�) is de�ned. By the sort inference rule [t�nvoc], f(~E)[~v=~x]
has nominal sort ResSort(f ; ~�). By the monotonicity of ResSort , ResSort(f ; ~�) �
ResSort(f ; ~�) = U.

4This means \induction on the abstract syntax of terms", since we shall never again refer to their concrete
syntax.

25

� Suppose Q has the form E1 = E2. Then the nominal sort of Q is Bool. Since Q is
subtype-constraining, both E1 and E2 have visible sorts. By the inductive hypothesis,
the nominal sort of E1[~v=~x] is a subtype of the nominal sort of E1. Since the only
subtype of a visible sort is itself, the sorts of E1[~x=~v] and E1 are the same. The same
holds for E2. So the nominal sorts are the same as the original sorts, and thus the
same as each other, so by the sort inference rule [=] the nominal sort of Q[~v=~x] is
Bool. Since � is reexive, the result follows.

3.2.3 Evaluation of Assertions in the Presence of Subtyping

Informally, the meaning of an assertion is given by dynamic overloading of the trait func-
tions, in a way that is similar to message-passing. This allows inheritance of speci�cations
by subtypes. For example, we could specify Interval by omitting the operation speci�-
cation of elem. Then to understand a message send such as elem(iv,2) one would use
the speci�cation of elem in Figure 7. If iv has nominal type Interval and abstract value
\[1,3]" then because of the overloaded trait functions, a description of the result is obtained
by substituting \[1,3]" for s and \2" for i in the post-condition of elem's operation speci-
�cation in Figure 7; this gives the assertion \b = (3 2 [1,3])." Since 2 is de�ned for
Interval abstract values, this assertion makes sense.

To formally de�ne the meaning of an assertion, each identi�er denotes some abstract
value in the carrier set of an algebra. The mapping from identi�ers to abstract values is
called an environment. (Since the identi�ers are either formal arguments or formal results,
they have types, not just sorts.)

De�nition 3.11 (�-environment) Let � be a signature whose set of type symbols is
TYPES and whose subtype relation is �. Let A be a �-algebra. Let X be a set of typed
identi�ers, whose types are in TYPES.

Then a mapping �:X ! jAj is a �-environment if and only if for every type T 2 TYPES
and for every x : T in X , �(x) has a type S such that S � T.

The most unusual feature of environments is that they may map identi�ers of one type
to values of another type. That is, an environment may map an identi�er x : T to an
abstract value that has any subtype of T. When we want to emphasize this property for
some environment �, we say that � obeys �. Standard environments, which can only map
x : T to a value of type T, are called \nominal", since the nominal type of x is the same as
the type of its value.

De�nition 3.12 (nominal �-environment) Let � be a signature. A �-environment,
�:X ! jAj, is a nominal �-environment if and only if for each x : T 2 X, �(x) has type T.

An environment is proper if its range does not include ?. In standard semantics, what
we call a proper and nominal environment is often called an assignment, when used to give
meaning to terms.

If x has nominal type T and q has some subtype of T, then the following shorthand can
be used for adding a binding to an environment:

�[q=x]
def
= �l: if l = x then q else �(l): (3)

26

The denotation of an identi�er forms one basis for the inductive de�nition of the evalua-
tion of assertions. (The other basis is the meaning of a constant, which is directly interpreted
by an algebra.) We inductively extend the environment to a map from terms to abstract
values in the standard way [18, Section 1.10]. The notation � means the extension of the
�-environment � : X ! jAj to a mapping from �-terms to jAj. This extension uses dynamic
overloading of the trait functions of the algebra in the environment's range when applying
trait function symbols and uses the environment itself to evaluate free identi�ers. Rather
than repeat the standard de�nition we give examples. Recall that the use of dynamic over-
loading for trait functions is signalled by our notation fA. Suppose s has nominal sort
IntSet, i : Int, �(s) = f1; 2; 3g, �(i) = 1, and for each i, 2 A(ei; fe1; . . . ; eng) = true ,
then

�[[i 2 s]] = 2 A(�(i); �(s))

= 2 A(1; f1; 2; 3g)

= true :

Recall that all trait functions are strict, and that terms cannot contain quanti�ers. The
equals sign, \=", is interpreted in the standard way as equality in the carrier set of the
algebra. An equation evaluates to either true or false (not ?).

�[[E1 = E2]]
def
=

(
true if �[[E1]] = �[[E2]]
false otherwise.

(4)

Thus if both E1 and E2 are ?, then �[[E1 = E2]] = true . If E1 and E2 have di�erent
sorts, they may easily be either not equal or equal in di�erent algebras. For example,
in an algebra where the carrier set for each sort is disjoint from the other carrier sets,
�[[[3; 3] = f3g]] would be false. In an algebra where the carrier set Interval is a subset of
the carrier set for IntSet, �[[[3; 3] = f3g]] might be true. Thus the formula \[3,3] = f3g" is
not valid in all algebras that satisfy the set of type speci�cations II; this is one reason that
Larch/LOAL speci�cations are restricted to subtype-constraining assertions.

In evaluating a term, one might worry that, since an environment need not be nominal,
a trait function might be applied outside its domain. That cannot happen, however, by the
de�nition of the nominal sort of a term and the monotonicity of ResSort . This is stated
formally in the following lemma, whose proof is by induction on the structure of terms.

Lemma 3.13 Let � be a signature, whose subtype relation is �. Let P be a �-term whose
set of free identi�ers is X . Let H be a sort-environment that contains X . Let A be a
�-algebra. Let �:X ! jAj be a �-environment.

If �;H ` P : T, then �[[P]] has some sort S � T.

We can now de�ne validity for assertions. An algebra-environment pair models an
assertion when the assertion is true in that environment.

De�nition 3.14 (models) Let � be a signature. Let P be a �-assertion whose set of free
identi�ers is X . Let A be a �-algebra. Let Y be a set of typed identi�ers such that X � Y .
Let �: Y ! jCj be a �-environment.

Then (A; �) models P , written (A; �) j= P , if and only if �[[P]] = true.

27

For example, consider the assertion \1 2 s" and the algebra AII of Figure 15. Let Y be
the set fs : IntSetg. Let �: Y ! jAIIj be the environment such that �(s) = f1; 2; 3g. Since
�[[1 2 s]] = true , (AII; �) j= 1 2 s. Since �[[4 2 s]] = false, (AII; �) does not model \4 2 s."

The above de�nition of \models" specializes to the standard de�nition [19] when the
subtype relation is equality (=).

3.2.4 Satisfaction for Type Speci�cations

We give a \loose" semantics to type speci�cations. That is, the meaning of a set of type
speci�cations is a family of algebras with the same signature. These algebras must satisfy
the speci�cation's traits and the speci�cation of each operation.

The �rst part of the de�nition of satisfaction is checking that the trait functions of
an algebra satisfy the traits of the speci�cation. For this it is convenient to free the trait
functions from the program operations; hence the following de�nition.

De�nition 3.15 (trait structure) The trait structure of an algebra A is formed from
A by throwing out the methods, deleting ? from each carrier set and restricting the trait
functions to these domains.

(The trait functions are well-de�ned on carrier sets without ? because they are strict and
their result is only ? when one of their arguments is ?.)

There is a standard notion of when something like a trait structure satis�es a set of
sentences in second-order logic [19], and the formal semantics of the Larch Shared Language
(LSL) provides a translation into such sentences [27]. (The generated by and partitioned
by constructs in LSL are translated into second-order sentences.) Hence the following.

De�nition 3.16 (satis�es the traits) An algebra A satis�es the traits of a speci�cation
if and only if the trait structure of A satis�es the second-order sentences that are the meaning
of those traits.

Satisfaction for the methods is de�ned using the most speci�c applicable operation
speci�cation for a given set of arguments (De�nition 3.2). The method must satisfy this
speci�cation in the sense that if the arguments have the appropriate types and satisfy the
pre-condition, then the operation must halt, and can only return results that have the
appropriate type and satisfy the post-condition. Note that the most applicable operation
speci�cation governs the behavior of the method only for arguments that have types for
which it is the most speci�c applicable operation speci�cation. For example, the speci�ca-
tion of choose for IntSet arguments does not govern the behavior of choose for Interval
arguments, since there is a more speci�c operation speci�cation for Interval arguments.
The de�nition of legal subtyping, however, does force such a relationship, but we did not
want to build it into Larch/LOAL. This allows us to give sets of type speci�cations for which
the claimed subtype relation is not legal, but still have the speci�cation be meaningful.

De�nition 3.17 (satis�es for methods) Let SPEC be a set of type speci�cations. Let
g be a message name of SIG(SPEC). Let A be an algebra whose signature is SIG(SPEC).

A method gA satis�es the speci�cation of g in SPEC if and only if for all tuples of types
~S, if ResSort(g;~S) = T, then the following condition is met. Suppose the form of the most
speci�c applicable operation speci�cation for ~S in SPEC is:

op g(~x : ~U) returns(y : W)

28

requires R
ensures Q.

Then for all proper ~q 2 A~S, for all SIG(SPEC)-environments �: f~x : ~Ug ! jAj such that
�(xi) = qi, if (A; �) j= R, then for all possible results r 2 gA(~q): r 6= ?, (A; �[r=y]) j= Q,
and there is some V 2 TYPES such that r 2 AV and V � T. Furthermore, whenever some
argument to the operation is ?, then the only possible result is ?.

For example, the method de�ned by

elemA(s; i)
def
= f 2 A(i; s)g (5)

elemA(?; i)
def
= f?g (6)

elemA(s;?)
def
= f?g (7)

elemA(?;?)
def
= f?g (8)

(where s and i are proper) satis�es the speci�cation of elem in II.
A method may satisfy a speci�cation by being more deterministic than required by

the speci�cation. For example one might have chooseC(f1; 2g) = f1g in an II-algebra, C;

whereas in AII, chooseA
II

(f1; 2g) = f1; 2g. Similarly, a method may be more \de�ned" than
required by the speci�cation. For example, one might have chooseC(fg) = f0g, as opposed

to chooseA
II

which on an empty set could either not terminate or return any integer.
The nullary messages that name class objects are implicitly speci�ed as follows:

op T() returns(y:TClass)
ensures y eq T.

A method TA satis�es this speci�cation if its only possible result is the class object for T.
We summarize satisfaction for algebras in the following de�nition.

De�nition 3.18 (satisfaction for algebras, SPEC-algebra) Let SPEC be a set of type
speci�cations. Let A be a SIG(SPEC)-algebra.

Then A satis�es SPEC if and only if the trait structure of A satis�es the traits of SPEC,
and for each message name g of SIG(SPEC), gA satis�es the speci�cation of g in SPEC.

An algebra A is a SPEC -algebra if and only if A satis�es SPEC.

For example, the algebra AII of Figure 15 satis�es the speci�cation II. Thus AII is an
II-algebra.

The semantics of a set of type speci�cations SPEC is the set of all SPEC -algebras.

3.3 Simulation Relations

What does it mean for one object to \behave like" another object? This notion �gures
prominently in most intuitive de�nitions of subtyping, and also in our de�nition.

Algebraically, q behaves like r, written qRr, means that in all contexts P (�), P (q)RP (r).
We are concerned with user-visible behavior, and thus are most concerned with program
contexts; that is, contexts P that have visible types. For visible contexts, we want P (q) to
equal P (r), because anything other than equality would be a \visible" di�erence.

The above story is slightly complicated when we consider observing objects in a language,
like LOAL, with subtyping. In a typed language with subtyping, the observations that can

29

be applied to an object depend on what type one assumes for the object. For example, one
can apply more methods to a triple than to a pair, hence whether two triples behave like
each other depends on whether one observes them as pairs or triples. Therefore, simulation
relations are families of relations that have one binary relation per sort. At each sort T, a
simulation relation can relate elements of all sorts S � T. The following abbreviation will
be used to describe the set of all such elements in an algebra A.

Below(A; T)
def
=
[
U�T

AU (9)

If A is a �-algebra, then the preorder � used in this abbreviation is the preorder on the
sorts of �.

Our extension of homomorphic relations to nondeterministic algebras was inspired by
[51]. However, to make the analogy to the deterministic case clearer, we would like to
deemphasize the nondeterminism in our notation. So we use another abbreviation when
comparing sets of possible results with a relation RT. If Q and R are sets of possible results,
then

QRT R
def
= 8(q 2 Q)9(r 2 R) q RT r: (10)

For example, this abbreviation allows Formula (12) to look the same as it would for deter-
ministic algebras. This overloading of RT applies only to sets of possible results; it does not
apply when relating individual results (which might nonetheless be sets in our examples).

De�nition 3.19 (simulation relation) Let � be a signature. Let C and A be �-algebras.
A SORTS-indexed family R = fRT � (Below(C; T)� Below(A; T))jT 2 SORTSg is a �-
simulation relation between C and A, if and only if the following properties hold:

Substitution: for all sorts T, for all tuples of sorts ~S, and for all tuples ~q 2 Below(C;~S),
and ~r 2 Below(A;~S):

� for all trait function symbols f 2 TFUNS, such that ResSort(f ;~S) = T,

(~qR~S
~r)) fC(~q)RT f

A(~r); (11)

� for all message names g 2 MN, such that ResSort(g;~S) = T,

(~q R~S
~r)) gC(~q)RT g

A(~r): (12)

Subsorting: for all sorts S and T:

(S � T)) (RS � RT): (13)

Coercion: for all sorts S and T:

(S � T)) (8(q 2 CS)9(r 2 AT) q RT r) (14)

Bistrict: for each sort T, ?RT ?, and whenever q RT r and one of q or r is ?, then so is
the other.

V-identical: for each T 2 SORTS, if qRTr and either q or r has a visible type, then q = r;
for each v 2 V , Rv contains the identity relation on the carrier set of v (which is the
same in both C and A).

30

[2,5] f4g

f2,3,4,5g f4g

6
RIntSet

6
RInt

-size

-size

Figure 17: The substitution property for size.

The most important property is the \substitution" property, which says that simula-
tion is preserved by both message-passing and by the trait functions. This property is
often pictured in a commutative diagram, such as Figure 17, which depicts the following
relationship.

size([2; 5]) RInt size(f2; 3; 4; 5g) (15)

In the \substitution" property, the notation ~q R~T ~r means that for each i, qi RTi ri
(assuming that ~T is a tuple of types and ~q and ~r are tuples of objects the same length). The
tuples ~q and ~r may be empty. Therefore, if R is a simulation relation between C and A,
then for all nullary message names (i.e., type symbols) T 2 MN and for all types TClass
such that ResSort(T; hi) = TClass,

TC()RTClass T
A() (16)

The same holds for nullary trait function symbols.

The \subsorting" property is a technical requirement; it embodies the intuition that if
one object simulates another at a subtype, then this simulation relationship should hold at
each supertype, since no extra operations will be applicable at the supertype.

The \coercion" property is necessary for the soundness of veri�cation. In veri�cation
one needs to relate, at each type T, each element of every subtype of T to some element of
type T.

The \bistrict" property ensures that the meaning of ? is preserved. It is part of the
de�nition of simulation relations because nontermination is (in some sense) visible.

The \V-identical" property has two parts. The �rst part says that distinct elements of
the visible types cannot be related, at any type. (A visible type can be a subtype of some
other type, but cannot have subtypes.) The second part says that, viewed at a visible type,
identical elements of that type are related.

Example 3.20 Let AII be the algebra of Figure 15. Let R be the smallest bistrict sorted
family of relations between AII and AII such that for all types T, if q 2 AII

T, then q RT q,
and for all proper y � x in AInt,

[x; y] RIntSet toSetA
II

([x; y]) (17)

[x; y] RIntSet [x; y]: (18)

This R is a simulation relation.

31

Notice that RIntSet is not symmetric, because an IntSet cannot be related to an
Interval, because the choose operation is more nondeterministic on IntSet arguments.
That is, if q is an Interval, then

chooseA
II

(q) = fleastElementA
II

(q)g: (19)

But for this algebra, if r is an IntSet,

chooseA
II

(r) = fri j ri 2 rg: (20)

Having choose be more deterministic on Interval than on IntSet is desirable for
several reasons. If one represents an IntSet by a linked list of integers, one might want to
return the �rst element of the list as the result of choose. Since this has little to do with
the abstract values, it will appear non-deterministic to clients. But it would be strange to
specify Interval so that choose was required to be so non-deterministic. Indeed, making
choose deterministic for Interval can be thought of as the record of a design decision.
Similarly, one can think of non-determinism in a speci�cation as leaving room for later
design decisions, so subtypes should be allowed to be more deterministic.

Example 3.21 It is not always possible to �nd a simulation between an algebra and itself.
Consider an algebra C that is just like AII of Figure 15, except that the choose operation
is deterministic and returns the maximum element of a non-empty IntSet. Consider the
relation R de�ned in example 3.20, with C substituted for AII. This R is not a simulation
relation between C and C, because [1; 3]RIntSet f1; 2; 3g, but

chooseC([1; 3]) = f1g (21)

chooseC(f1; 2; 3g) = f3g (22)

and 1 is not related by RInt to 3. Furthermore, no simulation relation exists between C and
itself.

There are two main theorems about simulation relations. The �rst is that simulation is
preserved by LOAL expressions and programs, which is Theorem 5.16 below.

The other is that simulation is preserved by subtype-constraining terms. This theorem
follows immediately, after a bit of notation.

To allow us to succinctly express that environments are related pointwise, we use the
following convention. Given �-environments �B : X ! jBj and �A : X ! jAj, the notation
�B R �A means that for all sorts T, for all x : T 2 X , �B(x)RT �A(x).

Theorem 3.22 Let � be a signature. Let C and A be �-algebras. Let X be a set of
identi�ers. Let S be a sort of �. Let Q be a �-term with free identi�ers from X and
nominal sort S.

If Q is subtype-constraining, R is a �-simulation relation between C and A, and �C :
X ! jCj and �A : X ! jAj are environments such that �C R �A, then �C [[Q]]RS �A[[Q]].

Proof: (by induction on the structure of terms).
By Lemma lemma-no-tf-app-outside-domain what we are trying to prove is well-de�ned.
For the basis there are two cases. If Q is an identi�er x : S, then by the hypothesis

�C(x)RS �A(x). If Q is a nullary trait function, then the result follows by the substitution
property for trait functions.

32

For the inductive step, assume that the result holds for all subterms of Q.
If Q has the form f(~E), then by the inductive hypothesis, for each of the Ei, if the

nominal sort of Ei is Si, then �C [[Ei]]RSi �A[[Ei]]. Thus the result follows by the substitution
property for trait functions.

If Q has the form E1 = E2, then since Q is subtype-constraining, the nominal sort of E1

is a visible sort, say T. By the inductive hypothesis, for each of the Ei, �C [[Ei]]RT �A[[Ei]].
Since T is visible, RT is the identity on T. Since there can be no subtypes of a visible type,
for each of the Ei, �C [[Ei]] = �A[[Ei]]. So if �C [[E1]] = �C [[E2]], then �A[[E1]] = �A[[E2]] and if
�C [[E1]] 6= �C [[E2]], then �A[[E1]] 6= �A[[E2]].

An important consequence of the above theorem is that if one environment simulates
another, then the same set of subtype-constraining assertions is valid in each environment.
This justi�es reasoning about objects by using a simulation relation to coerce each abstract
value to its nominal type. That is, one can always imagine that one is dealing with the
abstract values of the nominal types (by use of an implicit simulation), and one is never
misled about the value of a subtype-constraining assertion in such an environment. This is
because the abstract values of the real objects simulate the imagined abstract values.

Lemma 3.23 Let � be a signature. Let C and A be �-algebras. Let X be a set of identi�ers.
Let Q be a �-assertion with free identi�ers from X .

If Q is subtype-constraining, R is a �-simulation relation between C and A, and �C :
X ! jCj and �A : X ! jAj are environments such that �C R �A, then (C; �C) j= Q if and
only if (A; �A) j= Q.

33

4 Legal Subtype Relations

4.1 De�nition of Legal Subtype Relations

The semantic property that characterizes a legal subtype relation is the existence of a
simulation relation. That is, informally, the reason Interval is a legal subtype of IntSet
is that each instance of type Interval simulates some instance of IntSet. As pointed
out by Example 3.21, the existence of such a simulation between an II-algebra and itself
depends on how the choose operation is implemented in that algebra. So it is necessary
to consider not just one algebra, but all algebras that satisfy a given speci�cation. That
is, whether a subtype relation holds or not depends on the semantics of a speci�cation:
a family of algebras. Considering the entire family of algebras in the de�nition of legal
subtype relations allows our de�nition to work for incomplete speci�cations, such as II.
The following is our formal de�nition of legal subtype relations for �rst-order, immutable,
abstract types as characterized by a set of type speci�cations.

De�nition 4.1 (legal subtype relation) Let SPEC be a set of type speci�cations. Let
� be the subtype relation of SIG(SPEC).

Then � is a legal subtype relation on the types of SPEC if and only if for all SPEC-
algebras C, there is some SPEC-algebra A such that there is a SIG(SPEC)-simulation
relation between C and A.

We sometimes say that a subtype relation \is legal" instead of saying that it is a legal
subtype relation.

4.2 Examples of Legal Subtype Relations

A trivial example of a legal subtype relation is the identity relation on types. When � is
the identity on types, every algebra simulates itself.

Example 4.2 The subtype relation of the speci�cation II is legal.

The proof sketch below shows how we use the simulates by clauses in type speci�cations
to prove a subtype relation is legal. This example also shows that a subtype, such as
Interval, can be more de�ned and more deterministic than its supertype, IntSet. Recall
that the result of applying choose to an empty IntSet is unde�ned and the possible results
of applying choose to a non-empty set can be any element of the set. Recall also that the
result of applying choose to an Interval is its least element.

Proof Sketch: Let C be an II-algebra. Let A be an algebra that is the same as C, except
that its choose operation exhibits all the nondeterminism allowed by its speci�cation. Then
A is an II-algebra.

A simulation relation R0 between C and A is constructed from the speci�cation of II, as
described in Section 2.4. This construction ensures thatR0 is such that, for all environments
�C over C and �A over A:

(�C(l)R
0
Int �A(l)^ �C(u)R

0
Int �A(u))) �C [[[l; u]]]R

0
IntSet �A[[toSet([l; u])]]: (23)

It is easy to show that R0 is a simulation relation. For example, to show the substitution
property for the method choose, suppose qR0IntSet r; then a possible result of chooseC(q)
must be a possible result of chooseA(r), because q and r have the same elements and A's
choose operation is maximally nondeterministic.

34

Example 4.3 IntSet cannot be a legal subtype of Interval.

Proof Sketch: There are several reasons for this. To start with the most mundane,
the speci�cation II does not state that IntSet is a subtype of Interval. Even if it did,
the operations ins and remove in the speci�cation Interval would have the wrong type.
Even if those operations were deleted, the trait functions \insert", \delete", \[", and \\"
would have the wrong signature to make ResSort satisfy the restrictions on signatures,
and the trait functions \leastElement" and \greatestElement" would have to be de�ned for
IntSet arguments in the trait IntSetTrait. However, imagine a speci�cation II 0, where all
these changes were made, it would still be impossible for IntSet to be a legal subtype of
Interval.

To see that even for II 0, IntSet cannot be a legal subtype of Interval, let C be a II 0-
algebra such that chooseC has as its possible results each element of an argument of sort
IntSet. Such algebras are allowed by the speci�cation II 0. For the sake of contradiction,
suppose that there is some II 0-algebra A, and some simulation relation R0 from C to A.

One reason such a simulation relation cannot exist is that it would necessarily violate
the coercion property of simulation relations. Let q be the abstract value denoted by the
term \fg" in CIntSet. By the coercion property, q must be related to some r in AInterval.
That is, q R0Interval r, for some r in AInterval. Then by the substitution property

isEmptyC(q)R0Bool isEmpty
A(r): (24)

But isEmptyC(q) = true and isEmptyA(r) = false, so this is a contradiction.
Another reason such a simulation relation cannot exist is that it would violate the

substitution property of message names. That is so even if we change the speci�cation of
IntSet in II 0 so that there are no empty sets, because the choose operation of IntSet can
be nondeterministic, while the choose operation of Interval is deterministic. To see this,
let s23 be the abstract value denoted by \insert(insert(fg, 2), 3)" in CIntSet. By the coercion
property and the assumption that IntSet �II 0 Interval, there is some i23 2 AInterval

such that s23 R
0
Interval i23. Then by the substitution property, it would have to be true

that
chooseC(s23)R

0
Int choose

A(i23) (25)

Since C is maximally nondeterministic,

chooseC(s23) = f2; 3g: (26)

That is, both 2 and 3 are possible results. However, by the de�nition of satisfaction for
operations (De�nition 3.17), if �A(s) = i23, then for each r 2 chooseA(i23),

(A; �A[r=i]) j= i = leastElement(s): (27)

Thus, by the speci�cation of \leastElement", the only possible result is 2. By the V-
identical property, R0Int is the identity relation on the integers. So the possible result 3 of
chooseC(s23) is not related byR0Int to any possible result of choose

A(i23). Thus Formula 25
is false, and so R0 cannot be a simulation relation.

4.3 Discussion of Legal Subtype Relations

The de�nition of legal subtype relations says more than the intuition that \each object of
the subtype simulates some object of the supertype." The deep problem with this intuition

35

op choose(s:Crowd) returns(i:Int)
requires : isEmpty(s)
ensures i = choice(s)

Figure 18: Speci�cation of the choose operation of the type Crowd.

CrowdTrait: trait
imports IntSetTrait(eqCrowd for eqSet)
introduces

choice: C ! Int

Figure 19: The trait CrowdTrait.

is that it does not consider the behavior of two or more objects acting together. That is,
each of two objects of a subtype may simulate some object of a supertype, but it may be
that both of these supertype objects cannot appear in the same program at the same time.
Algebraically, the problem is that for some speci�cations there is no \best" algebraic model.

To see this, consider a type Crowd that is the same as IntSet, except that its choose
operation, when applied to a nonempty Crowd object, is required to be deterministic. That
is, choose applied to the Crowd containing 2 and 3 must return either 2 or 3; the choice
would have to be a function on the abstract values of Crowd objects, but the exact function
could vary from algebra to algebra. This can be speci�ed as in Figure 18. The post-
condition says that the result must be the same as the trait function \choice" applied to
the argument s. Since trait functions must be mathematical (i.e., deterministic) functions,
there can only be one possible result. The speci�cation of Crowd uses the trait CrowdTrait

(Figure 19), which simply adds the signature of the trait function \choice" to IntSetTrait.
Thus the abstract values of crowd objects are generated (by the trait functions \fg" and
\insert"). This means, for example, that there cannot be two di�erent abstract values that
contain just the integers 2 and 3, so that choose must really be a function on abstract
values.

Consider also another type that is like IntSet, the type PSchd of \priority schedulers."
The priority scheduler has \jobs" represented by integers, and a choose operation that
returns either the least or the greatest \job," depending on a \priority" that is set when
the scheduler is created. The speci�cation of PSchd is given in Figure 20. Abstractly, the
priority is represented as a pair whose �rst element is a boolean, and whose second is a set
of integers. The boolean \true" means that the choose operation should return the least
element. Figure 22 gives the details, using the shorthand notation for traits in which trait
functions that are not explicitly overloaded are de�ned by the coercion function \toCrowd."

Example 4.4 The subtype relation of the speci�cation Crowd + PSchd is not legal. That
is, PSchd is not a legal subtype of Crowd.

Proof Sketch: One might think that PSchd could be a legal subtype of Crowd, as the
speci�cation claims, because each PSchd simulates some Crowd object. However, a least-
�rst PSchd object, one with abstract value \[true, f2,3g]" simulates a Crowd object with

36

PSchd immutable type

subtype of Crowd by c simulates toCrowd(c)
class ops [new] instance ops [ins, elem, choose, size, remove, leastFirst]
based on sort C from PSchdTrait
op new(c:PSchdClass, b:Bool) returns(p:PSchd)

ensures p eqPSchd [b, fg]
op ins(p:PSchd, i:Int) returns(r:PSchd)

ensures (r eqPSchd insert(p, i))
op elem(p:PSchd, i:Int) returns(b:Bool)

ensures b = i 2 p
op choose(p:PSchd) returns(i:Int)

requires : isEmpty(p)
ensures i 2 p
^ (p.�rst) lowerBound?(p.second,i))
^ ((:p.�rst)) upperBound?(p.second,i))

op size(p:PSchd) returns(i:Int)
ensures i = size(p)

op remove(p:PSchd, i:Int) returns(r:PSchd)
ensures (r eqPSchd delete(p,i))

op leastFirst(p:PSchd) returns(b:Bool)
ensures b = p.�rst

Figure 20: Speci�cation of the priority scheduler type, PSchd.

OrderedIntSet: trait
imports IntSetTrait
assumes Ordered(Int)
introduces

lowerBound?, upperBound?: C, Int ! Bool
leastElement, greatestElement: C ! Int

asserts 8 s: C, i; j: Int
lowerBound?(fg,i) == true
lowerBound?(insert(s,j),i) == ((i � j) ^ lowerBound?(s,i))
upperBound?(fg,i) == true
upperBound?(insert(s,j),i) == ((i � j) ^ upperBound?(s,i))
leastElement(insert(s,j)) 2 insert(s,j)
lowerBound?(insert(s,j), leastElement(insert(s,j)))
greatestElement(insert(s,j)) 2 insert(s,j)
upperBound?(insert(s,j), greatestElement(insert(s,j)))

Figure 21: The trait OrderedIntSet, included by PSchdTrait.

37

PSchdTrait: trait
subtrait of CrowdTrait(Crowd for C) by toCrowd subsort C supersort Crowd
imports OrderedIntSet(Crowd for C)
C tuple of �rst: Bool, second: Set
introduces toCrowd: C ! Crowd

insert, delete: C,Int ! C
[, \: C,Crowd ! C
[, \: Crowd,C ! C
eqPSchd : C,C ! Bool

asserts 8 p, p2: C, s: Crowd, b: Bool, i; j: Int
toCrowd(p) == p.second
insert(p, i) == [p.�rst, insert(toCrowd(p), i)]
delete(p, i) == [p.�rst, delete(toCrowd(p), i)]
(p[s) == ([p.�rst, toCrowd(p) [s])
(s [p) == ([p.�rst, s [toCrowd(p)])
(p\ s) == ([p.�rst, toCrowd(p) \ s])
(s \ p) == ([p.�rst, s \ toCrowd(p)])
(p eqPSchd p2) == (p = p2)

Figure 22: The trait PSchdTrait, which includes the trait OrderedIntSet from Figure 21.

abstract value \f2,3g" in an algebra where choose returns the least element, 2. On the
other hand, a greatest-�rst PSchd object, one with abstract value \[false, f2,3g]" simulates a
Crowd object with abstract value \f2,3g", but in a necessarily di�erent algebra|one where
the choose operation returns the greatest element, 3. But by the de�nition of legal subtype
relations, all the objects in a given model of PSchd would have to simulate Crowd objects
in a single algebra. But to do so would violate the coercion property, as only one of \[true,
f2,3g]" and \[false, f2,3g]" can simulate a crowd object in a given algebra. So there cannot
be a simulation relation such that the method choose satis�es the substitution property.
So PSchd cannot be a legal subtype of Crowd [34, Section 4.1.2].

The above example shows the failing of the informal motto, \S is a subtype of T if every
object of type S acts like some object of type T," in the face of incomplete speci�cations.
The type Crowd is incompletely speci�ed, since the trait function \choice" and thus the
exact behavior of choose is left to implementations. The informal motto would say that
PSchd is a legal subtype of Crowd, but it is not. However, the reader may question whether
it is our formal de�nition that is at fault instead of the informal motto.

We argue that taking the informal motto at face value leads to a less expressive notion of
speci�cation. The problem is that the speci�er would not be able to say that all the types
and subtypes involved in the program must, together, \act as a single implementation."
That is, the reader of a speci�cation should be able to assume that all the objects that can
be used as objects of a given type, together satisfy the type speci�cation.

We believe that when one reads a type speci�cation, one takes the point of view of a
client. That is, one implicitly assumes that everything in a program that is involved in
implementing that speci�cation, taken as a whole, satis�es that speci�cation. If there are
separate code modules, that makes no di�erence from the point of view of one reading the
speci�cation. If there are subtypes, this also makes no di�erence, as we wish to reason

38

based on the speci�cation at hand, ignoring subtypes [38].5 For example, this allows one
to conclude that, because the choose operation is speci�ed to be deterministic on Crowd

abstract values, when one has two Crowd objects with abstract value \f2,3g", choose returns
the same integer when applied to each object. Thus if a program observes that a Crowd

object has two elements (by using size) and that it contains both 2 and 3 (by using elem)
then one can conclude that its abstract value is \f2,3g", and expect it to behave accordingly.

Technically, the speci�er states that there are not two distinct Crowd abstract values of
size 2 containing 2 and 3 by specifying in the trait CrowdTrait that the abstract values of
Crowd objects are generated6; i.e., there is \no junk" [7]. Our simulation relations preserve
a speci�cation of \no junk" because they must relate every element of a subtype to some
element of each supertype in one algebra. If the speci�er wants to allow junk, this can
be done by not saying that the abstract values are generated, which allows other abstract
values of the same sort to exist in a single algebra. So by restricting simulation so that it
relates all subtype abstract values to supertype abstract values in a single algebraic model,
our semantics allows either intention to be expressed. On the other hand, if the de�nition
of legal subtype relations allowed abstract values to simulate others in di�erent algebras,
then the intention of \no junk" would be impossible to express.

The above example also shows the di�erence between our models, which allow disjoint
carrier sets for subtypes, and models that require the carrier set of a supertype to include the
carrier set of each of its subtypes [8] [21]. Such models by their very nature cannot enforce
the restriction that a carrier set must be generated; that is, they always allow \junk" in
carrier sets. (The \junk" elements are the abstract values of subtype objects.) By not
allowing \junk" in carrier sets of types that are speci�ed to be generated, we can have
faithful models of incomplete speci�cations such as Crowd. Because we are forced to model
such generated carrier sets without junk, we are forced to allow models where the carrier
set of a subtype is not a subset of the carrier set for the supertype; that is, disjoint carrier
sets seem necessary to faithfully model speci�cations where the carrier sets are speci�ed to
be generated.

Example 4.5 Consider the type speci�cation LFPSchd (in Figure 23) of least-�rst priority
schedulers. The claimed subtype relationship of LFPSchd + Crowd, is not legal.

Proof Sketch: We will show that the speci�cation LFPSchd + Crowd does not have
a legal subtype relation. To do this, we construct an algebra, C, where the operation
choose returns the least element of a LFPSchd and the greatest element of a Crowd object;
thus C cannot simulate any model of the speci�cation. This construction might seem to
be prohibited by PSchdTrait, which, because it is a subtrait of CrowdTrait, forces the trait
function \choice" to do the same thing for a LFPSchd value and its image under the coercion
function \toCrowd". The trait function \choice" must do the same thing, but because
\choice" is not used in the speci�cation of LFPSchd's choose operation, the construction
still produces a (LFPSchd + Crowd)-algebra.

5The implementor may have good reasons for wanting multiple code modules to be used in an imple-
mentation [14], as in Smalltalk where the Boolean is implemented by 3 classes [22]. Our point is that these
techniques are of no more concern to a client than the data structures used to implement the speci�cation
[12].

6CrowdTrait speci�es that the abstract values are generated because it includes the trait IntSetTrait,
which includes the trait SetBasics from the LSL Handbook [26, Page 166], which has a generated by

clause.

39

LFPSchd immutable type

subtype of Crowd by c simulates toCrowd(c)
class ops [new] instance ops [ins, elem, choose, size, remove, leastFirst]
based on sort C from PSchdTrait
op new(c:LFPSchdClass) returns(p:LFPSchd)

ensures p eqPSchd [true, fg]
op ins(p:LFPSchd, i:Int) returns(r:LFPSchd)

ensures (r eqPSchd insert(p, i))
op elem(p:LFPSchd, i:Int) returns(b:Bool)

ensures b = i 2 p
op choose(p:LFPSchd) returns(i:Int)

requires : isEmpty(p)
ensures i 2 p ^ lowerBound?(p.second,i)

op size(p:LFPSchd) returns(i:Int)
ensures i = size(p)

op remove(p:LFPSchd, i:Int) returns(r:LFPSchd)
ensures (r eqPSchd delete(p,i))

op leastFirst(p:LFPSchd) returns(b:Bool)
ensures b = true

Figure 23: Speci�cation of the least-�rst priority scheduler type, LFPSchd.

Let C be a (LFPSchd + Crowd)-algebra, such that for all l 2 CLFPSchd, choice
C(l) =

greatestElementC(l), and for all c 2 CCrowd, if both 2 and 3 are in c (using 2 C), then
choiceC(c) = 3. This algebra satis�es the set of type speci�cations LFPSchd + Crowd,
because \choice(l) = choice(toCrowd(l))", and because there are no axioms governing the
trait function \choice". Note that this implies that chooseC returns the greatest element
of a Crowd in C.

Suppose, for the sake of contradiction, that there is some (LFPSchd + Crowd)-algebra
A and some simulation relation R0 between C and A. Let l 2 CLFPSchd be such that l has
size 2, and both 2 and 3 are in l (as determined by 2 C). Similarly let c 2 CCrowd be
such that c has size 2, and both 2 and 3 are in c.

By the coercion property, there is some c0 2 ACrowd, such that c R0Crowd c
0 and some

l0 2 ACrowd, such that l R0Crowd l
0. So by the substitution property it must be that in A,

both l0 and c0 contain 2 and 3 and have size 2. Since the abstract values of Crowd in an
algebra must be generated (according to CrowdTrait), it must be that c0 = l0. However, also
by the substitution property:

f2g = chooseC(l) = chooseA(l0) = chooseA(c0) = chooseC(c) = fchoiceC(c)g = f3g (28)

which is a contradiction.
Intuitively, the reason that LFPSchd is not a legal subtype of Crowd is that objects

of these types may have the same elements (thus look the same as Crowds), but di�er in
their response to the choose message. This can be observed in a program, and would be
surprising to someone who was using supertype abstraction (i.e., using the speci�cation
of Crowd) to reason about the program. For the same reason, the simulates clause in
Figure 23 does not give a simulation.

40

In view of the previous two examples we believe that a better informal motto for legal
subtyping is: \subtyping means no surprises" [40] [38] [35] [36]. The idea behind this motto
is that if one has a legal subtype relation, then a program cannot observe anything that
would not be expected based on the speci�cation of the supertypes. This is, we believe, the
ultimate justi�cation for a de�nition of \legal subtype relations". This justi�cation is the
purpose of the next two sections. The next section describes the programming language
LOAL, and Section 6 describes Hoare-style veri�cation for LOAL. In Section 6 we prove
that supertype abstraction is a sound reasoning principle for LOAL, which justi�es our
de�nition of legal subtype relations.

41

Example Kind of name

inBoth LOAL function identi�er
choose message name (ADT operation name)

Table 1: Font conventions for names in LOAL programs.

5 An Applicative Language

In this section we de�ne the programming language LOAL. The main purpose of LOAL is to
have a vehicle to demonstrate supertype abstraction in program veri�cation for an object-
oriented language with message passing and subtyping. To do that, we need a programming
language that can observe objects of immutable abstract types by message passing. We
formally de�ne the syntax and semantics of LOAL, show how to specify LOAL functions in
Larch/LOAL, and show that simulation relations are preserved by LOAL programs.

LOAL is an extension of the simply-typed, applicative-order lambda calculus. LOAL is
only half of an object-oriented language, since it does not have classes or other modules for
implementing abstract data types. This is in accord with our purpose for LOAL, which is to
manipulate the objects of existing abstract data types. Instead, a LOAL program is \linked"
to an algebra and computes over that algebra; that is, identi�ers in a LOAL program denote
elements of the carrier set of an algebra, and when the program needs the set of possible
results from a message send it consults that algebra. For example, in the LOAL functions of
Figure 2, s1 and s2 denote elements of some algebra's carrier set, and choose, remove, and
elem are evaluated by using the algebra's operations. So a LOAL program consists entirely
of client code that manipulates some abstract data types, as modeled by an algebra.

5.1 LOAL Concrete Syntax

The concrete syntax of LOAL is given by both Figures 24 and 25. The syntax uses fun
instead of �. The nonterminal htypei denotes a type symbol, such as IntSet. The nonter-
minal hmessage namei denotes a message name, such as choose. The syntax of hidenti�eris,
hconstantis, and hfunction identi�eris is left unspeci�ed. A message name is the name of an
operation of an abstract data type, which is used but not described in a LOAL program;
in contrast, a function identi�er comes from a recursive function de�nition given in the
preamble of a LOAL program. We use a slanted font for function identi�ers to distinguish
them from message names, e.g., inBoth vs. choose, because function identi�ers are stati-
cally bound to function denotations and message names are bound to the operations of an
algebra, which models dynamic binding. Table 1 summarizes these conventions.

5.2 Informal Overview of LOAL Semantics

A program consists of a set of mutually recursive function de�nitions, the only part shown
in Figure 2, followed by a hprog expri. The hprog expri declares the program's inputs and
the type of its result. A complete program is given in Figure 26. In this �gure, f is a
function identi�er, and choose is a message name. The type of a program's result must be
a visible type | either Bool or Int. The type of the result of the program in Figure 26 is
Int. The types of a program's arguments need not be visible. So one may think of a LOAL

42

hprogrami ::= hprog expri j hrec fun defi hprogrami
hprog expri ::= prog (hdeclsi) : htypei = hexpri
hdeclsi ::= hdecl listi j hemptyi
hdecl listi ::= hdecli j hdecl listi , hdecli
hdecli ::= hidentifieri : htypei
hemptyi ::=
hexpri ::= hidentifieri j bottom [htypei]

j hmessage namei (hexprsi) j hfunction identifieri (hexprsi)
j (hfunction abstracti) (hexprsi)
j if hexpri then hexpri else hexpri � j isDef? (hexpri)

hexprsi ::= hexpr listi j hemptyi
hexpr listi ::= hexpri j hexpr listi , hexpri
hfunction abstracti ::= fun (hdeclsi) hexpri
hrec fun defi ::= fun hfunction identifieri (hdecl listi) : htypei = hexpri ;

Figure 24: Abstract syntax of the programming language LOAL.

hdecli ::= hidentifier listi : htypei
hidentifier listi ::= hidentifieri j hidentifier listi , hidentifieri
hexpri ::= hconstanti j htypei j (hexpri)

Figure 25: Additional concrete syntax for LOAL (syntactic sugars).

fun f(x:Int): Int = add(x,x);

prog (s:IntSet): Int = f(choose(s)).

Figure 26: A LOAL program. This program shows the di�erence between LOAL's lazy
evaluation semantics and call by name.

43

program as an abstraction of the part of a \real" program that processes objects after they
have been constructed from the \real" program's input.

Following Smalltalk-80, there are class objects that are used to represent types at run-
time. Thus in the concrete syntax, a htypei is an hexpri. For example, one would write
null(IntSet) to create an empty IntSet object.

LOAL programs and functions may be nondeterministic, since the operations of an
abstract type may be nondeterministic. Although there are no facilities in LOAL itself for
introducing nondeterminism, the addition of such facilities does not invalidate the results
of this paper [34].

LOAL uses lazy evaluation for evaluating function arguments [56, Page 181] [4]. Because
of lazy evaluation, functions need not be strict. However, each actual parameter is only
evaluated once; hence formal parameters are not sources of nondeterminism. That is, if
a formal argument is mentioned twice in the body of a function abstract, the same value
will be substituted in each instance. The program in Figure 26 demonstrates the di�erence
between lazy evaluation and call-by-name. In LOAL, if that program is passed an IntSet

with value f0,1g, then it has as possible results both 0 and 2; a result of 1 is not possible.

Since LOAL functions are non-strict, the primitive isDef? is provided to allow one
to write strict functions. It has value true if its argument is de�ned, but has no result if
evaluation of its argument does not terminate.

For a given type T, the expression bottom[T] is an in�nite loop; it is used in giving a
semantics to recursive functions. The expression bottom[T] has type T.

5.3 Syntactic Sugars and Abstract Syntax

To simplify the formal semantics of LOAL, we use an abstract syntax for LOAL that restricts
both declaration lists and expressions. The abstract syntax for LOAL declaration lists and
expressions is presented in Figure 24. In the abstract syntax, class objects are denoted by
expressions of the form IntSet(); that is, we model the class objects with nullary message
names, and the concrete syntax null(IntSet), is considered sugar for the abstract syntax
null(IntSet()).

Constants are also modeled with message names, which take a class object as an argu-
ment. For example, the concrete syntax's true is considered sugar for the abstract syntax
true(Bool()).

Finally, a concrete syntax declaration such as f,s: Int is considered sugar for the
abstract syntax declaration list f: Int, s: Int.

In the following we present LOAL examples in the concrete syntax, but we only consider
the abstract syntax in the semantics and proofs.

5.4 Type Checking and Nominal Types

Type checking for LOAL is based on subtyping, using techniques from Reynolds's category
sorted algebras [53] [54]. Each type-safe expression is statically assigned a \nominal type",
determined from the information given in type speci�cations and program declarations.
Thus the nominal type of an expression is just the expression's static type; for example, the
nominal type of an identi�er is given in its declaration. Nominal types play a crucial role
in program veri�cation.

An expression's nominal type is an upper bound on the types of the objects it can denote.
That is, an expression with nominal type T can only denote an object whose type is a subtype

44

of T. For example, ins(s,3) has nominal type IntSet if s has nominal type IntSet, but
the expression may return an Interval (when s denotes an Interval that contains 3 at
run-time). The notion of an expression's nominal type is similar to Reynolds's notion of the
minimal type of an expression [53] [54]. Like Reynolds, each type-safe expression is given a
single nominal type. This is in contrast to type systems with a rule of subsumption, such
as Cardelli's [8], where expressions have multiple types. As with Reynolds's system, the
nominal type of an if expression is the least upper bound of the nominal types of the arms,
if the least upper bound exists. In Reynolds's system, there is a \nonsense" type that is a
supertype of all other types, but the LOAL type system has no such type.

To ensure that nominal types can be thought of as upper bounds and that message
names de�ned on supertypes may be applied to subtypes, ResSort must be monotone as
described in De�nition 3.1. For example, since the message name ins is de�ned for an
IntSet argument, it must also be de�ned for an Interval argument; furthermore, the
nominal result sort must be a subtype of IntSet.

The nominal type of an expression is de�ned recursively. At the base, the nominal type
of an identi�er is given in its declaration. The nominal type of a function call is given by
that function's declaration. To support subtype polymorphism, an actual argument may
have a nominal type that is a subtype of the corresponding formal argument's nominal
type, and thus the actual argument expressions may have nominal types that are subtypes
of the corresponding formal argument types. Similarly, the body of a function may have
a nominal type that is a subtype of the nominal result type of the function. The nominal
type of a message send is determined by the ResSort function, applied to the nominal types
determined (recursively) for the arguments.

Figure 27 shows the type inference rules for LOAL. These rules precisely de�ne the
nominal type of each LOAL expression. In the �gure, H is a type environment that maps
identi�ers to types and function identi�ers to nominal signatures. A type environment
H can be thought of as a set of type assumptions, which are the pairs of the mapping.
An assumption of the form x : T means that the identi�er x has nominal type T. The
same notational conventions are used as in Figure 16, with the following additions. An
assumption of the form f : ~S! T means that the function identi�er f has nominal signature
~S ! T. Note that the [prog] rule puts these assumptions for the program's system of
function de�nitions in the type environment. The notation � ` lub(S; U) = T means that
the least upper bound in �'s presumed subtype relation, �, of S and U exists and is equal
to T. The notation � ` ~� � ~S means that for each i, �i � Si, where � is the presumed
subtype relation of �.

The only rules that allow one to exploit the presumed subtype relation � are [mp], [fcall]
and [comb]. These rules allow the nominal type of an actual argument expression to be a
presumed subtype of the formal's type.

We can now make the following de�nitions formally.

De�nition 5.1 (nominal type, type safe) Let � be a signature. Let H be a type envi-
ronment.

A LOAL expression E has nominal type T with respect to � and H if and only if
�;H ` E : T.

The set of type safe LOAL expressions over � and H is the set of all LOAL expressions
E that have a nominal type with respect to � and H.

These de�nitions also apply to LOAL programs, but without any need to mention a

45

[ident] �;H; x : T ` x : T

[�dent] �;H; f : ~S! T ` f : ~S! T

[bot] �;H ` bottom[T] : T

[mp]
�;H ` ~E : ~�; ResSort(g; ~�) = T

�;H ` g(~E) : T

[fcall]
�;H ` f : ~S! T; �;H ` ~E : ~�; � ` ~� � ~S

�;H ` f(~E) : T

[comb]
H;~x : ~S ` E0 : T; �;H ` ~E : ~�; � ` ~� � ~S

�;H ` (fun (~x : ~S) E0) (~E) : T

[if]
�;H ` E1 : Bool; �;H ` E2 : S2; �;H ` E3 : S3; � ` lub(S2; S3) = T

�;H ` (if E1 then E2 else E3 fi) : T

[isDef]
�;H ` E : S

�;H ` isDef?(E) : Bool

[prog]

�; f1 : ~S1 ! T1; . . . ; fm : ~Sm ! Tm; ~x1 : ~S1 ` E1 : T1;
...

�; f1 : ~S1 ! T1; . . . ; fm : ~Sm ! Tm; ~xm : ~Sm ` Em : Tm;

�;~y : ~U; f1 : ~S1 ! T1; . . . ; fm : ~Sm ! Tm ` E : T;
T 2 V

� `

0
BBBB@

fun f1 (~x1 : ~S1):T1 = E1;
...

fun fm (~xm : ~Sm):Tm = E1;

program (~y : ~U):T = E

1
CCCCA : T

Figure 27: Type Inference Rules for LOAL

46

type environment.

5.5 Modularity of Type Checking

How is the nominal type of an expression a�ected by adding new types to a program? This
question is important for modularity of program veri�cation, since type checking is part of
the veri�cation process. Adding new types may change the nominal types of expression, but
if the new types are added in such a way as to make the original signature a subsignature
of the new signature, the new nominal types will only be subtypes of the original nominal
types. When the new nominal type is guaranteed to be a subtype of the original nominal
type, there can be no problem, as the type system always allows a subtype to be used in
place of a supertype. Hence there is no need to redo type-checking when adding new types,
if we can (as we do) prove that the new nominal type cannot grow larger (in the � ordering)
or become unde�ned.

How could such problems occur? One way that adding new types could cause an expres-
sion to cease to have a nominal type would be if the least upper bounds used to assign the
nominal type to an if-expressions no longer existed. That could happen if a new supertype
of an existing type were added to a program. The nominal type of an expression could grow
larger if one were to add a new subtype relationship, so that the least-upper bound used to
compute the nominal type of an if expression became larger than it was originally. Both
of these problems are prevented by requiring that the new types are added in such a way
as to make the original signature a subsignature of the new signature. Hence the following
lemma is the source of the restrictions in the de�nition of subsignature which prohibit relat-
ing previously unrelated types by �, and the restrictions on least upper bounds in �. The
restrictions on least upper bounds ensure that adding new types does not cause the least
upper bounds of expressions to become unde�ned or larger than expected in the original
signature.

Lemma 5.2 Let �0 and � be signatures. Let � be the subtype relation of �. Let H be a type
environment. Let TYPES 0 and TYPES be the type symbols of �0 and �. Let T 2 TYPES 0

be a type symbol. Let E be a LOAL expression.
If �0 is a subsignature of � and �0;H ` E : T, then there is some type S 2 TYPES such

that �;H ` E : S and S � T.

Proof: (by induction on the length of the proof of �0;H ` E : T).
Suppose that �0;H ` E : T.
For the basis, if the proof has one step, then it must consist of an instance of one of the

axiom schemes [ident] or [bot]. The conclusion then follows immediately.
Suppose that the proof of �0;H ` E : T takes n > 1 steps. The inductive hypothesis is

that if �0;H ` E1 : T1 is any step of the proof but the last, then there is some type S1 � T1
such that �;H ` E1 : S1. There are several cases.

� If the last step of the proof is an the conclusion of the rule [mp], then E has the form
g(~E). There must be earlier steps of the form �0;H ` ~E : ~� and �0 ` ResSort 0(g; ~�) =
T. By the inductive hypothesis, �;H ` ~E : ~�, where ~� � ~� . Since �0 is a subsignature
of �, ResSort(g; ~�) = T. By the monotonicity of ResSort , it follows that for some
S � T, � ` ResSort(g; ~�) = S.

� If the last step of the proof is an instance of [fcall] the conclusion follows as for the
previous case.

47

� If the last step of the proof is an instance of [comb] there must be earlier steps in
the proof of the form �0;H;~x : ~S ` E0 : T, �

0;H ` ~E : ~�, and �0 ` ~� �0 ~S. By the
inductive hypothesis, there is some type U � T such that �;H;~x : ~S ` E0 : U. By
the inductive hypothesis, there is some ~� � ~� such that �;H ` ~E : ~� . Since �0 is a
subsignature of �, ~� � ~S. Since � is transitive, ~� � ~S.

� If the last step of the proof is an instance of [if] there must be earlier steps in the
proof of the form: �0;H ` E1 : Bool, �0;H ` E2 : S02, �

0;H ` E3 : S03, and �0 `
lub(S02; S

0
3) = T. Since there can be no subtypes of Bool, by the inductive hypothesis,

�;H ` E1 : Bool. By the inductive hypothesis there are types S2 � S02 and S3 � S03
such that �;H ` E2 : S2 and �;H ` E3 : S3. Since �

0 is a subsignature of �, there is
a sort U � T that is a least upper bound for S2 and S3.

� If the last step of the proof is an instance of [isDef], then the result follows directly
from the inductive hypothesis.

5.6 LOAL Semantics

The meaning of a LOAL program is an observation, which is a mapping from an algebra-
environment pair to a set of possible results. The meaning is given for a particular signature,
which in this section we �x as � = (SORTS;TYPES;V ;�;TFUNS;MN ;ResSort). So
instead of writingM�[[E]], we will writeM[[E]], for the meaning of an expression E.

5.6.1 Semantics of LOAL Expressions

Formally,M[[E]] is a mapping that takes a �-algebra A, and a �-environment � : Y ! jAj
such that Y contains the free variables of E, and returns a set of possible results from jAj.
Figure 28 gives the type of M[[E]](A; �), and the denotation of each LOAL expression in
an algebra A and environment � : X ! jAj. For convenience, we assume that � also maps
typed function identi�ers to the denotations of recursively-de�ned LOAL functions. In the
�gure, each expression has as its denotation a set of possible results. For example, for each
type T, the only possible result of the expression bottom[T] is ?. In the denotations of g(~E)
and f(~E), if ~E is empty, thenM[[~E]](A; �) = fhig. So for example,M[[g()]](A; �) = gA():

5.6.2 Semantics of Recursive Function De�nitions

Since LOAL \functions" can be nondeterministic, for a given algebra a function de�nition's
denotation, written F [[f]](A), is a mapping that takes a tuple of arguments and returns
a set of possible results. However, this is not quite accurate, because in general systems
of LOAL functions can be mutually recursive, and so in general one must assign meaning
to the system as a whole, and extract the meaning of a particular function from it. The
notation F [[~F]]j stands for the denotation of the j-th function in the system ~F .

F [[~F]]j(A) : jAj
� ! PowerSet(jAj).

If the j-th function is named f , then the abbreviation F [[f]] means F [[~F]]j . For additional
clarity, we will often consider the j-th function to be named fj .

The semantics of a system of function de�nitions does not depend on the environment,
because in the body of a recursively de�ned LOAL function, there can be no free identi�ers

48

M[[E]](A; �) : PowerSet(jAj)

M[[x]](A; �)
def
= f�(x)g

M[[bottom[T]]](A; �)
def
= f?g

M[[g(~E)]](A; �)
def
=
S
~q2M[[~E]](A;�)

gA(~q)

M[[f(~E)]](A; �)
def
=
S
~q2M[[~E]](A;�)

(�(f))(~q)

M[[(fun (~x : ~S) E0)(~E)]](A; �)
def
=
S
~q2M[[~E]](A;�)M[[E0]](A; �[~q=~x])

M[[if E1 then E2 else E3 �]](A; �)
def
=
S
q2M[[E1]](A;�)

8><
>:
M[[E2]](A; �) if q = true
M[[E3]](A; �) if q = false
f?g otherwise

M[[isDef?(E)]](A; �)
def
=
S
q2M[[E]](A;�)

(
ftrueg if q 6= ?
f?g otherwise

Figure 28: The semantics of LOAL expressions.

or function identi�ers, besides those of the other recursively de�ned functions and the
function's formal arguments.

The semantics of systems of mutually recursive LOAL functions is given by a sequence
of approximations. Approximations are obtained by textually expanding recursive calls [4,
Page 20].

Fix an algebra A. Let

fun f1(~x1 : ~S1) : T1 = E1;
...

fun fm(~xm : ~Sm) : Tm = Em

be a mutually recursive system of LOAL function de�nitions.

De�nition 5.3 (unrolling family) A family D(j;i) of expressions is called an unrolling
family for the system of fj if and only if for each j, D(j;0) is Ej, and D(j;i+1) is D(j;i) with,

for all k, the function abstracts (fun (~xk : ~Sk) Ek) simultaneously substituted for the fk
throughout D(j;i).

The expression D(j;i+1) di�ers from D(j;i) in that one more level of recursion is unrolled.

As usual, an everywhere-? function is the �rst approximation to recursive invocations
in the unrolling family.

De�nition 5.4 (?j) For each j, ?j is a function abstract of the following form.

(fun (~xj : ~Sj) bottom[Tj])

The least upper bounds of sequences in v (see Section 3.1.4) of approximate results are
used to de�ne the meaning of a function for a given algebra.

De�nition 5.5 (sequence of approximate results) Given an unrolling family D(j;i), a
sequence of approximate results, Qj(A)(~q), is a sequence in v such that, if �(~xj) = ~q, then

49

the i-th element of the sequence is a possible result of the i-th unrolling of fj:

Qj(A)(~q)i 2M[[D(j;i)[~?=~f]]](A; �):

As Broy notes, there are such sequences in v because the language constructs (and each
operation of A) are monotonic and because D(j;i+1) is derived from D(j;i) by unrolling

another recursion. Note that D(j;i)[~?=~f] is recursion-free.
For each function index j, the set of all sequences is denoted DDj(A)(~q).

DDj(A)(~q)
def
= fQj(A)(~q) j Qj(A)(~q) is a sequence of approximate results for D(j;i)g (29)

The denotation F [[fj]] of a function de�nition is de�ned as follows.

F [[fj]](A)(~q)
def
= flub(Qj(A)(~q)) j Qj(A)(~q) 2 DDj(A)(~q)g (30)

That is, F [[fj]](A)(~q) is the set of all the least upper bounds of all sequences in v from
DDj(A)(~q).

5.6.3 Semantics of LOAL Programs

The notationM[[P]] is also used for the meaning of a program P , which is an observation.
To ensure that all possible results of a program have a visible type, we use the following
function:

Visible(q)
def
=

(
q if q 2 AT and T 2 V
? otherwise.

(31)

When carrier sets overlap, it may be that an element has both a visible type and a non-
visible type. According to the de�nition, if q 2 AT\AS and T is a visible type, but S is not,
then Visible(q) = q. The function Visible is extended pointwise to sets of possible results.

Consider the program: ~F ; prog (~x : ~S):T = E with a system of recursive function
de�nitions ~F and an expression E whose free identi�ers are in the set X = f~x : ~Sg declared
following prog. Let � : Y ! A be an environment such that X � Y . Then the meaning
of the program is the meaning of E in the environment � extended by the meaning of each
function in A, F [[~F]](A), to the function identi�ers ~f de�ned in ~F :

M[[~F ; prog (~x : ~S):T = E]](A; �)
def
= Visible(M[[E]](A; �[F [[~F]](A)=~f])).

5.7 LOAL Programs Obey the Subtype Relation

The following lemmas connect the LOAL semantics and its type system.
The �rst lemma says that a LOAL expression obeys the subtype relation (of the algebra

over which it computes), in the sense that its possible results all have a type that is a
subtype of the expression's nominal type.

Lemma 5.6 Let � be a signature. Let A be a �-algebra. Let ~F be system of mutually
recursive LOAL function de�nitions from a LOAL program that is type-safe with respect to
�. Let E be a LOAL expression whose set of free identi�ers is X . Let H be the type envi-
ronment appropriate for X . Let � : X ! jAj be a �-environment. Let �0 be �[F [[~F]](A)=~f].

If �;H ` E : T, then each possible result ofM[[E]](A; �0) has a type � � T.

50

hfunction speci�cationi ::= fun hnominal signaturei
requires hpre-conditioni
ensures hpost-conditioni

Figure 29: Syntax of Function Speci�cations.

Proof Sketch: If the expression does not involve function calls, the result can be shown
by induction on the structure of such expressions. For expressions that involve function
calls, each possible result may be ? or is the result of an expression that does not involve
function calls obtained by expanding the recursive calls as much as needed to compute the
result. Since ? is in each carrier set, the result also holds in that case.

The following lemma states that programs as a whole also obey the subtype relation.

Lemma 5.7 Let � be a signature. Let P be a LOAL program whose formal arguments are
~x : ~S. Let X = fx : Sg and let � : Y ! A be a �-environment such that X � Y .

If � ` P : T, then each possible result ofM[[P]](A; �) has a type � � T.

5.8 LOAL Function Speci�cations

Larch/LOAL interface speci�cations of LOAL functions are illustrated by the speci�cation
of inBoth in Figure 1. Function speci�cations are just like operation speci�cations (see
Section 2.5). That is, if the arguments satisfy the pre-condition, then the function must
terminate and each possible result must satisfy the post-condition. If the arguments do
not satisfy the pre-condition, the function may fail to terminate or give any result (of the
appropriate type). As in type speci�cations, the assertions in the pre- and post-conditions
must be subtype-constraining (see Section 3.2.2). Subtypes such as Interval are not men-
tioned, but may be passed as arguments and returned as results whenever the corresponding
supertype is mentioned.

The syntax of function speci�cations is given in Figure 29. Nonterminals not described
there are as in Figure 13.

An omitted pre-condition is syntactic sugar for \requires true".

We give semantics to LOAL function speci�cations in a \speci�cation environment" that
maps type names to type speci�cations.

De�nition 5.8 (base speci�cation set) The base speci�cation set of a function speci-
�cation is the set of all htype specis for the non-visible types mentioned, either directly or
indirectly, in the nominal signature of that function speci�cation.

For example, the base speci�cation set of inBoth includes IntSet but not Interval.

Recall that a LOAL function denotation is a curried function that takes an algebra as
an argument, and returns a function that takes a tuple of arguments from the carrier set of
that algebra, producing a set of objects in the carrier set of that algebra (representing the
set of possible results). Subsignatures are de�ned in De�nition 3.3.

51

fun is2in(s:IntSet) returns(b:Bool)
ensures b = (2 2 s)

Figure 30: The function speci�cation is2in.

De�nition 5.9 (satis�es for functions) Let Sf be a function speci�cation with the fol-
lowing form:

fun f(x1 : S1; . . . ; xn : Sn) returns(v : T)
requires R
ensures Q.

Let �0 be the signature of the base speci�cation set of Sf . Let SPEC be a set of type
speci�cations that includes the base speci�cation set and such that �0 is a subsignature of
SIG(SPEC). Let the subtype relation of SPEC be �. A function denotation f satis�es Sf

with respect to SPEC if and only if for all SPEC-algebras A, for all proper SIG(SPEC)-
environments �: fx1 : S1; . . . ; xn : Sng ! jAj, the following condition holds. If (A; �) j= R,
then for all possible results q 2 f(A)(�(~x)): q 6= ?, (A; �[q=v]) j= Q, and there is some
U 2 TYPES such that q 2 AU and U � T. Furthermore, whenever some argument to the
operation is ?, then the only possible result is ?.

Example 5.10 As an example of function satisfaction, consider the speci�cation of the
function is2in given in Figure 30. Let f2 be the following function denotation:

f2
def
= �A:�s:elemA(s; 2): (32)

Then f2 satis�es the speci�cation is2in given above with respect to II.

To see this, let C be an II-algebra, and let �C : fs : IntSetg ! jCj be a proper envi-
ronment. Then (C; �C) j= true, so the pre-condition is satis�ed. Let r 2 f2(C)(�C(s); 2) =
elemC(�C(s); 2) be a possible result. Then r is proper, has type Bool and by de�nition of
an II-algebra is such that

(C; �C[r=b]) j= b = (2 2 s): (33)

5.9 Simulation is Preserved by LOAL Programs

The following lemmas are used to show that simulation is preserved by LOAL programs,
not just by single invocations of program operations. This property is analogous to the
\fundamental theorem of logical relations" [59].

We show that simulation is preserved by all type-safe LOAL expressions in two steps.
The �rst step, Lemma 5.11, assumes that the denotations of LOAL functions are related by
a simulation relation (in a way described below), and shows that the possible results of an
expression preserve simulation. The second step, Lemma 5.15, justi�es the assumption used
to prove Lemma 5.11 by showing that the meaning of a function de�nition is appropriately
related in the related algebras. This proof technique is not circular, because in the proof of
Lemma 5.15, only expressions that do not involve function calls are used.

For a given algebra, the denotation of a LOAL function is a mapping from tuples of
arguments to sets of possible results. Such mappings are related by analogy to the de�nition

52

of logical relations [59] [49]. That is, if R is family of sorted relations, it is extended to the
signatures of LOAL function identi�ers as follows:

R~S!T
def
=
n
(f1; f2) j ~q R~S

~r) f1(~q)RT f2(~r)
o
: (34)

That is, for all f1 and f2, f1 is related by R~S!T
to f2 if and only if whenever ~qR~S

~r, then for
every q0 2 f1(~q), there is some r

0 2 f2(~r) such that q0RT r
0. Notice that this extension of R

preserves the substitution property of simulation relations. Since operations are not �rst-
class objects in LOAL, it is not necessary to show that this extension has all the properties
of a simulation relation at each function signature. (See [36] for such an extension and the
corresponding fundamental theorem of logical relations.)

To deal with LOAL expressions that have free function identi�ers, environments are
allowed to map typed function identi�ers to their denotations in the algebra that is the
environment's range (i.e., to set-valued functions).

For brevity throughout the rest of this section, �x a signature � and �-algebras C and
A. As usual � is such that:

� = (SORTS;TYPES ;V ;�;TFUNS;POPS ;ResSort):

Informally, the following lemma says that simulation is preserved by LOAL expressions
if it is preserved by each recursively de�ned function.

Lemma 5.11 Let X be a set of typed identi�ers and function identi�ers. Let �C : X ! jCj
and �A : X ! jAj be �-environments.

If R is a �-simulation relation between C and A and if �CR�A, then for all types T and
for all LOAL expressions E of nominal type T whose free identi�ers and function identi�ers
are a subset of X ,

M[[E]](C; �C)RTM[[E]](A; �A):

Proof: (by induction on the structure of expressions).
For the basis, suppose that the expression is either an identi�er or bottom[T]. If the ex-

pression is an identi�er, then the result follows from �CR�A. If the expression is bottom[T]
for some type T, then the result follows from the bistrictness of RT.

For the inductive step, assume that if �CR�A, then the denotation of each subexpression
of nominal type T in the environment �C is related by RT to the denotation of the same
subexpression in the environment �A. There are several cases (see Figure 24).

� Suppose the expression is g(~E). Since this expression has a nominal type, by the type
inference rules it must be that ~E : ~�, and ResSort(g; ~�) = T. Let ~q 2 M[[~E]](C; �C) be
given. By the inductive hypothesis, there is some ~r 2M[[~E]](A; �A) such that ~qR~� ~r.
Since ~q R~� ~r and R is a simulation relation, by the substitution property,

gC(~q)RT g
A(~r): (35)

Therefore, for each q 2 M[[g(~E)]](C; �C) there is some r 2 M[[g(~E)]](A; �A) such that
q RT r.

� Suppose the expression is f (~E) and f is a function identi�er with nominal signature
~S! T. Since this expression has a nominal type, by the type inference rules it must
be that ~E has nominal type ~� and ~� � ~S. Let ~q 2 M[[~E]](C; �C) be given. By the

53

inductive hypothesis, there is some ~r 2 M[[~E]](A; �A) such that ~q R~� ~r. Since ~� � ~S,
by the subsorting property of a �-simulation relation, R~� � R~S

, and so ~qR~S
~r. Since

�C R �A,
�C(f)R~S!T

�A(f); (36)

and thus
(�C(f))(~q)RT (�A(f))(~r): (37)

So, by de�nition of LOAL, for every possible result q 2 M[[f (~E)]](C; �C) there is some
r 2 M[[f (~E)]](A; �A) such that q RT r.

� Suppose the expression is (fun(~x : ~S)E0)(~E) and that the nominal type of the entire
expression is T. Let ~q 2 M[[~E]](C; �C) be given. By the inductive hypothesis, there is
some ~r 2 M[[~E]](A; �A) such that ~qR~� ~r, where ~� is the nominal type of ~E. Since the
expression has a nominal type, by the type inference rules for LOAL it must be that
~� � ~S; thus ~q R~S

~r. It follows that if one binds ~x to ~q in �C and ~x to ~r in �A, then
(�C[~q=~x])R (�A[~r=~x]); thus the result follows by the inductive hypothesis (applied to
E0).

� Suppose the expression is if E1 then E2 else E3 fi. Since Bool is a visible type
and R is V-identical, the possible results from E1 in �C are a subset of those possible
in �A. Therefore the result follows from the inductive hypothesis applied to E2 and
E3.

� If the expression is isDef?(E1), then the result follows directly from the inductive
hypothesis applied to E1 and the bistrictness of R.

The proof of the above lemma is the source of subsorting property required of simulation
relations. This property guarantees that expressions related at a subtype are also related
when a function call or a combination exploits subtype polymorphism. For example, if E
has nominal type S, S is a subtype of T, and the function identi�er f has nominal signature
T! U, then the expression f(E) is type-safe; furthermore, if the meanings of E in �C and
�A are related at type S and if the meanings of f are also related at T ! U, then by the
subsorting property the arguments are related at the nominal argument type T, and so the
results will be related at the nominal result type U.

To show that the substitution property holds for LOAL programs one needs to show
that simulation is preserved by recursively-de�ned LOAL functions.

To prove that, however, we need a technical result about LOAL functions and simulation
relations: that simulation is preserved by recursively-de�ned LOAL functions. Because the
semantics of systems of mutually recursive function de�nitions involve least upper bounds
of sequences, it is convenient to �rst show that simulation relations are strongly monotonic
and continuous. Recall that q1 < q2 means q1 v q2 and q1 6= q2.

De�nition 5.12 (strongly monotonic)

A binary relation RT between domains D1 and D2 is strongly monotonic if and only if for
all q1; q2 2 D1 and for all r1; r2 2 D2, whenever q1 < q2, q1RTr1, and q2RTr2, then r1 < r2.

This de�nition is illustrated in Figure 31. A family of relations R is strongly monotonic if
each RT is a strongly monotonic relation.

The following lemma says that each simulation relation is strongly monotonic. Recall
from Section 3.1.4 that all carrier sets are assumed to be at domains.

54

q1

q2

r1

r2

G

RT

RT RT

RT

G

q1

q2 r2

r1

GHH
��

Figure 31: Strong monotonicity of RT.

Lemma 5.13 If R is a �-simulation relation between C and A, then R is strongly mono-
tonic.

Proof: Let T be a sort. Suppose q1 < q2, q1 RT r1, and q2 RT r2. Since q1 < q2, q1 = ?
and q2 is proper. Since RT is bistrict, r1 = ? and r2 is proper. So r1 < r2.

The following lemma says that each simulation relation is continuous. A family of
relations is continuous if it is continuous at each type.

Lemma 5.14 If R is a �-simulation relation between C and A, then R is continuous.

Proof: Let T be a sort. Let Q be a sequence in v of elements of C. Let R be a sequence
in v of elements of A, indexed by the same set as Q, such that for all indexes i, qi RT ri.

If the only elements of Q are ?, then the only elements of R are ?, since RT is bistrict;
thus lub(Q) = ?RT ? = lub(R).

Otherwise, Q contains some proper elements, Since Q contains elements from a at
domain, there is some index j such that lub(Q) = qj 2 Q. Since RT is bistrict, R also
contains some proper elements and relates proper elements of Q to proper elements of R.
Hence rj is proper. Since R contains elements from a at domain, lub(R) = rj . Thus
lub(Q) = qj RT rj = lub(R).

The lemma below shows that the substitution property holds for recursively de�ned
functions.

Lemma 5.15 Let
fun f1(~x1 : ~S1) : T1 = E1;
...

fun fm(~xm : ~Sm) : Tm = Em

be a mutually recursive system of LOAL function de�nitions.
Suppose R is a �-simulation relation between �-algebras C and A Then for each j from

1 to m,
F [[fj]](C)R ~Sj!Tj

F [[fj]](A): (38)

Proof: Let k 2 f1; . . . ; mg be given. Let ~q 2 C ~Sk
and ~r 2 A ~Sk

be such that ~qR ~Sk
~r. Let

�C : f ~xk : ~Skg ! jCj and �A : f ~xk : ~Skg ! jAj be such that �C(~xk) = ~q and �A(~xk) = ~r. By
construction, �C R �A.

Let D(j;i) be an unrolling family, and let Qk(C)(~q) = hq̂ii be a sequence of approxima-
tions for D(j;i). Let DDk(C)(~q) denote the set of all such sequences Qk(C)(~q) in vC ; also
let DDk(A)(~r) be similarly de�ned to be the set of all such sequences Qk(A)(~r) = hr̂ii in
vA.

55

For each Qk(C)(~q) 2 DDk(C)(~q), there is some Qk(A)(~r) 2 DDk(A)(~r) such that for
all i,

q̂i RTk r̂i: (39)

Such a sequence hr̂ii can be found, because D(k;i)[~?=~f] is recursion-free, (thus Lemma 5.11
applies) and because R is strongly monotonic (by Lemma 5.13). Since RTk is a continuous
relation by Lemma 5.14, for such a Qk(A)(~r),

lub(Qk(C)(~q))RTj lub(Qk(A)(~r)): (40)

We can thus calculate as follows.

F [[fk]](C)(~q)
= hby de�nitioni

flub(Qk(C)(~q)) j Qk(C)(~q) 2 DDk(C)(~q)g
RTk hby the above, for all Qk(C)(~q) 2 DDk(C)(~q), there is some Qk(A)(~r) 2 DDk(A)(~r)i

flub(Qk(A)(~r)) j Qk(A)(~r) 2 DDk(A)(~r)g
= hby de�nitioni

F [[fk]](A)(~r)

The main result of this section is the following theorem, which says that simulation is
preserved by LOAL programs. In the study of the lambda calculus, this kind of theorem
is known as the fundamental theorem of logical relations [59] [49] [37]. Showing such a
theorem is another route to justifying the de�nition of legal subtype relations [34, Chapter
7] [37, Section 2.4], but one that is outside the scope of this paper. For the present paper,
the following serves as another con�rmation that our de�nition of simulation relations, on
which the de�nition of subtype relations is reasonable.

Theorem 5.16 Let � be a signature. Let � be the presumed subtype relation of �. Let C
and A be �-algebras.

If R is a �-simulation relation between C and A, then for all sets of typed identi�ers
X , for all environments �C : X ! C, and for all environments �A : X ! A, if �A R �A,
then for all type-safe LOAL programs, P ,

M[[P]](C; �C) �M[[P]](A; �A):

Proof: Suppose that R is a �-simulation relation between C and A. Let X = f~x : ~Ug
be a set of typed identi�ers and let �C : X ! C and �A : X ! A be such that �C R �A.
Let P be a type-safe LOAL program of the form:

fun f1 (~z1 : ~S1): T1 = E1;
...
fun fm (~zm : ~Sm): Tm = Em;

program (~x : ~U):T = E.

Let Z be the set of typed function identi�ers that contains the fj with their nominal sig-
natures. Let �0C : Z [X ! C and �0A : Z [X ! A be de�ned so that for all xi 2 X ,
�0C(xi) = �C(xi), �

0
A(xi) = �A(xi) and for all fj 2 Z, �0C(fj) is F [[fj]](C) and �0A(fj) is

F [[fj]](A).

56

By Lemma 5.15, �0C R �0A, since the denotations of recursively de�ned functions are
related by R. So by Lemma 5.11,

M[[E]](C; �0C)RTM[[E]](A; �0A): (41)

Recall that this means that for each q 2 M[[E]](C; �0C), there is some r 2 M[[E]](A; �0A) such
that q RT r. Since P is a program, the nominal type of E must be a visible type; that is,
T 2 V . By Lemma 5.7, each such q and r has type T. Since Visible is the identity on the
visible types,

M[[E]](C; �0C) = M[[P]](C; �C) (42)

M[[E]](A; �0A) = M[[P]](A; �A): (43)

Since R is V-identical, for each q 2 M[[P]](C; �C), there is some r 2 M[[P]](A; �A) such
that q = r; that is,

M[[P]](C; �C) �M[[P]](A; �A): (44)

57

6 Hoare-style Veri�cation for LOAL Programs

To verify a LOAL program that uses abstract data types, one reasons about expressions in
much the same way one would as if there were no subtyping and message passing. That is,
in veri�cation one uses the nominal (static) type of each identi�er and expression and the
speci�cation associated with each expression's nominal type.

Except for one proof rule that allows one to regard the type of an expression as a
supertype of its nominal type, subtyping does not enter into the veri�cation of a program
directly. That is, most parts of a program's proof of correctness are una�ected by subtypes,
and would be the same if LOAL did not have subtyping. However, the veri�er must also
prove that the speci�ed relation � is a legal subtype relation. We call this separation of
concerns supertype abstraction [38] [35], because during veri�cation one ignores the subtypes.

An unusual feature of LOAL veri�cation is that we use a Hoare logic, despite the ap-
plicative nature of LOAL programs. Equational logics, which are preferred for reasoning
about functional programs are di�cult to use for LOAL, because the operations of the
abstract data types can be nondeterministic. We also wanted to more easily adapt this
research to the veri�cation of imperative programs.

6.1 The Hoare Logic of LOAL Programs

Hoare-triples are written P fv : T Eg Q and consist of a pre-condition P , a result iden-
ti�er v, the result identi�er's type T, an expression E, and a post-condition Q. In an
applicative language, expressions have results but do not change the environment in which
they execute. So the post-condition describes the environment that would result from bind-
ing the result identi�er (v:T) to E's value, if the execution of E terminates. The type T

must be a supertype of E's nominal type. Intuitively, P fv : T Eg Q is true if whenever
P holds and the execution of E terminates, then the value of E satis�es Q. Note that these
are partial correctness triples. The name of the result identi�er can be chosen at will, but
cannot occur free in the pre-condition. Otherwise one might think that the execution of
E changes the binding of the result identi�er in the surrounding environment, whereas the
notation only shows what identi�er will be used to denote the possible results of E in the
post-condition.

In the following formal de�nition, the notation SIG(FSPEC) means a type environment
that maps each function identi�er in the set of function speci�cations FSPEC to their nom-
inal types. The pair (SPEC ;FSPEC) consists of a set of type speci�cations, SPEC , and
a set of LOAL function speci�cations FSPEC . It is necessary to keep track of these spec-
i�cations so that one can study the modularity of veri�cation formally. In many examples
below we use the pair (II; inBoth), where II is as in Example 2.1, and inBoth stands for the
function speci�cation of Figure 1.

De�nition 6.1 (Hoare-triple) Let (SPEC ;FSPEC) be a pair of type and function speci-
�cation sets. Let T be a type symbol of SIG(SPEC). Let � be the presumed subtype relation
of SIG(SPEC). Let E be a LOAL expression. Let H be a set of type assumptions that
includes SIG(FSPEC) and whose domain includes each free identi�er in E.

Then the formula P fy : T Eg Q is a Hoare-triple for (SPEC ;FSPEC) if and only
if y : T does not occur free in P , there is some type S � T such that SIG(SPEC);H `
E : S, P and Q are SIG(SPEC)-assertions such that SIG(SPEC);H ` P : Bool and
SIG(SPEC);H; y : T ` Q : Bool.

58

[ident] (SPEC ;FSPEC) ` true fv : T xg v = x x : T

[bot] (SPEC ;FSPEC) ` true fv : T bottom[T]g false

[isDef] (SPEC ;FSPEC) ` true fy : Bool isDef?(E)g y = true

[mp] (SPEC ;FSPEC) ` Pre(g;~S) fy : T g(~x)g Post(g;~S)
Formals(g;~S) = ~x : ~S; y : T

Pre(g;~S) sub.-con.

Post(g;~S) sub.-con.

[fcall] (SPEC ;FSPEC) ` Pre(f ;~S) fy : T f(~x)g Post(f ;~S)
Formals(f ;~S) = ~x : ~S; y : T

Pre(f ;~S) sub.-con.

Post(f ;~S) sub.-con.

Figure 32: Axiom Schemes for veri�cation of LOAL Expressions.

The phrase \for (SPEC ;FSPEC)" is omitted when clear from context. The type of the
result identi�er is sometimes also omitted.

Figures 32 and 33 summarize the axioms and inference rules for LOAL expressions.
In these �gures P , Q, and R are assertions, M is a term, and E, E1, and so on are
LOAL expressions. The notation E[~z=~x] means the expression E with the zi simultaneously
replacing all free occurrences of the xi. The notation (SPEC ;FSPEC) ` H , where H is
a Hoare-triple, means that one can prove H using the proof rules, including the traits of
SPEC and speci�cations of (SPEC ;FSPEC). The notation SPEC ` Q means that the
formula Q is provable from the traits of SPEC . The writing of one or more triples over
another, as in the [call] and [conseq] rules, means that to prove the triple on the bottom, it
su�ces to prove the triples on the top. The name of a rule appears to its left. To the right
of some of the rules are conditions on types and identi�ers.

� The notation Formals(g;~S) = ~x : ~S; y : T means that the formal arguments of the
relevant operation speci�cation of g are ~x : ~S (that is, a list x1 : S1; . . .) and the formal
result is y : T. The same notation is used for LOAL functions.

� The notation Pre(g;~S) means the pre-condition of the operation speci�cation from
SPEC named g with nominal signature ~S ! T, where T = ResSort(g;~S). A set
of type speci�cations (SPEC) must have at most one such operation speci�cation.
Similarly, Post(g;~S) is the post-condition of the operation speci�cation with nominal
signature ~S! T. The same notation is used for LOAL functions.

� The conditions of some rules require assertions to be subtype-constraining, abbrevi-
ated by \sub.-con."

� An identi�er is fresh if it is not in the set of free identi�ers of either the desired pre-
condition or the desired post-condition of the rule. Identi�ers are required to be fresh
to avoid name capture problems.

� The notation y 62 ~x for the [comb] rule means that the result identi�er y must not be
one of the xi. This is also necessary to avoid capture problems.

59

[rename]
(SPEC ;FSPEC) ` P [~z=~x] fy : T[~z=~x] E[~z=~x]g Q[~z=~x]

(SPEC ;FSPEC) ` P fy : T Eg Q

~x : ~S;
~z : ~S fresh

[call]
(SPEC ;FSPEC) ` P

n
y : T (fun (~x : ~S) g(~x)) (~E)

o
Q

(SPEC ;FSPEC) ` P
n
y : T g(~E)

o
Q

~E : ~�;
~� � ~S

[comb]

(SPEC ;FSPEC) ` R1 ^ � � � ^ Rn fy : T E0g Q;
(SPEC ;FSPEC) ` P fx1 : S1 E1g R1;

...
(SPEC ;FSPEC) ` P fxn : Sn Eng Rn

(SPEC ;FSPEC) ` P
n
y : T (fun (~x : ~S) E0) (E1; . . . ; En)

o
Q

~x fresh,
y 62 ~x

[up]
(SPEC ;FSPEC) ` P fv : S Eg Q[v=x]
(SPEC ;FSPEC) ` P fx : T Eg Q

v fresh, S � T,
E : �, � � S,
Q sub.-con.

[conseq]

SPEC ` P) P1;

(SPEC ;FSPEC) ` P1 fy : T Eg Q1;
SPEC ` Q1) Q

(SPEC ;FSPEC) ` P fy : T Eg Q

P ,P1,Q1,Q
sub.-con.

[carry]
(SPEC ;FSPEC) ` P fy : T Eg Q

(SPEC ;FSPEC) ` P fy : T Eg P ^ Q

[equal]
(SPEC ;FSPEC) ` P fy : T Eg y = N

(SPEC ;FSPEC) ` P fy : T Eg M [y=z] = M [N=z]
z : T

[if]

(SPEC ;FSPEC) ` P ^R1 fv : Bool E1g v = true;
(SPEC ;FSPEC) ` P ^ R1 fy : T E2g Q;

(SPEC ;FSPEC) ` P ^ R2 fv : Bool E1g v = false;
(SPEC ;FSPEC) ` P ^ R2 fy : T E3g Q;
(SPEC ;FSPEC) ` P ^ R3 fy : T E2g Q;

(SPEC ;FSPEC) ` P ^ R3 fy : T E3g Q;
SPEC ` (R1 _ R2 _R3) = true

(SPEC ;FSPEC) ` P fy : T if E1 then E2 else E3 �g Q

Figure 33: Inference rules for veri�cation of LOAL expressions.

60

As usual, the speci�cations of each type's operations and the speci�cations of the LOAL
functions are taken as axioms. The instance of the axiom scheme [mp] used for a particular
message send is determined by the nominal types of the message send's arguments. Such
static overloading resolution is the only choice for veri�cation, even for programs that use
dynamic binding, because veri�cation should be possible before the program runs.

The axiom schemes [mp] and [fcall] are derived from the speci�cations of operations and
LOAL functions (respectively). For example, the following are two instances of the axiom
scheme [mp] for the message name choose: the �rst from the speci�cation of type IntSet,
the second from the speci�cation of the type Interval.

(II; inBoth) ` :isEmpty(s) fi : Int choose(s)g i 2 s (45)

(II; inBoth) ` true fi : Int choose(s)g i = leastElement(s): (46)

In the �rst, the type of s is IntSet, and in the second it is Interval. Similarly, the following
is an instance of the axiom scheme [fcall] for the function name inBoth:

(II; inBoth) ` :(isEmpty(s1\s2)) fi : Int inBoth(s1,s2)g (i 2 s1) ^ (i 2 s2): (47)

As they stand, these axioms only apply when the actual argument expressions and the
result identi�er are the same as the formals used in the speci�cations; i.e., they are the
same identi�er. To reason about message passing and operations in more general situations
one uses the inference rules [call], [comb], [up] and [rename].

Renaming of identi�ers without changing their types is handled by the inference rule
[rename]. For example, if s1 has nominal type IntSet, then the proof of

(II; inBoth) ` :isEmpty(s1) fj : Int choose(s1)g j 2 s1 (48)

follows directly from Formula (45), since one can replace s for s1 and i for j in the above
to obtain that axiom.

To reason about function calls or message passing expressions whose argument expres-
sions are not identi�ers, one �rst uses the inference rule [call], to convert the expression into
a combination (the applications of a function abstract), and then uses the rule [comb] to
deal with the combination. For example, to prove the following

(II; ;) ` true fr : IntSet ins(null(IntSet),3)g r eqSet f3g (49)

it su�ces to prove the following triple (which is displayed vertically).

(II; ;) `
true
fr (fun (s:IntSet,i:Int) ins(s,i)) (null(IntSet), 3)g
r eqSet f3g

(50)

The combination in Formula 50 is proved by using the rule [comb]. To ensure the proper
scope for the formal of the function abstract (the xi in the rule for [comb]), in general one
�rst must use the rule [rename] to hide any bindings of the xi in the outer scope before
using [comb]. The Ri in the [comb] rule are chosen so that they characterize the argument
values and so that their conjunction is su�cient to prove the desired post-condition, Q,
from the body of the function abstract. For example, to prove Formula (50), it su�ces to
prove the following triples

(II; ;) ` (s eqSet fg) ^ (i = 3) fr ins(s; i)g r eqSet f3g (51)

(II; ;) ` true fs null(IntSet)g s eqSet fg (52)

(II; ;) ` true fi 3g i = 3: (53)

61

The rule [up] is similar to the rule [rename], except that in [up] only the result identi�er
can be changed, and one can change not just its name, but also its type. For example, to
show

(II; inBoth) ` true fs2 : IntSet create(Interval,2,5)g s2 eqSet [2; 5] (54)

it su�ces to show the following

(II; inBoth) ` true fiv : Interval create(Interval,2,5)g iv eqSet [2; 5]: (55)

Recall that the trait function \eqSet" is de�ned for combinations of IntSet and Interval

arguments. So both triples make sense. The reason why Formula (54) follows from For-
mula (55) is because whenever the assertion \iv eqSet [2,5]" holds, and s2 denotes the
same abstract value as iv, then \s2 eqSet [2,5]" holds. The [up] rule allows one to view an
object of a subtype, iv : Interval, at a more abstract level, as an object of a supertype,
s2 : IntSet.

There are two reasons why the [up] rule is valid in general. The �rst is that all trait
functions de�ned on a supertype must also be de�ned for the subtype. Hence the [up]
rule in e�ect requires that the desired post-condition, Q, is expressible in the language of
the supertype; that is, so that Q sort checks with x : T. Since Q has a nominal sort in
an environment where x : T is a type assumption, the assertion Q[v=x] will sort-check if
Q is subtype-constraining, v : S, and S � T. To see why Q must be subtype-constraining,
consider the following example. Suppose iv : Interval and Q is \iv = [3,3]". Then Q
sort-checks, but if s2 : IntSet, then Q[s2=iv], which is \s2 = [3,3]", does not. However,
such syntactic restrictions are not enough, and there are further restrictions placed on
legal subtype relations to ensure that whenever Q[v=x] holds and v and x denote the same
abstract value, then Q holds as well.

If an assertion about a subtype object is not expressed using the trait functions of the
supertype, then one must use the rule of consequence, [conseq], to rewrite it. The rule
[conseq] is restricted in this Hoare logic in that the assertions involved must be subtype-
constraining. This restriction is necessary, because identi�ers may denote objects of a
subtype of their nominal type. The following example shows why the restriction is needed.
Consider the implication

((size(s) = 1) ^ (3 2 s))) (s = f3g); (56)

where s has nominal type IntSet. This implication can be proved from the axioms of the
trait IntSetTrait, which means that if s denotes an IntSet, then the implication is valid.
However, it is not valid if s denotes the Interval with abstract value [3,3], because [3,3]
and f3g may be distinct abstract values. The fallacies that could arise because such of
implications, those that appear to be true but do not work in the presence of subtyping, are
avoided in this example by using \eqSet" instead of the second \=" to obtain a subtype-
constraining assertion. Thus, in general subtype constraining assertions are necessary for
the validity of the [conseq] rule.

An example of the use of [conseq] is the following. From the formulas

II ` ((s eqSet fg) ^ (i = 3))) true (57)

(II; ;) ` true fr ins(s; i)g r eqSet (s[fig) (58)

II ` (r eqSet (s [fig))) (r eqSet (s[fig)) (59)

62

one can conclude

(II; ;) ` (s eqSet fg) ^ (i = 3) fr ins(s; i)g r eqSet (s [fig) (60)

In later examples we omit trivial implications like Formula (59).

If we wish to prove Formula (51), we can use Formula (60), but must somehow get
the assertion i = 3 into the right hand side. Since LOAL does not have side-e�ects, the
expression execution cannot invalidate the assertion i = 3. So in the Hoare logic, the rule
[carry] allows one to carry the pre-condition into the post-condition. For example, from
Formula (51), one can conclude that

(s eqSet fg) ^ (i = 3) fr ins(s; i)g r eqSet (s[fig) ^ (s eqSet fg) ^ (i = 3): (61)

Formula (51) then follows by the rule [conseq].

The other rules of the logic are fairly straightforward and their peculiarities have more to
do with using a partial correctness Hoare-logic to reason about nondeterministic expressions
than with subtyping and message passing. The inference rule [equal] allows one to draw
conclusions from equations in post-conditions; this ability is sometimes needed to weaken a
post-condition that results from using the [ident] rule to one that is subtype constraining,
because the rule [conseq] only permits one to use subtype-constraining assertions. See [34]
for details of the other rules.

6.2 Veri�cation Examples

Example 6.2 The way that the logic handles explicit use of subtyping is shown by the proof
of the formula:

(II; inBoth) ` (s eqSet f3g) ^ (iv eqSet [2; 5]) fi : Int inBoth(s,iv)g i = 3 (62)

where II is as in Example 2.1, s has nominal type IntSet, and iv has nominal type
Interval.

Both type speci�cations are used in the veri�cation below, because the type Interval
is used explicitly. In the proof below and in other such veri�cations, we work \backwards",
that is, from the formula to be proved to the axioms.

Proof: Since the second argument expression (iv) has a di�erent nominal type from the
formal speci�ed for inBoth, the rule [call] is used �rst to obtain the following goal triple.

(II; inBoth) `
(s eqSet f3g) ^ (iv eqSet [2; 5])
fi (fun (s1,s2:IntSet) inBoth(s1,s2)) (s,iv)g
i = 3

(63)

The rule [comb] then gives the following subgoals:

(II; inBoth) ` (s1 eqSet f3g) ^ (s2 eqSet [2; 5]) fi inBoth(s1,s2)g i = 3 (64)

(II; inBoth) ` (s eqSet f3g) ^ (iv eqSet [2; 5]) fs1 sg s1 eqSet f3g (65)

(II; inBoth) `
(s eqSet f3g) ^ (iv eqSet [2; 5])
fs2 : IntSet ivg
s2 eqSet [2; 5]

(66)

63

The proof of the third subgoal is the most interesting of the three subgoals. The rule
[up] is used to generate the following goal

(II; inBoth) ` (s eqSet f3g) ^ (iv eqSet [2; 5]) fiv2 : Interval ivg iv2 eqSet [2; 5]
(67)

By the traits of II, the post-condition follows from the precondition conjoined with \iv2
eqSet iv"

(s eqSet f3g) ^ (iv eqSet [2; 5]) ^ (iv2 eqSet iv)) (iv2 eqSet [2; 5]) (68)

so by the rule [conseq] it su�ces to prove Formula (67) with the antecedent in the above
implication substituted for the post-condition. Using the rule [carry] \backwards", the
conjunction of the pre-condition can be dropped from the post-condition, so it su�ces to
prove the following.

(II; inBoth) ` (s eqSet f3g) ^ (iv eqSet [2; 5]) fiv2 : Interval ivg iv2 eqSet iv (69)

By the traits of II

II ` ((s eqSet f3g) ^ (iv eqSet [2; 5]))) true (70)

so by the rule [conseq], it su�ces to prove the following.

(II; inBoth) ` true fiv2 : Interval ivg iv2 eqSet iv (71)

By the traits of II

II ` iv2 eqSet iv = iv eqSet iv) iv2 eqSet iv (72)

since \iv eqSet iv" is identically \true". So by the inference rule [conseq] it su�ces to
prove

(II; inBoth) ` true fiv2 : Interval ivg iv2 eqSet iv = iv eqSet iv (73)

By the inference rule [equal], with M as \z eqSet iv", it su�ces to prove the following.

(II; inBoth) ` true fiv2 : Interval ivg iv2 = iv (74)

which is an instance of the axiom scheme [ident].
The second subgoal, Formula (65), follows in the same way as the third subgoal, except

that [up] need not be used.
The �rst subgoal follows from the axiom [fcall] for inBoth and the subgoal's pre-condition.

The key observation is that, by the traits of II,

II ` ((i 2 s1)^ (i 2 s2)^ (s1 eqSet f3g) ^ (s2 eqSet [2; 5]))) (i = 3) (75)

so by the rule [conseq] it su�ces to prove the �rst subgoal with the antecedent of the above
implication replacing the post-condition.

The method for verifying the partial correctness of an entire program is \divide and
conquer"; �rst one speci�es and veri�es the function de�nitions that appear in the program.
Then one uses the Hoare logic to prove the desired Hoare-triple, using the speci�cations of
the recursively de�ned functions as axioms.

64

fun testFor(i:Int, s1,s2: IntSet) returns(j:Int)
requires (i 2 s1) ^ (:(isEmpty(s1 \ s2)))
ensures (j 2 s1) ^ (j 2 s2)

Figure 34: Speci�cation of the function testFor.

To verify the partial correctness of a system of LOAL function de�nitions, one shows
that for each function f ,

(SPEC ;FSPEC) ` Pre(f ;~S) fy : T Eg Post(f ;~S)

follows from the proof rules, where E is the body of f , y : T is the formal result identi�er from
the speci�cation of f , Pre(f ;~S) is the pre-condition from the speci�cation of f in FSPEC ,
and Post(f ;~S) is its post-condition. During this proof one can use the axiom scheme [fcall],
which assumes that each recursively de�ned function is partially correct. It is beyond the
scope of this paper to provide a formal method for verifying termination.

As an example of recursive function veri�cation, we verify the partial correctness of the
implementation of inBoth given in Figure 2 against the speci�cation given in Figure 1.

Since inBoth calls the function testFor, it is necessary to specify testFor as well. The
speci�cation of testFor is given in Figure 34.

During the veri�cation of inBoth the speci�cation of testFor is used as an axiom, to
establish its partial correctness. The veri�cations use the type speci�cation IntSet, since
that is the only non-visible type mentioned. This shows how the proof system is modular:
the type Interval does not even enter into the proof.

Example 6.3 The implementation of inBoth is partially correct, that is:

(IntSet; testFor) `
:(isEmpty(s1\ s2))
fi testFor(choose(s1), s1, s2)g
(i 2 s1) ^ (i 2 s2)

: (76)

Proof: To avoid name clashes with the result identi�er and the formals of testFor, the
rule [rename] is used to generate the following goal.

(IntSet; testFor) `
:(isEmpty(t1 \ t2))
fj testFor(choose(t1), t1, t2)g
(j 2 t1) ^ (j 2 t2)

(77)

Since the expression in question is a function call, one must use the rule [call]. This gives
a goal with the same pre- and post-conditions as above, but whose expression is:

(fun (i:Int,s1,s2:IntSet) testFor(i,s1,s2)) (choose(t1), t1, t2).

Since the expression above is a combination, the [comb] rule is used to give the following
subgoals:

(IntSet; testFor) ` R1 ^R2 ^R3 fj testFor(i,s1,s2)g (j 2 t1) ^ (j 2 t2)(78)

(IntSet; testFor) ` :(isEmpty(t1 \ t2)) fi choose(t1)g i 2 t1 (79)

65

(IntSet; testFor) `
:(isEmpty(t1 \ t2))
fs1 t1g
(s1 eqSet t1) ^ (:(isEmpty(s1\ t2)))

(80)

(IntSet; testFor) `
:(isEmpty(t1 \ t2))
fs2 t2g
(s2 eqSet t2) ^ (:(isEmpty(t1\ s2)))

; (81)

where the subtype-constraining Ri are:

R1 = (i 2 t1)

R2 = ((s1 eqSet t1) ^ (:(isEmpty(s1\ t2))))

R3 = ((s2 eqSet t2) ^ (:(isEmpty(t1\ s2)))):

The �rst subgoal is shown as follows. By the traits of IntSet, if follows that

IntSet ` (j 2 s1)^ (j 2 s2)^ R1 ^ R2 ^R3) (j 2 t1) ^ (j 2 t2): (82)

So by [conseq], it su�ces to prove the following.

(IntSet; testFor) `
R1 ^R2 ^R3

fj testFor(i,s1,s2)g
(j 2 s1) ^ (j 2 s2) ^ R1 ^R2 ^R3

(83)

By the rule [carry], it su�ces to prove the above with the conjunct R1 ^ R2 ^ R3 dropped
from the post-condition. By the traits of IntSet, one can prove the following:

IntSet ` (R1 ^R2 ^ R3)) ((i 2 s1) ^ (:(isEmpty(s1 \ s2)))); (84)

where the right-hand side of the implication is the pre-condition of testFor. So by [conseq]
it su�ces to prove

(IntSet; testFor) `
((i 2 s1) ^ (:(isEmpty(s1 \ s2))))
fj testFor(i,s1,s2)g
(j 2 s1) ^ (j 2 s2)

(85)

which is the axiom [fcall] for testFor.
The second subgoal is shown by using [conseq] and the following formula,

IntSet ` :(isEmpty(t1\ t2))) :(isEmpty(t1)) (86)

along with the rules [rename] and the [mp] axiom for choose.
The third and fourth subgoals follow from the rules [conseq], [equal] and the axiom

[ident].
The veri�cation of the implementation of testFor (in Figure 2) is left as a (long, but

straightforward) exercise for the reader.

6.3 Formal Semantics of Hoare-Triples

The model theory which we will use to prove the soundness of the Hoare logic is simple,
given all the machinery we have already assembled. In this section we present the model
theory of Hoare triples, by de�ning when they are modeled by an algebra-environment pair

66

with an extended environment, and when they are valid. The extension to the environment
of an algebra-environment pair, maps function names to their denotations. These function
denotations are models of the assumed function speci�cations.

The formal de�nition of the semantics of a Hoare-triple is similar to the de�nition of
when a method or LOAL function satis�es its speci�cation, but allows non-termination.

De�nition 6.4 (models) Let (SPEC ;FSPEC) be a pair of type and function speci�cation
sets. Let P fv : T Eg Q be a Hoare-triple for (SPEC ;FSPEC). Let X be a set of free
identi�ers that contains all the free identi�ers of P , E, and Q except v : T. Let A be a
SPEC-algebra, and let � : X ! jAj be a proper SIG(SPEC)-environment. For each f in the
domain of SIG(FSPEC), let F [[f]] be a function denotation with signature SIG(FSPEC)(f).

Let �0
def
= �[F [[~f]](A)=~f]

Then (A; �0) models P fv : T Eg Q, written (A; �0) j= P fv : T Eg Q, if and only
if whenever (A; �) j= P , then for all possible results r 2 M[[E]](A; �0), if r is proper then
(A; �[r=v]) j= Q and there is some type S such that r 2 SA and S � T.

Using the above de�nition, one can de�ne when a Hoare-triple is valid. Note that to be
valid a Hoare-triple for (SPEC ;FSPEC) has to be modeled not just by algebra-environment
pairs that include all SPEC -algebras, but all extended environments in which the meaning
of each function that satis�es FSPEC is included.

De�nition 6.5 (valid) The Hoare-triple P fv : T Eg Q is valid for (SPEC ;FSPEC),
written (SPEC ;FSPEC) j= P fv : T Eg Q, if and only if for all SPEC-algebras A, for
all proper SIG(SPEC)-environments, � : X ! jAj such that X contains the free identi�ers
of P , E, and Q except v : T, and for all extensions �0 of � that bind each free function
identi�er f of E to F [[f]](A), where F [[f]] is a denotation that satis�es the speci�cation of f
in FSPEC with respect to SPEC, (A; �0) j= P fv : T Eg Q.

6.4 Soundness Results

The major result in this subsection is a proof that the Hoare Logic for verifying the partial
correctness of LOAL programs is sound. That is, we prove that the logic reaches valid
conclusions when the speci�cation's � relation is a legal subtype relation. The soundness
of the Hoare logic justi�es our de�nition of legal subtype relations. Put another way, the
reason we care about the soundness of the Hoare logic is that we want a de�nition of legal
subtype relations that makes our style of modular veri�cation work [38].

Completeness, the converse of soundness, is beyond the scope of this paper.

Informally, the soundness of the veri�cation method rests on the syntactic restrictions
on sets of type speci�cations, semantic restrictions, on both legal subtype relations and
simulation relations, and the following technical results:

� If for some type T, qRT r, then a subtype-constraining assertion P characterizing the
value of x : T holds when x is bound to q if and only if P holds when x is bound
to r (Lemma 3.23). This property is ensured by semantic restrictions on R and is
important for the soundness of the rule [mp].

� An expression of nominal type T can only denote objects of a type S � T (Lemma 5.6).
This is ensured by type checking and the syntactic restrictions on type speci�cations.

67

� The soundness of the veri�cation rule [up], which is ensured by dynamic overloading
of trait functions (Lemma 6.7). (Type-checking for the [up] rule also depends on
restricting the post-condition to be subtype-constraining.)

� Subtype-constraining assertions that can be proved from the traits used in a type
speci�cation remain valid when an identi�er x is allowed to refer to the values of a
subtype of the nominal type of x (Lemma 6.9). For example, the implication

size(s) = 1^ (1 2 s)) (s eqSet f1g); (87)

is valid even if the value of s is an Interval. This is ensured by semantic restrictions
on legal subtype relations; it is important for the soundness of the rule [conseq].

After showing the remaining lemmas, we proceed to the main soundness result.

6.4.1 Assertions can be Lifted

It is crucial to the soundness of the [up] rule that when an assertion is true in a model,
one can change the types of some its free identi�ers to supertypes of their initial types,
and the assertion will still be true. A converse also holds. The proviso is that the asser-
tion must still sort-check when the types of the identi�ers are changed; hence it must be
subtype-constraining so that Lemma 3.10 applies. It is technically convenient to regard the
process as moving renamings from a term into the environment; that is, the term (renamed
with subtypes for the identi�ers), is modeled by the environment, if and only if the envi-
ronment (extended by binding the previous values to identi�ers at the supertype) models
the unrenamed term.

Lemma 6.6 Let � be a signature. Let � be the subtype relation of �. Let C be a �-algebra.
Let X be a set of identi�ers containing ~x : ~T. Let Y be a set of identi�ers containing ~v : ~S
such that Y [fxi : Tigi � X. Let Q be a �-term with free identi�ers from X . Let � : Y ! jCj
be a proper �-environment.

If Q is subtype-constraining and ~S � ~T, then �[[Q[~v=~x]]] = �[�(~v)=~x][[Q]].

Proof Sketch: The proof is by induction on the structure of terms. The proof relies on
the fact that the value of a term does not depend on nominal types, because of the dynamic
overloading of trait functions.

The following lemma is a direct corollary of the above.

Lemma 6.7 Let � be a signature. Let � be the subtype relation of �. Let C be a �-algebra.
Let X be a set of identi�ers containing ~x : ~T. Let Y be a set of identi�ers containing ~v : ~S
such that Y [fxi : Tigi � X. Let Q be a �-assertion with free identi�ers from X . Let
� : Y ! jCj be a proper �-environment.

If Q is subtype-constraining and ~S � ~T, then (C; �) j= Q[~v=~x] if and only if (C; �[�(~v)=~x]) j=
Q.

6.4.2 Provable and Subtype-Constraining Assertions are Valid

Assertions provable from the traits of a speci�cation are only required to be valid in nominal
environments, since that is the \standard de�nition of satisfaction" for traits. (See Sections
3.2.3 and 2.2.1 for more discussion on this point.)

The following lemma says that with a simulation one can construct a nominal environ-
ment. Its proof uses the coercion property of a simulation relation.

68

Lemma 6.8 Let � be a signature. Let C and A be a �-algebras. Let X be a set of
identi�ers. If there is a �-simulation relation between C and A, then for all environments
�C : X ! jCj, there is a nominal environment �A : X ! jAj such that �C R �A.

The following lemma shows that subtype-constraining assertions that are provable from
a speci�cation are valid in all environments, even those that admit subtyping, provided the
subtype relation is legal. Recall that assertions are not Hoare-triples, so this is not the
soundness theorem. Rather it shows that reasoning based on the theory of the supertype's
trait is valid in any environment|even those that admit subtyping.

Lemma 6.9 Let SPEC be a set of type speci�cations. Let X be a set of identi�ers. Let Q
be a SIG(SPEC)-assertion with free identi�ers from X .

If Q is subtype-constraining, SPEC ` Q, and � is a legal subtype relation on the types
of SPEC, then for all SPEC-algebras C and for all proper SIG(SPEC)-environments �C :
X ! jCj, (C; �C) j= Q.

Proof: Suppose that SPEC ` Q and that � is a legal subtype relation.
Let C be a SPEC -algebra. Let �C : X ! jCj, be a proper SIG(SPEC)-environment.
By de�nition of legal subtype relations, there is some SPEC -algebra A such that there

is a SIG(SPEC)-simulation relation, R, between C and A. By Lemma 6.8, there is some
nominal environment �A : X ! jAj so that �C R �A.

Since SPEC ` Q, and �A is nominal, by de�nition of when an algebra satis�es its
traits, �A[[Q]] = true ; hence (A; �A) j= Q. Since Q is subtype-constraining, by Lemma 3.23,
(C; �C) j= Q.

6.4.3 Soundness Theorems

The following lemma is the essential step in proving soundness for the Hoare logic. It says
that if some Hoare-triple is provable, then it is valid. Soundness for program veri�cation
follows directly.

In the proof we only give full details for the interesting cases, that is those rules that
are much di�erent from standard Hoare-logic.

Lemma 6.10 Let (SPEC ;FSPEC) be a pair of type and function speci�cation sets. Let �
be the subtype relation of SIG(SPEC).

If � is a legal subtype relation on the types of SPEC, then every provable Hoare-triple
for (SPEC ;FSPEC) is valid.

Proof: (by induction on the length of proof in the Hoare logic.)
Let P fy : T Eg Q be a Hoare-triple for (SPEC ;FSPEC). Suppose that

(SPEC ;FSPEC) ` P fy : T Eg Q: (88)

Let X be a set of identi�ers such that X contains all the free identi�ers of P and E and
Q except y.

For each function identi�er f in the domain of SIG(FSPEC), let F [[f]] be a function
denotation such that F [[f]] satis�es the speci�cation of f in FSPEC with respect to SPEC .
Given these function denotations and an algebra, B, F [[f]](C) is a unique set-valued function,
and so given any environment �0 overB, there is a unique way to extend �0 to an environment
that is de�ned on the function identi�ers in FSPEC ; that is, construct �0[F [[~f (B)]]=~f].

69

Since for the given function denotations, in each algebra this expansion is unique, it is not
mentioned below.

Another part of the proof not mentioned in each case is that by Lemma 5.6, the type
of each possible result is a subtype of the result identi�er's nominal type.

Let C be a SPEC -algebra and �C : X ! jCj be a proper �-environment.
For the basis, the result must be shown for each of the axiom schemes.

� If the proof consists of one of the axiom schemes [ident], [bot], [isDef], or [fcall], then
the result follows directly from the hypothesis.

� Suppose the proof consists of an instance of the axiom scheme [mp]:

` Pre(g;~S) fy : T g(~x)g Post(g;~S):

Suppose further that (C; �C) j= Pre(g;~S).

Since � is a legal subtype relation, there is some SPEC -algebra A, such that there
is a SIG(SPEC)-simulation relation, R, between C and A. By Lemma 6.8 there is a
nominal environment �A : X ! jAj such that �C R �A.

Since the assertion Pre(g;~S) must be subtype-constraining, by Lemma 3.23

(A; �A) j= Pre(g;~S): (89)

By de�nition of LOAL,

M[[g(~x)]](C; �C) = gC(�C(~x)) (90)

M[[g(~x)]](A; �A) = gA(�A(~x)): (91)

By construction of �A, �C(~x) R~S �A(~x), and thus by the substitution property of
simulation relations (see Figure 35):

8(q 2 gC(�C(~x)))9(r 2 gA(�A(~x)))qRT r: (92)

By de�nition of when an operation satis�es its speci�cation, for all possible results
r 2 gA(�A(~x)), r 6= ? and (A; �A[r=y]) j= Post(g;~S). Since RT is bistrict, for all
q 2 gC(�C(~x)), q 6= ?. Finally, since Post(g;~S) is subtype-constraining, since for each
q 2 gC(�C(~x)) there is some r 2 gA(�A(~x)) such that q RT r, and since all such r
satisfy the post-condition, (C; �C[q=y]) j= Post(g;~S) by Lemma 3.23.

For the inductive step, suppose that the result holds for all proofs of length less than n.
Consider a proof of length n > 1. The last step of the proof must be either an axiom or the
conclusion of an inference rule. The axioms were covered above, so it remains to deal with
the inference rules.

Let the nominal type of the expression in each rule (E) be T. Let C be a SPEC -algebra
and �C : X ! jCj be a proper environment.

� Suppose the last step is the conclusion of one of the rules: [rename], [call], [equal],
or [if]. Then the result is straightforward from the induction hypothesis and the
semantics of LOAL.

70

-

- Post(g;~S)Pre(g;~S)

gC

gA

q�C(~x)

�A(~x) r

6 6
R~S RT

Figure 35: Soundness of the message passing axiom scheme.

� Suppose the last step is the conclusion of the rule [comb]:

` P
n
y (fun (~x : ~S) E0) (E1; . . . ; En)

o
Q:

Suppose (C; �C) j= P .

By the semantics of LOAL,

M[[(fun (~x : ~S) E0) (~E)]](C; �C) =
[

~q2M[[~E]](C;�C)

M[[E0]](C; �C[~q=~x]): (93)

For each i from 1 to n, there are earlier steps in the proof of the form:

` P fxi Eig Ri:

By the inductive hypothesis, this Hoare-triple is valid in (C; �C). Since (C; �C) j=
P by hypothesis, for all possible results qi 2 M[[Ei]](C; �C), if qi is proper, then
(C; �C[qi=xi]) j= Ri. By the above for all proper ~q 2 M[[~E]](C; �C),

(C; �C[~q=~x]) j= R1 ^ � � � ^ Rn: (94)

There must be some earlier step in the proof of the form

` R1 ^ � � � ^ Rn fy E0g Q: (95)

The above triple is valid, by the inductive hypothesis; so for all ~q 2 M[[~E]](C; �C) and
for all r 2 M[[E0]](C; �C[~q=~x]), if r is proper then

(C; �C[~q=~x][r=y]) j= Q: (96)

Since the xi are fresh, they do not appear free in Q, and thus can be dropped from the
above formula. Furthermore, by the semantics of LOAL, all the r are possible results
of the combination. Thus for all proper r 2 M[[(fun (~x : ~S) E0) (~E)]](C; �C),

(C; �C[r=y]) j= Q: (97)

71

� Suppose the last step is the conclusion of the rule [up]:

P fx : T Eg Q

Suppose (C; �C) j= P .

There must be an earlier step in the proof of the form

P fv : S Eg Q[v=x] (98)

where Q is subtype-constraining and S � T. By the inductive hypothesis, this Hoare-
triple is valid, so for all q 2 M[[E]](C; �C), if q is proper, then

(C; �C[q=v]) j= Q[v=x]: (99)

By Lemma 6.7, the renamings on Q can be moved to the environment; so for all proper
q 2 M[[E]](C; �C):

(C; �C[q=v][q=x]) j= Q: (100)

By the conditions on the use of [up], v is fresh; thus v does not occur free in Q, and
so it can be dropped from the environment:

(C; �C[q=x]) j= Q: (101)

� Suppose the last step is the conclusion of the rule [conseq]:

` P fy Eg Q:

Suppose (C; �C) j= P .

There must be steps in the proof of the form SPEC ` P) P1 and SPEC ` Q1) Q.
In general, P1 and Q1 may have more free identi�ers than P and Q. For example, the
formula \true) i = i" and its converse are both valid. Let ~z : ~S be a tuple of all
the free identi�ers of P1 and Q1 except for the result identi�er y : T that are not in
X (i.e., that are not in the domain of �C). Let ~q 2 C~S

be a tuple of proper elements.
Since SPEC ` P) P1 and since P and P1 are subtype-constraining, by Lemma 6.9
(C; �C[~q=~z]) j= P) P1. (Recall that �C is not necessarily a nominal environment, so
the use of Lemma 6.9 and hence the assumption of subtype-constraining assertions
are necessary.) Since (C; �C[~q=~z]) j= P , it follows that

(C; �C[~q=~z]) j= P1: (102)

There must also be a step in the proof of the form ` P1 fy Eg Q1. By the inductive
hypothesis and the above, for all r 2 M[[E]](C; �C[~q=~z]), if r is proper, then

(C; (�C[~q=~z])[r=y]) j= Q1: (103)

Since Q1 and Q are subtype-constraining, by Lemma 6.9, for all proper possible results
r 2 M[[E]](C; �C[~q=~z]), (C; (�C[~q=~z])[r=y]) j= Q1) Q and thus

(C; (�C[~q=~z])[r=y]) j= Q: (104)

Since the zi are not free in Q, for such r,

(C; �C[r=y]) j= Q: (105)

72

� Suppose the last step is the conclusion of the rule [carry]:

` P fy Eg P ^ Q:

Suppose (C; �C) j= P . There must be an earlier step in the proof of the form

` P fy Eg Q:

By the inductive hypothesis, for all r 2 M[[E]](C; �C), if r is proper then

(C; �C[r=y]) j= Q: (106)

Since (C; �C) j= P , and y is not free in P , for such proper r:

(C; �C[r=y]) j= P: (107)

Therefore,
(C; �C[r=y]) j= P ^ Q: (108)

In the above lemma, and the de�nition of when a Hoare-triple is valid, one only considers
LOAL function denotations that satisfy their speci�cations. So a �rst step in proving a
program partially correct is to pick function speci�cations that are satis�ed by the functions
in a program. Given such speci�cations, the above result can be easily extended to the
soundness of the Hoare logic for proving the partial correctness of LOAL programs.

The speci�cation of a LOAL program of the form

~F; program (~x : ~S):T = E

is a Hoare-triple of the form R fv : T Eg Q, where the ~x : ~S may be used in the pre-
condition R in the post-condition Q. To show the partial correctness of the program, one
chooses some set of speci�cations, FSPEC , for the functions in ~F , shows that each function
satis�es its speci�cation, and proves (SPEC ;FSPEC) ` R fv : T Eg Q, where SPEC is
a set of type speci�cations that includes at least all the types in ~S, T, the types explicitly
mentioned in ~F and E, and the types used indirectly by the above.

De�nition 6.11 (partial correctness of programs) Let SPEC be a set of type speci�-
cations. Let p be a LOAL program of the form

~F; program (~x : ~S):T = E.

Then p is partially correct with respect to SPEC and R fv : T Eg Q if and only if
for all SPEC-algebras A, for all proper SIG(SPEC)-environments, � : X ! jAj such
that X contains the free identi�ers of R, E, and Q except v : T, (A; �[F [[~F]](A)=~f]) j=
P fv : T Eg Q.

The following corollary is the soundness result for program veri�cation. It is a trivial
consequence of the above lemma and Lemma 5.7.

Theorem 6.12 Let (SPEC ;FSPEC) be a pair of type and function speci�cation sets. Let
� be the subtype relation of SIG(SPEC). Let p be a LOAL program of the form

~F; program (~x : ~S):T = E.

If � is a legal subtype relation on the types of SPEC, if the denotation of each function
in ~F satis�es its speci�cation in FSPEC with respect to SPEC, and if (SPEC ;FSPEC) `
R fv : T Eg Q, then p is partially correct with respect to SPEC and R fv : T Eg Q.

73

6.5 Modularity of Veri�cation

The soundness results of the previous section do not completely vindicate the claim that
the Hoare logic allows modular reasoning. The soundness result shows that one can, for
a given set of type speci�cations, reason about a function or program using nominal type
information without explicitly considering subtypes. Yet modularity demands that such
veri�cations still be valid when new subtypes are added to a program. The precise notion
of extension is given in the following de�nition.

De�nition 6.13 (extends) Let SPEC1 and SPEC2 be sets of type speci�cations. The set
SPEC2 extends SPEC1 if and only if the type speci�cations SPEC 1 are included in SPEC2

and SIG(SPEC 1) is a subsignature of SIG(SPEC2).

The following lemma shows that the veri�cation of expressions is modular. It states
that a veri�cation using a smaller set of speci�cations necessarily is a veri�cation using
an extended set of speci�cations. In other words, the extended set's theory includes the
smaller's theory.

Lemma 6.14 Let SPEC1 and SPEC 2 be sets of type speci�cations. Let FSPEC be a set
of function speci�cations whose base speci�cation set is contained in SPEC 1.

Suppose that the set of type speci�cations SPEC 2 extends the set SPEC1. Then for all
Hoare-triples for (SPEC1;FSPEC), if

(SPEC1;FSPEC) ` P fy Eg Q;

then
(SPEC2;FSPEC) ` P fy Eg Q:

Proof: Suppose that (SPEC 1;FSPEC) ` P fy Eg Q. Since SPEC 2 extends SPEC 1,
each axiom of the pair (SPEC1;FSPEC) is an axiom of (SPEC 2;FSPEC).

Since the signature SIG(SPEC1) is a subsignature of SIG(SPEC2), by Lemma 5.2, the
nominal type of each LOAL expression E with respect to SIG(SPEC1) and SIG(FSPEC)
is a supertype of the nominal type of the expression E's nominal type with respect to
SIG(SPEC2) and SIG(FSPEC). So each Hoare-triple for (SPEC1;FSPEC) is a Hoare-
triple for (SPEC2;FSPEC).

It must also be checked that the type constraints of the Hoare-logic's inference rules are
satis�ed. The type constraints on the inference rules [rename] and [equal] only ensure that
the nominal types of certain identi�ers are the same. The nominal types of identi�ers do not
change when a signature changes. For the inference rule [call], the type constraint ensures
that the actual arguments ~E have types ~� with respect to SIG(SPEC1) and SIG(FSPEC),
such that ~� �1 ~S, where �1 is the subtype relation of SIG(SPEC1). By Lemma 5.2, the
nominal types of the actual arguments ~E must be some ~� �2 ~�. Since �1��2, ~� �2 ~S.
Similarly, in the rule [up], the type constraints guarantee that the nominal type of E, �, is
a subtype of S; so by Lemma 5.2 the constraints are satis�ed with respect toSIG(SPEC2).
Therefore the proof for the triple is a proof in (SPEC2;FSPEC).

The story for modularity is not, however, as simple as the above lemma would indicate.
The complication is that the implementations of LOAL functions are veri�ed using the
smaller type speci�cation set but not reveri�ed using the expanded set of type speci�cations.
(This, of course, is the very essence of modular veri�cation.) Since the veri�cation of
recursively de�ned LOAL functions using the Hoare logic only shows partial correctness,

74

knowing that proof of partial correctness using the smaller speci�cation set gives a proof of
partial correctness for the expanded speci�cation set is not enough to satisfy the conditions
of Theorem 6.12. To avoid redoing the proof of termination of recursively de�ned LOAL
functions one needs to know that if a LOAL function satis�es its speci�cation with respect
to the smaller set of type speci�cations, then it satis�es its speci�cation with respect to an
expanded set of type speci�cations.

The following lemma asserts that such problems do not occur for LOAL functions,
provided that the new subtype relation is legal. The proof is the source of the restriction
that function speci�cations may only use subtype-constraining assertions.

Lemma 6.15 Let SPEC1 and SPEC 2 be sets of type speci�cations. Let f be a function
speci�cation whose base speci�cation set is contained in SPEC1. Let f be the denotation of
a LOAL function de�nition for f .

Suppose that SPEC2 extends SPEC 1. If the subtype relation �2 of SIG(SPEC2) is a
legal subtype relation on the types of SPEC2 and if f satis�es the speci�cation f with respect
to SPEC1, then f satis�es the speci�cation f with respect to SPEC 2.

Proof: Suppose that f satis�es the speci�cation f with respect to SPEC1. Suppose that
the subtype relation �2 of SIG(SPEC2) is a legal subtype relation on the types of SPEC 2.
Let C be a SPEC2-algebra. Let X be a set of identi�ers that includes the formal arguments
from the speci�cation of f . Let S be the nominal result type of f . Let �C :X ! jCj be
a proper SIG(SPEC2)-environment. Let R be the pre-condition of f , and let Q be its
post-condition and v the formal result identi�er. Suppose that

(C; �C) j= R: (109)

Let q 2 f(C)(�C(~x)) be a possible result of f .
Since SPEC 2 extends SPEC1 and since �C is a SIG(SPEC2)-environment, it must be

that the nominal type of each xi is some Ti and each �C(xi) has a type Ui, such that
Ui � Ti. Since �2 is a legal subtype relation, there must be some SPEC2-algebra A and a
SIG(SPEC2)-simulation relation, R, from C to A. Let �A be a nominal environment, that
exists by Lemma 6.8, such that �CR �A. Let A

0 be the SIG(SPEC1)-reduct of A. Since �A
is nominal and the base speci�cation of f is contained in SPEC 1, the nominal types of the
formals of the xi, the Ti, must be types in SIG(SPEC1); hence for each i, �A(xi) 2 A

0
Ti .

Since f is the denotation of a LOAL function de�nition and R is a simulation relation
from C to A, by Lemma 5.15, there is some possible result r 2 f(A)(�A(~x)), such that

q RS r (110)

(where S is the nominal result type of f). Since R is subtype-constraining, by Lemma 3.23,

(A; �A) j= R: (111)

Since the function f satis�es its speci�cation with respect to SPEC1, and since �A(~x) is in
the carrier of the SPEC1-algebra A0,

(A0; �A[r=v]) j= Q: (112)

Since A0 is a reduct of A, the same holds for A:

(A; �A[r=v]) j= Q: (113)

75

Since Q is subtype-constraining and �C [q=v]R �A[r=v], by Lemma 3.23,

(C; �C[q=v]) j= Q: (114)

The following corollary is the modularity result for program veri�cation. It may seem
that the corollary discusses adding new types to a program and then the new types are never
used, because the program is unchanged. However, a LOAL program may take arguments
of any type, and so it may have an argument whose nominal type is a supertype of a
newly added type. Hence the old program may be passed objects of the new type, which is
precisely what programmers are concerned with.

Corollary 6.16 Let p be a program speci�cation, with pre-condition R, post-condition Q

and nominal result type S. Let (SPEC1;FSPEC) be a pair of type and function speci�cation
sets. Let SPEC 2 be an extension of SPEC 1. Let �2 be the subtype relation of SIG(SPEC2).
Let P be the LOAL program ~F; program (~x : ~T):S =E where ~F is a system of mutually
recursive LOAL functions whose names and nominal signatures match SIG(FSPEC).

Suppose that �2 is a legal subtype relation on the types of SPEC2 and the denotation of
each function in ~F satis�es its speci�cation with respect to SPEC1. If (SPEC1;FSPEC) `
R fy Eg Q, then the program P is partially correct with respect to SPEC2 and p.

7 Proving Legal Subtyping from Speci�cations and Sound-

ness of Supertype Abstraction

In this section we study the technical relationship between our de�nition of legal subtype
relations and Meyer's [47, Section 11.1] [48, Sections 10.15 and 10.22] and America's [1] [2]
de�nitions. (Similar de�nitions were proposed earlier by the designers of Trellis/Owl [55],
and also �gure in the recent work of Liskov and Wing [44] [45].) We �rst show how to adapt
their technique for proving legal subtype relationships to our formalism. We then show the
converse, that legal subtyping implies something like their conditions. The converse also
says that supertype abstraction [38] [35] is sound. That is, one can reason about objects of
subtypes as if they were objects of a supertype.

7.1 Proving Legal Subtype Relations from Speci�cations

In this section we show that our de�nition of legal subtype relations is implied by something
like Meyer's and America's. We do this by adapting their proof technique to our formalism,
and then showing that this technique is sound for proving legal subtype relations according
to our de�nition.

Both America and Meyer only consider single-dispatch languages; whereas LOAL is a
multiple-dispatch language. That is, in a language like CLOS or LOAL, message names are
not uniquely tied to one type, since they may dispatch on arguments other than the �rst.
However, the situation is clear for messages that take only one argument. Let W � U; that is,
let W be a subtype of U. If a message name g is de�ned for the supertype U, then it will also
be de�ned for the subtype W. Meyer and America would require that the post-condition of
the subtype, W, imply the post-condition of the supertype, U. That is written in our notation
as follows.

SPEC j= (Post(g; W))) (Post(g; U)[w; s=u;t]) (115)

76

Here, we assume that the formal arguments of the speci�cation of g for the supertype are
u : U and that the formal result of the supertype is t : T. The renaming of these to the formal
arguments and result of the subtype (w : W and s : S) makes the two formulas be in the
language of the subtype This renaming serves the same role as America's transfer functions,
which we do not need because the trait functions of the supertype must be de�ned for the
subtype. Their requirements for the pre-condition are similar, but in the opposite order.

SPEC j= (Pre(g; U)[w=u])) (Post(g; W)) (116)

That such implications only have to hold for objects of the subtype is key [61]. For an
example, suppose we had speci�ed the ins operation of the type Interval by including an
invariant property of Interval objects in the pre-condition:

op ins(s:Interval, i:Int) returns(r:IntSet)
requires (leastElement(s) < greatestElement(s))) ((leastElement(s) + 1) 2 s)
ensures r eqSet (s [fig)

This does not change the behavior of the operation, as the pre-condition is true of all
Interval objects \s". Hence, Interval remains a legal subtype of IntSet (in our sense)
with this speci�cation. However, with this speci�cation the pre-condition of the ins opera-
tion of IntSet (which is implicitly just \true") does not imply the pre-condition of the ins
operation of Interval; that is, for all IntSet objects \s" (and for all integers j, k, and n),
the following formula is not valid.

true) ((leastElement(s) < greatestElement(s))) ((leastElement(s) + 1) 2 s))

(For a counter-example, let \s" denote the set \f3, 27, 703g".) However, this formula is
valid for all Interval objects, \s".

To generalize the Meyer/America implications to multiple dispatch, we simply use a
tuple of arguments, and hence of argument types: ~W � ~U replaces W � U. Thus we would
write the following for the postconditions.

SPEC j= (Post(g;~W))) (Post(g;~U)[~w; s=~u; t])

We call the formal statement of this requirement for both the pre- and post-conditions
the method re�nement condition for a set of type speci�cations (The notation SPEC j= Q
means that for all SPEC -algebras C, and for all proper environments � : X ! jCj, such
that X includes the free variables of Q, (C; �) j= Q.)

De�nition 7.1 (method re�nement condition) Let SPEC be a set of type speci�ca-
tions. Let � be the subtype relation of SIG(SPEC).

Then the method re�nement condition holds for SPEC if and only if for all tuples of sorts
~W � ~U, and for all ~w : ~W, for all message names g, if g is speci�ed with nominal signatures
~W ! Wn+1 and ~U ! Un+1, and Formals(g;~W) = (~w : ~W; r : Wn+1) and Formals(g;~U) = (~u :
~U; t : Un+1), then

SPEC j= (Pre(g;~U)[~w=~u])) Pre(g;~W) (117)

SPEC j= (Post(g;~W))) (Post(g;~U)[~w; r=~u; t]): (118)

77

In the above de�nition, the substitution of ~w for ~u and r for t makes the post-condition
of the \supertype" talk about abstract values of the \subtype".

Instead of using a substitution of subtype identi�ers for supertype identi�ers, America's
formulation of this proof technique uses a \transfer function" that maps the abstract values
of a subtype to the abstract values of a supertype. In Larch/LOAL, one can formally
specify the abstract values of types, and one can also specify what amounts to a transfer
function; for example, the trait function \toSet" can be thought of as a transfer function
from Interval to IntSet abstract values. Unlike America, we do not have to use transfer
functions to translate assertions as our requirements on signatures already ensure that the
assertions used in a supertype's speci�cation are meaningful for subtype values. However,
as the existence of such transfer functions is part of America's technique, the theorem below
assumes that such are transfer functions exist.

In the theorem below the assumed transfer functions are named \to" with a subscript
indicating what sort they translate to; that is, the theorem assumes that for each sort
S � T, and for each q of sort S, \toT(q)" has sort T. We also write to~T(~q) for the tuple
\htoT1(q1); . . . ; toTn(qn)i".

De�nition 7.2 (legal system of coercion functions) Let SPEC be a set of type spec-
i�cations. In SIG(SPEC), let � be the subtype relation, let TFUNS be the set of trait
function symbols, and let ResSort be the result sort function.

Then SPEC has a legal system of coercion functions if and only if

� for each pair of sorts S � T, there is a trait function symbol \toT" such that

ResSort(toT; S) = T;

� for all x : T, SPEC j= toT(x) = x, and

� for all tuples of sorts ~W and ~U such that ~W � ~U, and for all ~w : ~W, for all trait function
symbols f such that ResSort(f ;~U) is de�ned,

SPEC j= to
ResSort(f;~U)

(f(~w)) = f(to~U(~w)): (119)

The requirement of a legal system of coercion functions resembles requirements used by
Reynolds [53] and Bruce and Wegner [6]. America does not have these exact requirements,
because his de�nition of subtyping is not concerned with modular speci�cation, and thus
makes no restrictions on how the abstract values of types are speci�ed. Bruce and Wegner
have an additional condition that the coercion functions must compose properly:

� for each triple of types S � T � U, and for all x : S, SPEC j= toU(toT(x)) = toU(x).

However, we do not need this for the theorem below. Note also that since the \toT" are
trait functions, if A is a SPEC -algebra, S � T, U � T, and q 2 AS \ AU, then toTA(q)
is well-de�ned (by the de�nition of an algebra) and does not depend on which sort q is
considered to have.

In Larch/LOAL, one speci�es a simulation relation when one speci�es a set of types (see
Example 4.2). In many cases these simulation relationships are functional. For example, if
in the speci�cation of the type Interval we wrote the following

subtype of IntSet by [l; u] simulates toSet([l; u])

In this case \toSet" is a coercion function. In this section we systematically name such
functions like \toIntSet". The subscript on \toIntSet" plays exactly the same role as the

78

subscript on a simulation relation, such as RIntSet. Recall that, since a simulation relation
has a coercion property, it can be regarded as a generalization of a coercion function.

The construction in the following theorem's proof does not work for proving arbitrary
subtype relationships. In essence, it only works for subtype relations where no supertype
has more than one direct subtype. (A sort S is a direct subtype of T if S � T, S 6= T, and
there is no other sort U such that U 6= S, U 6= T, and S � U � T.) The technical condition is
stated in terms of operation speci�cations; we require that the operations of a speci�cation
are such that for each message name g, the nominal signatures of speci�cations of g must
form chains in the � ordering on the argument sorts.

De�nition 7.3 (separate chains of operation speci�cations) Let SPEC be a set of
type speci�cations. Let ResSort and � be the result sort mapping and subtype relation of
SIG(SPEC).

Then SPEC has separate chains of operation speci�cations if and only if for each mes-
sage name g, if g is speci�ed with nominal signature ~T! Tn+1, then the set of all nominal
signatures ~S ! Sn+1 such that g is speci�ed with nominal signature ~S ! Sn+1 in SPEC,
~S � ~T, and ~S 6= ~T is either empty or has a unique greatest element in the ordering � applied
to the tuple of argument sorts.

The following theorem is the promised one that shows that if one can prove a subtype
relation is legal according to Meyer's [47] [48] and America's de�nition [2], then the subtype
relation is a legal subtype relation by our de�nition. As stated above, the proof is not
completely general, but does give at least one way to construct the appropriate algebra
and simulation relation from the assumed method re�nement condition and the assumed
coercion (transfer) functions.

Theorem 7.4 Let SPEC be a set of Larch/LOAL type speci�cations; recall that the asser-
tions in a Larch/LOAL speci�cation are subtype-constraining. Let � be the subtype relation
of SIG(SPEC).

If SPEC has separate chains of operation speci�cations, the method re�nement condition
holds for SPEC, and SPEC has a legal system of coercion functions, then � is a legal subtype
relation on the types of SPEC.

Proof: Let C be a SPEC -algebra. To show that � is a legal subtype relation, we will
construct a SIG(SPEC)-algebra A and a simulation relation from C to A. The construction
uses the system of coercion functions to de�ne the methods of A and to de�ne a simulation
relation. After that we show that A satis�es SPEC .

Let jAj = jCj; let the trait functions of A be the same as in C.

Let ResSort be the result sort mapping of SIG(SPEC).

For each message name g, let gA be de�ned inductively as follows. By hypothesis there
are separate chains of operation speci�cations of g. The inductive de�nition is by induction
on each chain, starting from the bottom of the chain and going up. For the basis, suppose
that the lowest speci�cation in the chain for g has nominal signature ~W ! Wn+1. Then for

all ~q 2 Below(A;~W), let gA(~q)
def
= gC(~q). For the inductive step, suppose that there is an

operation speci�cation of g with nominal signature ~W! Wn+1, and that gA has been de�ned
for arguments in Below(A;~W), and the next highest operation speci�cation of g in the chain
has nominal signature ~U! Un+1. (It follows that ~W � ~U.) Suppose ~V 6= ~W is a tuple of types

79

such that ~W � ~V � ~U. Let ~q 2 A~V be given. We de�ne gA(~q) by the following.

gA(~q)
def
=

8><
>:

gC(~q) if 8~w 2 C~W . to~V
C(~w) 6= ~q[

~w s:t: to~V
C(~w)=~q

to
ResSort(g;~V)

C(gC(~w)); otherwise (120)

This completes the de�nition of the SIG(SPEC)-algebra A.
A simulation relation from C to A, R, is de�ned as follows. For each sort T, we de�ne

RT by the following.

q RT r
def
, (q 2 CS) ^ (r 2 AU)^ (S � T) ^ (U � T) ^ (S � U) ^ (toU

C(q) = r) (121)

Recall that toUC(q) = r is in AU because the carrier sets of C and A are the same.
By construction, R satis�es the subsorting, coercion, bistrict, and V-identical properties

of simulation relations. To show that R satis�es the substitution property, let a sort T, a
tuple of sorts ~S, and tuples ~q 2 Below(C;~S), and ~r 2 Below(A;~S) be given. Suppose ~qR~S ~r.

Then by de�nition of R~S
, there are tuples of types, ~W � ~S and ~U � ~S such that ~q 2 C~W

and

to~U
C(~q) = ~r: (122)

There are two cases.

� Let f be a trait function symbol such that ResSort(f ;~S) = T. We show that the
substitution property holds for \f" by the following calculation. The �rst formula
below holds by Formula (119) in the de�nition of a legal system of coercion functions.

to
ResSort(f;~U)

C(fC(~q)) = fC(to~U
C(~q))

, hby Equation (122)i
to

ResSort(f;~U)
C(fC(~q)) = fC(~r)

, hby construction fC = fAi
to

ResSort(f;~U)
C(fC(~q)) = fA(~r)

, hby Formula (121), as ResSort(f ;~U) � Ti
fC(~q)RT f

A(~r)

� Let g be a message name such that ResSort(g;~S) = T. Let q0 2 gC(~q) be given. By
the de�nition of SIG(SPEC)-algebras, q0 has some type V � T. By Equation (122)
and the construction of gA, toT(q0) 2 gA(~r). So by Formula (121), gC(~q)RT g

A(~r).

This completes the proof that R is a simulation relation.
We now show that A is a SPEC -algebra. The trait structure of A satis�es the traits of

SPEC , because C is a SPEC -algebra and the trait structures of C and A are the same. So
it remains to show that the methods of A satisfy their speci�cations.

Let g be message name. Let ~S be a tuple of types such that ResSort(g;~S) = T. Let the
formal arguments of the most speci�c applicable speci�cation for ~S in SPEC be ~u : ~U and
the formal result be t : T. Let ~q 2 A~S be proper. Let the environment �A : f~u : ~Ug ! jAj

be de�ned such that �A(~u)
def
= ~q. We proceed by induction on the chain used to de�ne gA.

If ~U is at the bottom of the chain used to de�ne gA, then gA(~q) = gC(~q) and since C
is a SPEC -algebra, if (A; �A) j= Pre(g;~U), then for all possible results r0 2 gA(~q): r0 6= ?,
(A; �A[r0=t]) j= Post(g;~U).

80

For the inductive step, there is some ~W � ~U such that there is an operation speci�cation of
g with nominal signature ~W! Wn+1, formal arguments ~w : ~W, and formal result r : Wn+1. The
inductive hypothesis is that gA satis�es the operation speci�cation with nominal signature
~W! Wn+1. There are two cases.

If there is no ~w 2 C~W
such that to~S(~w) = ~q, then by construction, gA(~q) = gC(~q) and

again we are done.

Otherwise, let ~w 2 C~W
be such that to~S(~w) = ~q. Suppose

(A; �A) j= Pre(g;~U): (123)

Our plan is to descend to C and the subtype, use the method re�nement hypothesis to show
the precondition for g there, use the assumption that C is a SPEC -algebra to conclude the
post-condition, and then use the second part of the method re�nement hypothesis.

Let the environment �C : f~u : ~Ug ! jCj be de�ned such that �C(~u)
def
= ~w. Let �0C

def
=

�C [~w=~w]. The following calculation, starting from the assumption that the precondition of g
for ~U (the supertype) is modeled by (A; �A), shows that the precondition for ~W (the subtype)
is modeled by (C; �0C).

(A; �A) j= Pre(g;~U)
, hby Lemma 3.23, as �C R �A and Pre(g;~U) is subtype-constrainingi

(C; �C) j= Pre(g;~U)

, hby the agreement of �C and �0C [�
0
C(~w)=~u] on the free variables of Pre(g;~U)i

(C; �0C[�
0
C(~w)=~u]) j= Pre(g;~U)

, hby Lemma 6.7, as the assertions are subtype-constrainingi
(C; �0C) j= Pre(g;~U)[~w=~u]

) hby assumption that (C; �0C) j= (Pre(g;~U)[~w=~u])) Pre(g;~W)i
(C; �0C) j= Pre(g;~W)

Since C satis�es SPEC , and (C; �0C) j= Pre(g;~W) for each r 2 gC(~w) it must be that
r 6= ?, and

(C; �0C[r=r]) j= Post(g;~W): (124)

In this case, by construction of gA, each r0 2 gA(~q), is such that r RT r
0, for some such

r 2 gC(~w). Let such an r and r0 be given.

Starting from Formula (124), we show that the post-condition of g for ~U (the supertype)
is modeled by (A; �A[r0=t]).

(C; �0C[r=r]) j= Post(g;~W)
) hby assumption that (C; �0C[r=r]) j= (Post(g;~W))) (Post(g;~U)[~w; r=~u; t])i

(C; �0C[r=r]) j= Post(g;~U)[~w; r=~u; t]
, hby Lemma 6.7, as the assertions are subtype-constrainingi

(C; (�0C[r=r])[�
0
C[r=r](~w); �

0
C[r=r](r)=~u; t]) j= Post(g;~U)

, hby �0C [r=r](r) = r, �0C [r=r](~w) = ~w = �C(~u), and r is not free in Post(g;~U)i
(C; �C[r=t]) j= Post(g;~U)

, hby Lemma 3.23 as �C [r=t]R �A[r
0=t], and Post(g;~U) is subtype-constrainingi

(A; �A[r0=t]) j= Post(g;~U)

Since the last formula holds for all r0 2 gA(~q), A satis�es SPEC .

81

7.2 Soundness of Supertype Abstraction

In this brief section we show that supertype abstraction [38] [35] is sound. That is, one can
reason about objects of subtypes as if they were objects of a supertype.

The soundness of supertype abstraction also bears on the question of the extent to
which our de�nition of legal subtype relations implies something like Meyer's [47] [48] and
America's de�nitions [2] of subtypes? Are our de�nitions fundamentally equivalent?

We believe that the answers to the above questions are \yes". One way to try to show
this is to try to prove an implication that joins the pre- and post-conditions of the subtype
and the supertype, for each operation of the supertype. For example, let ~W � ~U, and let
g be speci�ed with nominal signature ~U ! Un+1; thus g must also be speci�ed with a
nominal signature ~W! Wn+1. Suppose that the formals of these operation speci�cations are
Formals(g;~W) = ~w : ~W; s : Wn+1, and Formals(g;~U) = ~u : ~U; t : Un+1. Then one might think
that a translation of America's implications would be something like the following, for each
such g.

SPEC j= (Pre(g;~W)) Post(g;~W))) ((Pre(g;~U)) Post(g;~U))[~w; s=~u; t]); (125)

A similar condition �gures in the work of Liskov and Wing [44] (at our suggestion).
However, the following corollary does not prove Formula (125). The problem is that

Formula (125) does not require s to be a possible result of a call of g, and our model-theoretic
conditions on legal subtype relations seem to require that. So the following corollary uses
Hoare-triples, instead of just an implication. Translating Formula (125) into the appropriate
Hoare-triples, one obtains something like the following inference rule, which one would like
to be valid:

(SPEC ;FSPEC) j= Pre(g;~W) fs : Wn+1 g(~w)g Post(g;~W)

(SPEC ;FSPEC) j= (Pre(g;~U))[~w=~u] fs : Wn+1 g(~w)g (Post(g;~U))[~w; s=~u; t]
(126)

However, as the hypothesis is an instance of the axiom scheme [mp], in view of Lemma 6.10
the validity of the rule reduces to the validity of the conclusion.7 Thus the following
corollary says that having a legal subtype relationship is similar to having the method
re�nement condition hold. Informally, another way to read it is that it says a legal subtype
relationship allows one to use the speci�cations of supertypes to reason about subtypes;
that is, supertype abstraction [38] is valid.

Corollary 7.5 Let (SPEC ;FSPEC) be a pair of type and function speci�cation sets. Let
� be the subtype relation of SIG(SPEC). Let g be a message name of SIG(SPEC). Let ~W
and ~U be tuples of types, and let Wn+1 and Un+1 be types such that: g is speci�ed in SPEC
with nominal signatures ~W ! Wn+1 and ~U ! Un+1. Let Formals(g;~W) = ~w : ~W; s : Wn+1, and
Formals(g;~U) = ~u : ~U; t : Un+1. Suppose s : Wn+1 does not appear free in Post(g;~U), and is
not equal to any of the ui in ~u.

If � is a legal subtype relation on the types of SPEC, and if ~W � ~U, then

(SPEC ;FSPEC) j= (Pre(g;~U))[~w=~u] fs : Wn+1 g(~w)g (Post(g;~U))[~w; s=~u; t]

Proof: Suppose � is a legal subtype relation on the types of SPEC . Let A be a SPEC -
algebra. Let � : Y ! jAj be a SIG(SPEC)-environment, such that the free variables of
above Formula are in Y .

7Also, it is interesting to note that if the method re�nement condition does hold for SPEC , then the
conclusion follows immediately from the soundness theorem and the [conseq] rule.

82

The conclusion is a Hoare-triple, that is, it type-checks, because of the assumptions
in the statement of the theorem about the type of the formals. We proceed to show the
de�nition of j= for Hoare-triples.

Suppose the following holds (otherwise we are done).

(A; �) j= (Pre(g;~U))[~w=~u] (127)

Since the assertions in a type speci�cation are subtype-constraining, by Lemma 6.7, the
renamings on the precondition can be moved to the environment.

(A; �[�(~w)=~u]) j= Pre(g;~U) (128)

Since � is a legal subtype relation on the types of SPEC , by the soundness theorem it
follows that for all s 2 gA(�(~w)), if s is proper, then

(A; (�[�(~w)=~u])[s=t] j= Post(g;~U): (129)

Since s does not appear free in Post(g;~U), and s is not equal to any of the wi in ~w (since the
formal result has to be a distinct variable for ~W) or the ui in ~u, for all proper s 2 gA(�(~w)),

(�[�(~w)=~u])[s=t] = �[�(~w); s=~u; t] (130)

= (�[s=s])[�[s=s](~w); �[s=s](s)=~u; t]: (131)

Thus, it follows that:

(A; (�[s=s])[�[s=s](~w); �[s=s](s)=~u; t]) j= Post(g;~U) (132)

Again since the assertions in a type speci�cation are subtype-constraining, by Lemma 6.7,
the renamings on the precondition can be out of the environment, and so the following
holds.

(A; �[s=s]) j= (Post(g;~U))[~w; s=~u; t] (133)

83

8 Discussion

The main contribution of this paper is a new technique for the modular veri�cation of
object-oriented programs that use message passing and subtype polymorphism.

For the practicing programmer, the main lesson of this work is that, with some discipline,
one can reason about programs by using nominal (i.e., static) type information and letting
supertypes stand for their subtypes. We call this kind of reasoning supertype abstraction.
We believe that good object-oriented programmers use supertype abstraction to reason
about their programs, hence they speak of protocols common to di�erent types of objects
[22].

The main pitfall in common use of supertype abstraction is failing to ensure that one's
subtype relation is legal. Having a legal subtype relation allows one to safely use supertype
abstraction in reasoning about a program that uses message passing. So programmers
should check to be sure that they only use legal subtype relations, even if they only do so
informally. Programmers who are not familiar with the ideas of speci�cations and abstract
data types often equate the notions of inheritance and subtyping, which can lead to using
a subtype relation that is illegal. The problem is that inherited code can be rede�ned and
changed in ways that do not respect the interface speci�cation of a superclass. On the
other hand, a clear separation of the notions of inheritance and subtyping is a tool of great
conceptual power in object-oriented programming, since it allows one to use inheritance to
implement types in the most economical manner, and use subtyping to organize and reason
about the use of types [58] [31] [30] [42] [15] [2].

The distinction between subtypes and subclasses is not just academic. If one passes an
argument whose type is not a subtype of the expected formal argument type to a procedure,
the procedure will not act as desired. So if one uses subclasses as if they always implemented
subtypes, one's programs may behave in unexpected ways.

With supertype abstraction both informal reasoning about programs and formal veri-
�cation is modular. That is, one can add new types to a program without rethinking or
reverifying unchanged parts of the program [34] [39]. The only qualitative di�erence from
standard program veri�cation is that the veri�er must also show that the speci�ed subtype
relation is legal.

For the practicing software designer, the main lesson of this work is that one can use
subtype polymorphism to write polymorphic speci�cations. This style of speci�cation does
not require pre-planning for polymorphism. Our technique for modular speci�cations is to
specify subtypes in such a way that the vocabulary used to state pre- and post-conditions
in their supertypes is also meaningful for the subtypes. This ensures that when a new type
is added to a speci�cation, existing speci�cations do not have to be changed.

The main theoretical results in this work are our speci�cation and veri�cation techniques
and the proof that the veri�cation technique is sound and modular. These are the �rst
such formal veri�cation techniques for object-oriented programs with subtypes and message
passing.

The most important property of the de�nition of legal subtype relations is that it allows
abstract types to be compared, based on their speci�cations. This is in contrast with the
work of Cardelli and others, which only described subtype relationships for a syntactically
characterized set of built-in types [8].8 Cardelli's landmark paper gives rules for what

8While existential types used by Mitchell, Cardelli and others [50] [10] [9] are sometimes said to describe
abstract data types, they do not characterize the behavior of such types. An existential type only describes
the syntactic interface of an abstract data type. Subtyping among the witness types (of existential types)

84

subtype relationships hold among the built-in types of a small programming language:
immutable records, variants, and higher-order functions. Although we do not handle higher-
order types, for �rst-order types our de�nition of legal subtype relations is more general,
since it applies to abstract data types. (An extension of our de�nition to higher-order types
is described in [37].) Like Cardelli, we have also attempted to give a de�nition of subtype
relationships that is theoretically justi�ed, instead of just appealing to intuition.

8.1 Limitations and Open Problems

Our theoretical results have certain formal limitations:

� The veri�cation technique: only handles LOAL client programs (not the implemen-
tations of types), does not handle mutation or assignment, and has not been proved
relatively complete.

� The speci�cation language: cannot specify types with mutable objects, and cannot
handle higher-order data types.

However, these formal limitations should not all be taken as fundamental weaknesses. We
believe that our techniques can be extended to handle mutation and assignment, and work
is in progress to do so [16] [17]. We have also extended these techniques to higher-order
functions [37]. The main limitation to bear in mind is that the veri�cation technique has not
been proved relatively complete [13] [46, Section 8.2]. This means, for example, that ours
may not be the only way to prove the correctness of object-oriented programs, and that,
even for types with immutable objects, ours may not be the best de�nition of legal subtype
relations. Indeed, a de�nition that says that there should be no way to get surprising
behavior from a legal subtype is more general and certainly more fundamental [40] [38] [34,
Chapter 7] [37]. Nevertheless, our soundness results and Corollary 7.5 show that a legal
subtype cannot exhibit surprising behavior.

In addition to the removing the limitations mentioned above, we suggest the following
as interesting open problems. There are several issues relating to classes that we ignored.
For example, one would like to be able to specify the behavior of classes to compare them
with types. One would also like to specify enough about a class so that a subclass could
be programmed without looking at the code of the superclass (see [32]). In veri�cation,
one would like to use the fact that a subtype is implemented by a subclass (of a class that
implements the supertype) to help prove legal subtyping.

8.2 Subtyping versus Re�nement

One justi�cation for subtype relationships might be that they are similar to re�nement
relationships among speci�cations. A type S is a re�nement of T if every implementation
of the speci�cation of S is an implementation of the speci�cation of T. For example, a type
LFPSchd, which is like IntSet except that the choose operation is speci�ed to return the
least element of the set, would be a re�nement of IntSet, because each implementation
would also satisfy the speci�cation of IntSet. However, a type S may be a subtype of T,
even though S is not a re�nement of T.

must be declared through the use of bounded existential types. When to declare such relationships is a
question of legal subtyping in our sense.

85

The di�erence between a subtype relationship and a re�nement relationship is due to
the distinction between class and the instance operations9. For a subtype relationship only
instance operations and the abstract values of objects that can be created by the class
operations matter. This is because the behavior of an object, once it has been created,
is only determined by its value as observed by its instance operations. For a re�nement
relationship, both the class and the instance operations matter, since an implementation of
a type includes both kinds of operations. For example, Interval is a subtype of IntSet,
even though the speci�cation of Interval has a class operation named create instead of
a class operation named null as in IntSet. However, because of this di�erence in class
operations, Interval is not a re�nement of IntSet. On the other hand, whenever S is a
re�nement of T, then S must be a subtype of T.

In his work on subtyping, America does not make a distinction between re�nement and
subtyping [2]. This is because in his language POOL-I, a type consists only of instance
operations. Classes implement types and have class operations, but there is no hard and
fast link between classes and types, since a type can be implemented by more than one class.
Indeed, as POOL-I is not itself a speci�cation language, there is no comparable semantics
to ensure that all the classes that purport to implement a type do so collectively, not just
individually. We believe that it is important to make a conceptual distinction between
re�nement and subtyping.

In Larch/LOAL, a type speci�cation speci�es two types, a type for the class operations
and a type for the instance operations. The semantics of LOAL do not specify how types
are implemented, but the semantics of Larch/LOAL lump together all implementations of
a type found in a program. We believe that the close link between class operations and
instance operations that our semantics and the de�nition of legal subtype relations requires
will help one to reason about programs using datatype induction [43, Section 4.9.4], although
this remains to be shown. Also remaining as future work is a formal connection between
subtyping and re�nement of the types of instances.

8.3 Related Work

Meyer, America, and Utting have discussed both subtyping and the speci�cation and veri-
�cation of object-oriented programs.

8.3.1 Meyer's work on Ei�el

Of authors who discuss speci�cation and veri�cation, Meyer's work on Ei�el is perhaps the
best known [47] [48]. Meyer concentrates on speci�cation and does not give a formal logic
for the veri�cation of Ei�el programs. In contrast to Larch/LOAL, Ei�el speci�cations may
invoke methods. This can be used to give speci�cations an axiomatic avor, where the
methods and axioms mutually constrain each other. However, many Ei�el speci�cations do
not call other methods, perhaps recognizing the potential problems with invoking operations
that can mutate objects in the midst of assertions. Instead, assertions in Ei�el examples
usually are expressed in terms of the values of an object's instance variables. But using
instance variables also has problems, because implementations are no longer free to choose
their own instance variables and because such instance variables must be visible to clients.

9Some object-oriented languages do not have classes, but are based on the notion of delegation [41] [60].
In such languages, speci�ed class operations might be implemented by functions that clone prototypes, or
by instance operations of prototypes. The point is that one can still design using class operations and
subtyping, even if one programs in such a language.

86

The main problem with a speci�cation language like Ei�el's is that one is sometimes
forced to export more operations or instance variables than one would like in order to
specify some types. For example, to specify a statistical database with instance operations
insert, mean, and variance, one would also need to export operations that enumerate
the elements to state the post-condition of insert. To see this, suppose such operations
were hidden. Then how would a client understand the speci�cation of insert? That is, a
client cannot test whether insert satis�es its speci�cation, because it cannot call insert
and evaluate its post-condition. However, a designer may wish to prevent clients from
enumerating the elements of the database for security reasons. In Larch/LOAL one can
specify trait functions on the abstract values that allow the speci�cation of insert without
allowing clients to access individual elements of the database. Of course, since Larch/LOAL
assertions cannot be executed, they are less useful for debugging.

The dynamic binding used in evaluating assertions at run-time in Ei�el is similar to our
semantics for speci�cations, which also evaluates assertions based on the dynamic types of
the objects to which the assertions refer. So like our speci�cations, the speci�cations in
Ei�el are modular.

Meyer's de�nition of legal subtyping is based on implications between the pre- and post-
conditions of corresponding operations of the subtype and supertype [47, Section 11.1].
(Similar de�nitions were proposed earlier by the designers of Trellis/Owl [55].) In the latest
version of Ei�el, speci�cations of subtypes, if not inherited as is, must use a special form
that automatically ensures that the pre-condition of the subtype is weaker than the pre-
condition of the supertype, and that the post-condition of the subtype is stronger than the
post-condition of the supertype [48, Sections 10.15 and 10.22]. The pre- and post-conditions
of the sub- and supertypes can be combined into such formulas because the subtype inherits
the instance variables and abbreviations from the supertype, and so the formulas are all in
the language of the subtype.

8.3.2 America's formalization of Meyer's techniques

Meyer's speci�cation technique and his de�nition of legal subtyping has been studied more
formally by America [1] [2]. Although America and de Boer have done work on formal
veri�cation [3], their veri�cation logic handles pointers, aliasing, and object creation, but
explicitly excludes subtyping and message passing. It is America's de�nition of legal sub-
typing, based on behavioral speci�cations, which is most closely related to our work.

In America's work on subtyping, types are speci�ed using abstract values, in a way
similar to Larch/LOAL. America de�nes abstract values and their operations informally,
but one could use LSL traits to de�ne them. America speci�es operations in POOL-I using
pre- and post-conditions written in terms of the abstract values of the operation's formal
arguments, just as in Larch/LOAL. However, America does not specify object creation in
POOL-I, although that could be done using the same techniques.

America's requirements for legal subtypes take into account that the subtype and its
supertypes may have di�erent abstract values, and hence that their speci�cations may be
expressed with di�erent logical operations. His transfer functions, which map the abstract
values of subtypes to the abstract values of supertypes, are similar to our simulation rela-
tions. Simulation relations, since they need not be functions, are more general than transfer
functions [57], and the coercion functions of [53] and [6]. Larch/LOAL gives form to the
expression of such relations on abstract values.

The technical relationship between our de�nition and America's is the subject of Sec-

87

tion 7.

8.3.3 Comparisons to America's Speci�cation Techniques

America's work provides both a de�nition of legal subtyping and a speci�cation method.
The main di�erences between his speci�cation method and our method (embodied in
Larch/LOAL) are as follows.

� In Larch/LOAL we are limited to subtype-constraining assertions. America has no
such limitation and can use \=" freely in assertions.

� America's use of a transfer function can be seen as a way to de�ne the trait functions on
arguments of the subtype; that is, the coercion function can be used in a shorthand
such as Figure 6. Hence our technique of overloading the trait functions is more
general.

� Because we do not require transfer functions , but allow relations, we can specify
subtypes for which abstract values of the subtype simulate more than one abstract
value of the supertype.

8.3.4 Utting's work

Utting's work on the speci�cation and veri�cation of object-oriented programs [62] [61] is
in the framework of the re�nement calculus. He also shows how to do modular reasoning.
His work handles mutation, unlike ours which only deals with immutable objects. However,
his work does not allow for change of object representations (data re�nement).

Utting's notion of legal subtype relations is similar to re�nement, like America's, but
treats code that can make arbitrary observations on objects; that is, he treats code that can
observe objects in other ways than just calling their methods. We do not include things like
a typeOf operator in LOAL, because the expression typeOf(x) will give di�erent results in
environments where x denotes objects of di�erent types. For us, such an operator destroys
subtyping; but for Utting this is the main distinction between subtyping and re�nement.
The theoretical and practical implications of these distinctions is unknown, but we believe
that programmers and language designers should be cautious in using operators like typeOf,
as it will certainly complicate reasoning with supertype abstraction.

8.3.5 Liskov and Wing's work

Liskov and Wing [44] [45] formulate a de�nition of legal subtype relations that is similar to
America's, except that it has explicit provisions to deal with aliasing for mutable types; their
de�nition is thus more widely applicable than ours. While we believe that their de�nition
has much to recommend it, their de�nition is only justi�ed on the basis of intuition and
examples; one would have to do the same kind of study as in this paper to justify their work
formally. However, since their de�nition, like America's, is based on implications between
assertions, it is more easily applied than ours.

Liskov and Wing do not give a formal logic for program veri�cation. However, their
approach to reasoning about programs is the same as our approach of supertype abstrac-
tion. (Note that this contradicts their discussion on page 138 of [44] of our work. We use
simulation relations to coerce abstract values of subtypes to supertypes, not vice versa.)

88

8.4 Wider applications

The paradigm of supertype abstraction has wider application than just object-oriented
programming. It is possible to view many table-driven programs, including compilers, in
the same light. The essence of message passing is a combination of fetching a procedure
from an object and invoking it. In a table-driven system the operations are fetched from a
table based on some information in an object but the e�ect of dynamic binding is the same;
hence the problems of specifying and verifying such systems are similar.

Our techniques might also be used to reason about type parameters in languages like
CLU and Ada. The objects of the actual type parameter can be considered as a kind of
subtype of the formal type parameter, especially if only instances of the actual parameter
type are involved. Understanding more about the relationship between subtyping and
re�nement should help in this application of our work.

It may be that our technique of dynamic overloading for assertions would be helpful in
proving more conventional re�nement relationships and in avoiding information loss prob-
lems associated with any abstract views of objects.

We claim the broadest application not for our speci�c results, but for the concepts of
supertpe abstraction and its bene�ts of modular speci�cation and veri�cation. Modularity
is a worthy goal in formal methods for object-oriented programming.

89

Acknowledgements

Special thanks to two anonymous referees who carefully read earlier versions of this paper
and gave many helpful and detailed comments.

Thanks to Barbara Liskov who was instrumental for encouraging this work at an early
stage, and for continued technical discussions. Thanks to John Guttag for technical exper-
tise, encouragement, the Larch approach to speci�cation, and his suggestion that we use
dynamic overloading of trait functions. Thanks to Jeannette Wing for pointing out related
work by Reynolds that helped formalize Guttag's suggestion, for the Larch approach to
speci�cation, and for a number of technical discussions. Thanks to David McAllester, who
crystallized an idea of ours by suggesting that we base the de�nition of subtype relations
on an algebraic criterion instead of observations (as was done in Leavens' dissertation).
Thanks to many others for stimulating technical discussions, especially: Yoonsik Cheon,
Krishna Kishore Dhara, Don Pigozzi, Pierre America, Kim Bruce, Doug Lea, David Guas-
pari, Albert Baker, Val Breazu-Tannen, Albert Meyer, Tobias Nipkow, Qingming Ma, Luca
Cardelli, Jim Horning, T.B. Dinesh, David Schmidt, John Mitchell, Mart��n Abadi, and
William Cook. Thanks to Janet Leavens for providing moral support and encouragement.

90

References

[1] America, P. Inheritance and subtyping in a parallel object-oriented language. In
Bezivin, J. et al., editors, ECOOP '87, European Conference on Object-Oriented Pro-
gramming, Paris, France, pages 234{242, New York, N.Y., June 1987. Springer-Verlag.
Lecture Notes in Computer Science, Volume 276.

[2] America, P. Designing an object-oriented programming language with behavioural
subtyping. In de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors, Foun-
dations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, volume 489 of Lecture Notes in Computer Science, pages
60{90. Springer-Verlag, New York, N.Y., 1991.

[3] America, P. and de Boer, F. A sound and complete proof theory for SPOOL. Technical
Report 505, Philips Research Laboratories, Nederlandse Philips Bedrijven B. V., May
1990.

[4] Broy, M. A theory for nondeterminism, parallelism, communication, and concurrency.
Theoretical Computer Science, 45(1):1{61, 1986.

[5] Bruce, K. B. and Longo, G. A modest model of records, inheritance, and bounded
quanti�cation. In Gurevich, Y., editor, Third Annual Symposium on Logic in Computer
Science, pages 38{51. IEEE, July 1988.

[6] Bruce, K. B. and Wegner, P. An algebraic model of subtype and inheritance. In
Ban�cilhon, F. and Buneman, P., editors, Advances in Database Programming Lan-
guages, pages 75{96. Addison-Wesley, Reading, Mass., August 1990.

[7] Burstall, R. M. and Goguen, J. A. Algebras, theories and freeness: An introduction for
computer scientists. In Broy, M. and Schmidt, G., editors, Theoretical Foundations of
Programming Methodology: Lecture Notes of an International Summer School directed
by F. L. Bauer, E. W. Dijkstra and C. A. R. Hoare, volume 91 of series C, pages
329{348. D. Ridel, Dordrecht, Holland, 1982.

[8] Cardelli, L. A semantics of multiple inheritance. In G. Kahn, D. B. M. and Plotkin, G.,
editors, Semantics of Data Types: International Symposium, Sophia-Antipolis, France,
volume 173 of Lecture Notes in Computer Science, pages 51{66. Springer-Verlag, New
York, N.Y., June 1984. A revised version of this paper appears in Information and
Computation, volume 76, numbers 2/3, pages 138{164, February/March 1988.

[9] Cardelli, L. Structural subtyping and the notion of power type. In Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Programming Languages,
San Diego, Calif., pages 70{79. ACM, January 1988.

[10] Cardelli, L. and Wegner, P. On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys, 17(4):471{522, December 1985.

[11] Chen, J. The Larch/Generic interface language. Technical report, Massachusetts In-
stitute of Technology, EECS department, May 1989. The author's Bachelor's thesis.
Available from John Guttag at MIT (guttag@lcs.mit.edu).

91

[12] Cheon, Y. Larch/Smalltalk: A speci�cation language for Smalltalk. Technical Re-
port 91-15, Department of Computer Science, Iowa State University, Ames, IA, June
1991. Available by anonymous ftp from ftp.cs.iastate.edu, and by e-mail from al-
manac@cs.iastate.edu.

[13] Cook, S. A. Soundness and completeness of an axiom system for program veri�cation.
SIAM Journal on Computing, 7:70{90, 1978.

[14] Cook, W. R. Object-oriented programming versus abstract data types. In de Bakker,
J. W., de Roever, W. P., and Rozenberg, G., editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of Lecture Notes in Computer Science, pages 151{178. Springer-
Verlag, New York, N.Y., 1991.

[15] Cook, W. R., Hill, W. L., and Canning, P. S. Inheritance is not subtyping. In Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, pages 125{135, January 1990. Also STL-89-17,
Software Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto, Calif., July
1989.

[16] Dhara, K. K. Subtyping among mutable types in object-oriented programming lan-
guages. Master's thesis, Iowa State University, Department of Computer Science, Ames,
Iowa, May 1992.

[17] Dhara, K. K. and Leavens, G. T. Subtyping for mutable types in object-oriented
programming languages. Technical Report 92-36, Department of Computer Science,
Iowa State University, Ames, Iowa, 50011, November 1992. Available by anonymous
ftp from ftp.cs.iastate.edu, and by e-mail from almanac@cs.iastate.edu.

[18] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Speci�cation 1: Equations and
Initial Semantics. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, New York, N.Y., 1985.

[19] Enderton, H. B. A Mathematical Introduction to Logic. Academic Press, Inc., Orlando,
Florida, 1972.

[20] Goguen, J. A. Parameterized programming. IEEE Transactions on Software Engineer-
ing, SE-10(5):528{543, September 1984.

[21] Goguen, J. A. and Meseguer, J. Order-sorted algebra solves the constructor-selector,
multiple representation and coercion problems. Technical Report CSLI-87-92, Center
for the Study of Language and Information, March 1987. Appears in Second Annual
Symposium on Logic in Computer Science, Ithaca, NY, June, 1987, pages 18-29.

[22] Goldberg, A. and Robson, D. Smalltalk-80, The Language and its Implementation.
Addison-Wesley Publishing Co., Reading, Mass., 1983.

[23] Gratzer, G. Universal Algebra. Springer-Verlag, New York, N.Y., second edition, 1979.

[24] Guttag, J. V., Horning, J. J., and Wing, J. M. Larch in �ve easy pieces. Technical Re-
port 5, Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, July 1985. Order from src-report@src.dec.com.

92

[25] Guttag, J. Notes on type abstractions (version 2). IEEE Transactions on Software
Engineering, SE-6(1):13{23, January 1980. Version 1 in Proceedings Speci�cations of
Reliable Software, Cambridge, Mass., IEEE, April, 1979.

[26] Guttag, J. V., Horning, J. J., Garland, S., Jones, K., Modet, A., and Wing, J. Larch:
Languages and Tools for Formal Speci�cation. Springer-Verlag, New York, N.Y., 1993.

[27] Guttag, J. V., Horning, J. J., and Modet, A. Report on the Larch Shared Lan-
guage: Version 2.3. Technical Report 58, Digital Equipment Corporation, Systems
Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, April 1990. Order from
src-report@src.dec.com.

[28] Guttag, J. V., Horning, J. J., and Wing, J. M. The Larch family of speci�cation
languages. IEEE Software, 2(4), September 1985.

[29] Hoare, C. A. R. Notes on data structuring. In Ole-J. Dahl, E. D. and Hoare, C. A. R.,
editors, Structured Programming, pages 83{174. Academic Press, Inc., New York, N.Y.,
1972.

[30] LaLonde, W. R. Designing families of data types using exemplars. ACM Transactions
on Programming Languages and Systems, 11(2):212{248, April 1989.

[31] LaLonde, W. R., Thomas, D. A., and Pugh, J. R. An exemplar based Smalltalk.
ACM SIGPLAN Notices, 21(11):322{330, November 1986. OOPSLA '86 Conference
Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[32] Lamping, J. Typing the specialization interface. ACM SIGPLAN Notices, 28(10):201{
214, October 1993. OOPSLA '93 Proceedings, Andreas Paepcke (editor).

[33] Lamport, L. A simple approach to specifying concurrent systems. Communications of
the ACM, 32(1):32{45, January 1989.

[34] Leavens, G. T. Modular veri�cation of object-oriented programs with subtypes. Tech-
nical Report 90-09, Department of Computer Science, Iowa State University, Ames,
Iowa, 50011, July 1990. Available by anonymous ftp from ftp.cs.iastate.edu, and by
e-mail from almanac@cs.iastate.edu.

[35] Leavens, G. T. Modular speci�cation and veri�cation of object-oriented programs.
IEEE Software, 8(4):72{80, July 1991.

[36] Leavens, G. T. and Pigozzi, D. Typed homomorphic relations extended with sub-
types. Technical Report 91-14, Department of Computer Science, Iowa State Uni-
versity, Ames, Iowa, 50011, June 1991. Appears in the proceedings of Mathematical
Foundations of Programming Semantics '91, Springer-Verlag, Lecture Notes in Com-
puter Science, volume 598, pages 144-167, 1992.

[37] Leavens, G. T. and Pigozzi, D. Typed homomorphic relations extended with subtypes.
In Brookes, S., editor, Mathematical Foundations of Programming Semantics '91, vol-
ume 598 of Lecture Notes in Computer Science, pages 144{167. Springer-Verlag, New
York, N.Y., 1992.

93

[38] Leavens, G. T. and Weihl, W. E. Reasoning about object-oriented programs that use
subtypes (extended abstract). ACM SIGPLAN Notices, 25(10):212{223, October 1990.
OOPSLA ECOOP '90 Proceedings, N. Meyrowitz (editor).

[39] Leavens, G. T. and Weihl, W. E. Subtyping, modular speci�cation, and modular veri�-
cation for applicative object-oriented programs. Technical Report 92-28d, Department
of Computer Science, Iowa State University, Ames, Iowa, 50011, August 1994. Available
by anonymous ftp from ftp.cs.iastate.edu, and by e-mail from almanac@cs.iastate.edu.

[40] Leavens, G. T. Verifying object-oriented programs that use subtypes. Technical Re-
port 439, Massachusetts Institute of Technology, Laboratory for Computer Science,
February 1989. The author's Ph.D. thesis.

[41] Lieberman, H. Using prototypical objects to implement shared behavior in object
oriented systems. ACM SIGPLAN Notices, 21(11):214{223, November 1986. OOPSLA
'86 Conference Proceedings, Norman Meyrowitz (editor), September 1986, Portland,
Oregon.

[42] Liskov, B. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23(5):17{34, May
1988. Revised version of the keynote address given at OOPSLA '87.

[43] Liskov, B. and Guttag, J. Abstraction and Speci�cation in Program Development. The
MIT Press, Cambridge, Mass., 1986.

[44] Liskov, B. and Wing, J. M. A new de�nition of the subtype relation. In Nierstrasz,
O. M., editor, ECOOP '93 | Object-Oriented Programming, 7th European Conference,
Kaiserslautern, Germany, volume 707 of Lecture Notes in Computer Science, pages
118{141. Springer-Verlag, New York, N.Y., July 1993.

[45] Liskov, B. and Wing, J. M. Speci�cations and their use in de�ning subtypes. ACM
SIGPLAN Notices, 28(10):16{28, October 1993. OOPSLA '93 Proceedings, Andreas
Paepcke (editor).

[46] Loeckx, J. and Sieber, K. The Foundations of Program Veri�cation (Second edition).
John Wiley and Sons, New York, N.Y., 1987.

[47] Meyer, B. Object-oriented Software Construction. Prentice Hall, New York, N.Y., 1988.

[48] Meyer, B. Ei�el: The Language. Object-Oriented Series. Prentice Hall, New York,
N.Y., 1992.

[49] Mitchell, J. C. Representation independence and data abstraction (preliminary ver-
sion). In Conference Record of the Thirteenth Annual ACM Symposium on Principles
of Programming Languages, St. Petersburg Beach, Florida, pages 263{276. ACM, Jan-
uary 1986.

[50] Mitchell, J. C. Lambda Calculus Models of Typed Programming Languages. PhD thesis,
Massachusetts Institute of Technology, August 1984.

[51] Nipkow, T. Non-deterministic data types: Models and implementations. Acta Infor-
matica, 22(16):629{661, March 1986.

94

[52] Nipkow, T. Behavioural Implementation Concepts for Nondeterministic Data Types.
PhD thesis, University of Manchester, May 1987.

[53] Reynolds, J. C. Using category theory to design implicit conversions and generic op-
erators. In Jones, N. D., editor, Semantics-Directed Compiler Generation, Proceedings
of a Workshop, Aarhus, Denmark, volume 94 of Lecture Notes in Computer Science,
pages 211{258. Springer-Verlag, January 1980.

[54] Reynolds, J. C. Three approaches to type structure. In Ehrig, H., Floyd, C., Nivat,
M., and Thatcher, J., editors, Mathematical Foundations of Software Development,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development (TAPSOFT), Berlin. Volume 1: Colloquium on Trees in Algebra and
Programming (CAAP '85), volume 185 of Lecture Notes in Computer Science, pages
97{138. Springer-Verlag, New York, N.Y., March 1985.

[55] Scha�ert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An introduction
to Trellis/Owl. ACM SIGPLAN Notices, 21(11):9{16, November 1986. OOPSLA
'86 Conference Proceedings, Norman Meyrowitz (editor), September 1986, Portland,
Oregon.

[56] Schmidt, D. A. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, Inc., Boston, Mass., 1986.

[57] Schoett, O. Behavioural correctness of data representations. Science of Computer
Programming, 14(1):43{57, June 1990.

[58] Snyder, A. Encapsulation and inheritance in object-oriented programming languages.
ACM SIGPLAN Notices, 21(11):38{45, November 1986. OOPSLA '86 Conference
Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[59] Statman, R. Logical relations and the typed �-calculus. Information and Control,
65(2/3):85{97, May/June 1985.

[60] Stein, L. A., Lieberman, H., and Ungar, D. A shared view of sharing: The treaty
of Orlando. In Kim, W. and Lochovsky, F. H., editors, Object-Oriented Concepts,
Databases, and Applications, chapter 3, pages 31{48. Addison-Wesley Publishing Co.,
Reading, Mass., 1989.

[61] Utting, M. An Object-Oriented Re�nement Calculus with Modular Reasoning. PhD
thesis, University of New South Wales, Kensington, Australia, 1992. Draft of February
1992 obtained from the Author.

[62] Utting, M. and Robinson, K. Modular reasoning in an object-oriented re�nement
calculus. In Bird, R. S., Morgan, C. C., and Woodcock, J. C. P., editors, Mathematics
of Program Construction, Second International Conference, Oxford, U.K., June/July,
volume 669 of Lecture Notes in Computer Science, pages 344{367. Springer-Verlag,
New York, N.Y., 1992.

[63] Wing, J. M. Writing Larch interface language speci�cations. ACM Transactions on
Programming Languages and Systems, 9(1):1{24, January 1987.

[64] Wing, J. M. A two-tiered approach to specifying programs. Technical Report TR-299,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1983.

95

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR92-28d
Submission Date: September 12, 1994

	9-1994
	Subtyping, Modular Specification, and Modular Verification for Applicative Object-Oriented Programs
	Gary T. Leavens
	William E. Weihl
	Recommended Citation

	sound-modular-verif.dvi

