
Computer Science Technical Reports Computer Science

7-5-1990

Modular Verification of Object-Oriented Programs
with Subtypes
Gary T. Leavens
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Systems Architecture Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T., "Modular Verification of Object-Oriented Programs with Subtypes" (1990). Computer Science Technical Reports.
Paper 93.
http://lib.dr.iastate.edu/cs_techreports/93

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/93?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Modular Veri�cation of
Object-Oriented Programs

with Subtypes

Gary T. Leavens

TR #90-09
July 5, 1990

c
 Gary T. Leavens, 1990. All rights reserved.

Department of Computer Science
Iowa State University

Ames, Iowa 50011-1040, USA

Modular Veri�cation of
Object-Oriented Programs

with Subtypes

Gary T. Leavens

Abstract

Object-oriented programming languages like Smalltalk-80 have a message passing
mechanism that allows code to work on instances of many di�erent types. Tech-
niques for the formal speci�cation of such polymorphic functions and abstract
types are described, as well as a logic for verifying programs that use message
passing but not object mutation or assignment.
The reasoning techniques formalize informal methods based on the use of sub-
types. A formal de�nition of subtype relationships among abstract types whose
objects have no time-varying state but may be nondeterministic or incompletely
speci�ed is given. This de�nition captures the intuition that each instance of
a subtype behaves like some instance of that type's supertypes. Speci�cations
of polymorphic functions are written by allowing instances of subtypes as argu-
ments. Restrictions on the way that abstract types are speci�ed ensure that such
function speci�cations are meaningful and do not have to be rewritten when new
subtypes are speci�ed. Veri�cation consists of showing that the speci�ed relation
among types has certain semantic properties, that each expression's value is an
instance of a subtype of the expression's type, and a proof of correctness that
ignores subtyping.

Keywords: programming languages, object-oriented, Smalltalk, speci�cation,
veri�cation, subtype, type checking, abstract type, message passing, polymor-
phism.
1987 CR Categories:
D.2.1 [Software Engineering] Requirements/Speci�cations | Languages; D.2.4
[Software Engineering] Program Veri�cation | Correctness proofs; D.3.3 [Pro-
gramming Languages] Language Constructs | Abstract data types, procedures,
functions, and subroutines; F.3.1 [Logics and Meanings of Programs] Specify-
ing and verifying and reasoning about programs | logics of programs, pre- and
post-conditions, speci�cation techniques.

i

List of Figures

1.1 The type speci�cation IntSet. : 2
1.2 The type speci�cation Interval. : 2
1.3 Implementation of the function inBothCLU in CLU, which demonstrates the code update problem. 3
1.4 Example of message passing. : 4
1.5 Implementation of the function inBothML in ML. : 4
1.6 Speci�cation of the function inBoth. : 5
1.7 Traditional speci�cation of inBoth. : 5
1.8 The problem with veri�cation and message passing. : 8

2.1 Signature for the speci�cation II of IntSet and Interval, �rst part. : : : : : : : : : : : : : : : : 12
2.2 Signature for the speci�cation II of IntSet and Interval, last part. : : : : : : : : : : : : : : : : 13
2.3 An algebra B for the speci�cation II, including IntSet and Interval, �rst part. : : : : : : : : : 15
2.4 An algebra B for the speci�cation II, including IntSet and Interval, last part. : : : : : : : : : 16

3.1 Syntax of Type Speci�cations. : 20
3.2 The traits IntSetTrait and CardToInt. : 21
3.3 The trait IntervalTrait. : 22
3.4 The trait OneOf[normal: Int, empty: Null]. : 26
3.5 Speci�cation of the type IntSet2. : 26
3.6 Desugared form of an exception speci�cation. : 26
3.7 Syntax of Function Speci�cations. : 26
3.8 The function speci�cation is2in. : 26
3.9 Speci�cation of the priority scheduler type, PSchd. : 28
3.10 The trait OrderedIntSet. : 28
3.11 The trait PSchdTrait. : 28
3.12 Speci�cation of the function ins3, which inserts 3 in a set. : 28
3.13 Speci�cation of the statistical database type, Sdb. : 29
3.14 The trait StatBag. : 30
3.15 Speci�cation of the program operation assertEmpty. : 30

4.1 Speci�cation of the choose operation of the type Crowd. : 32
4.2 The OneOf type OneOf[normal: Int, empty: Null], abbreviated NE. : : : : : : : : : : : : : : : 34
4.3 The type OneOf[normal: Int], abbreviated NI. : 34
4.4 The trait OneOf[normal: Int]. : 34
4.5 Speci�cation of the type PSchd2, which is more de�ned than PSchd. : : : : : : : : : : : : : : : : 35
4.6 Speci�cation of the type IntSet3. : 36
4.7 The speci�cation Vehicles, including types Vehicle and Bicycle. : : : : : : : : : : : : : : : : : : 37
4.8 The trait VehicleTrait. : 37
4.9 The trait BicycleTrait. : 37

5.1 Syntax of NOAL. : 41
5.2 Type Inference Rules for NOAL : 44

6.1 Axiom Schemes for veri�cation of NOAL Expressions. : 49
6.2 Inference rules for veri�cation of NOAL expressions. : 50
6.3 General form of a program speci�cation : 52
6.4 Speci�cation of the function testFor. : 53
6.5 Soundness of the message passing axiom scheme. : 59

B.1 Model of the visible type Bool. : 79
B.2 Model of the visible type Int. : 80
B.3 Model of the visible type IntStream. : 80

ii

C.1 Strong monotonicity of RT. : 84

iii

Contents

Preface vi

1 Introduction 1
1.1 Purpose and Background : 1

1.1.1 The Code Update Problem : 2
1.1.2 The Speci�cation and Veri�cation Update Problems : 4

1.2 Overview of a Solution : 5
1.2.1 Subtyping : 6
1.2.2 Subtype versus Re�nement : 7
1.2.3 Subtype Relationships versus Subclass Relationships : 8
1.2.4 Type Checking and Veri�cation : 8

1.3 Related Work : 9
1.4 Plan of the Report : 10

2 Algebraic Models and Simulation Relations 11
2.1 Algebraic Models : 11

2.1.1 Signatures : 11
2.1.2 Algebras : 13

2.2 Simulation Relations : 17

3 Polymorphic Type and Function Speci�cations 19
3.1 Type Speci�cations : 19

3.1.1 Type Speci�cation Syntax : 19
3.1.2 Signature of a Type Speci�cation : 20
3.1.3 Satisfaction for Type Speci�cations : 23

3.2 Nondeterministic Type Speci�cations : 25
3.3 Specifying Types with Exceptions : 25
3.4 Function Speci�cations : 25
3.5 Discussion : 27

3.5.1 Loss of Information for Subtype Results : 27
3.5.2 Loss of Type Information for Subtype Results : 27
3.5.3 The Need for Subtype-Constraining Assertions : 29
3.5.4 No Constraints Imposed on the Operations of Presumed Subtypes : : : : : : : : : : : : : 29
3.5.5 Inheritance of Speci�cations : 30
3.5.6 Must Subtypes Implement All Instance Operations of Supertypes? : : : : : : : : : : : : : 30

4 Subtype Relations 31
4.1 De�nition of Subtype Relations : 31

4.1.1 Subtypes can be More Deterministic : 31
4.1.2 Incompletely Speci�ed Supertypes : 32

4.2 Examples : 33
4.2.1 OneOf Types : 33
4.2.2 Subtypes can have Weaker Requirements : 35
4.2.3 Exceptions and Subtyping : 35
4.2.4 Virtual Supertypes : 36

4.3 Other De�nitions of Subtype : 37
4.3.1 Informal De�nitions of Subtype Relationships : 38
4.3.2 Algebraic Approaches : 38

5 An Applicative Language 40
5.1 NOAL Syntax : 40

iv

5.2 NOAL Semantics : 40
5.2.1 Semantics of NOAL Expressions : 41
5.2.2 Semantics of Recursive Function De�nitions : 42
5.2.3 Semantics of NOAL Programs : 42

5.3 Nominal Types and Type Checking for NOAL : 43
5.3.1 Nominal Types : 43
5.3.2 Type Checking : 43
5.3.3 Obedience : 45

6 Hoare-style Veri�cation for NOAL Programs 47
6.1 A Hoare Logic for NOAL : 47
6.2 NOAL Program Veri�cation : 51
6.3 Soundness of Hoare-style Veri�cation for NOAL : 55

6.3.1 Assertions can be Lifted : 55
6.3.2 Simulation is Preserved by Subtype-Constraining Assertions : : : : : : : : : : : : : : : : : 56
6.3.3 Provable and Subtype-Constraining Assertions are Valid : : : : : : : : : : : : : : : : : : : 57
6.3.4 Soundness Theorems : 57

6.4 Modularity : 61
6.5 How a Type System can Aid Veri�cation : 63

6.5.1 Obedience in NOAL : 63
6.5.2 Veri�cation in Trellis/Owl : 63
6.5.3 Veri�cation in Emerald : 63
6.5.4 Veri�cation in Smalltalk-80 : 63

7 Observability 65
7.1 Observations and Imitation : 65
7.2 Simulation as a Criteria for Imitation : 66
7.3 A Weaker De�nition of Subtyping based on Imitation : 68
7.4 Subtype Relations are Weak Subtype Relations for NOAL : 69
7.5 Discussion : 70

7.5.1 Testing : 70
7.5.2 Comparing the two Notions of Subtyping : 70

8 Discussion 71
8.1 Extensions Needed for Practical Applications : 71
8.2 Future Work : 71

8.2.1 Future Work on Speci�cation : 71
8.2.2 Future Work on Veri�cation : 71
8.2.3 Future Work on Language Design : 71

9 Summary and Conclusions 73
9.1 Summary of Results : 73
9.2 Conclusions for Programmers : 73
9.3 Conclusions for Language Designers : 74

9.3.1 Languages Should Have Declared Subtype Relations : 74
9.3.2 TypeOf Operators Cause Problems for Reasoning : 74

A Summary of Notation 75

B Visible Types and Streams 79

C Recursively-De�ned NOAL Functions 81
C.1 Semantics of NOAL Functions : 81

C.1.1 Domains and Domain Orderings : 81
C.1.2 Semantics of Recursive Functions in NOAL : 82

C.2 The Substitution Property for Functions : 83

References 88

v

Preface

This report is a complete revision of my doctoral
dissertation [Lea88] [Lea89]. As such it di�ers in most
of the technical details, although it has the same goals
and is based on roughly the same plan for speci�cation
and veri�cation of object-oriented programs.
My deep thanks go to Bill Weihl, who not only

helped me develop the ideas, but who is also an excel-
lent reader and critic, a good friend, and has also aided
in this revision. Barbara Liskov was also instrumen-
tal in developing and organizing my ideas and she en-
couraged me to pursue the topic of subtyping. During
the writing of my dissertation, John Guttag provided
technical expertise, encouragement, and a dedication
to clear writing and thinking, which I hope is re
ected
in the present work.
For speci�c technical suggestions re
ected in this

revision, thanks are due to the following. John Gut-
tag, at my defense, suggested that I require that trait
functions as well as the generic operations apply at
each subtype; Bill Weihl provided some examples that
helped convince me of the wisdom of that sugges-
tion. Jeannette Wing pointed out related work by
Reynolds that helped formalize Guttag's suggestion.
David McAllester crystallized an idea of mine in his
suggestion that I base the de�nition of subtype rela-
tions on an algebraic criterion instead of observations
(as was done in my dissertation). I had stimulating
technical discussions with many others, including Val
Breazu-Tannen, John Mitchell and William Cook.
For great love, understanding, and encouragement,

my thanks to Janet Leavens. For help, friendship and
encouragement during the past few years, my thanks
to Brian Oki, Kelvin Nilsen, Albert Baker, Arch Olde-
hoeft, the faculty and sta� at Iowa State, Jim Bieman,
and my family.
This work was supported in part by the ISU

Achievement Foundation, the National Science Foun-
dation under Grants DCR-8510014 and CCR-8716884,
the Defense Advanced Research Projects Agency
under Contract N00014-83-K-0125, and by a Gen-
Rad/AEA Faculty Development Fellowship.

vi

Chapter 1

Introduction

The ability to easily expand the functionality of a
software system is fundamental to the maintenance
and prototyping of computer software. An important
way that one can enhance the functionality of a sys-
tem is by adding new types of objects. The message
passing mechanism of an object-oriented programming
language such as Smalltalk-80 [GR83], C++ [Str86],
the Common LISP Object System (CLOS) [Kee89], or
Simula 67 [BDMN73], can eliminate the need to up-
date code to work with objects of new types [Cox86],
because it separates the manipulation of an object
from knowledge of the object's type.
To reason about the behavior of a program to which

new types of objects have been added, programmers
often classify types by how instances of that type be-
have. If each instance of type S behaves like an in-
stance of type T, then S is called a subtype of T. Pro-
grammers hope that if their code works correctly when
it operates on instances of some type T, then their code
will also work correctly when a new subtype of T is
added to the program. However, since they lack the
formal tools to guide their classi�cation of types and
their reasoning, their reasoning lacks certainty.
The following steps towards a foundation for rea-

soning about programs that use message passing and
subtyping are described in this report:

� a formal technique for specifying programs that
use message passing,

� a formal de�nition of subtyping among abstract
types, and

� a formal technique for verifying programs that use
message passing.

Even if formal veri�cation of such programs is not
practical, large programs require at least careful in-
formal speci�cations of their modules. A better un-
derstanding of formal techniques for speci�cation and
veri�cation can serve as a guide to such informal rea-
soning. Furthermore, correctness considerations play
an important role in program optimization.
The remainder of this chapter contains a discus-

sion of the purpose and background of the research,
an overview of the solution, a survey of related work,
and a guide to the technical details.

1.1 Purpose and Background

Object-oriented design techniques arise out of concerns
for modularity in software systems [Cox86]. Modu-
larity means the separation of code into modules that
have few and well-de�ned interactions with each other.

Modules can be used to hide design decisions that may
have to be changed at a later time [Par72], allowing one
to view a system's design at many di�erent levels of
detail. This aids the construction of software systems
as well as their maintenance, since when a design de-
cision is changed, only one module should need to be
changed.
An object-oriented design (as opposed to a program)

consists of procedure and abstract data type speci�ca-
tions that, when implemented and put together, will
satisfy the system's requirements [LG86, Page 265].
The implementation of a procedure or abstract data
type speci�cation may itself be guided by a lower-level
design. An abstract data type is speci�ed by describing
a set of objects (the instances of that type) and how
those objects behave when manipulated by the type's
operations. For example, Int is an abstract data type,
whose objects are integers and whose operations are
add, mul, and so on.
The behavior of the objects of an abstract type is

described in a type speci�cation, which does not dictate
the details of an implementation. For example, the
speci�cation of the type IntSet describes the behavior
of the following operations (see Figure 1.1):

� null, which creates an empty IntSet,

� ins, which returns an IntSet containing its inte-
ger argument inserted into the set of elements of
its IntSet argument,

� elem, which tests whether an integer is in an
IntSet,

� choose, which returns an arbitrary element of a
nonempty IntSet,

� size, which returns the size of an IntSet, and

� remove, which returns an IntSet containing all
the elements of its IntSet argument except for
its integer argument.

None of the operations of IntSet changes the state of
an existing IntSet. Since the instances of type IntSet
have no time-varying state they are immutable. A type
whose objects are all immutable is itself said to be
immutable, as will be all the types discussed below.
Although designs do not change or wear out by

themselves, they must still be maintained, because the
world around them changes. If the design has made
careful use of abstract data types, then it will be rela-
tively easy to change design decisions, especially deci-
sions about the data structures used to represent ob-
jects [Par72]. However, even a careful design using

1

IntSet immutable type
class ops [null]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntSetTrait

op null(c:IntSetClass) returns(s:IntSet)
ensures s == fg

op ins(s:IntSet, i:Int) returns(r:IntSet)
ensures r == s [fig

op elem(s:IntSet, i:Int) returns(b:Bool)
ensures b = (i 2 s)

op choose(s:IntSet) returns(i:Int)
requires : isEmpty(s)
ensures i 2 s

op size(s:IntSet) returns(i:Int)
ensures i = toInt(size(s))

op remove(s:IntSet, i:Int) returns(r:IntSet)
ensures r == delete(s,i)

Figure 1.1: The type speci�cation IntSet.

abstract data types alone may not be easily allow the
functionality of a software system to be enhanced by
adding new types of objects to the system.
As an example of enhancement of a system's func-

tionality, consider a system to keep track of which keys
unlock certain doors and the keys possessed by various
people. One can represent key numbers by objects of
type Int (integers), and the set of keys possessed by a
person as an object of type IntSet. (There would be
other types as well.) The operations of these types can
be used to perform such tasks as recording issued and
returned keys, and �nding whether two people have
any keys in common.
Later, one might want to extend the keys system to

issue a set of keys with consecutive numbers. Since
such a set can be represented in less storage than a
general set, it may be wise to add a new type to the
design. This is the type Interval (see Figure 1.2).
The operations of the type Interval are the same as
those for IntSet, except that instead of null there is
an operation create that takes two integer arguments
and returns an Interval object representing all the
integers between the arguments (inclusive). The inte-
ger arguments must be ordered. The ins and remove
operations of Intervals may return either objects of
type IntSet or Interval, depending on their argu-
ments. The choose operation of Intervals will always
return the least element of the Interval. The type
Interval is intended to be a subtype of IntSet, since
objects of type Interval can be treated as IntSet
objects without showing surprising behavior.
When one adds an implementation of the type

Interval to the program, one must update the code
to work with Interval objects and ensure the correct-
ness of the updated code.

Interval immutable type
subtype of IntSet

by [l; u] simulates toSet([l; u])
class ops [create]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntervalTrait

op create(c:IntervalClass, lb,ub:Int)
returns(i:Interval)

requires lb � ub
ensures i == [lb,ub]

op ins(s:Interval, i:Int) returns(r:IntSet)
ensures r == s [fig

op elem(s:Interval, i:Int) returns(b:Bool)
ensures b = (i 2 s)

op choose(s:Interval) returns(i:Int)
ensures i = leastElement(s)

op size(s:Interval) returns(i:Int)
ensures i = toInt(size(s))

op remove(s:Interval, i:Int) returns(r:IntSet)
ensures r == delete(s,i)

Figure 1.2: The type speci�cation Interval.

1.1.1 The Code Update Problem

The code update problem is demonstrated by the func-
tion inBothCLU of Figure 1.3, which is written in
CLU[LAB+81]. If the IntSet arguments of inBothCLU
have an element in common, then the function re-
turns an integer in their intersection (see Figure 1.6
for a speci�cation). The notation IntSet$choose
in a CLU program means the choose operation of
the module that implements IntSet. Although the
code for inBothCLU is correct for arguments of type
IntSet, it must be changed to work with objects of
type Interval.

Message Passing and Method Dictionaries.
The message passing (or late binding) mechanism of
an object-oriented programming language can elimi-
nate the need to update code to work with objects
of new types [Cox86]. Each object in such a lan-
guage contains1 both data and a table of operations
called a method dictionary. An object's method dic-
tionary maps message names to the operations (code)
that implements the named operations for a given type
[WB89]. Since the method dictionary is accessible
from the objects, code that invokes an object's opera-
tions does not have to depend on the types of objects.
For example, one does not write IntSet$ins(s,e) to
insert an integer e into a set s, as one would in CLU;

1For space e�ciency, in most implementations of object-
oriented languages, the code for an operation is shared among
all objects of the same type.

2

inBothCLU = proc(s1,s2: IntSet)

returns(i:Int)
return(testForCLU(IntSet$choose(s1),

s1, s2))

end inBothCLU

testForCLU = proc(i,s1,s2: IntSet)

returns(i:Int)
if IntSet$elem(s2,i)

then return(i)
else return (testForCLU(

IntSet$choose(

IntSet$remove(s1,i)),

IntSet$remove(s1,i), s2))

end
end testForCLU

Figure 1.3: Implementation of the function inBothCLU

in CLU, which demonstrates the code update problem.

instead, one writes s.ins(e) (in Simula 67 or C++) to
insert e into s, which invokes the operation ins from
the object s. Thus message passing means fetching
an object's operation from its method dictionary and
invoking it. (Message passing is sometimes called late
binding, dynamic binding, or generic invocation. Mes-
sage passing is not necessarily concurrent.) Metaphor-
ically s.ins(e) means \send the message named ins
with argument e to the object denoted by s." The
advantage of using message passing is that the call
s.ins(e) can invoke the ins operation of the types
IntSet, Interval, or even types that have not yet
been imagined. Thus if the original keys system was
written using message passing, then adding the new
type Interval does not necessitate rewriting of exist-
ing code.
In what follows, a slightly more general notation will

be used for message passing. That is, ins(s,e) will
mean sending the message ins to s and e. The exact
procedure that is invoked will depend on the types of
both objects, s and e, as in CLOS [Kee89]. Often it
will be appropriate to think of ins(s,e) as sending
the message ins with argument e to the object de-
noted by s. But the notation ins(s,e) better re
ects
the possibility that the procedure invoked may depend
on the types of all arguments, instead of just the type
of s. This is important in dealing with binary opera-
tions such as union or intersection (although these
are not part of the type IntSet as speci�ed above). To
avoid confusion with function calls (which do not use
message passing and are thus statically bound), func-
tion names will be written in a slanted font: funName,
while message names are written in a typewriter font:
msgName.

Subtype Polymorphism and Dynamic Over-
loading. Code written using message passing is poly-
morphic, because it can produce roughly the same ef-
fect on arguments of di�erent types. For example, a

function inBoth can �nd a key number that is com-
mon to two IntSet objects, or two Interval objects
(or an IntSet and an Interval) using the same se-
quence of message sends. This kind of polymorphism
is called subtype polymorphism (or inclusion polymor-
phism [CW85]). To understand why subtype polymor-
phism makes reasoning about programs di�cult, it is
necessary to understand how subtype polymorphism
di�ers from other kinds of polymorphism.
A polymorphic procedure must generally be sup-

plied with a method dictionary for each type of pa-
rameter. For example, a polymorphic sort procedure
would need a method dictionary for the type of el-
ements it is to sort, which would provide the \�"
operation to compare elements. In some languages
the method dictionary is implicit in a type parame-
ter, such as Int in the instantiation sort[Int] as one
might write in CLU [LAB+81] or Ada [Ada83]. In
ML [GMW79], type parameters are implicit, but one
must pass the operations that would go in the method
dictionary explicitly.
The polymorphism that results from forms of over-

loading can also be explained by method dictionaries
[WB89]. An operation name, such as +, is overloaded
if the same name will invoke di�erent operations de-
pending on the types of its arguments. For example,
in a language where arithmetic operators like + can
mean either integer or
oating-point operations, one
can write expressions such as a+b, and the compiler de-
termines which method dictionary (integer or
oat) to
consult for the meaning of +. The functional language
Haskell [Hud89] allows a function with body a+b to be
applied to arguments of di�erent types; such a proce-
dure is passed a method dictionary that gives mean-
ing to the overloaded operations. In Haskell and other
languages with static overloading (such as Ada) the
method dictionary that must be consulted is known
statically. Message passing, however, is a form of dy-
namic overloading, since the same message name may
be used to invoke di�erent operations; that is, with
message passing the overloading is only resolved at
run-time.
Subtype polymorphism is distinguished by two fea-

tures from other kinds of polymorphism: the implicit
association of a method dictionary with each object,
and the possibility that a given expression may de-
note objects with di�erent method dictionaries during
di�erent executions of the program. It is impossible,
in a language with subtype polymorphism, to stati-
cally determine the appropriate method dictionary for
an expression. For example, if s1 is a formal argument
that can be either an IntSet or an Interval, then un-
til the actual argument's value is known, the method
dictionary for s1 is unknown, and hence the exact op-
erational e�ect of choose(s1) is also unknown. This is
illustrated by the program of Figure 1.4, in which there
are two function de�nitions and a main program. The
main program consists of an if expression that calls the
function inBoth with di�erent arguments. The expres-
sion choose(s1) in the second line (i.e., in the body
of inBoth) is an example of a message send. This mes-
sage send will invoke a procedure de�ned in the class
IntSet or Interval, depending on the program's in-
put. However, until the program's input is known, it
cannot be said which procedures will be invoked by
these message sends.
By contrast, consider writing inBoth in a language

3

fun inBoth (s1,s2:IntSet) =

testFor(choose(s1), s1, s2);

fun testFor (i:Int, s1,s2:IntSet) =

if elem(s2, i)

then i

else testFor(choose(remove(s1,i)),

remove(s1,i), s2)

�;
program (b:Bool): Int =

if b

then inBoth(ins(null(IntSet),3),

create(Interval,2,5))

else inBoth(create(Interval,1,4),

create(Interval,2,5))

�

Figure 1.4: Example of message passing.

letrec testForML(i,s1,s2,

choose,remove,elem) =

if elem(s2, i)

then i

else testForML(choose(remove(s1,i)),

remove(s1,i), s2,

choose, remove, elem) ;;

let inBothML(s1,s2,choose,remove,elem) =

testForML(choose(s1), s1, s2,

choose, remove, elem) ;;

Figure 1.5: Implementation of the function inBothML

in ML.

with static polymorphism, such as ML [GMW79]. In
ML, the operations choose, remove, and elem must be
passed as arguments, because an object's operations
are not implicitly available at run-time in ML 2. (See
Figure 1.5.)
The advantages of using subtype polymorphism to

solve the code update problem are as follows.

� The types of arguments to a polymorphic func-
tion can be limited to subtypes of speci�c types.
Cardelli and Wegner call this idea \bounded
quanti�cation" [CW85]. For example, the de-
clared type of the arguments of the function
inBoth in Figure 1.4 is IntSet, which means that
objects of all types that are subtypes of IntSet
(such as Interval) can be used as arguments,

2However, the function inBothML is more general than the
version of inBoth given in Figure 1.4, because choose, remove,
and elem do not have to be operations de�ned in the arguments'
classes but may be arbitrary functions.

but objects that are not instances of a subtype
of IntSet cannot be passed as actual arguments.
This property will be useful in solving some of the
speci�cation and veri�cation problems discussed
below.

Furthermore, a programming language's type sys-
tem can statically enforce such limits on the
use of polymorphic functions. For example, in
Trellis/Owl [SCB+86] and C++ type checking is
based on a declared subtype relationship. By con-
trast, if a language does not have a notion of sub-
type, then the language's type system cannot help
enforce semantic limits on the use of polymorphic
functions (unless the type system is rich enough
to state such constraints directly).

� Subtype polymorphism allows more
exible be-
havior at run-time than other kinds of paramet-
ric polymorphism, while permitting static type
checking. Without a notion of subtype relation-
ships, a static type system must have a static
knowledge of method dictionaries. For example,
in ML or Ada the types of arguments must be
statically known. With subtype polymorphism,
exact knowledge of method dictionaries can be
postponed until run-time, but one may still do
static type checking [SCB+86].

� Programs may be more terse with subtype poly-
morphism, since instance operations are implic-
itly associated with objects, and thus extra ar-
guments can be suppressed. The di�erence is
obvious when compared to a language such as
ML, where all the operations of the method dic-
tionary have to be passed. However, in a lan-
guage such as Ada or CLU, method dictionaries
are associated with type parameters, so the di�er-
ence between inBoth[IntSet,Interval](s,i),
and inBoth(s,i) is small.

1.1.2 The Speci�cation and Veri�cation Up-
date Problems

How should one reason about the behavior of a pro-
gram to which new types of objects have been added?
For example, suppose that, before adding the type
Interval to the keys system, one has veri�ed that
the implementation of inBoth in Figure 1.4 is correct
(when it is passed arguments of type IntSet). Does
one have to go back and reverify the implementation
of inBoth when it becomes possible to pass it argu-
ments of type Interval? Since one does not have to
update the code (because of message passing), it would
be tiresome if one had to update the veri�cation.
Furthermore, what does the speci�cation of inBoth

mean when the type Interval is added to the pro-
gram? Consider the speci�cation of Figure 1.6. Such
a speci�cation might be produced before the type
Interval was contemplated. In Figure 1.6, the mean-
ing of the operators used in the pre-condition (follow-
ing requires) and the post-condition (following en-
sures) is expressed using functions from the speci�-
cation of IntSet, for example 2, \, and \isEmpty".
What does \i 2 s1" mean if \s1" is an Interval?
It would be tiresome if one had to update the spec-
i�cation of inBoth when new types were added to a

4

fun inBoth(s1,s2: IntSet) returns(i:Int)
requires :(isEmpty(s1 \ s2))
ensures (i 2 s1) & (i 2 s2)

Figure 1.6: Speci�cation of the function inBoth.

fun inBoth[T1,T2: IntSetLikeType]
(s1:T1, s2: T2) returns(i:Int)

requires :(isEmpty(s1 \ s2))
ensures (i 2 s1) & (i 2 s2)

Figure 1.7: Traditional speci�cation of inBoth.

program. Respeci�cation would also seem to imply
reveri�cation.
To obtain the advantage of extensibility promised by

object-oriented design, speci�cation and veri�cation
techniques must be modular in the sense that when
new type speci�cations are added to a design existing
procedure and type speci�cations should not have to
be changed, and when classes implementing new types
are added to a program, unchanged program modules
should not have to be reveri�ed. Returning to the
keys system described above, when the type Interval
is added to the design, the existing type IntSet and
functions such as inBoth should not have to be respeci-
�ed, nor should the implementation of inBoth or other
functions have to be reveri�ed.
An obvious approach to the modular reasoning

problem is to adapt standard techniques for reason-
ing about polymorphic program modules. The stan-
dard technique is to specify a polymorphic module
by specifying the behavior of the method dictionary
that the polymorphic module needs to do its work
[Gut80, Page 21] [Win83, Section 4.2.3] [Gog84, Page
537]. For example, roughly following Goguen, one
might specify the function inBoth as in Figure 1.7.
The conditions that a type would have to satisfy to
be a IntSetLikeType would be stated elsewhere, but
would certainly include a speci�cation that such a type
must have operations choose, remove, and elem with
appropriate signatures and semantics.
A minor problem with the speci�cation of Fig-

ure 1.7 is that it is a poor match with object-
oriented programming languages, because the param-
eterization of the speci�cation is explicit. For ex-
ample, an instantiation of inBoth might be writ-
ten inBoth[IntSet,Interval], which says to use the
method dictionaries for IntSet and Interval. How-
ever, in an object-oriented language the method dic-
tionaries are supplied implicitly.
The fundamental problem with the speci�cation of

Figure 1.7 is that to check that an instantiation is cor-
rect during design or veri�cation, the actual method
dictionary (i.e., the type parameter) must be statically
shown to satisfy the formal's speci�cation. However,
in a program that makes use of subtype polymorphism
and message passing, method dictionaries cannot, in
general, be uniquely determined during design or ver-
i�cation. Therefore, during program veri�cation, the

exact method dictionary that will be passed at run-
time cannot be determined in such a program. One
might try an exhaustive case analysis by doing the veri-
�cation for each possible method dictionary that could
arise from the evaluation of each expression. For ex-
ample, if s1 in the expression choose(s1) can denote
either an IntSet or an Interval, then one could in-
stantiate the speci�cation of choose with both IntSet
and Interval. However, this case analysis must be ex-
tended when new subtypes are added to the program.
In other words, this approach does not allow modular
veri�cation and must therefore be generalized to deal
with message passing.
Conventional techniques for program veri�cation

also need to be adapted for verifying programs that
use subtype polymorphism. Conventional veri�cation
techniques assume that each expression of type T de-
notes an object of type T. Thus the properties of the
method dictionary for type T can be used to reason
about expressions of type T. However, to exploit sub-
type polymorphism in a typed language, one must al-
low expressions of type T to denote objects of several
di�erent types (and hence di�erent method dictionar-
ies). The veri�cation method must ensure that reason-
ing about such expressions as if they denoted instances
of type T does not lead to invalid conclusions. Again,
the traditional approach would be to use explicit poly-
morphism to abstract away from the changing types.
But once again the problem is that the method dic-
tionaries are not known statically, hence the use of
explicit polymorphism would still lead to an exhaus-
tive case analysis during program veri�cation, which
would have to be repeated when new types are added
to the program.
The main problem then, is to design modular meth-

ods for specifying and verifying programs that use mes-
sage passing and subtype polymorphism.
A related problem is how to aid the reuse of designs.

In an object-oriented programming environment there
tend to be many, many abstract data types (for exam-
ple, [GR83] describe at least 78 types that are built-in
to Smalltalk-80). Sophisticated object-oriented pro-
gramming environments (e.g., [Gol84]) often provide
ways to navigate or browse the code for classes that
implement abstract data types. However, a designer is
not primarily interested in code or subclass relation-
ships | designers are interested in type speci�cations.
Therefore a designer needs a concept that helps orga-
nize speci�cations.

1.2 Overview of a Solution

The key to solving the modular speci�cation and ver-
i�cation problem for object-oriented programs is the
notion of subtype relationships. If a new type of data
is added to a program and the program is expected
to run without changes, there must be some relation-
ship between the behavior of existing types and the
new type. For example, each object of type Interval
behaves like some object of type IntSet, at least for
certain implementations of IntSet. Hence Interval
is a subtype of IntSet.
A modular speci�cation and veri�cation technique

for reasoning about message passing programs can be
based on the concepts of subtype relationships and
nominal type, as pioneered in my dissertation [Lea89]

5

and further developed in [LW90]. Informally, the rea-
soning technique can be summarized as follows.

� One speci�es the data types to be used in the
program along with their subtype relationships3.

� Procedures are speci�ed by describing their e�ects
on actual arguments whose types are the same as
the types of the corresponding formal arguments;
however, arguments whose types are subtypes of
the corresponding formal argument types are per-
mitted.

� Subtype relationships are veri�ed to ensure that
they satisfy certain semantic constraints.

� One statically associates with each expression in
the program a type, called the expression's nom-
inal type, with the property that an expression
may only denote objects having a type that is a
subtype of that expression's nominal type. (These
types may be introduced solely for program ver-
i�cation, or they may coincide with the types of
the programming language.)

� Veri�cation that a program meets its speci�cation
is then the same as conventional veri�cation, de-
spite the use of message passing. That is, one
reasons about expressions as if they denoted ob-
jects of their nominal types.

1.2.1 Subtyping

The key to the soundness of the method is a set of se-
mantic requirements on subtype relationships. These
behavioral constraints are like those used by program-
mers to reason informally about object-oriented pro-
grams. There are also some syntactic constraints on
subtype relationships.
Abstract types are described by speci�cations that

describe a set of abstract values and how the oper-
ations behave on objects with di�erent abstract val-
ues. Such two-tiered [Win87] or abstract-model style
[Jon86] speci�cations allow one to specify types in-
completely, including types that are not intended to
be implemented directly (e.g., deferred types in Ei�el
[Mey88]). Such speci�cations also allow one to spec-
ify operations that may fail to terminate or that are
nondeterministic. Because type speci�cations may be
incomplete, they may have many di�erent implemen-
tations with di�ering behavior.
More formally, a set of type speci�cations (e.g., in-

cluding both IntSet and Interval) describes a sig-
nature � and a family of �-algebras. The signature
describes the syntactic interface of the types, includ-
ing the names of types and operations, the number and
types of arguments for each operation, and so on. A
�-algebra is an algebraic model of an implementation
whose syntactic interface is described by �. Thus the
meaning of a set of type speci�cations is a family of
algebraic models with the same signature.

3The problem of automatically inferring subtype relation-
ships from behavioral speci�cations is unsolvable, in general,
since subtype relationships must satisfy certain semantic con-
straints. Thus the designer is required to specify the subtype
relationships.

Syntactic Restrictions on Subtypes. The speci-
�ced subtype relation must satisfy certain syntactic
constraints for sound reasoning. First, if one can send
a message such as choose to a supertype object, then
one must also be able to send that message to a sub-
type object. This prevents surprises like \message not
understood." Similarly, if a function name used in
speci�cations can be applied to a supertype object,
then it should also apply to subtype objects. For ex-
ample, if \isEmpty" can be applied to an IntSet in a
speci�cation, then one can give meaning to such speci-
�cations only if the \isEmpty" function is de�ned also
for Interval. Second, if one is expecting the result
type to be a subtype of IntSet, then the result of
sending a message or using a speci�cation function
should be expected to have a type that is a subtype
of IntSet. Such syntactic restrictions have been for-
malized, for example, in Reynolds's category sorted
algebras [Rey80] [Rey85].
What is novel is that modularity of speci�cations re-

sults from the requirement that the speci�cation func-
tions applicable to a supertype be applicable to sub-
types. Function and operation speci�cations are mod-
ular, because they are written as if the actual argu-
ments had the speci�ed types and do not explicitly
mention subtypes. However, objects of subtypes of
the speci�ed types are allowed as arguments, which
supports subtype polymorphism. One thinks of the
meaning of a speci�cation such as Figure 1.6 as given
by using dynamic overloading of the speci�cation func-
tion names that appear in assertions4. Thus if one
knows that the abstract values of iv1 and iv2 are the
intervals [3; 27] and [15; 73], then the result of the call
inBoth(iv1,iv2) can be obtained by substituting the
abstract values of the actuals for the formals in the de-
scription of the e�ect of inBoth, obtaining the formula
\(i 2 [3; 27]) & (i 2 [15; 73])", which is interpreted us-
ing the version of 2 appropriate for the abstract values
of intervals. Hence it is possible to discuss the testing
and correctness of implementations of such speci�ca-
tions for all permitted arguments. Since the subtypes
are not mentioned explicitly in a function or opera-
tion speci�cation, when a new subtype is added to the
program, such a speci�cation need not be changed.

Semantic Restrictions on Subtypes. Syntactic
restrictions are not enough to ensure sound, modu-
lar veri�cation. The problem is illustrated in Fig-
ure 1.8, which illustrates static reasoning about the
message passing expression choose(s). Suppose that
s is thought of as having nominal type IntSet, as
it would be before the type Interval was added to
the program. To conclude that the value returned by
choose, i, satis�es the post-condition \i 2 s" as spec-
i�ed by for the type IntSet, it su�ces to show that
the argument s satis�es the speci�ed pre-condition
\: isEmpty(s)." This is adequate before the type
Interval is added to the program. However, with
the type Interval as a subtype of IntSet, the identi-
�er s, declared to be of type IntSet, might denote
an object s0 of the subtype Interval. So at run-
time the operation invoked is not the choose operation
from the method dictionary associated with instances
of IntSet, written IntSet.choose in the �gure, but

4Coercing the abstract values of arguments, as in [Lea89],
seems to be inferior to this approach.

6

instead the operation Interval.choose. The prob-
lem is that Interval.choose might not satisfy the
speci�cation used during program veri�cation, since
the Interval.choose operation has di�erent pre- and
post-conditions than IntSet.choose. Even if the pre-
and post-conditions happened to be textually identi-
cal, the assertions might have di�erent meanings for
each type, since they rely on the meanings of speci�-
cation functions such as \isEmpty." A solution is to
require that there be an algebraic relationship, called
a simulation, between the actual argument s0 and the
argument that was imagined during program veri�ca-
tion (s).
Simulation relationships are, in essence, relation-

ships among objects of di�erent types that are pre-
served by message passing and by speci�cation func-
tions. For example, each object of type Interval sim-
ulates an IntSet object with the same elements; that
is, an Interval with abstract value [i; j] simulates an
IntSet with abstract value fi; i+1; i+2;. . . ; j�1; jg.
The preservation of simulation relationships by mes-
sage passing and by assertions is called the substitu-
tion property (as in algebraic homomorphisms). For
example, if q denotes the Interval [1; 3] and r the
IntSet f1; 2; 3g, then q simulates r. Thus by the sub-
stitution property:

size(q) simulates size(r) (1.1)

ins(q; 0) simulates ins(r; 0) (1.2)

2 2 q simulates 2 2 r (1.3)

isEmpty(q) simulates isEmpty(r): (1.4)

For nondeterministic operations, such as choose, each
possible result of the choose(q) must simulate some
possible result of choose(r). Simulation is not sym-
metric, since choose(r) may have more possible re-
sults than choose(q). Besides the substitution prop-
erty, a simulation relation must be such that every
object of a subtype simulates some object of the su-
pertype and for built-in types such as Bool and Int,
simulation is equality.
Formally, simulation relations are families of rela-

tions, one per type, between the carrier sets of two
algebraic models. Each relation \simulates-as-T" re-
lates elements of the carrier sets of subtypes of T and
relates elements (i.e., instances) that cannot be distin-
guished using the operations applicable to instances
of type T. A subtype may have more operations than
its supertypes. For example, a type IntTriple may
have operations first, second, and third and still
be a subtype of IntPair (with operations first and
third); thus, the triples h1; 2; 3i and h1; 2; 7i do not
simulate each other as IntTriples, but they do sim-
ulate each other as IntPairs. So that one raise one's
view of objects without invalidating simulation rela-
tionships, it is required that if q simulates-as-S r and
S is a subtype of T, then q simulates-as-T r.
The substitution property aids modular program

veri�cation as follows. Consider again the example
of Figure 1.8. During veri�cation, one reasons about a
hypothetical object s of the type declared for the ar-
gument (IntSet). What happens at run-time is that
the actual argument s0 simulates-as-IntSet some hy-
pothetical object s of type IntSet. Suppose the actual
argument satis�es the pre-condition of choose speci-
�ed in type IntSet; then since simulation is preserved

by assertions, it follows that the hypothetical s also
satis�es the pre-condition. So each possible hypothet-
ical result i00 satis�es the desired post-condition \i 2
s." At run-time, each possible result i0 must, by the
substitution property for messages, simulate one of the
hypothetical results, call it i. Since i satis�es the post-
condition, and i0 simulates i, it follows that i0 satis�es
the post-condition. (In this case, for the trivial rea-
son that i = i0. In general such reasoning is sound
provided one does not test equality (=) in pre- and
post-conditions, except for built-in types such as Bool
and Int that are assumed not to have subtypes.)
The semantic constraints on subtype relations are

as follows. The idea is that for each implementation
of the subtype, there must be some implementation of
the supertype such that there is a simulation between
the subtype objects and the supertype objects. For
example, one can use an implementation of IntSet
with a maximally nondeterministic choose operation
to show that each Interval simulates some IntSet.
It is necessary to pick an implementation of IntSet,
because an Interval will not simulate an IntSet with
the same elements in an implementation whose choose
operation returns the greatest element. (In a given
program, the implementation of IntSet might return
the greatest element, but a program is veri�ed against
the speci�cation of IntSet, which allows the least ele-
ment to be returned.) Formally, recall that the mean-
ing of a set of type speci�cations with signature � is
a set �-algebras; for each of these algebraic models C,
there must be some other model A such that there is
a simulation from C to A.

1.2.2 Subtype versus Re�nement

Subtype relationships are similar to re�nement or
strength [Win83, Section 5.2.1] relationships among
speci�cations. A type S is a re�nement of T if ev-
ery implementation of the speci�cation of S is an im-
plementation of the speci�cation of T . For example,
a type LeastIntSet, which is like IntSet except that
the choose operation was constrained to always return
the least element of the set, would be a re�nement of
IntSet, because each implementation would also sat-
isfy the speci�cation of IntSet. However, a type S
may be a subtype of T, even though S is not a re�ne-
ment of T. For example, the speci�cation of Interval
is not a re�nement of IntSet.
The di�erence between a subtype relationship and

a re�nement relationship is due to the distinction be-
tween class and instance operations that is made in
object-oriented designs5.
A class is a program module that implements an

abstract data type. It describes the data structures
used by instances (sometimes called instance variables)
and implements the various operations of the type with
procedures.
A class operation is typically used to create in-

stances of a type and is not one of the operations

5Some object-oriented programming languages do not have
classes, but are based on a notion of delegation [Lie86] [SLU89].
In such systems one can still speak of an object's instance oper-
ations (the set of messages to which it responds), even though
there are no classes and class operations. Speci�ed class opera-
tions might be implemented by functions that clone prototypes,
or by instance operations of prototypes.

7

-

-

i = leastElement(s)true

i 2 s:isEmpty(s)

Interval.choose

IntSet.choose

i0s0

s i

Figure 1.8: The problem with veri�cation and message passing.

contained in instances of that type. For example, the
class operation null of IntSet creates an empty inte-
ger set object and is not in the method dictionary of
an IntSet instance. An instance operation is typically
used to observe properties of existing instances, to
make new objects from existing objects, or to change
the state of an existing instance (for mutable types).
For example, the instance operations elem of IntSet
tests whether an integer is in the set. An instance
operation is contained (conceptually) in the method
dictionary of an instance. The instance operations are
invoked by sending messages; whereas class operations
are either invoked directly (as in C++) or by sending
messages to class objects (as in Smalltalk-80). In a
language where all operations are invoked by message
passing, a class object is needed as the receiver of a
message the creates an instance. For example, the
class object denoted by the name IntSet can be used
to create instances of IntSet by evaluating the ex-
pression null(IntSet). In implementations of object-
oriented programming languages such as Smalltalk-80,
class objects also serve as a repository for information
common to all instances of a class. (For example, class
objects typically store the method dictionary shared
by instances.)
For a subtype relationship only instance operations

matter, since the behavior of an object, once it has
been created, is only determined by its instance op-
erations through message passing. Hence Interval is
a subtype of IntSet, even though the speci�cation of
Interval has a class operation named create instead
of a class operation named null as in IntSet. For
a re�nement relationship, both the class and instance
operations matter, since an implementation of a type
includes both kinds of operations. Hence Interval is
not a re�nement of IntSet (and vice versa). A subtype
relationship is a weaker relationship than a re�nement
relationship, since whenever the S is a re�nement of T,
then S must be a subtype of T.

1.2.3 Subtype Relationships versus Subclass
Relationships

Subtype relationships are not the same as subclass re-
lationships, although most programming languages do
not completely separate these notions.
A class that implements a given abstract type may

be de�ned by stating how it di�ers from other classes in
an object-oriented language; this mechanism is called
inheritance or subclassing. If E is de�ned by inher-
itance from a class D, then E is called a subclass of

D. Subclasses should not be confused with subtypes
[Sny86b] [LTP86] [Lis88] [LaL89], as a subclass rela-
tionship is a purely implementation relationship, while
a subtype relationship is a relationship among abstract
data types (i.e., among speci�cations). In general, a
subclass does not implement a subtype and a subtype
need not be implemented by a subclass. For exam-
ple, objects of type Interval can be represented by
two integers; so even though Interval is a subtype of
IntSet, it would not be e�cient to inherit the gen-
eral IntSet representation for the implementation of
Interval.
C++ does not completely separate the notions of

subtype and subclass, since subtype relationships are
just subclass relationships that are made public (i.e.,
visible to clients of that type). Subclass relationships
that are not used to implement subtypes can be hid-
den, and these hidden subclass relationships are not
used in type checking. However, type checking in
C++ uses subclass relationships that are not hidden as
the basis for the subtype relation used in type check-
ing. Thus the coupling of the notions of subclass and
subtype limit a programmer's
exibility; for example,
Interval would have to be implemented as a subclass
of IntSet in order to be treated as a subtype of IntSet
in C++.
In Trellis/Owl and Ei�el the notions of subclass and

subtype are more tightly coupled, since a subtype must
be implemented by a subclass and each subclass is con-
sidered to implement a subtype. When programming
in such languages the programmer should only use in-
heritance to make subtypes (in the sense described
above).
By contrast, in Smalltalk-80 or CLOS, there is no

notion of type checking based on subtype relation-
ships; hence programmers can use inheritance freely,
but must enforce a disciplined use of subtypes by them-
selves.

1.2.4 Type Checking and Veri�cation

With subtyping, veri�cation for object-oriented lan-
guages is similar to veri�cation in languages without
subtype polymorphism. The main di�erence is that
the veri�er must also ensure that the speci�ed subtype
relation satis�es the semantic constraints described
above. (Veri�cation of the implementation of classes
is outside the scope of this report.) Besides the se-
mantic constraints on the speci�ed subtype relation,
type checking is necessary to ensure soundness of this

8

veri�cation technique [Lea89], because it is assumed
during veri�cation that identi�ers denote objects of
their (statically) declared types.
Unlike a conventional programming language, a

statically typed programming language that allows
subtype polymorphism allows one to bind an identi�er
of type T to an object of type S, if S is a subtype of T.
For example, an identi�er of nominal type IntSetmay
denote an Interval, but not vice versa. In an object-
oriented language there is no change of representation
involved in such bindings. Environments that are cre-
ated in this fashion obey the subtype relation in the
sense that the denotation of each identi�er of type T
is an object whose type S is a subtype of T. Obedience
is crucial for the soundness of veri�cation, since if an
expression of nominal type T may denote an object
that is not an instance of a subtype of T, then that
instance may not simulate an object of type T; hence
reasoning about the expression using the speci�cation
of type T may lead to inconsistencies. A type system
that ensures obedience to a subtype relation can thus
aid veri�cation by automating the veri�cation of obe-
dience.

1.3 Related Work

Informal treatments of object-oriented programming
discuss the notion of a \protocol", which can be
thought of as a speci�cation of how an object responds
to messages [GR83]. More re�ned treatments of this
idea cast the notion of a protocol as an abstract data
type speci�cation and the notion that the protocol of
one type \�ts" the protocol of another type as a sub-
type relationship. The standard informal de�nition is
that each object of the subtype must \behave like"
some object of the supertype [Sny86b] [SCB+86].
Informal de�nitions of subtype relationships, like

the one given above are helpful but lack the preci-
sion needed to guide designers in determining when
one type is a subtype of another. For example, does
the protocol of S \�t" the protocol of T, if S has all
the instance operations of T, or is something more re-
quired? What IntSet object does a given Interval
object behave like? Can IntSet be considered a sub-
type of Interval? The ability to answer such ques-
tions is necessary for formal program veri�cation and
can help guide informal reasoning.
Subtype relationships are also useful for organizing

the speci�cations of abstract data types. Liskov has
described how subtype relationships can be used dur-
ing design to record decisions that re�ne type spec-
i�cations, to localize the e�ects of changes to type
speci�cations, and to group and classify types [Lis88].
LaLonde also uses subtype relationships as a means of
classifying types by behavior [LTP86] [LaL89]. How-
ever, neither Liskov nor LaLonde give a formal de�ni-
tion of subtype relationships.
Some semi-formal speci�cation and veri�cation

techniques appear in Meyer's book on Ei�el [Mey88,
Chapter 7]. Assertions in Ei�el are written using pro-
gram operations. Meyer gives speci�cations for op-
erations using assertions for pre- and post-conditions.
There is some discussion of loop invariants and vari-
ants, but Meyer does not give a formal logic for pro-
gram veri�cation. In chapter 11, Meyer states that a
subclass should be designed to implement a subtype.

The \assertion rede�nition rule" states that if r is an
operation of a class A and B is a subclass of A, then
the pre-condition of r in the speci�cation of B may be
no stronger than the pre-condition of r in A, and the
post-condition of r in the speci�cation of B must be
no weaker than the post-condition of r in A [Mey88,
Page 256]. This condition is intended to ensure that
the implementation of an operation in a subclass (B),
satis�es the speci�cation of that operation in the su-
perclass (A). Meyer argues informally that this rule
makes it possible to reason sensibly about programs
that use message passing, although he does not give a
formal veri�cation system.
Indeed, a sound veri�cation system cannot be con-

structed on Meyer's assertion language and his asser-
tion rede�nition rule. The problem is that assertions
are written using program operations, but a subclass
can rede�ne those operations; hence a subclass may
satisfy the assertion rede�nition rule but not have the
expected behavior. The extreme of this problem oc-
curs for deferred types; types for which one or more of
the operations are not implemented (i.e., their imple-
mentation is deferred to a subclass). Consider a class
D where all the operations are deferred. The pre- and
post-conditions of the operations of D are written us-
ing the operations of D. But the operations of D are not
implemented, so the assertions that are used to de�ne
these operations are meaningless.
Reynolds has studied partial orders on types in the

setting of his category sorted algebras [Rey80] (see also
[Rey85]). The semantic requirement that Reynolds im-
poses on the subtype relation are illustrated by the
following example. Suppose Integer is a subtype
of Float, a and b are objects of type Integer, and
to Float is the coercion function from Integer to
Float. The coercion function to Float must satisfy
the substitution property:

to Float(a+ b) = to Float(a) + to Float(b) (1:5)

where the \+" on the left is Integer addition and the
\+" on the right is Float addition. Requiring that
the coercion and the types operations satisfy the sub-
stitution property ensures that one can reason about
overloading and coercion without an exhaustive case
analysis. A similar idea is found in the work of Bruce
and Wegner [BW86] [BW87b].
The work of Reynolds and that of Bruce and Wegner

does not allow one to directly compare type speci�ca-
tions: one can only compare particular algebraic mod-
els. This prohibits direct application of their work for
comparing types that are incompletely speci�ed, since
for such types there may be several models with ob-
servably di�erent behaviors. For example, the type
IntSet is incompletely speci�ed, as in a given imple-
mentation choose may return the least element of a
set, the greatest element, an element chosen at ran-
dom, and so on. Incomplete speci�cations are im-
portant in practical designs, since they leave imple-
mentation decisions open. Furthermore, the models
must have carrier sets that are reduced (in the sense
that distinct abstract values do not behave similarly),
since otherwise there might not be a coercion function
with the substitution property [Lea89, Section 5.4.3].
Finally, their models are not adequate for mutable6

6A type ismutable if its objects have time-varying state; such

9

types, types with operations that may fail to termi-
nate, or nondeterministic operations. (On the other
hand, the models used in this report are not adequate
for mutable types either.)
P. America has independently developed a de�nition

of subtype relationships [Ame89]. Like Meyer, Amer-
ica's de�nition is based on implications between pre-
and post-conditions of operations. However, unlike
Meyer, America does not use program operations in
assertions. Instead, types are speci�ed by describing
the abstract values of their instances, and the post-
condition of each program operation relates the ab-
stract values of the arguments to the abstract value
of the result. The set of abstract values of a subtype
may be described di�erently than the set of abstract
values of a supertype. Thus, for a subtype relation-
ship, America requires a \transfer function", f , that
maps the abstract values of the subtype to the ab-
stract values of the supertype. Furthermore, for each
instance operation of the supertype, it is required that

Pre(Super) � f) Pre(Sub) (1.6)

Post(Sub)) Post(Super) � f (1.7)

where the transfer function f is used to translate as-
sertions of the supertype so that they apply to the ab-
stract values of the subtype. In practice, the above re-
quirements often mean that the transfer function must
have a substitution property with respect to the pro-
gram operations. As with Reynolds and Bruce and
Wegner, since f must be a function, the set of ab-
stract values must be reduced, otherwise there might
not be a transfer function.
America's de�nition of subtyping does handle muta-

ble types, and types that are nondeterministic. How-
ever, it does not handle aliasing, nor does it handle in-
completely speci�ed types for which there is no single
set of abstract values that characterizes all implemen-
tations (i.e., for which there is no \universal model").
America's type speci�cations do not have class opera-
tions, there are only instance operations. The lack of
class operations makes it di�cult to specify types like
Interval whose objects are created in a speci�c state.
Because of the lack of class operations, America's no-
tion of subtype is identical to the notion of re�nement.
Finally, America has not investigated modular speci�-
cation and veri�cation as discussed above.
The main line of type theoretic research on subtyp-

ing has been carried on by Luca Cardelli. His land-
mark paper \A Semantics of Multiple Inheritance"
[Car84] showed the soundness of subtyping rules for
function types, immutable records, and immutable
variants. Cardelli and Mitchell give subtyping rules for
immutable records that allow extension and restriction
operations [CM89]. But neither of these papers nor
more sophisticated types systems with the same struc-
tural ideas for subtyping (such as [Car88] and [Car89])
give subtype rules for abstract data types in general.
That is, such type systems do not give general rules
that can say whether Interval is a subtype of IntSet
based on their speci�cations.

types are common in object-oriented programming. A type is
immutable if none of its objects are mutable.

1.4 Plan of the Report

The above ideas are worked out in detail in the rest of
this report. The formal details are especially needed
for the treatment of examples with incomplete speci�-
cations and nondeterministic operations, for formally
proving the soundness of the veri�cation system, and
for formally showing that subtyping does not lead to
surprising behavior.
Algebras and simulation relations are described in

Chapter 2. Simulation relations are the essence of the
de�nition of subtyping and the proof of the soundness
of veri�cation.
Modular polymorphic type and function speci�ca-

tions are described in Chapter 3. The way that speci-
�cations are interpreted for arguments of a subtype of
the speci�ed argument type is described, showing that
such speci�cations are modular.
The formal de�nition of subtype relations among

immutable abstract types, several examples, and a
more detailed comparison to related work are found
in Chapter 4.
A programming language is described in Chapter 5.

The language, called NOAL, has a message passing
mechanism, is nondeterministic, and applicative. The
nondeterminism in NOAL allows observations to be
described that are similar to what one could do in a
language with parallelism. Such power is important
for strengthening the claims that subtyping does not
lead to surprising behavior (in Chapter 7).
The veri�cation of NOAL programs is described in

Chapter 6. A Hoare-style proof system is given and
its soundness is shown. The soundness of the veri�ca-
tion system relies on the de�nition of subtype relations
and simulation. Some modularity properties are also
proved.
The properties of subtyping related to the observ-

able behavior of programs are described in Chapter 7.
The main result is that subtyping prevents surprising
behavior.
A discussion of extensions and future work is found

in Chapter 8.
A summary and conclusions are o�ered in Chap-

ter 9. The conclusions include lessons for programmers
and language designers.
The notation and de�nitions used in the report are

summarized in Appendix A. The built-in types of the
speci�cation language are described in Appendix B.
The semantics of NOAL functions are described in Ap-
pendix C.
As may be seen from the above, several simplifying

assumptions are made in this report. Only designs
with immutable types are considered, and veri�cation
is only considered for an applicative object-oriented
language. Thus the report represents a second step
(after [Lea89]) towards general reasoning techniques
for programs that use message passing and subtype
polymorphism.

10

Chapter 2

Algebraic Models and Simulation Relations

In this chapter the semantics of sets of type speci�-
cations, sets of algebraic models, and simulation rela-
tions between these models are discussed. Both con-
cepts are crucial to the de�nition of subtype relations
and to the treatment of speci�cation and veri�cation.
Algebras are presented �rst, followed by simulation re-
lations.

2.1 Algebraic Models

The algebras de�ned below are an extension of the
usual algebraic structures found in the study of equa-
tional logic or algebraic speci�cations [EM85]. As such
an algebra includes a carrier set and a set of speci�ca-
tion functions; to these are added a set of program
operations. The speci�cation functions are used to
generate the carrier sets and in the evaluation of the
assertions used in speci�cations [Win83, Chapter 2],
while the program operations are used by programs
for computation. The speci�cation functions cannot
be invoked by programs, and the program operations
cannot be used in speci�cations.
The program operations of an algebra are abstrac-

tions of the procedures of the classes that implement
abstract types in object-oriented programs. To model
nondeterministic procedures, the program operations
of an algebra are set-valued functions; that is, a pro-
gram operation returns the set of the possible results
of the corresponding procedure [Nip86] [Nip87]. The
special value ? is used to model procedure calls that
do not halt or that encounter run-time errors. So a
procedure that might either return 1 or never halt on
some argument q would be modeled by a program op-
eration that, when called with q, has f1;?g as its set
of possible results.
To more closely model the procedures of a class,

the program operations of an algebra may be poly-
morphic. The treatment of polymorphism is based on
techniques from Reynolds's category sorted algebras
[Rey80]. Message passing is thus modeled by simply
invoking a program operation.
The speci�cation functions have no counterpart in

the classes that implement abstract types. Rather the
speci�cation functions are models of the functions used
to precisely specify the abstract values of a type. Such
speci�cation in a trait. Algebraic equational speci�-
cations, called traits, are used to specify abstract val-
ues; these are written in the Larch Shared Language
[GH86b]. To ensure that the assertions used in speci-
�cations have meaning when subtyping is used, speci-
�cation functions are also polymorphic.
In an algebra there is no separate representation for

abstract values and objects. That is, the objects of a

type are identi�ed with their abstract values. (This
is adequate for immutable types, which are the only
ones considered in this report.) So each type symbol
is also a sort symbol. Sorts play the same role in traits
as types do in programs. Only types can be used in
programs, but in general one may need auxiliary sorts
for convenience in speci�cation.
There is a small set of types in an algebra called the

visible types. These types, such as Bool and Int, are
used to de�ne observations.

2.1.1 Signatures

A set of type speci�cations describes a set of algebras.
The speci�cations describe the set of traits used, which
determine the names of the sorts and the speci�cation
functions, as well as the signatures of the speci�cation
functions. The speci�cations also describe each type
and its program operations, and hence determines a set
of type names, and a set of program operation symbols.
The set of visible types is �xed by convention, but is
included in signatures for convenience.
Type speci�cations also describe a binary relation

on sort symbols, �, which is the presumed subtype re-
lation for the speci�cation. Type speci�cations also
determine the nominal signatures for each of the pro-
gram operations of each type. From the nominal signa-
ture information is derived a function that predicts an
upper bound (using �) of the result type of a program
operation or speci�cation function [Rey80].

De�nition 2.1.1 (signature). A signature

� =

�
SORTS ;TYPES ;V ;�;
SFUNS ;POPS ;ResSort

�

consists of:

� Sets of sort, type, and visible type symbols, such
that V � TYPES � SORTS and V is nonempty.

� A binary relation, �, which is a preorder1 on
SORTS , such that for all visible types T 2 V ,
if S � T then S = T.

� Disjoint sets, SFUNS of speci�cation function
symbols, and POPS of program operation sym-
bols. Their union, the set of all operation sym-
bols, is denoted OPS :

OPS
def
= SFUNS [POPS : (2:1)

1A preorder is a relation that is re
exive and transitive. It
is not necessarily antisymmetric.

11

� A partial function ResSort:OPS ; SORTS� !
SORTS , which returns an upper bound on the
result sort of a speci�cation function or program
operation symbol applied to a tuple of arguments
with the given sorts. Following Reynolds [Rey80,
Page 217], ResSort must be monotone in the fol-
lowing sense: for all g 2 OPS , and for all tuples
of sorts ~S � ~T, if ResSort(g;~T) is de�ned, then so
is ResSort(g;~S), and furthermore ResSort(g;~S) �
ResSort(g;~T).

The restriction on � ensures that there can be no
subtypes of a visible type. This restriction is reason-
able, since only visible types can appear as the output
of programs an object of some other type cannot be-
have quite like an object of a visible type.
The restrictions on ResSort ensure that if an opera-

tion can be applied to arguments of a given type, then
the same operation can be applied to arguments of
any presumed subtype of that type. This ensures, for
example, that a presumed subtype has all the generic
operations de�ned for its presumed supertypes, as one
would expect. More restrictive is the requirement that
the speci�cation functions also apply to presumed sub-
types. Thus if one wishes to specify a subtype, one
must de�ne all the trait functions of the presumed su-
pertype on the abstract values. In [Lea89], there was
no such restriction, but its lack lead to strong restric-
tions on the kinds of assertions that one could write in
a speci�cation.
An example signature, is given in Figure 2.1; this

signature is derived (as described in Chapter 3) from
the speci�cation that combines the types IntSet (Fig-
ure 1.1) and Interval (Figure 1.2). To permit more

exibility than would be allowed by a strict application
of the rule that speci�cation function symbols can-
not be used as program operation symbols, di�erent
fonts are used for each kind of symbol. The speci�-
cation function symbols are written in a Roman font
(f), and program operation symbols appear in type-
writer font (g). Some speci�cation functions symbols
contain sharp signs (#) as place holders for arguments
| these allow the use of pre�x and in�x syntax in as-
sertions. The sorts include, Card, IntSet, Interval,
IntSetClass, IntervalClass, and sorts for the visi-
ble types (Bool and BoolClass, Int, and so on). All of
these sorts are also types, except Card (cardinal num-
bers), which is used only as an auxiliary sort in speci-
�cations (and thus cannot be used in programs). The
types Bool, Int, BoolStream, and IntStream are vis-
ible types. The relation � relates Interval to IntSet
and each sort to itself. \IntSet" is also the name of a
speci�cation function (the speci�cation function that
returns the abstract value of the class object for the
type IntSet), as are versions of the other type names
that are not class types. Speci�cation functions must
be de�ned for all arguments of a subtype; hence \in-
sert" may take either an IntSet or an Interval as
its �rst argument. The program operations include
nullary operations named IntSet and Interval, class
operations named null and create, and the speci�ed
instance operations, as well as operations for the visi-
ble types.
The notion of subsignature is important in the study

of modular veri�cation.

SORTS = fCard; IntSet; IntSetClass;
Interval; IntervalClass;
Bool; . . .g

TYPES = fIntSet; IntSetClass;
Interval; IntervalClass;
Bool; . . .g

V = fBool; Int;
BoolStream; IntStreamg

Presumed Subtype Relation (�)
Interval � IntSet

Interval � Interval

IntSet � IntSet

. . .

ResSort for Program Operations
IntSet; hi 7! IntSetClass

Interval; hi 7! IntervalClass

null; hIntSetClassi 7! IntSet

create; hIntervalClass; Int; Inti
7! IntSet

ins; hIntSet; Inti 7! IntSet

ins; hInterval; Inti 7! IntSet

elem; hIntSet; Inti 7! Bool

elem; hInterval; Inti 7! Bool

choose; hIntSeti 7! Int

choose; hIntervali 7! Int

size; hIntSeti 7! Int

size; hIntervali 7! Int

remove; hIntSet; Inti 7! IntSet

remove; hInterval; Inti 7! IntSet

Bool 7! BoolClass

. . .

Figure 2.1: Signature for the speci�cation II of IntSet
and Interval, �rst part.

12

ResSort for Speci�cation Functions
IntSet; hi 7! IntSetClass

fg; hi 7! IntSet

insert; hIntSet; Inti 7! IntSet

insert; hInterval; Inti 7! IntSet

size; hIntSeti 7! Card

size; hIntervali 7! Card

toInt; hCardi 7! Int

2 #; hInt; IntSeti 7! Bool

2 #; hInt; Intervali 7! Bool

delete; hIntSet; Inti 7! IntSet

delete; hInterval; Inti 7! IntSet

== #; hIntSet; IntSeti 7! IntSet

== #; hIntSet; Intervali 7! IntSet

== #; hInterval; IntSeti 7! IntSet

== #; hInterval; Intervali
7! IntSet

\#; hIntSet; IntSeti 7! IntSet

\#; hIntSet; Intervali 7! IntSet

\#; hInterval; IntSeti 7! IntSet

\#; hInterval; Intervali 7! IntSet

f#g; hInti 7! IntSet

[#; hIntSet; IntSeti 7! IntSet

[#; hIntSet; Intervali 7! IntSet

[#; hInterval; IntSeti 7! IntSet

[#; hInterval; Intervali 7! IntSet

isEmpty; hIntSeti 7! Bool

isEmpty; hIntervali 7! Bool

Interval; hi 7! IntervalClass

[#;#]; hInt; Inti 7! Interval

toSet; hIntervali 7! IntSet

leastElement; hIntervali 7! Int

greatestElement; hIntervali 7! Int

Bool; hi 7! BoolClass

. . .

Figure 2.2: Signature for the speci�cation II of IntSet
and Interval, last part.

De�nition 2.1.2 (subsignature). A signature �0 is
a subsignature of � if SORTS 0 � SORTS , TYPES 0 �
TYPES , V 0 � V , SFUNS 0 � SFUNS , POPS 0 �
POPS , �0 is the restriction of � to SORTS 0,
ResSort(OPS 0 � (SORTS 0)

�
) � SORTS 0, ResSort 0 is

the restriction of ResSort to OPS 0 � (SORTS 0)
�
, and

if for all sorts S0; T0 2 SORTS 0, if there is a sort U0 that
is the least upper bound of S0 and T0 in �0, then for
all sorts S; T 2 SORTS , whenever S � S0 and T � T0,
then the least upper bound of S and T exists and is a
sort U � U0.

2.1.2 Algebras

Algebras re
ect the two-tiered structure of speci�ca-
tions (traits and speci�cations of program operations)
in that an algebra is built on a model of the traits.
A trait signature, � = (SORTS ; SFUNS ;ResSort),

where SORTS , SFUNS and ResSort are as above.
A �-trait structure is an algebraic structure, A =
(jAj; SFUNSA), having trait signature �, hence it is
what is (usually) called an algebra in the study of
equational logic or algebraic speci�cations. That is,
a trait structure consists of a carrier set jAj, and a set

of speci�cation functions SFUNSA.
For each sort T in SORTS a trait structure A has a

set, TA, called the carrier set of T. So the carrier set
of trait structure A, written jAj, is a SORTS -indexed
family of sets:

jAj
def
= fTA j T 2 SORTSg: (2:2)

(An I-indexed set is a surjective function from an
index set I to the elements of a set. For example, jAj
is a SORTS -indexed set where each element is a set.)
A speci�cation function is function that takes a tu-

ple of zero or more elements of a carrier set and returns
an element of the carrier set.
The set of sorted speci�cation functions of a trait

structure must not contradict the signature; that is,
for each speci�cation function symbol f 2 SFUNS , and
for each tuple of sorts ~S, if there is some sort T such
that ResSort(f;~S) = T, then for each tuple ~q 2 ~SA,
fA(~q) 2 TA.
An algebra is formed from a trait structure by mak-

ing ? an element of the carrier set of each sort, extend-
ing the speci�cation functions to this larger carrier set,
and adding a set of program operations.
The carrier set of a �-algebra A, written jAj, con-

sists of the carrier set of its trait structure, together
with ?, which is made an element of each sort's carrier
set. The family of carrier sets for the types is written
TYPESA.
An element of a carrier set is called proper if it is

not ?.
The phrase \q has sort T" means that q 2 TA; fur-

thermore, if T is also type, the phrases \q has type T"
and \q is an instance of type T" mean the same thing.
An element of a carrier set, often written o, q, or r, is
also called an object.
The family of sorted speci�cation functions of a �-

algebra A, written SFUNSA, consists of a set of sorted
speci�cation functions for a trait structure, extended

13

so that they do not interact with ?. That is, in ad-
dition to the constraints on the speci�cation functions
described above, for each f 2 SFUNS , the speci�ca-
tion function fA has ? as a result if and only if one of
its arguments is ?.
The family of program operations of a �-algebra,

A, written POPSA is a POPS -indexed family of set-
valued functions that do not contradict the sort infor-
mation in the signature. That is, for each g 2 POPS ,
for each tuple of types ~S, and for each tuple ~q 2 ~SA, if
ResSort(g;~S) = U, then gA(~q) is a nonempty set and
for each r 2 gA(~q), there is some type T � U such that
r has type T. Notice that the return type of an oper-
ation is more loosely constrained than the return sort
of a speci�cation function.
As above, vector notation is often used for tu-

ples. For example, the notation ~q stands for a n-tuple
hq1; . . . ; qni, where n � 0. The tuple ~q has type ~S,
written ~q 2 ~SA, if each qi has type Si. The notation
~SA stands for S1

A � � � � � Sn
A, but if ~S = hi, then

~SA
def
= fhig. The same notation is also used for sorts.

Notice that the de�nition of the program operations
of an algebra is more general than the usual de�ni-
tion of an operation, since the program operations are
polymorphic and possibly nondeterministic. The op-
erations even generalize Reynolds' generic operators
[Rey80], in that the result returned may have some
type other than the result type given by ResSort.
A possible result is simply an element of the car-

rier set of an algebra. program operations can also be
thought of as binary relations, where the set of possi-
ble results of an application of a binary relation f to
a tuple of arguments ~q is

f(~q)
def
= fr j (~q; r) 2 fg: (2:3)

The above is summarized in the following de�nition.

De�nition 2.1.3 (algebra). Let � be a signature.

An �-algebra A = (jAj; SFUNSA;POPSA), consists
of:

� a carrier set, jAj,

� a family, SFUNSA, of sorted speci�cation func-
tions, and

� a family, POPSA, of program operations.

A �-algebra has signature �.
The program operations of algebras can be non-

strict, in contrast with the operations of Nipkow's al-
gebras. An operation is strict if whenever one of its
arguments is ?, then the only possible result is ?.
Speci�cation functions are strict. However, non-strict
program operations are useful for modeling types with
lazy evaluation, such as streams.
Operations and algebras can be classi�ed as follows

[Nip87, Page 9]. An operation is total if whenever all
its arguments are proper (i.e., not ?), then no pos-
sible result is ?. Thus each speci�cation function is
total. An operation that is not total is partial. If an
application of an operation has a single possible re-
sult, it is deterministic. An operation is deterministic

if all applications of that operation are deterministic.
Thus each speci�cation function is deterministic. An
operation that is not deterministic is nondeterminis-
tic. An algebra is total or deterministic if all its op-
erations have that property. An algebra is partial or
nondeterministic if some of its operations are partial
or nondeterministic.
An example SIG(II)-algebra, where SIG(II) is the

signature of Figure 2.1, is presented in Figure 2.3. The
�gure �rst de�nes the carrier sets for each type, then
the speci�cation functions, and �nally the possible re-
sults of the program operations. The carrier set for
the type IntSet contains ?, and �nite sets of inte-
gers. The only proper element of the carrier set for
IntSetClass is IntSet , which is used as the result of
the nullary program operation IntSet. The descrip-
tion of speci�cation functions and operations is abbre-
viated by the following conventions.

� A variable such as i only stands for a proper ele-
ment of the appropriate carrier set, never for ?.

� The only omitted cases involve? as an argument,
and for these the only possible result is ?.

� The speci�cation functions are used to de�ne the
operations.

Note that the speci�cation functions are thought of as
a collection of separate functions, some of which share
the same name, while the operations are thought of
as monolithic. Thus each operation has a single de�-
nition that applies to all elements of the appropriate
carrier sets. Also note that the choose operation of
B is de�ned on nonempty arguments of type IntSet
by to have the entire set argument as its set of possi-
ble results, but is deterministic for arguments of type
Interval. Also, if choose is applied to an empty
IntSet, then the possible results are the entire car-
rier set of Int, including ?.
Algebras that are abstractions of implementations

of abstract types written in a given programming lan-
guage all have the same set of visible (i.e., built-in)
types. Alternatively, one can think of the visible types
as �xed by one's speci�cation language. In either case,
one can use the visible types to de�ne behaviors only
if the meaning of a visible type is the same in each
algebra. To state this restriction precisely requires the
notion of the reduct of an algebra.
Let �0 be a subsignature of �. Let SORTS 0,

SFUNS 0, and POPS 0 be the sets of sort, speci�cation
function, and program operation symbols of �0. Let A
be a �-algebra. Then the �0-reduct of A is the algebra

A(�0)
def
=

0
@ fTA j T 2 SORTS

0g;
ffA j f 2 SFUNS 0g;
fgA j g 2 POPS 0g

1
A (2:4)

[EM85, Section 6.8]. That is, A(�0) has as its carrier
sets the carrier sets of the sorts in A that appear in
�0, and as its speci�cation functions and program op-
erations those named in �0.
Assume that there is some �xed signature �B and

some �xed �B-algebra, B, that de�nes the visible
types. Then the assumption that all implementations
have the same visible types amounts to an assump-
tion that all signatures considered will have �B as a
subsignature and all algebras will have B as their �B-
reduct.

14

Carrier Sets

IntSetB
def
= f?g [\�nite sets of proper elements of IntB"

IntSetClassB
def
= f?; IntSetg

IntervalB
def
= f?g [f[x; y] j x; y 2 IntB ; x 6= ?; y 6= ?; x � yg

IntervalClassB
def
= f?; Intervalg

BoolB
def
= f?; true; falseg
. . .

Speci�cation Functions, �rst part

IntSetB()
def
= IntSet

fgB()
def
= fg

insertB(fg; i)
def
= fig

insertB(fi1; . . . ; ing; i)
def
= fi1; . . . ; ing [fig

insertB([x; y]; i)
def
= toSetB([x; y]) [fig

sizeB(fg)
def
= 0

sizeB(fi1; . . . ; ing)
def
= 1 + sizeB(fi1; . . . ; in�1g)

sizeB([x; y])
def
= sizeB(toSetB(v))

toIntB(0)
def
= 0

toIntB(succ(c))
def
= 1 + toIntB(c)

2 #B(i; fg)
def
= false

2 #B(i; fi1; . . . ; ing)
def
= i 2 fi1; . . . ; ing

2 #B(i; [x; y])
def
= x � i ^ i � y

deleteB(fg; i)
def
= fg

deleteB(fi1; . . . ; ing; i)
def
= fi1; . . . ; ing n fig

deleteB([x; y]; i)
def
= toSetB([x; y]) n fig

== #B(fg; fg)
def
= true

== #B(fg; fi1; . . . ; ing)
def
= false

== #B(fi1; . . . ; ing; fg)
def
= false

== #B(fi1; . . . ; ing; fj1; . . . ; jmg)
def
=

8<
:

true if fi1; . . . ; ing � fj1; . . . ; jmg
and fj1; . . . ; jmg � fi1; . . . ; ing

false otherwise

== #B(fi1; . . . ; ing; [x; y])
def
= # == #B(fi1; . . . ; ing; toSet

B([x; y]))

== #B([x; y]; fi1; . . . ; ing)
def
= # == #B(fi1; . . . ; ing; toSet

B([x; y]))

== #B([x1; y1]; [x2; y2])
def
= # == #B(toSetB([x1; y1]); toSet

B([x2; y2]))

\#B(fg; s2)
def
= fg

\#B(s1; fg)
def
= fg

\#B(fi1; . . . ; ing; fj1; . . . ; jng)
def
= fi1; . . . ; ing \ fj1; . . . ; jng

\#B(fi1; . . . ; ing; [x; y])
def
= fi1; . . . ; ing \ toSet

B([x; y])

\#B([x; y]; fi1; . . . ; ing)
def
= fi1; . . . ; ing \ toSet

B([x; y])

Figure 2.3: An algebra B for the speci�cation II, including IntSet and Interval, �rst part.

15

Speci�cation Functions, last part

\#B([x1; y1]; [x2; y2])
def
= toSetB([x1; y1]) \ toSet

B([x2; y2])

f#gB(i)
def
= fig

[#B(fg; s2)
def
= s2

[#B(s1; fg)
def
= s1

[#B(fi1; . . . ; ing; fj1; . . . ; jng)
def
= fi1; . . . ; ing [fj1; . . . ; jng

[#B(fi1; . . . ; ing; [x; y])
def
= fi1; . . . ; ing [toSet

B([x; y])

[#B([x; y]; fi1; . . . ; ing)
def
= fi1; . . . ; ing [toSet

B([x; y])

[#B([x1; y1]; [x2; y2])
def
= toSetB([x1; y1]) [toSet

B([x2; y2])

isEmptyB(fg)
def
= true

isEmptyB(fi1; . . . ; ing)
def
= false

isEmptyB([x; y])
def
= x � y

IntervalB([x; y])
def
= Interval

[#;#]B(x; y)
def
=

�
[x; y] if x � y
[x; x] if x > y

toSetB([x; y])
def
=

8<
:
fxg if x = y

fxg [toSetB([x+ 1; y]) if x < y
fxg otherwise

leastElementB([x; y])
def
= x

greatestElementB([x; y])
def
= y

BoolB()
def
= Bool
. . .

Program Operations

IntSetB()
def
= fIntSetg

IntervalB()
def
= fIntervalg

nullB(IntSet)
def
= ffgg

createB(Interval ; x; y)
def
= f[#;#]B(x; y)g

insB(s; i)
def
=

8>><
>>:
f[x; y]g if s 2 IntervalB, s = [x; y], x � i � y
f[i; y]g if s 2 IntervalB, s = [x; y], i = x� 1
f[x; i]g if s 2 IntervalB, s = [x; y], i = y + 1
finsertB(s; i)g otherwise.

elemB(s; i)
def
= f# 2 #B(s; i)g

chooseB(s)
def
=

8<
:

IntB if s 2 IntSetB, s = fg
s if s 2 IntSetB, s 6= fg
fxg if s 2 IntervalB , s = [x; y]

sizeB(s)
def
= ftoIntB(sizeB(s))g

removeB(s; i)
def
= fdeleteB(s; i)g

BoolB()
def
= fBoolg
. . .

Figure 2.4: An algebra B for the speci�cation II, including IntSet and Interval, last part.

16

2.2 Simulation Relations

How can one prove that one object \behaves like" an-
other object? An algebraic technique is to model the
notion of \behaves like" with a relation that satis�es
the substitution property and is the identity on objects
of visible type. The statement that q behaves like r is
expressed as the relationship q R r. The substitution
property is used to show that in all contexts P (�), if
q R r, then P (q) R P (r). The notion of \behavior"
concerns a subset of all contexts, namely programs.
Programs by their nature can only produce objects of
visible type such as Bool or Int. Such types are called
visible types. By ensuring that the relation R is the
identity on the visible types, one ensures that if q R r,
then q behaves like r with respect to all programs.
The above story is slightly complicated if one's pro-

grams are typed. Then one cannot apply arbitrary
programs to objects, but only those programs that
type check. The situation is further complicated when
one takes subtyping into account, because then the
observations that can be applied to an object depend
on what type one assumes for the object. For exam-
ple, one can apply more program operations to a triple
than to a pair, hence whether two triples behave like
each other depends on whether one observes them as
pairs or triples. Therefore, simulation relations are
families of relations that have one binary relation per
sort. At each type the relation may relate elements
of presumed subtypes of that type. For example, RT
may relate two instances of type S (provided S � T),
an instance of S to an instance of type T, or vice versa.

De�nition 2.2.1 (simulation). Let C and A be �-
algebras. A SORTS-indexed family

R =

8<
:RT � ((

[
S�T

SC)� (
[
S�T

SA)) j T 2 SORTS

9=
; ;

is a �-simulation relation between C and A, if and only
if the following properties hold:

Substitution property: for all sorts T, for all tuples
of sorts ~S, ~U, and ~V such that ~U � ~S and ~V � ~S, for
all tuples ~q 2 ~UC , for all tuples ~r 2 ~VA such that
~qR~S

~r, the following hold:

� for all speci�cation function symbols f 2

SFUNS , such that ResSort(f; ~S) = T,

fC(~q)RT f
A(~r); (2:5)

� for all program operation symbols g 2

POPS , such that ResSort(g; ~S) = T,

8(q0 2 gC(~q))9(r0 2 gA(~r)) q0 RT r
0: (2:6)

Coercion: for all sorts S and T,

(S � T)) (8(q 2 SC)9(r 2 TA) qRT r) (2.7)

(S � T)) (RS � RT): (2.8)

Bistrict: for each sort T, ?RT? and whenever qRT r
and one of q or r is ?, then so is the other.

V-identical: for each T 2 SORTS , if qRTr and either
q or r has a visible type, then q = r; for each
v 2 V , Rv contains the identity relation on the
carrier set of v (which is the same in both C and
A).

The signature � is sometimes omitted if it is clear
from context.
As noted above, the most important property is the

substitution property, which ensures that the simu-
lation is preserved by the speci�cation functions and
the program operations. Note that in the de�nition
above, the tuples ~q and ~r may be empty. Therefore, if
R is a simulation relation between C and A, then for
all nullary program operation symbols (i.e., type sym-
bols) g 2 POPS such that ResSort(g; hi) = TClass,

gC()RTClass gA() (2:9)

The same holds for nullary speci�cation function sym-
bols.
The \coercion" properties are technical require-

ments. It is necessary for the soundness of veri�cation
to be able to relate at each type T, each element of
every subtype of T to some element of type T. Further-
more, when one \coerces" two elements at once, any
relationships must be preserved. This last property
also embodies the intuition that if one object simu-
lates another at a subtype, then this simulation rela-
tionship should hold at each supertype, since no extra
operations will be applicable at the supertype.
The \bistrict" condition ensures that the meaning

of ? is preserved. It is part of the de�nition of sim-
ulation relations because nontermination is (in some
sense) visible.
The \V-identical" property ensures that a simula-

tion relation is (in a certain sense) the identity on ob-
jects of the visible types. The �rst condition says that
distinct elements of the visible types cannot be related.
The second condition says that at each visible type v,
Rv is the identity on the carrier set of v.
For notational convenience, the following abbrevia-

tions are used when dealing with families of relations,
R, and the binary relations RT.

� The notation Q RT R means that for all q 2 Q,
there is some r 2 R such that q RT r. This no-
tation is often used when comparing sets of pos-
sible results and the carrier sets of the various
types. As an example of the former use, the sub-
stitution property for program operation symbols
(Formula 2.6) can be written as follows:

gC(~q)RT gA(~r):

As an example of the latter use, SC RT T
A means

that for each instance q of type S in the algebra
C, there is an instance r of type T in A such that
qRT r.

� The notation ~qR~T
~r means that for each i, qiRTiri

(assuming that ~T is a tuple of types and ~q and ~r are
tuples of objects the same length). This notation
was used implicitly in the de�nition of simulation
relations.

17

Example 2.2.2. The following is an example of a
simulation relation.
Let B be the algebra of Figure 2.3 which models

the types IntSet and Interval. For this algebra, the
presumed subtype relation � is the smallest re
exive
relation on the sorts of the speci�cation IPT such that
Interval � IntSet. Let R be the smallest bistrict
sorted family of relations between B and B such that
for all types T, if q 2 TB, then qRTq, and for all proper
x � y in IntA,

[x; y] RIntSet toSetB([x; y]) (2.10)

[x; y] RIntSet [x; y]: (2.11)

Notice that RIntSet is not symmetric, because a
IntSet cannot be related to an Interval (because
of the choose operation is more nondeterministic on
IntSet arguments). This R is a simulation relation.
By construction, R is bistrict, V-identical, R relates
each element of type Interval to some element of type
IntSet, and relationships at type Interval hold at
type IntSet. To show that R satis�es the substitu-
tion property, let a program operation symbol g and
~S be given such that ResSort(g;~S) = T. (The case for
the speci�cation functions is similar.) Let ~q; ~r 2 ~SA be
such that ~qR~S

~r. If none of the types in ~S are IntSet,

then by construction ~q = ~r and thus gB(~q) = gB(~r);
since each RT contains the identity relation on TB , it
follows that gB(~q)RT gB(~r).
For the other case, the only program operation

symbols that can take an argument of nominal type
IntSet are ins, elem, choose, size, and remove.
Only ins and choose are considered below, the rest
are similar. Note that if q1 2 IntervalB , then
q1 RIntSet toSetB(q1), by construction. Further-
more, if x � i � y, then inserting into an Interval
with the program operation ins and coercing with
\toSet" has the same e�ect as coercing �rst and then
inserting, which can be seen as follows.

insertB([x; y]; i)

= insertB(toSetB([x; y]); i) (2.12)

= toSetB([x; y]) [fig (2.13)

= toSetB([x; y]) (2.14)

= toSetB(insB([x; y]; i)) (2.15)

insertB([x; y]; y+ 1)

= insertB(toSetB([x; y]); y+ 1) (2.16)

= toSetB([x; y]) [fy + 1g (2.17)

= toSetB([x; y+ 1]) (2.18)

= toSetB(insB([x; y]; y+ 1)) (2.19)

insertB([x; y]; x� 1)

= insertB(toSetB([x; y]); x� 1) (2.20)

= toSetB([x; y]) [fx� 1g (2.21)

= toSetB([x� 1; y]) (2.22)

= toSetB(insB([x; y]; x� 1)) (2.23)

So if q1 RIntSet r1 and q2RInt r2, then

insB(q1; q2) RIntSet insB(r1; r2) (2.24)

because if either q1 or r1 is an Interval, it can be
replaced by the IntSet it simulates, and the result will
be simulated by the original result. Since RIntSet is
transitive, the result follows. For choose, one must
�rst observe that if q1 is an Interval, then

q = leastElementB(q1)) q 2 toSetB(q1): (2:25)

Suppose q1RIntSet r1, then for all q 2 chooseB(q1),
there is some r 2 chooseB(r1) such that q RInt r.
That is, if q1 is of type Interval, then q is the least
element of q1, and thus must be an element of r1 (fur-
thermore, it is a possible result on r1, regardless of the
type of r1). On the other hand, if q1 is of type IntSet,
then so is r1, since q1 RIntSet r1; so q1 = r1.
So this R is a simulation relation.

Example 2.2.3. It is not always possible to �nd a
simulation between an algebra and itself. Consider an
algebra C that is just like B of Figure 2.3, except that
the choose operation is deterministic and returns the
maximum element of a non-empty IntSet. Consider
the relation R de�ned in example 2.2.2, with C sub-
stituted for B. This R is not a simulation relation
between C and C, because [1; 3]RIntSetf1; 2; 3g, but

f1g = chooseC([1; 3]) (2.26)

f3g = chooseC(f1; 2; 3g) (2.27)

and 1 is not related by RInt to 3.

The substitution property for program operations
is the key to the inductive proof that simulation is
preserved by all programming language expressions.
The substitution property for speci�cation functions is
the key to the proof that simulation is preserved by all
assertions and the soundness of the modular program
veri�cation techniques described in Chapter 6.
A substitution property is also used to de�ne homo-

morphisms between multisorted algebras [EM85]. The
substitution property de�ned above di�ers from the
usual substitution property for multisorted algebras
in two ways: it is a substitution property for relations
instead of functions, and it allows relations among ob-
jects of di�erent types.
Simulation relations resemble the \logical relations"

used in the study of the lambda calculus [Sta85]
[Mit86]. An important property of logical relations
is captured by the so-called fundamental theorem of
logical relations [Sta85], which states that simulation
is preserved by expressions.
The substitution property is similar to the de�n-

ing property of Nipkow's simulation relations [Nip86].
The di�erence is that we provide for message passing
(through program operations) and allow objects of one
type to be related to objects of another type.
Simulation relations are also similar to, but more

general than, the coercer functions of Reynolds [Rey80]
[Rey85] and Bruce and Wegner [BW87a]. These au-
thors also require a substitution property.

18

Chapter 3

Polymorphic Type and Function Speci�cations

In this chapter a new method for the modular spec-
i�cation of abstract types and polymorphic functions
that use message passing is described. The speci�ca-
tion language is adapted from Wing's interface speci�-
cation language for CLU [Win83] [LG86, Chapter 10]
[GHW85] [Win87] and Chen's Larch/Generic interface
speci�cation language [Che89]. However, unlikeWing,
the speci�cations only deal with immutable types.
The speci�cation of a function or a program oper-

ation is written as if each argument and result has
the speci�ed type. However, actual arguments and re-
sults are allowed to have types that are subtypes of
the speci�ed types. This follows the practice of Trel-
lis/Owl [SCB+86] and other typed object-oriented pro-
gramming languages. An example is the speci�cation
of inBoth, found in Figure 1.6. It speci�es that the
arguments may be instances of a subtype of IntSet,
but its post-condition is written using the speci�cation
functions that describe the abstract values of the type
IntSet. The advantage of this approach is that the
syntax and semantics of speci�cations parallels that of
the implementations. The problem is to give mean-
ing to such speci�cations when actual arguments do
not have the speci�ed types (for example, when an
argument has the type Interval). The solution is
to require that the subtypes all be speci�ed so that
speci�cations tailored to their supertypes are meaning-
ful. Technically this is done by requiring that abstract
models of a subtype can interpret assertions written
for their supertypes, as formalized in the restrictions
on signatures given in Chapter 2.
The meaning of a speci�cation is independent of the

de�nition of subtype relations (given in Chapter 4).
This independence is appropriate, since the semantic
restrictions that make a preorder on types a subtype
relation are intended to ensure the soundness of par-
ticular program veri�cation techniques.
The syntax and semantics of type speci�cations are

presented �rst, followed by the syntax and semantics
of polymorphic function speci�cations. A discussion
follows these sections.

3.1 Type Speci�cations

A set of abstract type speci�cations has two purposes:

� describing a family of algebras, and

� describing how the objects of a subtype simulate
the objects of their supertypes.

The type speci�cation syntax is specialized for class-
based object-oriented languages such as Smalltalk-80

or Trellis/Owl. Hence each type speci�cation really de-
scribes two types: one for the class object and one for
the instances of that class. These types are, of course,
closely connected. The syntax suppresses the implicit
operation that returns the class object; instead one
speci�es class and instance operations. Class opera-
tions take a class object as an argument. Instance
operations take an instance of the speci�ed type as an
argument. Both are program operations.
Abstractly, a set of type speci�cations has �ve parts:

a set of sort symbols, a binary relation on these sort
symbols, a speci�cation of a family of relations among
abstract values, a set of traits, and a speci�cation of
the program operations of a model. The binary re-
lation on sorts is called a presumed subtype relation,
since it should relate subtypes to supertypes. The fam-
ily of relations among abstract values is intended to
be a simulation relation; this family of relations will
be used to show that the presumed subtype relation is
a subtype relation. Each trait describes the abstract
values of a type; formally it speci�es the carrier set and
speci�cation functions of a model. (Unless these traits
are unconventional, they will be found in the Larch
Shared Language Handbook [GH86a].) The bulk of
the speci�cations is taken up by program operation
speci�cations.
In what follows sets of type speci�cations will often

be named. For example, the set of type speci�cations
named II consists of the speci�cations IntSet found
in Figure 1.1 and Interval found in Figure 1.2. The
speci�cation II is used below to help explain the spec-
i�cation language. This speci�cation might also be
called IntSet + Interval, and this notation will be
used on occasion.
The syntax of sets of type speci�cations is described

�rst then how a set of type speci�cations determines
the signature of the algebras in its semantics, and their
semantics.

3.1.1 Type Speci�cation Syntax

In Figure 3.1 the syntax of sets of type speci-
�cations is presented. The nonterminal symbols
hspeci�cation functioni, htypei, and hidenti�eri repre-
sent speci�cation function symbols, type symbols, and
program operation symbols and other identi�ers (re-
spectively). The nonterminal htermi is as in [GH86b];
in addition, terms of the form e1 = e2 are allowed.
However, in speci�cations, equality (=) may only
be used between terms of visible sort; such terms
are called subtype-constraining. Speci�cation function
symbols that are declared to be in�x may be written
between terms, speci�cation function symbols that are

19

declared to be post�x may be written after terms, and
so on. The mix�x symbol if then else � has the low-
est precedence, all others need to be parenthesized to
prevent ambiguity.
A set of type speci�cations is formally a list of
htype specis, each of which speci�es an abstract type.
A htype speci has a type name, a list of subtype in-
formation, a list of the program operation symbols
that name the type's class and instance operations,
a hbasisi clause, and a list of program operation speci-
�cations. The hbasisi clause tells what trait is used in
the program operation speci�cations.
The behavior of a program operation is described us-

ing a hpre-conditioni and an hpost-conditioni. These
clauses contain boolean htermis written using speci�-
cation function symbols, the formal arguments of the
operation, and equations. The post-condition may also
contain the formal result identi�er, although this iden-
ti�er cannot be used in the pre-condition. These terms
must sort-check. Sort checking for terms is de�ned
inductively. Each identi�er appearing in a term has
a nominal sort, given in its declaration (as a formal
argument or formal result). The nominal sort of a
speci�cation function application of the form f(~e) is a
sort T if the nominal sort of ~e is ~S, ResSort(f;~S) is de-
�ned, and ResSort(f;~S) = T, otherwise the term does
not sort-check. (How the ResSort map is determined
from the traits is described below.) The nominal sort
of an equation e1 = e2 is Bool if e1 and e2 have the
same nominal sort, otherwise the equation does not
sort-check. The nominal sort of the term in a pre- or
post-condition must be Bool.
A term that sort-checks and only uses speci�cation

functions of a signature � is a �-term. Of particular
interest are terms of nominal sort Bool.

De�nition 3.1.1 (�-assertion). A �-assertion is a
�-term of nominal sort Bool.

For convenience, the following syntactic sugars are
de�ned. An hspeci�cation functioni such as \f" used
in a htermi without arguments is syntactic sugar for
\f()." A declaration such as \f,s: Int" is syntactic sugar
for the declaration list \f: Int, s: Int." Furthermore,
an omitted hpre-conditioni is syntactic sugar for a pre-
condition of the form \requires true." A syntactic
sugar for exceptions is discussed in the last section of
this chapter.

3.1.2 Signature of a Type Speci�cation

The semantics of a set of type speci�cations is a family
of algebras with the same signature. If SPEC is a set of
type speci�cations, then SIG(SPEC) is the signature
determined by SPEC .
A program operation symbol may be present in

many di�erent type speci�cations. This convention
allows programmers to exploit message passing. For
example, in the speci�cation II, ins is an instance op-
eration of both IntSet and Interval. Each of occur-
rence of a program operation symbol in a set of type
speci�cations is associated with a di�erent nominal
signature, which is a pair consisting of a tuple of type
symbols and a type symbol, written S1; . . . ; Sn ! T or
~S! T (or ! T if there are no arguments).

hset of type speci�cationsi ::= htype spec listi
htype spec listi ::= htype speci
j htype spec listi htype speci

htype speci ::= htypei immutable type
hsubtype listi
hclass opsi hinstance opsi
hbasisi
hprog op spec listi

hsubtype listi ::= hemptyi
j hsubtype clausei hsubtype listi

hemptyi ::=
hsubtype clausei ::= subtype of htypei

by htermi simulates htermi

hclass opsi ::= hemptyi
j class ops [hident listi]

hinstance opsi ::= instance ops [hident listi]

hident listi ::= hidenti�eri
j hident listi , hidenti�eri

hbasisi ::= based on sort hidenti�eri
from hidenti�eri hwith clausei

hwith clausei ::= hemptyi
j with [hrenaming listi]

hrenaming listi ::= hrenamingi
j hrenaming listi , hrenamingi

hrenamingi ::= hidenti�eri for hident listi

hprog op spec listi ::= hprog op speci
j hprog op spec listi hprog op speci

hprog op speci ::= op hnominal signaturei
hpre-conditioni hpost-conditioni

hnominal signaturei ::= hidenti�eri (hdecl listi)
returns (hdecli)

hdecl listi ::= hdecli j hdecl listi , hdecli
hdecli ::= hidenti�eri : htypei

hpre-conditioni ::= requires htermi
hpost-conditioni ::= ensures htermi

hterm listi ::= htermi j hterm listi , htermi

Figure 3.1: Syntax of Type Speci�cations.

20

The parts of a set of type speci�cation's signature
are determined as follows. (The reader may wish to
consult the signature of II given in Figure 2.1 during
this discussion.)
The set of visible types, V , is �xed by convention.

For concreteness, the visible types determined by a set
of type speci�cation will always be as follows:

V
def
= fBool; Int; IntStream; BoolStreamg: (3:1)

The set of type symbols, TYPES , described by
a type speci�cation consists of the visible types,
the type symbols named at the beginning of each
htype speci, and a class type for each of the types
already mentioned, formed by adding \Class" as a
su�x to each of the other type symbols. For exam-
ple, the set of type symbols of II includes IntSet,
Interval, IntSetClass, and IntervalClass, in ad-
dition to the visible types and their associated class
types: BoolClass, IntClass, IntStreamClass, and
BoolStreamClass.
The set of sorts SORTS and the set of speci�cation

function symbols, SFUNS are determined by the traits
referenced in the hbasisi clauses of a speci�cation, plus
a trait of the following form for each class type TClass:

TClass: trait
introduces T: ! TClass

#==#: TClass, TClass ! Bool
asserts for all [t1,t2: TClass]

t1 = t2
t1 == t2

The traits referenced in the speci�cation of IntSet
and Interval are found in Figures 3.2 and 3.3. These
traits introduce various sorts and operations, which
become the sorts and speci�cation function symbols,
as renamed by the hrenamingi clause. The imported
traits are from [GH86a]. However, the sort name fol-
lowing the keyword sort in the speci�cation of a type
named T is renamed to T. In the II example, there is
an auxiliary sort Card that has no corresponding type.
It is used in the speci�cation of the program operation
size. So in general there will be more sorts than types.
The presumed subtype relation, �, is the re
ex-

ive, transitive closure of the relationships mentioned
in the hsubtype clauseis of each type. For example II
states that Interval is a subtype of IntSet. Hence
Interval � IntSet. By taking the re
exive, transi-
tive closure, the relationship IntSet � IntSet holds,
as does Bool � Bool, and so on.
The requirement on signatures that the ResSort

mapping is monotone in � does not a�ect the con-
struction of ResSort. However, if this requirement is
not met, then the set of type speci�cations is invalid,
as it will not determine a proper signature. Thus it
is left to the designer to specify the speci�cation func-
tions and program operations of presumed subtypes so
that signature restrictions are met. (Some automation
of this task would help speci�ers.)
The result sort mapping ResSort for speci�cation

function symbols is determined as follows. Each spec-
i�cation function symbol is introduced in a trait along
with a signature (e.g., ~S! T). The mapping ResSort
is simply another representation for this information.
So, if the speci�cation function symbol f is introduced

IntSetTrait: trait
imports SetBasics with [Int for E],

SetIntersection with [Int for E],
isEmpty with [Int for E, fg for new],
Singleton with [Int for E, fg for new,
f#g for singleton],

Join with [Int for E, fg for new,
[for .join],

CardToInt
introduces #==#: C,C ! Bool
asserts for all [s1, s2: C]

(s1 == s2) = (s1 = s2)

CardToInt: trait
imports Cardinal, Integer
introduces toInt: Card ! Int
asserts for all [c: Card]

toInt(0) = 0
toInt(succ(c)) = 1 + toInt(c)

Figure 3.2: The traits IntSetTrait and CardToInt.

with signature ~S! T, then ResSort maps the symbol
f and tuple of sorts ~S to T.
The set of program operation symbols POPS of a

set of type speci�cations consists of the symbols fol-
lowing op in hprog op specis, all type symbols that
are not class types, and program operation symbols
for the visible types. For example, the set of pro-
gram operation symbols of II includes null, create,
ins, elem, IntSet, Interval, Bool, Int, IntStream,
BoolStream, and program operation symbols for the
visible types such as true, false, not, and, or, add,
and so on. A type symbol such as IntSet is a nullary
program operation symbol, which is used to access a
class object.
The program operation symbols associated with the

visible types are found in Figures B.1, B.2, and B.3
(with a similar set of operations for BoolStream). For
example, in Figure B.1, the program operation or is
de�ned, whichmeans that a program operation symbol
or is associated with Bool.
Each instance operation in a given type's speci�ca-

tion must have at least one argument with the speci-
�ed type. Similarly each class operation must have an
argument of the corresponding class type. By conven-
tion, these required arguments are listed as the �rst
argument, which makes it easier for humans to infer
what operation will be invoked. This convention is
enforced in Trellis/Owl and Smalltalk-80, but it not
enforced in CLOS or by the speci�cation language.
Each hprog op speci declares a nominal signature.

This nominal signature is formed by placing an arrow
between the list of the types in the arguments part
of the operation signature and the type in the return
part. For example, the nominal signature of the pro-
gram operation ins in the speci�cation of IntSet is

IntSet, Int ! IntSet.

21

IntervalTrait: trait
imports IntSetTrait with [IntSet for C]
introduces [#,#]: Int, Int ! C

insert, delete: C, Int ! IntSet
size: C ! Card
#2#: C,Int! Bool
isEmpty: C ! Bool
[, \: C,C ! IntSet
[, \: C,IntSet ! IntSet
[, \: IntSet,C ! IntSet
#==#: C,C ! Bool
#==#: C,IntSet! Bool
#==#: IntSet,C ! Bool
toSet: C ! IntSet
leastElement, greatestElement: C ! Int

asserts for all [c, c1: C, s: IntSet, x, y, i: Int]
[x,y] = if x � y then [x,y] else [x,x] �
insert([x,y], i) = insert(toSet([x,y]),i)
delete([x,y], i) = delete(toSet([x,y]),i)
size([x,y]) = size(toSet([x,y]))
(i 2 [x; y]) = (i 2 toSet([x,y]))
isEmpty([x,y]) = false
leastElement([x,y]) = x
(s == c) = (s == toSet(c))
(c == s) = (s == toSet(c))
(c == c1) = (toSet(c) == toSet(c1))
(s \ c) = (s \ toSet(c))
(c \ s) = (s \ toSet(c))
(c \ c1) = (toSet(c) \ toSet(c1))
(s [c) = (s [toSet(c))
(c [s) = (s [toSet(c))
(c [c1) = (toSet(c) [toSet(c1))
greatestElement([x,y]) = if x � y then y

else x �
toSet([x,y]) = if y � x then fxg

else insert(toSet([x,y � 1]), y) �

Figure 3.3: The trait IntervalTrait.

Class operations also have a nominal signature, for ex-
ample, the nominal signature of the create operation
in the speci�cation of Interval is

IntervalClass,Int,Int! Interval.

Finally, type symbols, such as IntSet, are nullary pro-
gram operations. Hence their nominal signature is
such that there are no arguments and the result type is
the corresponding class type. For example, the nomi-
nal signature of the IntSet operation is:

! IntSetClass.

The result sort map, ResSort, for program opera-
tion symbols is determined from the presumed sub-
type relation � and the nominal signature of each
program operation speci�cation as follows. For each
program operation symbol g, and each tuple of sorts
~S, ResSort(g;~S) is de�ned and equal to some sort T if
and only if there is a unique signature ~U! T that is the
nominal signature of a program operation speci�cation
whose operation symbol is g such that ~S � ~U and for
all operation speci�cations whose operation symbol is
g, if the tuple of nominal argument types ~V has the
same length as ~S and if ~S � ~V, then ~U � ~V. (The for-
mula ~U � ~V means that for each i, Ui � Vi.) Hence
the unique program operation speci�cation with the
most speci�c argument type requirements that apply
to ~S determines the nominal result type. Furthermore,
there must be a single such program operation spec-
i�cation for each combination of argument types, or
ResSort is not de�ned on that combination of argu-
ment types.
The use of ResSort for determining the result sort of

a program operation allows the speci�cation of binary
operations where the code executed depends on the
types of more than one argument. Consider a speci�-
cation of types Rat and Int, where Int � Rat. The
operation add may be speci�ed for the type Rat with
the nominal signature

Rat, Rat ! Rat

while the operation add may be speci�ed for the type
Int with the nominal signature

Int, Int ! Int.

Then ResSort behaves as follows:

ResSort(add; hRat; Rati) = Rat

ResSort(add; hInt; Rati) = Rat

ResSort(add; hRat; Inti) = Rat

ResSort(add; hInt; Inti) = Int

In Trellis/Owl, one would specify add for the type
Rat as above, but for the type Int the operation add
would be speci�ed with the nominal signature:

Int, Rat ! Rat.

For such a speci�cation,

ResSort(add; hInt; Inti) = Rat:

22

which is less speci�c than might be desired. Various re-
searchers have used \bounded quanti�cation" to state
type restrictions so that the nominal type of adding
two integers is an integer [CW85] [Car88], but bounded
quanti�cation has its problems [BL88].
On the other hand, the designer must be careful to

specify types in such a way that a legal signature re-
sults. For example, if the operation add were speci�ed
for the type Rat with the nominal signature

Rat, Int ! Rat

and the operation add were speci�ed for the type Int
with the nominal signature

Int, Rat ! Int,

then ResSort(add; hInt; Inti) would be unde�ned.

3.1.3 Satisfaction for Type Speci�cations

The de�nition of when an algebra satis�es a set of
type speci�cations involves showing that the algebra
has the right signature, that its trait structure sat-
is�es the speci�cation's traits, that its model of the
visible types is standard, and that for arguments hav-
ing appropriate types each program operation satis�es
its speci�cation. These de�nitions rely on the mono-
tonicity (in the presumed subtype relation, �) of the
result sort mapping. That is, since the assertions in
a speci�cation are meaningful for arguments and re-
sults of the speci�ed types, and since the speci�cation
functions involved must be applicable to subtypes, the
speci�cation functions can be applied to all subtypes
as well.
The �rst part of satisfaction is showing that the trait

structure of an algebra satis�es the traits of the speci-
�cation. As indicated in Chapter 2, the trait structure
is formed by deleting ? from each sort's carrier set, re-
stricting the speci�cation functions to these domains,
and throwing out the program operations. The speci-
�cation functions are de�ned on carrier sets without ?
because they are strict and their inverses are strict. A
trait structure is thus a multi-sorted algebra, as used
in the semantics of �rst-order logic [End72].
An algebra A satis�es the traits of a speci�cation

if and only if the trait structure of A is a model of
those traits in the usual sense of models of �rst-order
formulas in formal logic.
The visible types have a standard model which is

the algebra, B, that combines Figures B.1 (Bool),
B.2 (Int), and B.3 (IntStream) and a model of
BoolStream that is analogous to IntStream. These
are discussed in Appendix B. Let SIG(B) be the sig-
nature of B.
An algebra has the standard model of the visible

types if its SIG(B)-reduct is the algebra B described
above. (The signature determined by a speci�cation
automatically has SIG(B) as a subsignature.)
The de�nition of satisfaction for program operation

speci�cations relies on the details of evaluation of as-
sertions. Evaluation of assertions is based on environ-
ments.
Environments are mappings that give meaning to

the free identi�ers in an assertion. The only identi�ers
that can appear in an assertion are the formal argu-
ments and formal result identi�ers. Each such identi-
�er has a nominal type, given by its declaration (as a

formal argument or result). Hence an environment's
domain consists of identi�ers of particular types.

De�nition 3.1.2 (�-environment). Let � be a sig-
nature, whose set of type symbols is TYPES , and
whose presumed subtype relation is �. Let A be
a �-algebra. Let X be a set of identi�ers indexed
by TYPES . Then a mapping �:X ! jAj is a �-
environment if and only if for every type T 2 TYPES
and for every x of nominal type T in X , �(x) has a
type S such that S � T.

The signature (�) is omitted when it is clear from
context.
An environment may map an identi�er x: T to an

object of the carrier set of an algebra, only if the value
of x has some type S such that is a presumed subtype
of T. Emphasis is laid on this condition by saying that
an environment obeys a presumed subtype relation.
Allowing environments to map identi�ers of one type

to objects of another type is the major technical di�er-
ence between the above de�nition and the de�nition of
environments used in traditional semantics. The tradi-
tionally restricted environments are called \nominal",
since the nominal type of an identi�er in their range
determines the type of that identi�er's value.

De�nition 3.1.3 (nominal �-environment). Let
� be a signature. A nominal �-environment, �, is
a �-environment such that for each x:T, �(x) has type
T.

An environment is proper if its range does not in-
clude ?. In standard semantics, a proper and nominal
environment is often called an assignment, when used
to give meaning to terms.
The following shorthand is used for adding a binding

to an environment:

�[q=x]
def
= �l: if l = x then q else �(l): (3:2)

(Of course, this shorthand only makes sense if q has
some type S that is a presumed subtype of the nominal
type of x.)
The basis for evaluation of assertions is the follow-

ing de�nition of the extension of an environment to
an evaluation of terms whose free identi�ers are in the
domain of the environment. This extension uses the
speci�cation functions of the algebra in the environ-
ment's range to evaluate speci�cation function sym-
bols and uses the environment itself to evaluate free
identi�ers [EM85, Section 1.10].
Let � be a signature and A a �-algebra. The no-

tation � means the extension of the �-environment
� : X ! jAj to a mapping from terms that sort-check
to elements of the carrier set of A. For example, if
p has nominal sort IntSet, i : Int, �(s) = f1; 2; 3g,

�(i) = 1, and # 2 #A(fe1; . . . ; eng; ei) = true, then

�[[i 2 s]] = # 2 #A(�(i); �(s))

= # 2 #A(1; f1; 2; 3g)

= true:

Furthermore, let

�[[E1 = E2]]
def
=

�
true if �[[E1]] = �[[E2]]
false otherwise.

(3.3)

23

It is assumed that the carrier set of Bool is as in Fig-
ure B.1 in all algebras; hence true and false are objects
in all algebras.
The extension � of an environment � is well-de�ned,

because of the requirements on signatures given in
Chapter 2. One might worry that the above de�nition
is nonsense, since an environment need not be nominal,
and hence a speci�cation function might be applied
outside its domain. That cannot happen, however,
since the de�nition of signatures ensures that if an as-
sertion sort-checks, then the speci�cation functions in-
volved will only be applied within their domains. The
key to showing this formally is the following lemma,
whose proof is by induction on the structure of terms.

Lemma 3.1.4. Let � be a signature, whose presumed
subtype relation is �. Let P be an term written using
the speci�cation functions of � and whose set of free
identi�ers is X . Let C be a �-algebra. Let �:X ! jCj
be a �-environment.
If P has nominal sort T, then �[[P]] has some sort

S � T.

The above lemma can be used to show that no spec-
i�cation function is applied outside its domain when
evaluating an assertion that sort-checks as follows.
Consider an application f(~e) in an assertion. Since this
application sort-checks, the arguments ~e must have
some nominal sort ~S, such that ResSort(f;~S) = T
for some sort T. By the above lemma, ~e must have
some sort ~U � ~S. But since ResSort is monotonic,
ResSort(f;~U) is de�ned, and thus \f" will not be ap-
plied outside its domain. The signature restrictions
therefore compensate for the freedom allowed in envi-
ronments.
An algebra-environment pair models an assertion

when one can think of the assertion as true in that
environment.

De�nition 3.1.5 (models). Let � be a signature.
Let P be an assertion whose set of free identi�ers is
X . Let C be a �-algebra. Let Y be a set of typed
identi�ers such that X � Y . Let �C: Y ! jCj be
a �-environment. Then (C; �C) models P , written
(C; �C) j= P , if and only if �C[[P]] = true.

For example, consider the assertion \1 2 s." Let C
be the algebra of Figure 2.3. Let Y be the set fs :
IntSetg. Let �C: Y ! jCj be the environment such
that �(s) = f1; 2; 3g. Since �C [[1 2 s]] = true by the
above de�nition, (C; �) j= 1 2 s. Since �C [[4 2 s]] =
false, (C; �C) does not model \4 2 s."
The above de�nition of \models" specializes to the

standard de�nition [End72] when the presumed sub-
type relation is equality (=). This follows trivially,
since the only di�erence between the above de�nition
and the standard de�nition is the notion of extended
application.
In the determination of ResSort for program opera-

tions, the nominal sort of a program operation applied
to certain types of arguments was determined by the
unique program operation speci�cation with nominal
argument types that were the least in the � order-
ing and supertypes of the given argument types. This
unique program operation speci�cation is called the

most speci�c applicable program operation speci�ca-
tion for the given argument types. The behavior of
a program operation of an algebraic model for given
argument types is determined by the most speci�c ap-
plicable program operation speci�cation. The program
operation must satisfy this speci�cation in the sense
that if the arguments have types that are presumed
subtypes of the nominal argument types and model
the pre-condition, then the operation must halt, and
can only return results that model the post-condition
and that have a type that is a presumed subtype of
the nominal result type.

De�nition 3.1.6 (satis�es for operations).
Let SPEC be a set of type speci�cations. Let g be
a program operation symbol of SIG(SPEC). Let C
be an algebra whose signature is SIG(SPEC). An op-
eration gC satis�es the speci�cation of an operation
g in SPEC if and only if for all tuples of types ~S, if
ResSort(g;~S) = T, then the following condition is met.
Let O be the most speci�c applicable program opera-
tion speci�cation for ~S. This O has the following form,
where ~S � ~U:

op g(~x : ~U) returns(y : T)
requires R
ensures Q.

Let X = fx1 : U1; . . . ; xn : Ung. For all proper ~q 2 ~SC ,
for all SIG(SPEC)-environments �:X ! jCj such that
�(xi) = qi, if

(C; �) j= R; (3:4)

then for all possible results r 2 gC(~q):

r 6= ? (3.5)

(C; �[r=y]) j= Q; (3.6)

and there is some V 2 TYPES such that r 2 VC and
V � T. Furthermore, whenever some argument to the
operation is ?, then the only possible result is ?.

A tuple of proper arguments satis�es the pre-
condition \requires R" if when � is a proper envi-
ronment that maps the formals to the given tuple of
arguments, then �[[R]] = true.
For example, the operation de�ned by

elemA(s; i)
def
= f# 2 #A(i; s)g (3.7)

elemA(?; i)
def
= f?g (3.8)

elemA(s;?)
def
= f?g (3.9)

elemA(?;?)
def
= f?g (3.10)

(where s and i are proper) satis�es the speci�cation of
the elem operation for the speci�cation II that includes
IntSet and Interval because of the following.

� For all assignments � that bind some proper
IntSet s to s : IntSet, �[[true]] = true (recall
that an omitted pre-condition is syntactic sugar
for \requires true") and the only possible result

is # 2 #A(i; s). This result is proper and satis�es

24

the post-condition of the most speci�c applicable
program operation speci�cation, which is found in
the speci�cation of the type IntSet. The satis-
faction of the post-condition is shown as follows:

�[# 2 #A(i; s)=b][[b = i 2 s]] = true: (3:11)

� Similarly, for all assignments � that bind some
proper Interval s to s : Interval, the only pos-
sible result is # 2 #A(i; s), which is proper and
satis�es the post-condition speci�ed for elem in
the type speci�cation Interval.

The nullary operations that name class objects are
implicitly speci�ed as follows:

op T() returns(y:TClass)
ensures y == T.

An operation TA satis�es this speci�cation if its only
possible result is class object for T.
An algebra satis�es a set of type speci�cations if the

above conditions are met. This is summarized in the
following de�nition.

De�nition 3.1.7 (satisfaction for algebras).
Let SPEC be a set of type speci�cations. Let A be
a SIG(SPEC)-algebra. Then A satis�es SPEC if and
only if

� the trait structure of A satis�es the traits of
SPEC ,

� the SIG(B)-reduct of A is B, where B is the alge-
bra described above that models the visible types,
and

� for each of the program operation speci�cations of
SPEC , the corresponding program operation of A
satis�es its speci�cation.

For example, the algebra of Figure 2.3 satis�es the
speci�cation II.
The semantics of a set of type speci�cations SPEC is

a set of all SIG(SPEC)-algebras, that satisfy SPEC .
Each algebra in the semantics of SPEC is called a
SPEC-algebra. For example, the algebra of Figure 2.3
is an II-algebra.

3.2 Nondeterministic Type Speci�ca-

tions

Nondeterministic program operations are useful for
modeling both \unde�ned" behavior and types that
are inherently nondeterministic. An example is the
type IntSet speci�ed in Figure 1.1.
As an example of using nondeterminism for model-

ing \unde�ned" behavior, consider the choose oper-
ation of IntSet. This program operation has a non-
trivial pre-condition. When the pre-condition is not
satis�ed, the set of possible results is unconstrained,
and hence can be entire carrier set of the nominal re-
sult type. An example is the II-algebra, B, of Fig-
ure 2.3 whose carrier set for the type IntSet is the set
of �nite sets of integers (plus ?), and in which

chooseB(fg)
def
= IntB = f?; 0; 1;�1; . . .g: (3:12)

That is, when the argument is empty, choose may fail
to terminate, or may return any integer.
The choose operation also illustrates nondetermin-

ism for its own sake, since even when its pre-condition
is satis�ed, it may return any element of the argument
set.
An algebra may satisfy the speci�cation with an im-

plementation that is more deterministic than allowed
by the speci�cation. A program operation may be
more \de�ned", as in an algebra A, where

chooseA(fg)
def
= f0g: (3:13)

Or the normal case may be made more deterministic,
for example returning only the least element of the
argument set.

3.3 Specifying Types with Exceptions

Instead of specifying operations with non-trivial pre-
conditions or arbitrarily de�ning a result, one often
wishes a program operation to signal an exception
[Goo75]. A programming language can de�ne a mecha-
nism to handle exceptions that arise while executing an
invocation, as is done in CLU [LS79] and Trellis/Owl.
For simplicity, whenever exceptions are discussed,

all operations of an algebra are thought of as returning
OneOf objects.
A OneOf type is like the variant or discriminated

union types that appear in some programming lan-
guages, such as CLU [LAB+81]. The carrier set and
speci�cation functions for OneOf types are de�ned
as shown by the example trait \OneOf[normal: Int,
empty: Null]," which is found in Figure 3.4. (The type
Null has only one proper object, denoted by the re-
sult of the speci�cation function \nil"; it is used as
a placeholder in OneOf types. The type Tag contains
proper objects for each possible OneOf tag.) The pro-
gram operation symbols for a OneOf type are similarly
de�ned.
To explain the syntactic sugar for speci�cations that

use exceptions, consider the speci�cation of the type
IntSet2 given in Figure 3.5.
Each program operation speci�cation is rewritten

so that it returns a OneOf type instead. A OneOf ob-
ject with tag normal models the normal return. Each
exception result is denoted by a OneOf object with a
tag that is the same as the exception's name. (The
name normal is not allowed as an exception name.)
The rewriting is straight-forward. As an example, the
speci�cation of choose in IntSet2 is syntactic sugar
for the speci�cation of Figure 3.6.
All OneOf types used in this fashion have their spec-

i�cation implicitly included in a speci�cation that uses
them.
One can also specify an operation so that it has a

choice between signalling and returning a normal re-
sult. (An example is given in Figure 4.6.)

3.4 Function Speci�cations

Functions that are parts of programs are speci�ed in
much the same way as the program operations of a
type. However, function speci�cations are generic in
the sense that they may be interpreted using di�erent

25

OneOf[normal: Int, empty: Null]: trait
introduces

make normal: Int ! NE
make empty: Null ! NE
hasTag?: NE, Tag ! Bool
#==#: NE, NE ! Bool
val normal: NE ! Int
val empty: NE ! Null

asserts for all [i: Int, o1, o2: NE]
hasTag?(make normal(i), normal) = true
hasTag?(make empty(nil), empty) = true
hasTag?(make empty(nil), normal) = false
hasTag?(make normal(i), empty) = false
val normal(make normal(i)) = i
val empty(make empty(nil)) = nil
(o1 == o2) = (o1 = o2)

exempts for all [i: Int]
val normal(make empty(nil))
val empty(make normal(i))

Figure 3.4: The trait OneOf[normal: Int, empty: Null].

IntSet2 immutable type
class ops [null]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntSetTrait

op null(c:IntSetClass) returns(s:IntSet)
ensures s == fg

op ins(s:IntSet, i:Int) returns(r:IntSet)
ensures r == s [fig

op elem(s:IntSet, i:Int) returns(b:Bool)
ensures b = (i 2 s)

op choose(s:IntSet2) returns(i:Int)
signals(empty(Null))

ensures (isEmpty(s))
signals empty(nil(Null)))

& ((: isEmpty(s))) i 2 s)
op size(s:IntSet) returns(i:Int)

ensures i = toInt(size(s))
op remove(s:IntSet, i:Int) returns(r:IntSet)

ensures r == delete(s,i)

Figure 3.5: Speci�cation of the type IntSet2.

op choose(s:IntSet2) returns(o: OneOf[normal: Int,
empty: Null])

ensures (isEmpty(s))
o == make empty(nil))

& ((: isEmpty(s)))
(hasTag?(o,normal)
& val normal(o) 2 s))

Figure 3.6: Desugared form of an exception speci�ca-
tion.

hfunction speci�cationi ::= fun hnominal signaturei
hpre-conditioni hpost-conditioni

Figure 3.7: Syntax of Function Speci�cations.

sets of type speci�cations, which allows one to add new
types to a program without editing function speci�ca-
tions.
The syntax of function speci�cations is similar to

that for program operation speci�cations except that
one uses fun instead of op (see Figure 3.7). An
example, the speci�cation of is2in, is given in Fig-
ure 3.8. The pre-condition of is2in is \true" and
the post-condition is \b = (2 2 s)." Like program
operation speci�cations, the pre-conditions and post-
conditions of function speci�cations must be subtype-
constraining. An omitted pre-condition is sugar for
\true".
The assertions in the pre- and post-conditions of

a function speci�cation may use speci�cation func-
tions from the speci�cations of any of the types men-
tioned in the nominal signature. The collection of the
htype specis for the non-visible types mentioned, ei-
ther directly or indirectly. in the nominal signature of
a function speci�cation is called the base speci�cation
set of the function speci�cation. For example, the base
speci�cation set of is2in includes only IntSet (as Bool
is a visible type and thus need not be included). The
assertions found in the pre- and post-conditions of a
function speci�cation must be SIG(SPEC)-assertions,
where SPEC is the base speci�cation set.
The de�nition of satisfaction for function speci�ca-

tions is dependent on a de�nition of function imple-
mentations. That is, one needs a formal model of func-
tion implementations (the semantics of code written in

fun is2in(s:IntSet) returns(b:Bool)
requires true
ensures b = (2 2 s)

Figure 3.8: The function speci�cation is2in.

26

a programming language) to describe satisfaction.
To manipulate objects abstractly, a function imple-

mentation must have access to the operations of an
algebra. Hence function implementations take an al-
gebra as an argument and then a tuple of arguments
from the carrier set of that algebra, producing an set of
objects in the carrier set of that algebra (representing
the set of possible results). Furthermore, the algebra
that is an argument to the function implementation
must be such that the base speci�cation set's signa-
ture is a subsignature of the algebra's.

De�nition 3.4.1 (satis�es for functions). Let Sf
be the following function speci�cation:

fun f(~x : ~S) returns(v : T)
requires R
ensures Q.

Let �0 be the signature of the base speci�cation set
of Sf . Let SPEC be a set of type speci�cations that
includes the base speci�cation set and such that �0 is
a subsignature of SIG(SPEC). Let the presumed sub-
type relation of SPEC be�. LetX = fx1 : S1; . . . ; xn :
Sng. A function f satis�es Sf with respect to SPEC
if and only if for all SPEC -algebras C, for all proper
SIG(SPEC)-environments �C:X ! jCj, the following
condition holds. If

(C; �C) j= R; (3:14)

then for all possible results q 2 f(C)(�C(~x))

q 6= ? (3.15)

(C; �C[q=v]) j= Q; (3.16)

and there is some U 2 TYPES such that q 2 UC and
U � T. Furthermore, whenever some argument to the
operation is ?, then the only possible result is ?.

In the above de�nition, notice that the possible re-
sults must have some type that is a presumed subtype
of the nominal result type. This ensures that when an
identi�er of the nominal result type is bound to a pos-
sible result, that binding obeys the presumed subtype
relation.
The phrase \f satis�es Sf " will be used instead of

\f satis�es Sf with respect to SPEC " when SPEC is
clear from context.

Example 3.4.2. As an example of function satisfac-
tion, consider the following function implementation:

f
def
= �A:�s:elemA(s; 2): (3:17)

This function satis�es the speci�cation is2in given
above with respect to II. To see this, let C be a
II-algebra, and let �C : fs : IntSetg ! jCj be an
environment such that �C(s) = f1; 2; 3g. Then
(C; �C) j= true, so the pre-condition is satis�ed. Let
r 2 elemC(�C(s); 2) be a possible result. Then r is
proper, has type Bool and is such that

(C; �C[r=b]) j= b = (2 2 s): (3:18)

This last equation follows from II.

3.5 Discussion

The discussion that follows treats a limitation of the
type system used in our speci�cations and various pit-
falls for the user of the speci�cation language de�ned
above. Speci�ers must be careful of how they specify
speci�cation functions for subtypes and how they use
equality in speci�cations.

3.5.1 Loss of Information for Subtype Results

When the subtype's abstract values have more infor-
mation than the supertype's, one has to be careful to
write each speci�cation so as not to lose information.
However, the loss of information cannot be prevented
in general for function speci�cations.
For example, consider a type PSchd of priority

\schedulers"; this type will be a subtype of IntSet,
with jobs represented by integers, and a choose oper-
ation that returns either the least or the greatest job
number, depending on a \priority" that is set when
the scheduler is created. The speci�cation of this type
is given in Figure 3.9. The abstract values of the type
PSchd (see Figure 3.11) have more information than
the abstract values of the type IntSet, namely a pri-
ority.
Consider the speci�cation of the ins operation of

PSchd. Because the behavior of ins is speci�ed for
PSchd arguments separately from the behavior for
IntSet arguments, the implementation must leave the
priority of a PSchd argument unchanged. Thus there
is no loss of information.
However, for functions there is only one speci�ca-

tion, so loss of information is inevitable, because of the
restriction to subtype-constraining assertions. Con-
sider the speci�cation ins3 of Figure 3.12. Since the ar-
gument is nominally an IntSet, there is no way to re-
fer to the priority of the argument or the result. Since
the assertion in the post-condition must be subtype-
constraining, there is no way to say that the result
must be the same as the result of the \[" speci�ca-
tion function, which would preserve the priority of a
PSchd. That is, the post-condition cannot be \w3 = s
[f3g", because this would be using equality (=) be-
tween terms that are not of a visible type. Hence im-
plementations of ins3 with respect to IntSet + PSchd
need not leave the priority of a priority scheduler ar-
gument unchanged.
A solution to this problem would be to provide mul-

tiple speci�cations of functions, much as multiple spec-
i�cations of program operations are provided in type
speci�cations. An implementation would be required
to satisfy the most speci�c applicable function speci�-
cation, much the same as for program operation speci-
�cations. This would probably pose no great problems
for reasoning. However, such an extension is left for
future work.
A di�erent approach to these problems in the con-

text of record types is illustrated in the work of Jate-
gaonkar and Mitchell on ML [JM88] and Cardelli and
Mitchell [CM89].

3.5.2 Loss of Type Information for Subtype
Results

The speci�cation language cannot express certain con-
straints on the type of the value returned by a func-
tion. To illustrate the limitations, consider again the

27

PSchd immutable type
subtype of IntSet by hb; sisimulatess
class ops [new]
instance ops [ins, elem, choose, size, remove,

leastFirst]
based on sort C from PSchdTrait

op new(c:PSchdClass, b:Bool)
returns(p:PSchd)

ensures p == hb, fgi

op ins(p:PSchd, i:Int) returns(r:PSchd)
ensures (r == insert(p, i))

& (r.�rst = p.�rst)
op elem(p:PSchd, i:Int) returns(b:Bool)

ensures b = i 2 p
op choose(p:PSchd) returns(i:Int)

requires : isEmpty(p)
ensures i 2 p

& (p.�rst) lowerBound?(p.second,i))
& ((:p.�rst)
) upperBound?(p.second,i))

op size(p:PSchd) returns(i:Int)
ensures i = toInt(size(p))

op remove(p:PSchd, i:Int) returns(r:PSchd)
ensures (r == delete(p,i))

& (r.�rst = p.�rst)
op leastFirst(p:PSchd) returns(b:Bool)

ensures b = p.�rst

Figure 3.9: Speci�cation of the priority scheduler type,
PSchd.

OrderedIntSet: trait
imports IntSetTrait
assumes Ordered with [Int for T]
introduces

lowerBound?: C, Int ! Bool
upperBound?: C, Int ! Bool

asserts for all [s: C, i; j: Int]
lowerBound?(fg,i) = true
lowerBound?(insert(s,j),i)

= ((i � j) & lowerBound?(s,i))
upperBound?(fg,i) = true
upperBound?(insert(s,j),i)

= ((i � j) & upperBound?(s,i))

Figure 3.10: The trait OrderedIntSet.

PSchdTrait: trait
imports OrderedIntSet,

Pair with [Bool for T1, IntSet for T2]
introduces

toSet: C ! IntSet
size: C ! Card
insert,delete: C,Int ! C
#2#: Int,C! Bool
isEmpty: C ! Bool
[, \: C,C ! IntSet
[, \: C,IntSet ! C
[, \: IntSet,C ! C
#==#: C,C ! Bool
#==#: C,IntSet! Bool
#==#: IntSet,C ! Bool

asserts
for all [p, p2: C, s: Set, b: Bool, i; j: Int]
toSet(p) = p.second
size(p) = size(toSet(p))
(i 2 p) = (i 2 toSet(p))
insert(p, i) = h p.�rst, insert(toSet(p), i) i
delete(p, i) = h p.�rst, delete(toSet(p), i) i
isEmpty(p) = isEmpty(toSet(p))
(p == p2) = (toSet(p) = toSet(p2))
(p == s) = (s == toSet(p))
(s == p) = (s == toSet(p))
(p \ p2) = (toSet(p) \ toSet(p2))
(p \ s) = (h p.�rst, toSet(p) \ s i)
(s \ p) = (h p.�rst, toSet(p) \ s i)
(p [p2) = (toSet(p) [toSet(p2))
(p [s) = (h p.�rst, toSet(p) [s i)
(s [p) = (h p.�rst, toSet(p) [s i)

Figure 3.11: The trait PSchdTrait.

fun ins3(s:IntSet) returns(w3:IntSet)
ensures w3 == s [f3g

Figure 3.12: Speci�cation of the function ins3, which
inserts 3 in a set.

28

function speci�cation ins3, in Figure 3.12. An obvious
implementation is the following function:

ins3
def
= �A:�s:insA(s; 3): (3:19)

Notice that if one passes this implementation an object
of type PSchd, one gets back an object of type PSchd.
However, the type system of the speci�cation language
cannot express this. One way to do so would be to use
a kind of bounded quanti�cation [CW85]. For example
one might specify ins3 with the following heading:

fun ins3(s:t � IntSet) returns(w3:t)

The use of bounded quanti�cation solves the problem
with the type of the result, since one can conclude that
if ins3 is passed an instance of PSchd, then it returns
an instance of PSchd. However, such a function speci�-
cation cannot be satis�ed with respect to arbitrary sets
of type speci�cations. For example, consider a subtype
of IntSet whose objects cannot contain 3. The prob-
lem is that the returned object cannot be an element
of such a type. The problem is similar to the semantic
problems with bounded quanti�cation pointed out by
[BL88].
A better solution to this problem would be to al-

low multiple speci�cations for functions, as described
above. A di�erent approach would be to use the notion
of \F-bounded quanti�cation" [CCH+89].

3.5.3 The Need for Subtype-Constraining As-
sertions

In the speci�cation of IntSet given in Figure 1.1, the
pre-condition of the choose operation is written as \:
isEmpty(s)" instead of \:(s = fg)." However, for the
soundness of program veri�cation (see Chapter 6) the
assertions used in speci�cations cannot use equality
(=) between terms of nonvisible sorts; such assertions
are called subtype-constraining. The term \:(s = fg)"
does not restrict subtypes as well as \: isEmpty(s),"
since subtypes such as PSchd may use di�erent ab-
stract values and so each element of the subtype will
satisfy the pre-condition trivially. Hence, even though
these two terms are logically equivalent for sets, they
are not equivalent when used in a speci�cation. This
problem is much like those that arise when reasoning
about nonstandard models of sets. The problem is
avoided by requiring that assertions in speci�cations
be subtype constraining.
In [Lea89], the requirements on assertions were even

stronger, as one had to use \program observable" as-
sertions in speci�cations. The requirement of program
observability is more severe, since it may restrict how
speci�cations can be written. These problems are il-
lustrated by the following example, suggested by W.
Weihl (personal communication, 1989).
Consider a statistical database type, as speci�ed in

Figures 3.13 and 3.14. The assertion that describes the
post-condition of the ins operation is not program ob-
servable in the sense that there is no program one can
write that will return \true" only if the assertion \q
== insert(s, r)" is true, given that one can only ob-
serve objects of type Sdb by calling the operations ins,
mean, and sampleVariance. That is, there are several
multi-sets that have the same mean and variance, but
which are not equal to the one required. However, the
following assertion is program observable:

Sdb immutable type
class ops [new]
instance ops [ins, mean, sampleVariance]
based on sort C from StatBag

op new(c:SdbClass) returns(s:Sdb)
ensures s == fg

op ins(s:Sdb, r:Rat) returns(q:Sdb)
ensures q == insert(s, r)

op mean(s:Sdb) returns(r:Rat)
requires : isEmpty(s)
ensures r == (sum(s)/size(s))

op sampleVariance(s:Sdb) returns(r:Rat)
requires count(s) > 1
ensures r == variance(s)

Figure 3.13: Speci�cation of the statistical database
type, Sdb.

((sum(q) / size(q))
== (sum(insert(s,r))/size(insert(s,r))))

& (variance(q) == variance(insert(s,r))).

The above assertion states the required properties, but
it is less terse.
Assertions that are subtype-constraining but not

program observable are often used in such situations
where a slight overspeci�cation is preferable to such
long assertions.
A way to make the assertion \q == insert(s,r)" pro-

gram observable is to add more operations to the type
Sdb. However there may be other reasons, such as
modularity or the privacy of information maintained
by a program, that would prohibit a designer from
choosing to add such operations. Another way would
be to describe the speci�cation function \==" so that
it related multi-sets with the same mean and variance.
However, that would make the trait StatBag less intu-
itive.
Therefore the advantage of the semantics of asser-

tions given above is that the restriction to subtype-
constraining assertions allows more freedom to the
speci�er. Subtype-constraining assertions such as \q
== insert(s,r)" can be used in speci�cations, even
though they are not program observable.

3.5.4 No Constraints Imposed on the Opera-
tions of Presumed Subtypes

The only constraints imposed on the operations of a
subtype in this chapter are syntactic. That is, the se-
mantic constraints imposed in Chapter 4 do not a�ect
the construction of algebraic models. A set of type
speci�cations has a meaning regardless of whether the
presumed subtype relation is a subtype relation. This
separation is achieved because the behavior of a pro-

29

StatBag: trait
imports Rational

BagBasics with [Rat for E]
introduces

#==#: C,C ! Bool
sum,variance: C ! Rat

asserts for all [b1, b2: C, i, m: Rat]
(b1 == b2) = (b1 = b2)
sum(fg) = 0
sum(insert(b1, i)) = i + sum(b1)
mean(b1) = (sum(b1)/size(b1))
sd2(fg,m) = 0
sd2(insert(b1, i), m)

= (sd2(b1,m) + ((i �m)*(i �m)))
variance(b1)

= (sd2(b1,mean(b1))/(size(b1)-1))
exempts for all [r: Rat]

mean(fg)
variance(fg)
variance(insert(fg,r))

Figure 3.14: The trait StatBag.

gram operation of an algebraic model only has to sat-
isfy the program operation speci�cation that has the
most speci�c applicable argument type requirements.
The bene�t of having meaningful type speci�cations

even when the presumed subtype relation does not
satisfy the semantic requirements for a subtype re-
lation is that one does not have to consult a pre-
sumed supertype's operation speci�cation to discover
the meaning of a subtype's operation speci�cation.
For example, one might have a speci�cation language
where the pre-condition of a subtype's operation was
a disjunction of the speci�ced pre-condition and the
pre-conditions of its supertypes and where the post-
condition of a subtype's operation was a conjunction
of the speci�ed post-condition and the post-conditions
of its supertypes1. However, in that case it would
be easy to specify a subtype that could not be im-
plemented, because the post-condition of the subtype
might contradict the post-condition of the supertype.
Furthermore, the contradiction would not be obvious,
as it would require looking at the speci�cation of all
supertypes.

3.5.5 Inheritance of Speci�cations

A better way to abbreviate operation speci�cations is
to omit them entirely. That is, one can have inheri-
tance of operation speci�cations. The semantics of the
speci�cation language does not prohibit inheritance of
operation speci�cations, since an operation speci�ca-
tion applies to all argument combinations for which
there is no more speci�c operation speci�cation. In-
deed, one would only have to respecify an operation in

1as has been suggested by B. Meyer for Ei�el on the news-
group comp.lang.ei�el

op assertEmpty(s:IntSet) returns(b:Bool)
requires isEmpty(s)
ensures b = true.

Figure 3.15: Speci�cation of the program operation
assertEmpty.

a subtype if one wanted to make the speci�cation more
speci�c (strengthening the post-condition or naming
di�erent argument or result types).
To make speci�cations easier to read, it would per-

haps be best to explicitly list the instance operation
names that one wanted to be inherited from the su-
pertype speci�cation.

3.5.6 Must Subtypes Implement All Instance
Operations of Supertypes?

It is nearly dogma that a subtype must have all the
instance operations of its supertypes, as required by
the de�nition of signatures given in Chapter 2. How-
ever, what would happen if the operation speci�cation
of Figure 3.15 were added to the speci�cation of the
type IntSet as an additional instance operation speci-
�cation? The operation assertEmpty need not be im-
plemented for the type Interval, since there are no
empty intervals, and hence no Interval arguments
could reasonably be sent that message. Such an op-
eration should not even have to be speci�ed in the
speci�cation of a subtype, although technically in the
algebraic models ResSort(assertEmpty; hIntervali)
would be de�ned. This example shows that the com-
mon notion that the subtype must implement all the
instance operations of a supertype is not necessary.
However, such a radical departure from accepted

practice may not be wise. That is, it is valuable to
have syntactic checks for the plausibility of speci�ed
subtype relations, and one of the most basic of such
checks is that the subtype should have all the instance
operations of the supertype.

30

Chapter 4

Subtype Relations

The formal de�nition of subtype relations is pre-
sented in this chapter, as well as a discussion of issues,
examples, and related work.
The de�nition of subtype relations allows modu-

lar reasoning about object-oriented programs that use
subtype polymorphism, as described in Chapter 1.
This style of reasoning relies on nominal type informa-
tion; that is, the types declared for formal arguments
and results. The use on nominal type information in
speci�cations is discussed above (in Chapter 3). The
method for program veri�cation described in Chap-
ter 6, allows one to reason about the result of an ex-
pression with nominal type T as if each possible result
was an instance of type T. For example, to verify that
the function

fun is2in(s: IntSet): Bool = elem(s,2)

implements the speci�cation of Figure 3.8, one is al-
lowed to assume that s denotes instances of IntSet,
even though one can pass instances of subtypes of
IntSet (such as Interval) as actual arguments to
is2in.
The semantic property that characterizes a subtype

relation is the existence of a simulation. For example,
each instance of type Interval simulates an instance
of IntSet with the same elements (for some implemen-
tation of IntSet). Together with a type system that
ensures that the possible results of each expression of
some nominal type IntSet are instances of some sub-
type of IntSet, this property ensures the soundness
of the veri�cation method presented in Chapter 6. In-
formally, soundness holds because if one veri�es some
property of an expression of nominal type IntSet,
then the expression can only denote an object of some
subtype of IntSet, which must simulate an object of
type IntSet, hence (provided the notion of simulation
is adequate), the behavior of the object denoted by the
expression will not be surprising.
Subtype relations are de�ned among �rst-order, im-

mutable, abstract types as characterized by type spec-
i�cations | not just the built-in types of a particular
programming language. Thus one can specify subtype
relations among abstract types, such as nonempty sets
of integers or queues of length ten. In general, an ab-
stract type can be thought of as a set of values that
satisfy some semantic property. These properties can
be used in reasoning about objects of that type. By
contrast, a notion of subtyping that is limited to built-
in types does not allow one to use semantic properties
(such as being nonempty or of length exactly ten) in
reasoning.

4.1 De�nition of Subtype Relations

The formal de�nition of subtype relations is parame-
terized by the semantics of a speci�cation. This allows
the de�nition of subtype relations to be independent of
the form of speci�cations and particular speci�cation
languages. Furthermore, since the semantics of a spec-
i�cation is a set of algebraic models, the de�nition han-
dles incompletely speci�ed types. Such speci�cations
are important because they leave room for implemen-
tation decisions and later specialization of subtypes.

De�nition 4.1.1 (subtype relation). Let � be a
signature. Let SPEC be a nonempty collection of �-
algebras with the same SIG(B)-reduct, where B is a
�xed algebra that de�nes the visible types. Let � be
the presumed subtype relation of �. Then � is a sub-
type relation on the types of SPEC if and only if for
all algebras C 2 SPEC , there is some A 2 SPEC such
that there is a �-simulation relation between C and
A.

The speci�cation language presented in Chapter 3
has one de�ne a simulation relation when giving a type
speci�cation; if one does this correctly, then one can be
sure that the required simulation relation always ex-
ists. Since the set of algebras with the same signature
is the meaning of a set of type speci�cations SPEC ,
in what follows the phrase \subtype relation on the
types of SPEC " will also be used to mean a subtype
relation on the types of the set of algebras that are the
meaning of SPEC .
The requirement that a �-simulation relation exist

does test properties of the presumed subtype relation
� (which is a component of �), although it may not be
apparent from the above de�nition. This is because a
family of relations can only be a �-simulation relation
if it has various properties related to �, such as the
ability to coerce elements of subtypes to supertypes.
Most importantly, the substitution property also de-
pends on the signature �, which is used, for example,
in determining nominal sorts and types.
A trivial example of a subtype relation is the iden-

tity relation on types; the identity relation is always a
subtype relation because simulation is re
exive.
More interesting examples of subtype relations are

considered below: �rst among nondeterministic types,
and then incompletely speci�ed types.

4.1.1 Subtypes can be More Deterministic

A subtype can be more deterministic than its su-
pertypes. An example is that Interval is a sub-
type of IntSet in the speci�cation II that combines

31

them both. Recall that the choose operation, when
applied to a nonempty IntSet, is allowed to return
any integer in the IntSet. The result of applying
choose to an empty IntSet is unde�ned. The re-
sult of applying choose to an Interval is its least
element. The presumed subtype relation of II, �, is
the smallest re
exive relation on the types of II such
that Interval � IntSet.
Let C be an II-algebra. Let A be an algebra that

is the same as C, except that its choose operation
exhibits all the nondeterminism allowed by its speci-
�cation. Then A is an II-algebra. One must be able
to pick an algebra other than C, because the oper-
ations of C may not be nondeterministic enough for
the simulation to preserve the behavior of the choose
operation.
The simulation relation R between C and A is con-

structed from the speci�cation of II, using the speci-
�ed simulates relationships as a guide. The proper
elements of carrier sets of each sort T in both algebras
are generated by the speci�cation functions, and hence
by ground terms of sort T. Therefore, for each type T,
and for each ground term m of sort T, let RT relate
each the value of m in C to the value of m in A and
? to ?. Also for each sort T with presumed subtypes,
add the relationships speci�ed in the subtype clauses.
In general these clauses are given using terms contain-
ing identi�ers, which are presumed to be related. The
denotations of each term are thus to be related by R.
In the speci�cation of Interval the subtype clause is
the following

subtype of IntSet by [l; u] simulates toSet([l; u])

(The speci�cation function \toSet" is speci�ed in Fig-
ure 3.3.) This clause speci�es the following relation-
ships

[l; u]RIntSet toSet([l; u]): (4:1)

So for all environments �C and �A that are de�ned on
variables l, and u of nominal type Int and such that

�C(l) RInt �A(l) (4.2)

�C(u) RInt �A(u) (4.3)

one must ensure that RIntSet contains the relation-
ship:

�C [[[l; u]]]RIntSet �A[[toSet([l; u])]]: (4:4)

The constructed relationship relates Interval objects
to IntSet objects with the same elements. Finally, if
a sort T has presumed subtypes, then add each rela-
tionship that holds at a presumed subtype to RT (this
ensures that RT �

S
S�TRS).

It is not di�cult to show that the family of relations
R as constructed above is a simulation relation. For
example, to show the substitution property for the pro-
gram operation choose, suppose qRIntSet r; then a
possible result of chooseC(q) must be a possible result
of chooseA(r), because q and r have the same elements
and A's choose operation is maximally nondetermin-
istic. (More details are presented in Example 2.2.2.)
Hence the presumed subtype relation of II is a subtype
relation.

op choose(s:Crowd) returns(i:Int)
requires : isEmpty(s)
ensures i = choice(s)

Figure 4.1: Speci�cation of the choose operation of the
type Crowd.

As a counterexample, it is easy to show that IntSet
cannot be a subtype of Interval, because the choose
operation applied to a IntSet object may have more
possible results than the choose operation applied to
a Interval object. That is, if v has nominal type
Interval, then one can conclude from the speci�ca-
tion of Interval that

equal(choose(v),choose(v))

will always return true. However, if IntSet were a
subtype of Interval, then the above conclusion would
not be valid.

4.1.2 Incompletely Speci�ed Supertypes

The de�nition of subtype relations says more than the
intuition that \each object of the subtype simulates
some object of the supertype." In this sub-section,
some examples of incompletely speci�ed types are dis-
cussed that clarify how subtyping interacts with in-
complete speci�cations.
The speci�cation of the type IntSet is incomplete,

since some algebras that satisfy that speci�cation are
not observably equivalent. (That is, a program that
observed one IntSet-algebra might have a di�erent
set of possible results than a program that observed
another algebra.)
Although the type IntSet has maximally nondeter-

ministic models that capture all the behavior of the
speci�cation, there are types for which no such models
exist. For example, consider the type Crowd that is
the same as IntSet, except that its choose operation,
when applied to a nonempty Crowd object, is required
to be deterministic. This can be speci�ed by mak-
ing the post-condition of choose return a result that
is the result of an incompletely speci�ed speci�cation
function, as in Figure 4.1.
The type Crowd can be a subtype of IntSet, but

not vice versa. The reason that Crowd is a subtype
of IntSet is that Crowd's choose operation is more
deterministic, hence its results will not be surprising.
The type Interval (with suitable changes) can be

considered to be a subtype of Crowd, because there are
algebraic models of Crowd + Interval such that the
choose operation always returns the least element of
a Crowd object, as does the choose operation when
applied to an Interval. But Crowd is not a subtype
of Interval, because if one takes a model such that
the choose operation returns the greatest element of
a Crowd object, then there would be no model that
one could �nd such that the elements of the carrier
set of Crowd simulated the elements of the carrier set
of Interval (because the choose operation when ap-
plied to an Interval always returns the least element,
regardless of the model).

32

The most subtle (lack of a) relationship is between
PSchd and Crowd. Clearly, Crowd cannot be a sub-
type of PSchd, because the choose operation of Crowd
does not have to always return either the greatest
or the least element (it might, for example, return
the middlemost element). However, one might think
that PSchd could be a subtype of Crowd, because each
PSchd simulates some Crowd object; a least-�rst in-
stance of PSchd simulates a Crowd object in a model
of Crowd where choose returns the least element,
and similarly greatest-�rst instances of PSchd simu-
late Crowd objects in other models. But, according to
the de�nition of subtype relations, all the objects in
a given model of PSchd would have to simulate some
Crowd object, and all of these Crowd objects would
have to be in a single model's carrier set. Since the
choose operation cannot return both the least and the
greatest element of a Crowd, since the simulation must
be among objects with the same elements, and since
the carrier set of Crowd is generated by the speci�ca-
tion functions, there can be no such simulation.
The fact that PSchd cannot be a subtype of Crowd

can be proved as follows. Let CP be a speci�cation
that combines the types PSchd and Crowd, with PSchd
as a presumed subtype of Crowd (the trait for PSchd
would have to be respeci�ed, but this is simple be-
cause Crowd is so much like IntSet). Let C be a CP-
algebra. For the sake of contradiction, suppose that
the CP-algebra demanded by the de�nition of subtype
relations is A. Clearly, to preserve the meaning of
the program operations, an empty PSchd object can
only simulate an empty Crowd object. Note that there
are two kinds of empty PSchd objects, those such that
leastFirst returns true and those for which it returns
false. Since the type PSchd is generated by the spec-
i�cation function h#;#i, we can write these empty
PSchd objects in C as htrue; fgi, and hfalse; fgi. Since
the type Crowd is generated by the speci�cation func-
tions fg and \insert" and is partitioned by 2 [GH86b],
there can only be one empty Crowd object in A, which
can be denoted by fg. Then by the substitution prop-
erty, one would have:

insC(htrue; fgi; 1) RCrowd insA(fg; 1) (4.5)

insC(hfalse; fgi; 1) RCrowd insA(fg; 1) (4.6)

The substitution property can be applied again to
yield:

insC(insC(htrue; fgi; 1); 2)

RCrowd insA(insA(fg; 1); 2) (4.7)

insC(insC(hfalse; fgi; 1); 2)

RCrowd insA(insA(fg; 1); 2) (4.8)

(Although technically the result of an operation is a
set of possible results, the above relationships should
be read as if the result was a single object, and the op-
erations involved are deterministic in any case.) But
the above leads to a contradiction, because the ob-
jects on the left-hand sides above, htrue; f1; 2gi and
hfalse; f1; 2gi, behave di�erently on the choose oper-
ation, but the object on the right-hand sides (f1; 2g)
can only have one response to the choose operation,
since the choose operation of Crowd is deterministic.
So PSchd cannot be a subtype of Crowd.

The contradiction that prevents a simulation in the
counterexample above is relevant to reasoning about
programs. For example, suppose one had a function
that took two objects of type Crowd, checked that they
were empty, inserted 1 and 2 in each (producing two
new objects), and then called the choose operation on
each. This programmer of this function could reason-
ably expect that the choose invocations would return
the same integer, since choose is deterministic. How-
ever, if PSchd were allowed to be a subtype of Crowd,
then one could pass two di�erent, empty PSchd objects
to this function such that the results of the choose
operation would be di�erent. This kind of surprising
behavior is ruled out by the de�nition of subtype re-
lations.
Although each individual instance of PSchd \acts

like" some instance of Crowd, in general these instances
of Crowd must be from di�erent algebras. So a de�-
nition that simply required each object of a subtype
to \act like" some object of a supertype would not be
adequate to prevent the reasoning problems discussed
above. These problems are only prevented by requir-
ing each object of a subtype to simulate an object of
the supertype in the same algebra. Since algebras are
abstractions of implementations, this amounts to say-
ing that each object of the subtype must simulate some
object of the supertype in a single implementation of
the supertype.

4.2 Examples

The examples discussed in this section are of interest
for comparison with related work, making generaliza-
tions about semantic relationships between subtypes
and supertypes, and studying the interaction between
subtyping and exceptions.

4.2.1 OneOf Types

Oneof types are useful in modeling exceptions (see
Chapter 3), and are also one of the earliest studied ex-
amples of subtyping [Car84]. Cardelli's rule for OneOf
types is that a OneOf with fewer tags is a subtype of a
OneOf type with more tags, provided the correspond-
ing �elds were in the subtype relation. The example
below thus shows that each instance of Cardelli's rule
is a subtype relation. (See [Lea89] for an a similar
comparison with immutable record types.)
A speci�cation of the type OneOf[normal:Int,

empty:Null] is given in Figure 4.2, where the type
name is abbreviated to NE. This abbreviation will also
be used in the rest of this chapter. For each type
T , there is an instance operation named value[T].
The trait used to de�ne the carrier set and speci�ca-
tion functions of this type is found in Figure 3.4. The
speci�cation of OneOf[normal:Int] in Figure 4.3 is
similar. However, the trait for OneOf[normal:Int]
in Figure 4.4 also describes the speci�cation function
\value empty" that is de�ned for the supertype. One
cannot use the same trait as for NE, because then there
would be some elements in the carrier set that would
be generated by the speci�cation functions but not by
the program operations.
There are other ways to specify OneOf types so

that the type OneOf[normal:Int] is a subtype of the
type OneOf[normal:Int, empty:Null]. Instead of

33

NE immutable type
class ops [make normal, make empty]

instance ops [hasTag?, value[T]]
based on sort NE

from OneOf[normal: Int, empty: Null]

op make normal(c:NEClass, i: Int)
returns(o:NE)

ensures o == make normal(i)

op make empty(c:NEClass, n: Null)
returns(o:NE)

ensures o == make empty(n)

op hasTag?(o:NE, t: Tag) returns(b:Bool)
ensures b = hasTag?(o, t)

op value[T](o:NE, t: Tag) returns(r:T)
requires hasTag?(o, t)

& ((t == normal)) (Int = T))
& ((t == empty)) (Null = T))

ensures ((t == normal)
) (r == val normal(o)))

& ((t == empty)
) (r == val empty(o)))

Figure 4.2: The OneOf type OneOf[normal: Int,

empty: Null], abbreviated NE.

NI immutable type
subtype of OneOf[normal: Int, empty: Null]

by make normal(i)
simulates make normal(i)

class ops [make normal]
instance ops [hasTag?, value[T]]
based on sort NI

from OneOf[normal: Int]

op make normal(c:NIClass, i: Int)
returns(o:NI)

ensures o == make normal(i)

op hasTag?(o:NI, t: Tag) returns(b:Bool)
ensures b = hasTag?(o, t)

op value[T](o:NI, t: Tag) returns(r:T)
requires hasTag?(o, t)

& ((t == normal)) (Int = T))
ensures (t == normal)
) (r == val normal(o))

Figure 4.3: The type OneOf[normal: Int], abbrevi-
ated NI.

OneOf[normal: Int]: trait
imports OneOf[normal: Int, empty: Null]
introduces

make normal: Int ! NI
hasTag?: NI, Tag ! Bool
#==#: NI, NI ! Bool
#==#: NE, NI ! Bool
#==#: NI, NE ! Bool
val normal: NI ! Int
val empty: NI ! Null
toNE: NI ! NE

asserts for all [i: Int, o1, o2: NI, o3:NE]
hasTag?(make normal(i), normal) = true
val normal(make normal(i)) = i
(o1 == o2) = (toNE(o1) == toNE(o2))
(o1 == o3) = (toNE(o1) == o3)
(o3 == o1) = (toNE(o1) == o3)
toNE(make normal(i)) = make normal(i)

exempts for all [i: Int]
val empty(make normal(i))

Figure 4.4: The trait OneOf[normal: Int].

34

operations that observe instances, one could have a
programming language with built-in expressions for
observing OneOf instances [LAB+81, Section 11.6]
[CW85] [Car84]; however, it seems best to keep the
type speci�cation independent of the programming
language by making the programming language's ex-
pressions syntactic sugar for operation invocations.
One could also could specify value ni operations for
each tag ni; the pre-condition would then state when
these operations were de�ned.
Let NEN be a speci�cation that combines the two

OneOf types discussed above. Let � be the smallest
re
exive relation on the types of NEN such that

OneOf[normal : Int] � NE:

Let C be an NEN-algebra and let A be an NEN-algebra
that is the same as C except that the value[T] oper-
ations are maximally nondeterministic. Let R be the
family of relations constructed according to the spec-
i�cation NEN. By construction, if q and r are proper
and q RNE r, then q and r both have the same tag
and the same value. Hence one can show that the
relation RNE is preserved by the speci�cation func-
tions and by the program operations. For example,
if q RNE r, then hasTag? returns the same value on
each (since they both have the same tag), and each

possible result of value[Int]C(q; normal) is a possible

result of value[Int]A(r; normal), because if the tag
of q is normal, then the tag of r is normal and they
have the same value; otherwise, if the tag of q is not
normal, then since A is maximally nondeterministic,

value[Int]A(r; normal) has as its set of possible re-
sults all elements of the carrier set of Int. So � is a
subtype relation on NEN.
As a counterexample, note that the type NE cannot

be a subtype of OneOf[normal:Int]. To see this, it
su�ces to note that the hasTag? operation when ap-
plied to an object of type OneOf[normal:Int] and the
tag normal can only return true, but this property is
not preserved by the presumed subtype NE.

4.2.2 Subtypes can have Weaker Require-
ments

The de�nition of subtype relations allows a subtype
to be more de�ned than its supertypes, in the sense
that pre-conditions of the subtype's instance opera-
tions may be weaker. For example, consider the type
PSchd2, where PSchd2 is exactly like PSchd except that
the choose operation is speci�ed as in Figure 4.5. This
speci�cation says that when the argument to choose
is empty, the only possible result is zero. Let P2 be the
speci�cation that combines PSchd and PSchd2. Then
the smallest re
exive relation � on the types of P2
such that PSchd2 � PSchd is a subtype relation. This
follows because if C is a P2-algebra, then there is a
P2-algebra A that is the same as C except that the
choose operation of A is maximally nondeterministic
(when the pre-condition is not satis�ed). Zero is the
only possible result of choose on an empty PSchd2
object, and zero is also a possible result of chooseA

when applied to an empty PSchd object. Hence the
family of relations constructed from the speci�cation's
simulation speci�cations (in Figure 4.5) is a simulation
relation.

PSchd2 immutable type
subtype of PSchd by hb; si simulates hb; si
class ops [new]
instance ops [ins, elem, choose, size, remove,

leastFirst]
based on sort C from PSchdTrait

% other operations as in Figure 3.9.

op choose(p:PSchd2) returns(i:Int)
ensures (isEmpty(p)) i=0)

& ((: isEmpty(p))) i 2 p.second)
& (p.�rst) lowerBound?(p.second,i))
& ((:p.�rst)
) upperBound?(p.second,i))

Figure 4.5: Speci�cation of the type PSchd2, which is
more de�ned than PSchd.

Allowing a subtype to be more de�ned seems right,
since the idea of a pre-condition is to leave the behavior
of an operation unde�ned when the pre-condition is
not met.

4.2.3 Exceptions and Subtyping

Instead of specifying operations with nontrivial pre-
conditions or arbitrarily de�ning a result, as was done
for PSchd2, another way of dealing with boundary con-
ditions is to specify that an operation should signal an
exception.
In this subsection, operation speci�cations are again

considered to be syntactic sugar for speci�cations of
operations that return instances of a OneOf type, as in
Section 3.3. For example, when the speci�cation of the
type IntSet2 given in Figure 3.5 says that the choose
operation signals \empty(nil)" when it is passed an
empty instance of IntSet2. This means that choose
returns an object of the type NE with tag empty and
value nil when choose is passed an empty instance
of IntSet2. Furthermore, choose returns an object
of type OneOf[normal:Int] when passed an empty
instance of IntSet.
Consider the speci�cation IntSet + IntSet2. The

type IntSet2 is not a presumed subtype of IntSet.
Informally, this is because IntSet2's choose opera-
tion can signal an exception, which would be surpris-
ing if one thought that choose was being applied to
a IntSet. More formally, consider the speci�ed result
sorts for the choose operation:

ResSort(choose; hIntSeti)

= OneOf[normal : Int] (4.9)

ResSort(choose; hIntSet2i)

= OneOf[normal : Int; empty : Null]: (4.10)

If one was to have IntSet2 � IntSet, then the mono-

35

IntSet3 immutable type
class ops [null]
instance ops [ins, elem, choose, size, remove]
based on sort C from IntSetTrait

% other operations as in IntSet.

op choose(s:IntSet3) returns(i:Int)
signals(empty(Null))

requires : isEmpty(s)
ensures i 2 s

Figure 4.6: Speci�cation of the type IntSet3.

tonicity condition on signatures would require that:

OneOf[normal : Int; empty : Null]

� OneOf[normal : Int]:

However, as noted above, this last relationship does
not possess the required semantic properties, and thus
such a relation � would not be subtype relation. In
other words, when one applies the choose operation
to an empty IntSet2 object, an object with tag empty
is returned, whereas applying choose to an empty
IntSet object can only return an object with the tag
normal.
The reasoning above generalizes to arbitrary speci-

�cations. Thus a subtype's instance operation cannot
have more exceptional results than its supertype's.
However, a subtype's operation can have fewer ex-

ceptional results than its supertype's if the super-
type's speci�cation allows a nondeterministic choice
between signalling and returning normal results. For
example, consider the type IntSet3 as speci�ed in
Figure 4.6. The choose operation of IntSet3 has
a requires clause, like IntSet, but its signature al-
lows the operation to signal, like the choose oper-
ation of IntSet2. Therefore, the choose operation
of IntSet3 can return any element of the carrier set
of OneOf[normal: Int, empty: Null] when its pre-
condition is not satis�ed.
Consider the speci�cation IntSet2 + IntSet3, and

assume that the speci�cation of IntSet2 states that
IntSet2 is a presumed subtype of IntSet31. Let �
be the smallest re
exive relation on the types of this
speci�cation such that IntSet2 � IntSet3. It is easy
to show that this � is a subtype relation, since the
subtype is more de�ned than its supertype.
It is also possible to show that the type IntSet,

which has fewer exceptional results, is a subtype of
IntSet3. Let II3 be a speci�cation IntSet+ IntSet3.
The simulation between IntSet and IntSet3 is spec-
i�ed as follows:

sRIntSet3 s:

Let � be the smallest re
exive relation on the types

1In a practical speci�cation language, it might be best to al-
low the supertype's speci�cation to state the presumed subtype
relationship, to allow for such \after the fact" supertypes.

of II3 such that IntSet � IntSet3 and

OneOf[normal : Int] � NE:

Let C be an II3-algebra and let A be the same as C,
except that its choose and value[T] operations are
maximally nondeterministic. Then the family of rela-
tions R constructed from the speci�cation is a simula-
tion relation. By this construction, each object of type
IntSet simulates an object of type IntSet3 with the
same elements. Suppose that qRIntSet3 r; then

chooseC(q)RNE chooseA(r); (4:11)

because A is maximally nondeterministic. That is, if
q is nonempty, so is r, and so each possible result of
choose applied to q is a OneOf with tag normal and
with a value that is an element of q and hence a pos-
sible result of choose applied to r. Furthermore, if q
is empty, so is r; if q and r have the same type, then
the possible results on q are included in those for r,
since A is maximally nondeterministic; otherwise, if
q has type IntSet and r has type IntSet3, then set
of possible results of choose on r is the whole carrier
set of the OneOf with tags normal and empty, and the
possible results for q must be drawn from the carrier
set of the OneOf with tag normal; hence each possible
result for q simulates some possible result for r.
In general a subtype (such as IntSet) can have fewer

exceptions than its supertypes (such as IntSet3), be-
cause a OneOf type with fewer tags can be a subtype
of a OneOf type with the same tags and more.

4.2.4 Virtual Supertypes

In many practical examples of object-oriented design,
one speci�es types without class operations to be used
as supertypes. Since these types do not have class
operations they cannot be instantiated. A type that
cannot be instantiated is called a virtual type, since its
implementations often use virtual operations. A vir-
tual operation has an implementation that uses some
primitive (called virtual in Simula 67 [BDMN73]) to
invoke an operation of a subclass2; hence a virtual op-
eration cannot be executed unless the subclass has de-
�ned the required operation.
Consider the speci�cation Vehicles, given in Fig-

ure 4.7. In this speci�cation, Vehicle is a virtual
type and has no class operations. The carrier set for
Vehicle is described in the trait VehicleTrait found
in Figure 4.8. (To specify a virtual type, one may
be tempted to use a virtual trait | a trait without
generators. However, if there was no \makeVehicle"
speci�cation function, then it would be di�cult to de-
scribe how a bicycle simulates a vehicle.) The carrier
set for Bicycle is described in the trait BicycleTrait
found in Figure 4.9.
Let � be the smallest re
exive relation on the types

of Vehicles such that Bicycle � Vehicle. Let C be
a Vehicles-algebra. Then the family of relations R
from C to itself constructed from the speci�cation as

2Some researchers (e.g., [SCW85, Page 42] [Sym84, Page
450]) call a type or class that cannot be instantiated \abstract,"
but this leads to confusion with the term \abstract data type."
In Ei�el, operations that are not implemented are said to be
\deferred" [Mey88].

36

Vehicle virtual type
instance ops [wheels, passengers]
based on sort C from VehicleTrait

op wheels(v:Vehicle) returns(i:Int)
ensures i = wheels(v)

op passengers(v:Vehicle) returns(i:Int)
ensures i = passengers(v)

Bicycle immutable type
subtype of Vehicle by s R makeVehicle(2,1)
class ops [new]
instance ops [wheels,passengers,maker]
based on sort C from BicycleTrait

op new(BicycleClass, s:String)
returns(b:Bicycle)

ensures b == makeBike(s)

op wheels(b:Bicycle) returns(i:Int)
ensures i = 2

op passengers(b:Bicycle) returns(i:Int)
ensures i = 1

op maker(b:Bicycle) returns(s:String)
ensures s == company(b)

Figure 4.7: The speci�cation Vehicles, including types
Vehicle and Bicycle.

VehicleTrait trait
introduces

makeVehicle: Int,Int! C
wheels: C ! Int
passengers: C ! Int

asserts for all [w; p: Int]
wheels(makeVehicle(w,p))

= if w � 1 then w else 1
passengers(makeVehicle(w,p))

= if p � 1 then p else 1

Figure 4.8: The trait VehicleTrait.

BicycleTrait trait
introduces

makeBike: String ! C
wheels: C ! Int
passengers: C ! Int
company: C ! String
#==#: C,C ! Bool

asserts for all [s: String, c1, c2: C]
wheels(makeBike(s)) = 2
passengers(makeBike(s)) = 1
company(makeBike(s)) = s
(c1 == c2)

= (company(c1) == company(c2))

Figure 4.9: The trait BicycleTrait.

in Example 4.1.1 is a simulation relation. According to
the speci�cation, the relation RVehicle is such that
each proper element of the carrier set of Bicycle is
related to the element that is the image of the ground
term \makeVehicle(2,1)." Furthermore, the relation
RVehicle only relates vehicles and bicycles with the
same number of wheels and passengers. Hence it is
easy to show that R is a simulation relation. For ex-
ample,R satis�es the substitution property at the type
Vehicle because whenever q RVehicle r,

wheelsC(q) = wheelsC(r) (4.12)

passengersC(q) = passengersC(r) (4.13)

and the same relationships hold fo the corresponding
speci�cation functions.
So Bicycle is a subtype of Vehicle.
The paradigm exhibited by this example can be fol-

lowed by other speci�cations with virtual types. That
is, one speci�es a trait for the virtual type that de-
scribes objects of the type that cannot be created by
programs. These \virtual objects" are used only in
the description of the simulation relation when giving
a subtype's speci�cation. Here the two-tiered speci-
�cation method pays a big dividend, by allowing the
objects of a virtual type to be described, even though
they do not exist in real programs.

4.3 Other De�nitions of Subtype

In this section de�nition of subtype relations given
above is compared with other notions of subtyping.
The comparison is limited to technical points. A more
general comparison is found in Chapter 1. The major
points that emerge are that the subtype relations:

� are de�ned with a level of formality that allows
treatment of subtle issues such as subtyping for
incomplete speci�cations, as opposed to various
informal de�nitions

� are behavioral, since they are based on the spec-
i�cations of abstract types, as opposed to struc-
tural rules for subtyping among certain built-in

37

types (such as those proposed by Cardelli and oth-
ers) or structural comparisons between the signa-
tures of abstract types (as in Emerald [BHJL86]
[BHJ+87]), and

� generalize closely related work (by Reynolds and
by Bruce and Wegner) in that they are de�ned us-
ing simulation relations instead of coercion func-
tions among families of algebraic models of spec-
i�cations, and can thus handle nondeterministic
and incompletely speci�ed types.

The great advantage of a behavioral notion of subtyp-
ing is that it allows a subtype to be implemented in
a way that is di�erent than its supertypes. In partic-
ular a subtype does not have to be implemented as a
subclass of the classes that implements its supertypes,
neither does a subtype have to be implemented using
a representation that is structurally a subtype of its
supertypes. The great advantage of nondeterminism
and incomplete speci�cations is that they allow the
speci�er more freedom.
In contrast to my dissertation [Lea89], observations

are not used to de�ne subtype relations. Some of the
reasons for this change have already been mentioned.
A detailed discussion of the relation of the de�nition of
subtype relations given above to the one in [Lea89] is
found in Chapter 7. For now, it is enough to know that
the de�nition of subtype relations found in [Lea89] is
weaker than that given here.
Formal work on the question of when one type is

a subtype of another can be roughly divided into two
camps: algebraic model theory and type theory. The
work of Ait-Kaci [AK84] falls outside this classi�ca-
tion. However, Ait-Kaci's characterization of inclu-
sion among terms (i.e., objects), does not help one
to answer subtyping questions, since Ait-Kaci takes a
partial order among head symbols as given.

4.3.1 Informal De�nitions of Subtype Rela-
tionships

Scha�ert et al. o�er the following informal de�nition
of a subtype relationship: \Given a type S which is a
subtype of a type T, then any object of type S behaves
like a T object and may be used wherever a T object
may be used" [SCB+86, Section 5]. For types that
are not incompletely speci�ed, this de�nition seems to
agree with the above de�nition of subtyping. How-
ever, for incompletely speci�ed types a simple relation
on objects does not su�ce to prove a subtype relation,
as is shown by the types PSchd and Crowd (discussed
above). That is, each PSchd object acts like some
Crowd object, but PSchd is not a subtype of Crowd.
Snyder [Sny86b, Page 41] o�ers the following de�ni-

tion of a subtype relationship: \If instances of class x
meet the external interface of class y , then x should
be a subtype of y ." By \external interface" Synder
means a behavioral speci�cation; thus his de�nition of
subtype relationships is also a semantic relationship
between instances. For example, he says that \behav-
ioral subtyping cannot be deduced without formal se-
mantic speci�cation of behavior." However, he goes on
to say that \lacking such speci�cations, one can deduce
subtyping based solely on syntactic external interfaces
(i.e., the names of the operations) [Car84]." This lat-
ter statement is wrong, since for valid reasoning based

on subtype relationships among abstract types, the se-
mantics of a type must be taken into account. For ex-
ample, the types IntSet and Interval have the same
set of instance operations, but IntSet is not a subtype
of Interval. Although Snyder cites Cardelli's paper
[Car84] to support his statement, Cardelli's syntactic
deductions do not apply to abstract types in general,
but only to a limited set of types.

4.3.2 Algebraic Approaches

The de�nition of subtype relations given in this report
follow the algebraic tradition of Goguen, Reynolds,
and others.

Subtypes as Subsets. In Goguen's work, the signa-
ture of an order-sorted algebra has a partial order on
sorts, called the subsort relation [GM87]. In an order-
sorted algebra, if S is a subsort of T, then the carrier
set of S must be a subset of the carrier set of T.
The idea that a subtype is semantically a subset

has been used in an attempt to explain subtyping in
programming languages with higher order types by
Cardelli and Wegner [CW85, Page 490]. For certain
languages the ideal model [MS82] cited by Cardelli and
Wegner, has a rich enough structure to accommodate
this explanation. But for Cardelli and Wegner's lan-
guage, the ideal model is not sound [BL88]. One can
also construct special-purpose models with the prop-
erty that the set of values of a subtype is a subset of
the set of values of its supertypes [Car84].
However, building specialized models is not a practi-

cal approach to settling subtyping questions. The con-
straint that a subtype's carrier set must be a subset
of each of its supertype's makes such models counter-
intuitive and unnecessarily di�cult to construct. For
example, consider the following immutable record
types: oneBool = record[x: Bool] and twoBool =
record[x: Bool, y: Bool]. Most people who have
not seen the particular constructions involved would
say that there are only two values of type oneBool
and four values of type twoBool. But to show that
twoBool is a subtype of oneBool Cardelli constructs
a model where the set of values of type twoBool is a
subset of oneBool's [Car84].

Cardelli's \A Semantics of Multiple Inheri-
tance". A good example of such a construction is
found in Cardelli's landmark 1984 paper [Car84]. This
paper describes subtype relationships among the built-
in types of a small programming language, as well
as its type checking and semantics. This paper does
not deal with arbitrary, user-de�ned types, and hence
Cardelli is able to give simple syntactic rules that de-
termine when one of these types is a subtype of another
type. Cardelli also shows that these rules are sound in
the sense that they prevent certain errors in programs
written his language. Cardelli writes S � T when S is
syntactically a subtype of T.
The semantics of Cardelli's language are described

using a domain V. This domain is constructed so that,
whenever S � T, then the carrier set of S is a subset of
the carrier set of T [Car84, Page 62]. Thus the domain
V supports subtype polymorphism, since the instance
operations of the built-in types work on all subsets of
their domains, and hence on all subtypes.

38

One may regard Cardelli's V as the only algebra in
the semantics of a speci�cation of the built-in types of
his language. One shows that Cardelli's � is a subtype
relation by constructing a simulation relation from V
to V. As is the case with all such models where the
carrier of each subtype is a subset of the carrier of
the superset, the simulation relation can be trivial:
for each type T, let RT be the identity on the carrier
set of T. Such a family of identity relations trivially
satis�es all the required properties, hence Cardelli's �
is a subtype relation.
The di�erences are that Cardelli's V is designed

for function, immutable record, and immutable oneof
types, so he is able to handle these types more directly.
But Cardelli's construction is not easily adapted to ar-
bitrary abstract types.

De�nitions Based on Homomorphic Functions.
The de�nition of subtype relations given above extends
the work of Reynolds as well as Bruce and Wegner
in that it allows one to compare type speci�cations
instead of particular models. This is important for
incompletely speci�ed types, such as Crowd, which do
not have a single model that exhibits all of the relevant
behavior.
Another generalization from the work of Reynolds

and Bruce and Wegner is that subtype relations are de-
scribed using simulation relations instead of functions.
This is a practical bene�t in speci�cations, since one
does not have to specify carrier sets so carefully that
there are no observably equivalent elements. Techni-
cally this means that one's speci�cation of a carrier set
does not have to be su�ciently complete [GH78].
The following example shows how subtyping based

on homomorphic functions (Bruce and Wegner's def-
inition) fails to show a subtype relationship between
two types that are observably equivalent. The exam-
ple is adapted from a paper by Mitchell [Mit86, Page
266].
Let the types S1 and S2 represent multi-sets of in-

tegers (i.e., bags of integers). Since neither Reynolds
nor Bruce and Wegner deal with speci�cations, one
may choose a particular model. So consider an alge-
bra A, where the elements of the carrier set of S1 are
lists (written in square brackets below) of ordered pairs
of the form helement ; counti and the elements of the
carrier set of S2 are just lists of the elements inserted
in the order in which they are inserted. Let newS1
denote the empty multi-set of type S1 and let newS2
denote the empty multi-set of type S2. Each type also
has instance operations ins and count. To illustrate
the representations, consider the following:

insA(insA(newS1A(); 5); 40) (4.14)

= f[h5; 1i; h40; 1i]g (4.15)

insA(insA(newS2A(); 5); 40) (4.16)

= f[5; 40]g: (4.17)

The example exploits the di�erences in the repre-
sentations. Suppose that q 6= r; then for the type S1,
inserting two q's and an r gives the same result in two
di�erent orders:

insA(insA(insA(newS1A(); q); r); q)

= f[hq; 2i; hr; 1i]g

= insA(insA(insA(newS1A(); q); q); r)

but for the type S2 the order matters:

insA(insA(insA(newS2A(); q); r); q)

= f[q; r; q]g

6= f[q; q; r]g

= insA(insA(insA(newS2A(); q); q); r):

For S1 to be a subtype of S2 according to Bruce and
Wegner's de�nition, there would have to be a homo-
morphic function c(1;2) from S1 to S2. By the sub-
stitution property, the following equations hold (again
assuming that q 6= r):

c(1;2)(newS1
A)

= newS2A

= f[]g

c(1;2)(ins
A(newS1A(); q))

= insA(newS2A(); q)

= f[q]g

c(1;2)(ins
A(insA(newS1A(); q); r))

= f[q; r]g

c(1;2)(ins
A(insA(insA(newS1A(); q); r); q))

= f[q; r; q]g

c(1;2)(ins
A(insA(newS1A(); q); q))

= f[q; q]g

c(1;2)(ins
A(insA(insA(newS1A(); q); q); r))

= f[q; q; r]g:

But the only possible result of both

insA(insA(insA(newS1A(); q); r); q)

and
insA(insA(insA(newS1A(); q); r); q)

is the list of pairs [hq; 2i; hr; 1i]. Therefore c(1;2) would
have to map [hq; 2i; hr; 1i] to both [q; r; q] and [q; q; r].
Therefore, c(1;2) cannot be a function.
But the types S1 and S2 are observably equiva-

lent; that is, their behaviors cannot be distinguished.
So Bruce and Wegner's de�nition is too strong, as it
fails to show a subtype relationship among observably
equivalent types.
One might object that I \chose the wrong algebras"

for the example above, but that is part of the point;
neither Reynolds nor Bruce and Wegner show how to
take a speci�cation and give it an algebraic model. The
other part of the point is that a de�nition of subtyping
based on homomorphic functions is too restrictive.

39

Chapter 5

An Applicative Language

Subtype relations are intended to aid program ver-
i�cation. To show how they aid program veri�cation,
it is necessary to �rst de�ne a programming language.
The language de�ned in this chapter will also be used
in giving examples of observations in Chapter 7.
The language de�ned in this chapter is called NOAL,

which stands for Nondeterministic Object-oriented
Applicative Language. It is an applicative language
since it has no notion of assignment or mutation. It
is nondeterministic so that the claims that subtyping
does not allow surprising behavior to be observed will
be strong, as only a language with nondeterminism
can make certain observations [Nip86]. It is object-
oriented because it has a message passing mechanism.
The language NOAL is a hybrid of Trellis/Owl

[SCB+86] and Broy's AMPL [Bro86]. NOAL resem-
bles AMPL in that it is a lambda calculus with explicit
facilities for nondeterminism. Like AMPL, NOAL is a
�rst-order language; that is, functions are not objects
in NOAL programs. NOAL resembles Trellis/Owl in
its type system and message passing mechanism.
Type information aids veri�cation, but programs are

given a meaning regardless of whether they are type-
safe. The type system of NOAL uses the result sort
map (ResSort) from a signature and the signature's
presumed subtype relation (�) to do type checking.
There are two kinds of nondeterministic primitives

inNOAL. The erratic choice expression, 1 2, has both
1 and 2 as possible results. Operationally, the erratic
choice operator picks one expression at random and
evaluates it. Therefore, if evaluation of one expression
may not halt, then the entire expression may not halt.
An angelic choice expression of the form E1 5 E2 will
always halt if either E1 or E2 always halts. Opera-
tionally, the angelic choice operator runs both expres-
sions in parallel and returns the �rst result.
NOAL is only half of an object-oriented language,

since there is no mechanism for implementing abstract
types. Formally, NOAL programs manipulate the al-
gebras described in Chapter 2. The identi�ers in a
NOAL program denote objects in the carrier set of an
algebra. The message passing (or dynamic binding)
mechanism is modeled by the algebra itself (in con-
trast to [Lea89]). The set of possible results of a mes-
sage send is determined by consulting the appropriate
operation of an algebra.
The semantics of NOAL programs makes certain

mild assumptions about algebras. The basic assump-
tion is that the visible types, Bool, Int, BoolStream
and IntStream, as described in Figures B.1, B.2, B.3,
form a reduct of each algebra. Some assumptions
about the domain ordering are also stated in the sec-

tion on domains in Appendix C. These conditions
are satis�ed by the algebraic models of most speci�-
cations written in the speci�cation language of Chap-
ter 3. However, NOAL is not restricted to observing
models of such speci�cations.
The syntax of NOAL, its semantics and then its type

system are described below.

5.1 NOAL Syntax

A NOAL program consists of mutually recursive func-
tion de�nitions, followed by a program expression,
which is invoked to start the program running.
The syntax of NOAL is presented in Figure 5.1.

The nonterminal htypei denotes a type symbol, and
hmessage namei denotes a program operation symbol.
The syntax of identi�ers and function identi�ers is left
unspeci�ed. However, identi�ers and function identi-
�ers that appear in a program may not be the same as
the program operation symbols used in that program.
(Function identi�ers, such as funName, are written
with a di�erent font than program operation symbols,
pop.) The symbol isDef? may not be used as a func-
tion identi�er or a program operation symbol.
The following syntactic sugars are also used. Broy's

notation for streams is supported by considering an
expression of the form E1 & E2 to be syntactic sugar
for cons(E2,E1). A declaration such as f,s: Int
is sugar for the declaration list f: Int, s: Int. A
program operation symbol such as T used without
a list of arguments is sugar for T(). The expres-
sions true and false are sugar for true(Bool())
and false(Bool()) and 1, 2, and so on are sugar for
one(Int()), add(one(Int()),one(Int())), and so
on.
The following example program has the stream hi; 4i

as its only possible result, where i is the value of the
program's argument.

fun pick(s:IntSet):Int = choose(s);

program (i:Int):IntStream =

i & pick(ins(null(IntSet),4))

& empty(IntStream)

5.2 NOAL Semantics

The meaning of a program is an observation, which is
a mapping from an algebra-environment pair to a set
of possible results.
Environments were de�ned in Chapter 3. They map

typed identi�ers to the elements of the carrier set of an
algebra. Recall that a �-environment must obey the

40

hprogrami ::= hprogram expri
j hrec fun defi hprogrami

hprogram expri ::= program hheadingi = hexpri

hrec fun defi ::= fun hfun identifieri
hheadingi = hexpri ;

hheadingi ::= (hdeclsi) : htypei

hdeclsi ::= hdecl listi j hemptyi
hdecl listi ::= hdecli j hdecl listi , hdecli
hdecli ::= hidentifieri : htypei

hemptyi ::=

hexpri ::= hidentifieri
j bottom [htypei]
j hmessage namei (hexprsi)
j hfun identifieri (hexprsi)
j (hfunction abstracti) (hexprsi)
j if hexpri then hexpri else hexpri fi

j hexpri hexpri
j hexpri 5 hexpri
j isDef? (hexpri)

j (hexpri)

hexprsi ::= hexpr listi j hemptyi
hexpr listi ::= hexpri j hexpr listi , hexpri

hfunction abstracti ::= fun (hdeclsi) hexpri

Figure 5.1: Syntax of NOAL.

presumed subtype relation � of the signature � in the
sense that an environment may only map an identi�er
x:T to an object that has a type S such that S � T.
The meaning of an expression is called an internal

observation. Let � be a signature. Let X be a set of
typed identi�ers. An internal �-observation with free
identi�ers from X is a mapping that takes a �-algebra
A and a �-environment � : Y ! jAj such that X � Y ,
and returns a set of possible results from A. A �-
observation with free identi�ers from X is an internal
�-observation with free identi�ers from X such that
each possible result has a visible type.
Throughout the following �x a signature

� =

�
SORTS ;TYPES ;V ;�;
SFUNS ;POPS ;ResSort

�
(5:1)

and a �-algebra A.

5.2.1 Semantics of NOAL Expressions

The meaning of a NOAL expression is described by
the function M, which takes an expression with free
identi�ers and function identi�ers from a set X of
typed identi�ers and returns an internal observation.
Hence, when one applies the result ofM to an algebra-
environment pair, one obtains a set of possible results.
The following list gives the denotation of each

recursion-free NOAL expression in an environment
� : X ! jAj. For convenience, it is assumed that �
also maps typed function identi�ers to the denotations
of recursively-de�ned NOAL functions. It is assumed
that the algebra returns ? whenever a speci�cation
function or program operation is invoked outside its
domain.

� The only possible result of an identi�er is its value
in the environment �.

M[[x]](A; �)
def
= f�(x)g (5:2)

� The only possible result of an expression of the
form bottom [htypei] is ?. The type is only
included in the expression to make type-checking
easier. Thus, for each type T:

M[[bottom[T]]](A; �)
def
= f?g: (5:3)

� The possible results of a message send are deter-
mined by consulting the algebra for each possible
argument list.

M[[g(~E)]](A; �)
def
=

[
~q2M[[~E]](A;�)

gA(~q) (5:4)

If ~E is empty, then M[[~E]](A; �) = fhig, so the
above means

M[[g()]](A; �)
def
= gA(): (5:5)

The same idea applies to empty argument lists
below.

41

� The possible results of a recursively de�ned func-
tion invocation are determined similarly, except
that the meaning of the function identi�er is found
in the environment �.

M[[f(~E)]](A; �)
def
=

[
~q2M[[~E]](A;�)

(�(f))(~q) (5:6)

� The set of possible results of a combination is the
set of possible results of the body of the func-
tion abstract in each environment that extends
the original by binding a list of possible arguments
to the formals.

M[[(fun (~x : ~S) E0)(~E)]](A; �)
def
=

[
~q2M[[~E]](A;�)

M[[E0]](A; �[~q=~x]) (5.7)

� The set of possible results for an if expression
depend on the possible results for the �rst subex-
pression.

M[[if E1 then E2 else E3 fi]](A; �)

def
=

[
q2M[[E1]](A;�)

8>>>>>><
>>>>>>:

M[[E2]](A; �)
if q = true

M[[E3]](A; �)
if q = false

f?g
otherwise

(5.8)

� The set of possible results of an erratic choice ex-
pression includes those of both subexpressions.

M[[E1 E2]](A; �)

def
= M[[E1]](A; �)[M[[E2]](A; �) (5.9)

� The set of possible results of an angelic choice
expression is the same as an erratic choice, except
that ? is a possible result only if it is a possible
result of both subexpressions.

M[[E15 E2]](A; �)

def
=

8>>>>>><
>>>>>>:

M[[E1]](A; �)[(M[[E2]](A; �) n f?g)
if ? 62 M[[E1]](A; �)

(M[[E1]](A; �) n f?g)[M[[E2]](A; �)
if ? 62 M[[E2]](A; �)

M[[E1]](A; �)[M[[E2]](A; �)
otherwise

(5.10)

The set s1 n s2, consists of the elements of s1 that
are not elements of s2.

� The primitive isDef? can be used to see if an
expression's possible results are proper.

M[[isDef?(E)]](A; �)

def
=

[
q2M[[E]](A;�)

�
ftrueg if q 6= ?
f?g otherwise

(5.11)

Since there is no \assignment statement" the only
way to bind objects to identi�ers is through func-
tion calls or the application of a function abstract.
The parameter passing mechanism of NOAL is
lazy evaluation, so isDef? is needed to de�ne
strict functions.

5.2.2 Semantics of Recursive Function De�ni-
tions

NOAL programs may begin with a system of mutually
recursive function de�nitions. In the body of a recur-
sively de�ned function, there can be no free identi�ers
or function identi�ers, besides those of the other re-
cursively de�ned functions and the function's formal
arguments.
Since NOAL \functions" can be nondeterministic,

for a given algebra a function de�nition's denotation,
written F [[f]](A) is a mapping that takes a tuple of
arguments and returns a set of possible results.
It is a di�cult problem to construct the least �xed

points of systems of mutually recursive function de�ni-
tions in NOAL. The construction of least �xed points
is described in Appendix C. What follows are merely
some informal explanations and examples.
NOAL uses lazy evaluation for evaluating function

arguments [Sch86, Page 181]; Broy calls the rule call-
time-choice. Like call-by-name, call-time-choice uses
delayed evaluation, hence functions written in NOAL
need not be strict. However, each actual parame-
ter is only evaluated once; hence formal parameters
are not themselves sources of nondeterminism. That
is, if a formal argument is mentioned twice in the
body of a function abstract, the same value will be
substituted in each instance. The following program
demonstrates the di�erence between call-time-choice
and call-by-name:

fun f(x:Int): Int = add(x,x);

program (): Int = f(0 1).

In NOAL's call-time-choice semantics the above pro-
gram has as possible results both 0 and 2; a result of 1
is not possible with call-time-choice, although it would
be possible with call-by-name. Another interesting ex-
ample is the following program:

fun pick(x:Int): Int =

x 5 pick(add(x,1));

program (): Int = pick(0).

This program has as its set of possible results all pos-
itive integers; furthermore, it is guaranteed to termi-
nate! However, if the angelic choice (5) were replaced
with an erratic choice () in this program, the pro-
gram would also have all positive integers as possible
results, but in addition it might not terminate.

5.2.3 Semantics of NOAL Programs

A NOAL program consists of a series of mutually
recursive function de�nitions, and a hprogram expri.
The hexpri that is the body of the hprogram expri
may use only the identi�ers declared in the
hprogram expri's heading and the function identi�ers
declared in the program.

42

The notationM is also used to denote the function
that takes a program and returns an observation.
All possible results of a program are guaranteed to

have a visible type through the use of the following
function:

Visible(q)
def
=

�
q if q 2 TA and T 2 V
? otherwise.

(5:12)

The function Visible is extended pointwise to sets of
possible results.
The meaning of a program is given by the following

de�nition.
Consider the program: ~F; program (~x : ~S):T =

E with a list of recursive function de�nitions ~F and
an expression E whose free identi�ers are the set
X = fxi : Sig. Let � : Y ! A be an environment

such that X � Y . Let �0 be �[F [[~F]](A)=~f]; that is, �

extended by binding �xed pointsF [[~F]](A) to the func-

tion identi�ers ~f de�ned in ~F . Then the meaning of
the above program is the meaning of E in �0; that is:

M[[~F; program (~x : ~S):T = E]](A; �)
def
= Visible(M[[E]](A; �0)): (5.13)

5.3 Nominal Types and Type Checking
for NOAL

This section describes the nominal types of NOAL ex-
pressions and type checking for NOAL programs.

5.3.1 Nominal Types

The nominal type of an expression plays a crucial role
in program veri�cation. An expression's nominal type
is an upper bound on the types of the objects it can
denote. That is, an expression with nominal type T
can only denote an object whose type is a subtype
of T. The notion of an expression's nominal type is
similar to Reynolds's notion of the minimal type of an
expression [Rey80] [Rey85].
The guarantee implicit in the nominal type of an

expression can only be realized if the expression has a
certain form. Hence not all expressions have a nomi-
nal type, only those that type-check. An expression (or
program) that has a nominal type is called type-safe.
The veri�cation method discussed in Chapter 6 only
applies to type-safe programs. Type-safe programs
also form an interesting class of observations, since a
type-safe program can only observe the results of an
expression by invoking the instance operations of the
expression's nominal type. For example, a type-safe
program cannot apply leastFirst to an expression of
nominal type IntSet, since leastFirst is not one of
the operations de�ned on IntSet. So when observed
by a type-safe program, instances of PSchd that are
bound to identi�ers of nominal type IntSet behave
like instances of IntSet.
Following Reynolds [Rey85], type checking for

NOAL programs is described by using a signature's re-
sult sort mapping, its presumed subtype relation, and
the nominal signatures determined by the declarations
of recursively de�ned functions.

The nominal type of an expression is de�ned recur-
sively. At the base, the nominal type of an identi�er is
given in its declaration. The nominal type of a func-
tion call is given by that function's declaration. To
support subtype polymorphism, an actual argument
may have a type that is a subtype of the corresponding
formal argument type, and thus the actual argument
expressions may have nominal types that are subtypes
of the corresponding formal argument types. Similarly,
the body of a function may have a nominal type that
is a subtype of the nominal result type of the function.
The nominal type of a message send is determined by
the ResSort function, applied to the nominal types de-
termined (recursively) for the arguments.
The treatment of type checking is thus similar to

Reynolds's [Rey80]. Like Reynolds, the type inference
rules below assign a single nominal type, to each type-
safe expression. This is in contrast type systems with a
rule of subsumption, such as Cardelli's [Car84], where
expressions have multiple types. As with Reynolds's
system, the nominal type of an if expression is the
least upper bound of the nominal types of the arms,
if the least upper bound exists. In Reynolds's system,
there is a type ns (nonsense) that is a supertype of all
other types, but the NOAL type system has no such
type.

5.3.2 Type Checking

Figure 5.2 shows the type inference rules for NOAL.
These rules precisely de�ne the nominal type of each
NOAL expression. In the �gure, H is a type environ-
ment that maps identi�ers to types and function iden-
ti�ers to nominal signatures. A type environment H
can be thought of as a set of type assumptions, which
are the pairs of the mapping. An assumption of the
form x : Tmeans that the identi�er x has nominal type
T. An assumption of the form f : ~S ! T means that
the function identi�er f has nominal signature ~S! T.
The notation ~x : ~S means that each xi has nominal
type Si. The notation H; x : T means H [T=x]; that is,
H extended with the assumption x : T (where the ex-
tension replaces all assumptions about x in H). The
notation �;H ` E : T means that given the signature
� and the type environmentH one can prove that the
expression E has nominal type T using the inference
rules. The notation � ` lub(S; U) = T means that the
least upper bound in �'s presumed subtype relation,
�, of S and U exists and is equal to T. The notation
� ` ~� � ~S means that for each i, �i � Si, where � is
the presumed subtype relation of �. An inference rule
of the form:

h1; h2
c

means that to prove the conclusion c one must �rst
show that both hypotheses h1 and h2 hold. Rules
written without hypotheses and the horizontal line are
axioms.
The only rules that allow one to exploit the pre-

sumed subtype relation � are [mp], [fcall] and [comb].
These rules allow the nominal type of an actual ar-
gument expression to be a presumed subtype of the
formal's type.
Let H be a mapping from function identi�ers to

function signatures. The set of type-safe NOAL ex-

43

[ident] �;H; x : T ` x : T

[�dent] �;H; f : ~S! T ` f : ~S! T

[mp]
�;H ` ~E : ~�; ResSort(g; ~�) = T

�;H ` g(~E) : T

[fcall]
�;H ` f : ~S! T; �;H ` ~E : ~�; � ` ~� � ~S

�;H ` f(~E) : T

[comb]
H;~x : ~S ` E0 : T; �;H ` ~E : ~�; � ` ~� � ~S

�;H ` (fun (~x : ~S) E0) (~E) : T

[if]

�;H ` E1 : Bool;
�;H ` E2 : S2; �;H ` E3 : S3;

� ` lub(S2; S3) = T

�;H ` (if E1 then E2 else E3 fi) : T

[erratic]
�;H ` E1 : S1; �;H ` E2 : S2;

� ` lub(S1; S2) = T

�;H ` (E1 E2) : T

[angelic]
�;H ` E1 : S1; �;H ` E2 : S2;

� ` lub(S1; S2) = T

�;H ` (E1 5E2) : T

[isDef]
�;H ` E : S

�;H ` isDef?(E) : Bool

[bot] �;H ` bottom[T] : T

[prog]

�; f1 : ~S1 ! T1; . . . ; fm : ~Sm ! Tm; ~x1 : ~S1 ` E1 : T1;
...

�; f1 : ~S1 ! T1; . . . ; fm : ~Sm ! Tm; ~xm : ~Sm ` Em : Tm;
�;~y : ~U; f1 : ~S1! T1; . . . ; fm : ~Sm ! Tm ` E : T;

T 2 V

� `

0
BBB@

fun f1 (~x1 : ~S1):T1 = E1;
...
fun fm (~xm : ~Sm):Tm = E1;

program (~y : ~U):T = E

1
CCCA : T

Figure 5.2: Type Inference Rules for NOAL

44

pressions over � and H is the set of all NOAL expres-
sions that have a nominal type, when type-checked
against the signature � and H . The set of type-safe
NOAL programs over � is the set of all NOAL pro-
grams whose nominal type is a visible type. If SPEC
is a speci�cation, then the phrase \the set of type-
safe programs over SPEC " means the set of type-safe
NOAL programs over the signature SIG(SPEC).
How is the nominal type of an expression a�ected

by adding new types to a program? This question
is important for modularity of program veri�cation,
since type checking is part of the veri�cation process.
Therefore modular type checking is also important to
modular veri�cation. Adding new types may change
the nominal types of expression, but if the new types
are added in such a way as to make the original sig-
nature a subsignature of the new signature, the new
nominal types will only be subtypes of the original
nominal types.
The following lemma is thus the source of some of

the restrictions in the de�nition of subsignature. In
particular, when one adds new types, one cannot re-
late previously unrelated types by the presumed sub-
type relation. Furthermore, since least upper bounds
(in �) are used in several places during type checking,
and if two original types S and T had a least upper
bound U, then S and T must have a least upper bound
that is a presumed subtype of U in the expanded sig-
nature; also the subtypes of S and T must have least
upper bounds that are subtypes of U. This last prop-
erty ensures that adding new types does not cause the
least upper bounds of certain expressions to become
larger than expected in the original signature or unde-
�ned.

Lemma 5.3.1. Let �0 and � be signatures. Let �
be the presumed subtype relation of �. Let H be a
type environment. Let SORTS 0 and SORTS be the
sort symbols of �0 and �. Let T 2 SORTS 0 be a sort
symbol. Let E be a NOAL expression.
If �0 is a subsignature of � and �0;H ` E : T, then

there is some type S 2 SORTS such that S � T and
�;H ` E : S.

Proof: (by induction on the length of the proof of
�0;H ` E : T).
Suppose that �0;H ` E : T.
For the basis, if the proof has one step, then it must

consist of an instance of one of the axiom schemes
[ident] or [bot]. If E is an identi�er x, then its nominal
type is determined by H , so �;H ` x : T. If E is
bottom[T], then �;H ` bottom[T] : T is an axiom.
Since � is re
exive, T � T.
Suppose that the proof of �0;H ` E : T takes n > 1

steps. The inductive hypothesis is that if �0;H ` E1 :
T1 is any step of the proof but the last, then there is
some type S1 � T1 such that �;H ` E1 : S1. If the last
step of the proof is an instance of the axioms [ident],
or [bot], then the result follows as above. Otherwise
there are several cases.

� If the last step of the proof is an the conclusion of
the rule [mp], then E has the form g(~E). There

must be earlier steps of the form �0;H ` ~E : ~�
and �0 ` ResSort 0(g; ~�) = T. By the inductive

hypothesis, �;H ` ~E : ~�, where ~� � ~� . Since �0

is a subsignature of �, ResSort(g; ~�) = T. By the
monotonicity of ResSort, it follows that for some
S � T, � ` ResSort(g; ~�) = S.

� If the last step of the proof is an instance of [fcall]
there must be earlier steps in the proof of the form

�0;H ` f : ~S! T, �0;H ` ~E : ~�, and �0 ` ~� �0 ~S.
Since the nominal type of f only depends on H ,
�;H ` f : ~S ! T. By the inductive hypothesis,
there is some ~� � ~� such that �;H ` ~E : ~� .
Since �0 is a subsignature of �, ~� � ~S. Since � is
transitive, ~� � ~S.

� If the last step of the proof is an instance of [comb]
there must be earlier steps in the proof of the

form �0;H;~x : ~S ` E0 : T, �0;H ` ~E : ~�, and
�0 ` ~� �0 ~S. By the inductive hypothesis, there
is some type U � T such that �;H;~x : ~S ` E0 : U.
By the inductive hypothesis, there is some ~� � ~�

such that �;H ` ~E : ~� . Since �0 is a subsignature
of �, ~� � ~S. Since � is transitive, ~� � ~S.

� If the last step of the proof is an instance of [if]
there must be earlier steps in the proof of the
form: �0;H ` E1 : Bool, �0;H ` E2 : S02,
�0;H ` E3 : S03, and �0 ` lub(S02; S

0
3) = T. Since

there can be no subtypes of Bool, by the inductive
hypothesis, �;H ` E1 : Bool. By the inductive
hypothesis there are types S2 � S02 and S3 � S03
such that �;H ` E2 : S2 and �;H ` E3 : S3.
Since �0 is a subsignature of �, there is a sort
U � T that is a least upper bound for S2 and S3.

� If the last step of the proof is an instance of [er-
ratic] or [angelic], then the result follows as for
[if].

� If E is isDef?(E0), then the result follows di-
rectly from the inductive hypothesis.

5.3.3 Obedience

Type checking in NOAL aids program veri�cation be-
cause it ensures that the possible results that an ex-
pression may denote all have a subtype of the expres-
sion's nominal type. A language with this property
is said to obey the presumed subtype relation � that
is used in type checking. The obedience of NOAL is
shown formally below by �rst showing obedience for
expressions(in two steps), then for recursively-de�ned
NOAL functions, and �nally for programs.
That the evaluation of NOAL expressions is obedi-

ent is shown by �rst showing obedience for expressions
that do not involve function calls, and then for expres-
sions with function calls.
The proof of the obedience of expressions without

function calls can be regarded as the source of some of
the restrictions on signatures (compare with [Rey80]).
The condition that � be transitive comes from func-
tion calls, where the nominal type of a formal may
be S, the nominal type of the actual may be � � S,
and the type of the actual argument may be �0 � �.
The condition that ResSort be monotonic comes from
message sends.

45

Lemma 5.3.2. Let � be a signature with result sort
map ResSort and presumed subtype relation �. Let
A be a �-algebra. Let E be a NOAL expression of
nominal type T whose set of free identi�ers is X . Let
� : X ! jAj be a �-environment.
If there are no calls on NOAL functions in E, then

each possible result ofM[[E]](A; �) has a type � � T.

Proof: (by induction on the structure of expres-
sions.)
The basis for the induction consists of identi�ers and

the expression bottom[T]. If the expression is an iden-
ti�er x : T, thenM[[x]](A; �) = f�(x)g and by hypoth-
esis, the type of �(x) is related by � to T. The result
is trivial for bottom[T], since the only possible result
is ?.
For the inductive step, assume that the result holds

for each subexpression.

� Suppose the expression is a message send g(~E).

By the type inference rule [mp], ~E : ~� and
ResSort(g; ~�) = T. Let ~q be a tuple of possible re-

sults from ~E. By the inductive hypothesis, ~q has
a type ~�0 such that ~�0 � ~�. By the monotonicity
of �, ResSort(g; ~�0) � T. By the requirements on
algebras, each possible result must have a type S
such that S � ResSort(g; ~�0). So by transitivity of
�, each possible result's type S is such that S � T.

� Suppose the expression is a combination (fun

(~x : ~S) E0) (~E). By the type inference rule
[comb], E0 has nominal type T, ~E : ~�, and ~� � ~S.

Let ~q be a tuple of possible results from ~E. By the
inductive hypothesis, ~q has a type ~�0 such that
~�0 � ~�. Since � is transitive, ~�0 � ~S. So the
environment �[~q=~x] obeys � and thus the result
follows from the inductive hypothesis applied to
E0.

� Suppose the expression is if E1 then E2 else
E3 fi. Then by the type inference rule [if], E1
has nominal type Bool. Since there are no sub-
types of Bool, by the inductive hypothesis, it
follows that all possible results of E1 have type
Bool. The possible results of the entire expres-
sion, therefore, are either ? or results of E2 or
E3. By the inductive hypothesis, each possible
result of E2 has a type S01 � S1. Since S1 � T,
the type of each result of E2 is a subtype of T.
Similarly for the results of E3.

� The case for erratic choice and angelic choice ex-
pressions is similar to that for [if].

� The isDef? expression can only return either ?
or true.

The following lemma considers the general case of an
expression that may call a recursively de�ned NOAL
function. The proof considers each possible result and
shows a type-safe computation that produces it that
does not involve function calls.

Lemma 5.3.3. Let � be a signature with result sort
map ResSort and presumed subtype relation �. Let

A be a �-algebra. Let ~F be a type-safe system of
mutually recursive NOAL function de�nitions. Let E
be a NOAL expression of nominal type T whose set
of free identi�ers is X . Let � : X ! jAj be a �-

environment. Let �0 be �[~f=~f]; that is, � extended

by binding �xed points ~f to the function identi�ers ~f
de�ned in ~F .
Then each possible result ofM[[E]](A; �0) has a type

� � T.

Proof: Let q 2 M[[E]](A; �0) be a possible result.
If q = ? the lemma holds, so suppose q 6= ?. Pick
a computation that produces q. Since q 6= ?, the
computation uses only �nitely many calls, say n, to
the fi.
Expand E by replacing each call to a function fi 2 ~F

of the form fi(~E) with a combination of the form

(fun (~x : ~S) Ei) (~E)

where the ~x : ~S are the formal arguments and Ei is
the body of fi. Repeat this process on the resulting
expression n times and then replace all the remaining
function calls with the expression bottom[S], where
S is the nominal result type of the replaced call.
The above expansion does not change the nomi-

nal type of the resulting expression. By construction
the set of possible results of the expansion includes q.
There are no free function identi�ers that remain. So
the previous lemma applies.
Programs as a whole also obey the presumed sub-

type relation, as shown in the following lemma.

Lemma 5.3.4. Let � be a signature with result sort
map ResSort and presumed subtype relation �. Let P
be a NOAL program of nominal type T whose formal
arguments are ~x : ~S. Let X = fxi : Sig and let � : Y !
A be a �-environment such that X � Y .
Then each possible result ofM[[P]](A; �) has a type

� � T.

Proof: In general P has the form ~F; program (~x :
~S):T = E. By de�nition, the possible results of P are
given by

M[[P]](A; �) = Visible(M[[E]](A; �0));

where �0 is �[~f=~f]; that is, � extended by binding �xed

points ~f to the function identi�ers ~f de�ned in ~F .
Since P is type-safe, so are the recursively de�ned

functions. Hence the previous lemma applies. Since
T is a visible type, Visible does not change the set of
possible results.

46

Chapter 6

Hoare-style Veri�cation for NOAL Programs

A Hoare logic for the modular veri�cation of NOAL
programs is presented in this chapter and shown to be
sound. The logic itself is straight-forward, because of
the restrictions on signatures that ensure that asser-
tions that apply to objects of a type T also apply to ob-
jects that are subtypes of T. The key to the soundness
proof is the existence of a simulation relation which
is guaranteed if the speci�ed relation on types, �, is
truly a subtype relation. A discussion of modular-
ity and some conclusions about how the NOAL type
system aids veri�cation follow the presentation of the
logic and the soundness results.
During veri�cation one essentially ignores subtyp-

ing. This allows a separation of concerns: one speci-
�es types and proves the speci�ed relation on types �
is a subtype relation, then during veri�cation one can
ignore subtyping. Because of this separation of con-
cerns, if one veri�es a NOAL function and then later
adds new subtypes to some of the function's nominal
argument types, then the veri�cation does not have to
be repeated.
As usual, the speci�cations of each type's operations

and the speci�cation of each recursively-de�ned NOAL
function is taken as an axiom. The axiom used for a
particular message send is determined by the nomi-
nal types of the message send's arguments. Note that
in veri�cation the overloading is static. The point of
the de�nition of subtype relations is to ensure that
the static overloading done during veri�cation bears a
proper relationship to the dynamic overloading caused
by message passing during program execution.
A veri�cation technique is sound if whenever one

concludes by using that technique that a program sat-
is�es its speci�cation then that program does indeed
satisfy its speci�cation. The soundness proof follows
the presentation of the logic below.

6.1 A Hoare Logic for NOAL

The Hoare logic [Hoa69] of NOAL programs is a to-
tal correctness logic. That is, speci�cations require
termination whenever their pre-condition is met. The
logic is sound, but it is not complete, since there is no
method given for reasoning about nontermination as
would be required to deal with NOAL's lazy evaluation
and angelic choice expressions in a complete way.
Although NOAL is applicative, a Hoare logic is used

instead of equational reasoning because NOAL is non-
deterministic and because the ultimate goal of this re-
search is the veri�cation of imperative programs, for
which Hoare-style reasoning is an accepted technique.
The main formulas of a Hoare logic are called Hoare-

triples. Hoare-triples are written P fv : T Eg Q or

P
fv : T Eg
Q

and consist of a pre-condition P , a result identi�er v :
T, an expression E, and a post-conditionQ. In a Hoare
logic for an imperative language, the pre-condition
describes the state before the execution of a state-
ment, and the post-condition describes the changed
state that results from the statement's execution. In
NOAL, however, expressions have results but do not
change the environment in which they execute. In-
stead the pre-condition of a Hoare-triple describes the
environment, and the post-condition describes the en-
vironment that results from binding the result iden-
ti�er (v) to a possible result of the expression. So
that the notation does not cause confusion, the result
identi�er in a Hoare-triple cannot occur free in the
pre-condition. Otherwise one might think that the ex-
ecution of E changes the binding of the result identi�er
in the surrounding environment, whereas the notation
only shows what identi�er will be used to denote the
possible results of E in the post-condition.
In the veri�cation of NOAL programs one is con-

cerned with both sets of type speci�cations and func-
tion speci�cations. So in this chapter speci�cations
will often consist of pairs (SPEC ;FSPEC), where
SPEC is a set of type speci�cations, and FSPEC is
a set of function speci�cations whose base speci�ca-
tion set is included in SPEC . For a set FSPEC of
NOAL function speci�cations, SIG(FSPEC) consists
of a mapping from function identi�ers to nominal sig-
natures.

De�nition 6.1.1 (Hoare-triple).
Let (SPEC ;FSPEC) be a pair of type and function
speci�cation sets. Let T be a type symbol from of
SIG(SPEC). Let � be the presumed subtype relation
of SIG(SPEC). Then the formula P fy : T Eg Q is
a Hoare-triple for (SPEC ;FSPEC) if and only if there
is some type S � T such that given SIG(SPEC) and
SIG(FSPEC) one can prove that E has nominal type
S, P and Q are SIG(SPEC)-assertions, and y does not
occur free in P .

The pair (SPEC ;FSPEC) is omitted when clear
from context. The type of the result identi�er is also
usually omitted.
The nominal type of the result identi�er can be a

supertype of the nominal type of E, because assertions

47

can describe objects of subtypes of the nominal types
of their free identi�ers.
Intuitively, P fv Eg Q is true if whenever P

holds, then the execution of E terminates, and all pos-
sible results satisfy Q. The semantics of a Hoare-triple
is given by the following de�nition, which is similar to
the de�nition of satis�es for function speci�cations.

De�nition 6.1.2 (models).
Let (SPEC ;FSPEC) be a pair of type and func-
tion speci�cation sets. Let P fv : T Eg Q be a
Hoare-triple for (SPEC ;FSPEC). Let X be a set
of free identi�ers that contains all the free identi-
�ers of P , E, and Q except v : T. Let A be a
SPEC -algebra, and let � : X ! jAj be a proper
SIG(SPEC)-environment. For each f in the domain of
SIG(FSPEC), let F [[f]] be a function denotation with
signature SIG(FSPEC)(f). Let �0 be the environment
that extends � by binding each free function identi�er
f in the domain of SIG(FSPEC) to F [[f]](A). Then
(A; �0) models P fv : T Eg Q, written

(A; �0) j= P fv : T Eg Q;

if and only if whenever (A; �) j= P , then for all possible
results r 2M[[E]](A; �0):

r 6= ? (6.1)

(A; �[r=v]) j= Q; (6.2)

and there is some type S such that r 2 SA and S � T.

For example, the Hoare-triple

P fv Eg true

means that evaluation of E in environments that
model P always terminates, since the post-condition
\true" is modeled by every algebra-environment pair.
If the pre-condition P is not logically equivalent to
\false," then there are no expressions E such that

P fv Eg false

is valid, because no algebra-environment pair models
the assertion \false." However, for all expressions E
and all assertions Q, every algebra-environment pair
models the Hoare-triple

false fv Eg Q;

since the pre-condition \false" cannot be satis�ed.
The Hoare-triple P fv : T Eg Q is valid for

(SPEC ;FSPEC) , written

(SPEC ;FSPEC) j= P fv : T Eg Q;

if and only if for all SPEC -algebras A for all proper
SIG(SPEC)-environments � : X ! jAj such that X
contains the free identi�ers of P and E and Q, and
for all extensions �0 of � that bind each free function
identi�er f of E to F [[f]](A), where F [[f]] is a denota-
tion that satis�es the speci�cation of f in FSPEC with
respect to SPEC , (A; �0) j= P fv : T Eg Q.

Figures 6.1 and 6.2 contain the proof rules for NOAL
expressions. In these �gures, P , Q, and R are asser-
tions,M is a term, and E, E1, and so on are NOAL ex-
pressions. The notation (SPEC ;FSPEC) ` H , where
H is a Hoare-triple, means that one can proveH using
the proof rules, including the traits and speci�cations
of (SPEC ;FSPEC). The notation ` H will be used
when the speci�cation pair (SPEC ;FSPEC) is clear
from context. The notation SPEC ` Q means that
the formula Q is provable from the traits of SPEC . A
proof rule of the form:

h1; h2
c

means that to prove the conclusion c one must �rst
show that both hypotheses h1 and h2 hold. Rules
written without hypotheses and the horizontal line are
axiom schemes.
Each rule is named, for convenience in proofs. The

name of a rule appears to the left of that rule. To the
right of some of the rules are conditions on types and
identi�ers. Some of the conditions require an identi-
�er to be fresh, which means it is not in the set of
free identi�ers of either the desired pre-condition or
the desired post-condition. The conditions of some
rules require assertions to be subtype-constraining, ab-
breviated by \sub.-con." Recall that an assertion is
subtype-constraining if the only use of \=" is between
terms of visible sort. For example, x = 1 is subtype-
constraining, but y = fg is not subtype-constraining.
The rules in Figures 6.1 and 6.2 are discussed be-

low, including the conditions that accompany each
rule. For purposes of this discussion, �x a speci�ca-
tion (SPEC ;FSPEC), which determines a presumed
subtype relation �, a result sort map ResSort, and
the nominal signatures of NOAL function identi�ers.
All assertions mentioned are SIG(SPEC)-assertions.

� The rule [ident] is an axiom scheme for all types
T, for all identi�ers x and v of nominal type T.
The rule says that the only possible result of an
expression x is the value of x.

� The rule [bot] says that bottom[T] never termi-
nates.

� The rule [mp-a] is an axiom scheme for all pro-
gram operation speci�cations of SPEC . The no-
tation Pre(g;~S) means the pre-condition of the
operation speci�cation named g with nominal sig-
nature ~S ! T, where T = ResSort(g;~S). A spec-
i�cation must have at most one such operation
speci�cation, since otherwise it would not be le-
gal. Similarly, Post(g;~S) is the post-condition of
the operation speci�cation with nominal signature
~S! T.

Both Pre(g;~S) and Post(g;~S) must be subtype-
constraining, as required by the speci�cation lan-
guage of Chapter 3. Technical justi�cation for
these restrictions is found below in the soundness
proof.

The axiom only describes the e�ect of a message
send where the actual argument expressions and
the result identi�er, as well as their types, are

48

[ident] (SPEC ;FSPEC) ` true fv : T xg v = x x : T

[bot] (SPEC ;FSPEC) ` false fv : T bottom[T]g true

[mp-a] (SPEC ;FSPEC) ` Pre(g;~S) fy : T g(~x)g Post(g;~S)
Formals(g;~S) = ~x : ~S; y : T

Pre(g;~S) sub.-con.
Post(g;~S) sub.-con.

[fcall-a] (SPEC ;FSPEC) ` Pre(f ;~S) fy : T f(~x)g Post(f ;~S)
Formals(f ;~S) = ~x : ~S; y : T

Pre(f ;~S) sub.-con.
Post(f ;~S) sub.-con.

Figure 6.1: Axiom Schemes for veri�cation of NOAL Expressions.

exactly the same as the formal arguments and the
formal result used in the speci�cation of g with
nominal signature ~S ! T. That is, the meaning
of Formals(g;~S) = ~x : ~S; y : T is that the formal
arguments of the relevant speci�cation of g are
~x : ~S and the formal result is y : T.

� The rule [fcall-a] is an axiom scheme for all func-
tion speci�cations in FSPEC . The pre-condition
and post-condition of a function come from its
speci�cation and must be subtype-constraining,
as required by the speci�cation language. Techni-
cal justi�cation for this restriction is found in the
section on modularity below. The same notation
is used as in the rule [mp-a] to denote the pre-
condition, post-condition, and formal arguments
from the speci�cation of a function. However,
the pre-condition and post-condition of a func-
tion speci�cation do not depend on the types of
the arguments, as there is only one function spec-
i�ed with a given function identi�er.

� The inference rule [mp-b] handles the general form
of a message passing expression. To prove a triple
involving a message send one is obliged to �rst
rewrite the message send from its general form
into one where the actual argument expressions
are �rst bound to identi�ers. The types of these
identi�ers should be chosen so that an instance of
the rule [mp-a] will apply. The types of the formal
arguments of the combination are constrained so
that the rewritten expression type-checks.

Putting the above constraints together, one would
normally rewrite a message send to a combination
where the nominal type of each actual is a subtype
of the nominal type of the corresponding formal
and such that there is a program operation spec-
i�cation with the chosen formal argument types.
That such a speci�cation always exists is guar-
anteed by the monotonicity of the ResSort map
(i.e., by the conditions on signatures). To avoid
loss of information, one would normally want the
least such program operation speci�cation such
that the nominal types of the formals were super-
types of the nominal types of the corresponding
actual argument expressions. One could also rea-

son from a less speci�c operation speci�cation, as
this is also permitted by the rule.

� The inference rule [fcall-b] is like [mp-b] in that it
requires one to rewrite a general function call so
that the argument expressions are �rst bound to
identi�ers. These identi�ers should be chosen to
match the formal arguments from the function's
speci�cation.

� The inference rule [comb] handles combinations
that may include explicit use of subtyping. The
rule as a whole says that to prove that the desired
triple holds, one �rst chooses conjuncts Ri that
are su�cient to prove the desired post-condition
from the body of the combination.

The notation (Ri[vi=xi])[~x=~z] means the formula
Ri with vi replacing xi throughout and then each
xi is simultaneously substituted for zi. The fresh
identi�ers ~z are used to hide bindings of ~x in the
assertions that characterize the arguments to the
function abstract, so that in reasoning about E0
the proper scope applies. That is, bindings of the
xi in the desired pre-condition or the desired post-
condition do not mean the xi that are local to the
body of the function abstract. When reasoning
about E0, the zi denote the values of the xi in
the outer scope. Thus the nominal types of the zi
should match the nominal types of the xi in the
outer scope, not the nominal types of the formal
arguments to the combination.

The assertions Ri, may contain the formal argu-
ment identi�ers, xi, and thus may be written using
the speci�cation functions that apply at the types
Si. The assertions Ri[vi=xi] will sort-check (and
be meaningful) because the nominal type of vi is
the nominal type of Ei, which must be a presumed
subtype of Si.

The identi�ers zi must be fresh to avoid capture
problems. The result identi�er y must not be one
of the xi to avoid capture problems.

� The inference rule [if] allows one to reason about
if expressions whose boolean expression (E1)
may be nondeterministic. Two special cases are
considered before explaining the rule in general.

49

[mp-b]
(SPEC ;FSPEC) ` P

n
y (fun (~x : ~S) g(~x)) (~E)

o
Q

(SPEC ;FSPEC) ` P
n
y g(~E)

o
Q

~E : ~�;
~� � ~S

[fcall-b]
(SPEC ;FSPEC) ` P

n
y (fun (~x : ~S) f(~x)) (~E)

o
Q

(SPEC ;FSPEC) ` P
n
y f(~E)

o
Q

~E : ~�;
~� � ~S

[comb]

(SPEC ;FSPEC) ` R1 & � � � &Rn fy E0g Q[~z=~x]
(SPEC ;FSPEC) ` P fv1 E1g (R1[v1=x1])[~x=~z];

...
(SPEC ;FSPEC) ` P fvn Eng (Rn[vn=xn])[~x=~z]

(SPEC ;FSPEC) ` P
�
y (fun (~x : ~S) E0) (E1; . . . ; En)

	
Q

~z fresh
y 62 ~x

[if]

(SPEC ;FSPEC) ` P fv : Bool E1g true;
(SPEC ;FSPEC) ` P&R1 fv : Bool E1g v = true;

(SPEC ;FSPEC) ` P&R1 fy E2g Q;
(SPEC ;FSPEC) ` P&R2 fv : Bool E1g v = false;

(SPEC ;FSPEC) ` P&R2 fy E3g Q;
(SPEC ;FSPEC) ` P&R3 fy E2g Q;
(SPEC ;FSPEC) ` P&R3 fy E3g Q;

SPEC ` (R1jR2jR3) = true
(SPEC ;FSPEC) ` P fy if E1 then E2 else E3 fig Q

[erratic]
(SPEC ;FSPEC) ` P fy E1g Q; (SPEC ;FSPEC) ` P fy E2g Q

(SPEC ;FSPEC) ` P
�
y E1 E2

	
Q

[angelic]
(SPEC ;FSPEC) ` P fy E1g Q; (SPEC ;FSPEC) ` P fy E2g Q

(SPEC ;FSPEC) ` P fy E1 5E2g Q

[isDef]
(SPEC ;FSPEC) ` P fv Eg true

(SPEC ;FSPEC) ` P fy : Bool isDef?(E)g y = true

[conseq]

SPEC ` P) P1;
(SPEC ;FSPEC) ` P1 fy Eg Q1;

SPEC ` Q1) Q
(SPEC ;FSPEC) ` P fy Eg Q

P ,P1,Q1,Q
sub.-con.

[equal]
(SPEC ;FSPEC) ` P fy : T Eg y = N

(SPEC ;FSPEC) ` P fy : T Eg M [y=z] =M [N=z]
z : T

[carry]
(SPEC ;FSPEC) ` P fy Eg Q

(SPEC ;FSPEC) ` P fy Eg P &Q

[rename]
(SPEC ;FSPEC) ` P [~z=~x] fy[~z=~x] E[~z=~x]g Q[~z=~x]

(SPEC ;FSPEC) ` P fy Eg Q
~x : ~T

~z : ~T fresh

Figure 6.2: Inference rules for veri�cation of NOAL expressions.

50

If the boolean expression E1 is deterministic, let
the assertion R3 be \false" and let R2 be :R1.
The assertion R1 must then characterize the value
of E1 in the following sense. If the desired pre-
condition and R1 both hold, then the only pos-
sible result of E1 is true, otherwise if the desired
pre-condition and :R1 both hold, then the only
possible result of E1 is false. Then one has to
prove that the desired pre-condition and R1 to-
gether are strong enough to show that the de-
sired post-condition holds on the results ofE2 (the
\true" arm) and that the desired pre-condition
and :R1 are strong enough to make the post-
condition hold on the result of E3 (the \false"
arm). Since R3 is \false" and R2 = :R1, the
other hypotheses follow trivially.

If the boolean expression E1 has as possible re-
sults both true and false (e.g., if E1 is true

false), then let R1 and R2 be \false" and let R3
be \true." One must then show that E1 termi-
nates and that the possible results of both E2 and
E3 satisfy the desired post-condition when the de-
sired pre-condition holds. The other hypotheses
follow trivially.

In general, the assertion R1 should characterize
when E1 has true as its only possible result, R2
should characterize when E1 has false as its only
possible result, and R3 should characterize when
E1 is nondeterministic. Then one has to show
that E1 terminates, that in each case the post-
condition follows, and that all cases are covered.
One shows that all cases are covered by showing
that (R1jR2jR3) = true.

� The inference rule [erratic] says that the desired
post-condition must follow from the desired pre-
condition for each expression.

� The inference rule [angelic] is analogous to the
rule [erratic]. Although this rule is sound, it
fails to capture all the semantics of angelic choice
in NOAL. That is, an angelic choice expression
where only one subexpression might fail to termi-
nate would still terminate, but our rule requires
that both subexpressions terminate. This incom-
pleteness is caused by the inability of the logic
to describe the possible results of an expression
separately from its termination.

� The inference rule [isDef] says that to prove that
an isDef? expression halts (with value true), one
must prove that all the possible results of the ar-
gument expression are proper.

� The general inference rule [conseq] is standard
for Hoare logics, where it is often called the
\rule of consequence" [Hoa69]. It allows one to
use a stronger pre-condition and a weaker post-
condition. The implications that appear in the
hypothesis must be provable from the traits of the
referenced speci�cation, using the proof rules and
axioms of those traits. Furthermore they must be
subtype-constraining so that the implications also
are valid in environments that use subtyping.
Note that the result identi�er y must not appear
free in P or P1, since otherwise the triples would
not be well-formed.

� The inference rule [equal] allows one to draw
subtype-constraining conclusions from equations
in post-conditions. The rule would also be valid
if the post-condition appearing in the hypothe-
sis were reversed to read \N = y." The notation
M [y=z] meansM with all free occurrences of z re-
placed by y. Non subtype-constraining assertions
can only be introduced into a proof by the [ident]
rule.

The ability to draw subtype-constraining con-
clusions from an equation in a post-condition is
sometimes necessary when one wishes to weaken
a post-condition for further use in a proof, because
most other rules will require subtype-constraining
assertions.

� The inference rule [carry] allows one to carry
assertions from the pre-condition into the post-
condition. Pre-Conditions are preserved by ex-
pressions, because NOAL is applicative.

� The inference rule [rename] allows one to consis-
tently rename identi�ers to identi�ers of the same
nominal type.

A proof in this Hoare logic may also use formulas
that are provable from the traits of the referenced spec-
i�cation. (Such formulas are used as hypotheses in the
rules [conseq] and [if].) These traits always include the
trait Bool and the equality trait. The equality trait al-
lows one to interpret the relation \=" that appears in
terms as a congruence relation.
A proof of a Hoare-triple H for (SPEC ;FSPEC)

is a list, where the last line in the list is the formula
(SPEC ;FSPEC) ` H and each line in the list is either:

� a formula of the form SPEC ` Q, where Q is a
SIG(SPEC)-assertion that is provable from the
traits of SPEC , or

� a formula of the form

(SPEC ;FSPEC) ` P 0 fy E0g Q0;

where P 0 fy E0g Q0 is a Hoare-triple for
(SPEC ;FSPEC), and the formula either is an ax-
iom or follows from some previous lines by the
inference rules.

6.2 NOAL Program Veri�cation

A method for the veri�cation of NOAL programs is
given in this section, along with several examples. This
method does not address modularity issues, such as
adding a new type to a program; such issues are dis-
cussed in Section 6.4.
Program veri�cation compares the meaning of a pro-

gram against the program's speci�cation. A NOAL
program speci�cation is simply a function speci�ca-
tion (see Chapter 3). This is shown schematically in
Figure 6.3. The veri�cation of the program

~F; program (~x : ~S):T = E

against the speci�cation in Figure 6.3 consists of prov-
ing the Hoare-triple R fv : T Eg Q, where v is

51

fun generalProg(~x : ~S) returns(v:T)
requires R
ensures Q

Figure 6.3: General form of a program speci�cation

the formal result identi�er from the program speci�-
cation, R is the program speci�cation's pre-condition,
and Q is its post-condition. That is one must show
(SPEC ;FSPEC) ` R fv : T Eg Q, where SPEC
is a set of type speci�cations that includes at least all
the types in ~S, T, the types explicitly mentioned in ~F
and E, and the types used indirectly by the above,
and FSPEC contains speci�cations for the functions
in ~F . For simplicity, the formals of the hheadingi of
the program's hprogram expri must match the formals
of the speci�cation exactly.
The method for veri�cation of a NOAL program is to

divide and conquer by �rst specifying and verifying the
recursive function de�nitions that appear in the pro-
gram. Then one uses the Hoare logic presented above
to prove the desired Hoare-triple, using the speci�ca-
tions of the recursively de�ned functions as axioms.
Two steps are required to verify a system of NOAL

function de�nitions. First, one shows that for each
function f ,

(SPEC ;FSPEC) ` Pre(f ; ~S0) fy : T Eg Post(f ; ~S0)

follows from the proof rules, where E is the body of
f , y : T is the formal result identi�er from the spec-

i�cation of f , Pre(f ; ~S0) is the pre-condition from the

speci�cation of f in FSPEC , and Post(f ; ~S0) is its post-
condition. During this proof one can use the axiom
scheme [fcall-a], which assumes that each recursively
de�ned function meets its speci�cation. This allows
one to prove the partial correctness of function bod-
ies containing recursive calls. The second step is to
prove that each function terminates whenever it is
called with arguments that model its pre-condition.
This step is necessary, since otherwise one could im-
plement a recursive function speci�cation with a body
that simply called itself recursively. It is beyond the
scope of this report to provide a method for reasoning
about termination. Unfortunately, reasoning about re-
cursion in the presence of NOAL's angelic choice op-
erator is non-trivial.

Example 6.2.1. As an example of program veri�ca-
tion, consider the speci�cation of is2in given in Fig-
ure 3.8 and the program

program (s:IntSet):Bool = elem(s,2).

The veri�cation of this program consists in showing
the following formula:

IntSet ` true fb : Bool elem(s,2)g b = (2 2 s):
(6:3)

The speci�cation of IntSet is all that is needed for this
example, since no other types are mentioned. How-
ever, the idea is that this program will satisfy the

speci�cation of is2in with respect to a set of type spec-
i�cations that includes other subtypes of IntSet, such
as Interval.
The proof of the above formula will proceed with

the assumption that

IntSet ` true fv2 : Int 2g v2 = 2: (6:4)

so that the desugaring for integer literals is not needed.
Proof: By the inference rule [mp-b], it su�ces to

show that

` true fb combog b = (2 2 s); (6:5)

where combo is the expression

(fun (s:IntSet, i:Int) elem(s,i)) (s,2).

To show the above formula, one must use the rule
[comb]. This generates the following subgoals.

`
((2 2 s) = (2 2 t)) & (i = 2)
fb elem(s,i)g
b = (2 2 t)

(6.6)

` true fv1 sg (2 2 v1) = (2 2 s) (6.7)

` true fv2 2g v2 = 2: (6.8)

The fresh identi�er t : IntSet is used to refer to the s
of the outer scope from within the function abstract.
As demanded by the [comb] rule, the post-condition of
the second goal is derived from \((2 2 s) = (2 2 t))"
by �rst substituting v1 for s and then s for t. The
assertion \(2 2 s) = (2 2 t)" is subtype-constraining,
because \=" is only used between boolean terms.
The �rst subgoal above follows from the axiom for

the elem operation in the speci�cation of IntSet, and
some applications of the rules [conseq] and [carry].
(In what follows the axioms are used to derive the
�rst subgoal, instead of generating more subgoals and
working back to the axioms, as above.) In detail, the
axiom [mp-a] for the elem operation of IntSet is:

` true fb elem(s,i)g b = (i 2 s): (6:9)

By the traits of IntSet (i.e., by the axioms for the
Booleans) one has:

` (((2 2 s) = (2 2 t)) & (i = 2))) true: (6:10)

So by the inference rule [conseq], the following holds.

`
((2 2 s) = (2 2 t)) & (i = 2)
fb elem(s,i)g
b = (i 2 s)

(6:11)

By the inference rule [carry], the pre-condition of the
above can be carried into the post-condition.

`

(2 2 s) = (2 2 t) & i = 2
fb elem(s,i)g
((2 2 s) = (2 2 t)) & (i = 2)
& (b = i 2 s)

(6:12)

52

By the traits of IntSet (i.e., the axioms for equality)
one has

`
(((2 2 s) = (2 2 t)) & (i = 2) & (b = (i 2 s)))
) (b = (2 2 t)):

(6:13)
So by a �nal application of [conseq] gives the �rst sub-
goal of the [comb] rule.
To show the second subgoal of the [comb] rule, one

uses the axiom scheme [ident], which gives:

` true fv1 sg v1 = s: (6:14)

Then one uses the rule [equal] to derive the second
goal.
The third subgoal of the [comb] rule holds by as-

sumption. Thus the conclusion holds.

Example 6.2.2. The way that the logic handles ex-
plicit use of subtyping is shown in the proof of the
following formula.

(II; is2in) `
true
fb is2in(create(Interval,1,3))g
b = true

(6:15)
Recall that II combines IntSet and Interval. In this
case both types are mentioned (IntSet in the signa-
ture of is2in).
The axiom [funcall-a] derived from the speci�cation

of is2in in Figure 3.8 is also assumed. Furthermore, to
concentrate on the interesting part of the proof, it is
assumed that the following holds (see the speci�cation
of Interval).

(II; is2in) `
true
fv1 create(Interval,1,3)g
v1 == [1; 3]

(6:16)
Proof: Since the expression in question consists of a

function call one must use the rule [fcall-b]. This gives
the following goal.

`

true�
b

(fun (s:IntSet) is2in(s))
(create(Interval,1,3))

�
b = true

(6:17)

Since the expression in the above goal is a combi-
nation, the [comb] rule is used to give the following
subgoals:

`
s == [1; 3]
fb is2in(s)g
b = true

(6.18)

`
true
fv1 create(Interval,1,3)g
v1 == [1; 3]

(6.19)

The above goals are similar to the operational idea of
substituting the abstract value of the argument ([1,3])

fun testFor(i:Int, s1,s2: IntSet) returns(j:Int)
requires (i 2 s1) & (:(isEmpty(s1 \ s2)))
ensures (j 2 s1) & (j 2 s2)

Figure 6.4: Speci�cation of the function testFor.

in the speci�cation of is2in. The identi�er s has nomi-
nal type IntSet, as that is the nominal argument type
of is2in, while v1 has nominal type Interval. Further-
more, the assertion \s == [1,3]" is interpreted by the
trait-function \#==#" with signature

IntSet; Interval! Bool:

The �rst hypothesis of the [comb] rule follows from
the axiom scheme [fcall-a] for is2in, and the inference
rules [conseq] and [carry]. The axiom for is2in is:

` true fb is2in(s)g b = 2 2 s (6:20)

From the traits of II one can show that

` (s == [1; 3])) ((2 2 s) = (2 2 [1; 3])): (6:21)

Furthermore, it follows from the traits of II that

` (2 2 [1; 3]) = true; (6:22)

hence

` (s == [1; 3])) ((2 2 s) = true): (6:23)

Thus the �rst hypothesis follows from the rules [con-
seq] (used twice) and [carry].
The second hypothesis was assumed to hold, so the

desired result follows.

Example 6.2.3. An example of recursive function
veri�cation is provided by verifying the implementa-
tion of inBoth given in Figure 1.4 against the speci�-
cation given in Figure 1.6.
Since inBoth calls the function testFor (see Fig-

ure 1.4), it is necessary to specify and verify the im-
plementation of testFor as well. The speci�cation of
testFor is given in Figure 6.4.
During the veri�cation of inBoth and testFor, the

speci�cation of testFor is used as an axiom, to es-
tablish their partial correctness. The termination of
testFor follows because at each recursive call the size
of the argument s1 shrinks. The veri�cations use the
speci�cation IntSet, since that is the only non-visible
type mentioned.
To formally verify the partial correctness of the im-

plementation of inBoth one must show the following.

(IntSet; testFor) `

:(isEmpty(s1 \ s2))
fi testFor(choose(s1), s1, s2)g
(i 2 s1) & (i 2 s2)

(6.24)

Proof: To avoid name clashes with the result identi-
�er, the rule [rename] is used to generate the following

53

goal.

`
:(isEmpty(s1 \ s2))
fj testFor(choose(s1), s1, s2)g
(j 2 s1) & (j 2 s2)

(6.25)

Since the expression in question is a function call, one
must use the rule [fcall-b]. This gives a goal with the
same pre- and post-conditions as above, but whose
body is

(fun (i:Int,s1,s2:IntSet)

testFor(i,s1,s2))

(choose(s1), s1, s2)

Since the expression above is a combination, the
[comb] rule is used to give the following subgoals,

`
R1&R2&R3

fj testFor(i,s1,s2)g
(j 2 t1)&(j 2 t2)

(6.26)

`
:(isEmpty(s1 \ s2))
fv1 choose(s1)g
v1 2 s1

(6.27)

`
:(isEmpty(s1 \ s2))
fv2 s1g
(v2 == s1)&(:(isEmpty(v2 \ s2)))

(6.28)

`
:(isEmpty(s1 \ s2))
fv3 s2g
(v3 == s2)&(:(isEmpty(s1 \ v3)))

(6.29)

where

R1 = (i 2 s1)

R2 = ((s1 == t1)&(:(isEmpty(s1 \ t2))))

R3 = ((s2 == t2)&(:(isEmpty(t1 \ s2)))):

(For fresh variables, t1, and t2, are used to replace
s1, and s2, respectively.)
The �rst subgoal is shown as follows. By the traits

of IntSet, if follows that

`
(R1&R2&R3)
) ((i 2 s1)&(:(isEmpty(s1 \ s2))))

(6:30)

so by [conseq] and the axiom [funcall-a] for testFor it
su�ces to show that:

`
R1&R2&R3

fj testFor(i,s1,s2)g
(j 2 s1)&(j 2 s2)

(6:31)

To show the above, one can use [carry] to bring the Ri
into the post-condition.

`
R1&R2&R3

fj testFor(i,s1,s2)g
(j 2 s1)&(j 2 s2)&R1&R2&R3

(6.32)

The �rst subgoal follows by the traits of IntSet and
the rule [conseq]. Note that the Ri are subtype-
constraining.
The second subgoal is shown as follows. By the

traits of IntSet it follows that

` :(isEmpty(s1 \ s2))) :(isEmpty(s1)) (6:33)

and since the assertions in the above implication are
subtype-constraining, by [conseq] it su�ces to show
that:

` :(isEmpty(s1)) fv1 choose(s1)g v1 2 s1
(6:34)

By the rule [rename] it su�ces to show the following

` :(isEmpty(s)) fi choose(s)g i 2 s (6:35)

But this last formula is the axiom [mp-a] for choose.
The third and fourth subgoals follow from the rules

[ident], [equal], and [conseq].
To formally verify the partial correctness of the im-

plementation of testFor, one must show that:

(IntSet; testFor) `
(i 2 s1)&:(isEmpty(s1 \ s2))
fj Bodyg
(j 2 s1)&(j 2 s2)

(6:36)
where Body is the body of testFor.
Proof: Since the body of testFor is an if expression,

one must use the rule [if]. This gives the goals listed
as hypotheses for the rule [if], where P is the pre-
condition above, Q is the post-condition above, y is
the identi�er j, E1 is the expression elem(s2,i), E2
is the expression i, E3 is the expression

testFor(choose(remove(s1,i)),

remove(s1,i), s2)

R1 is the assertion \(i 2 s2)", R2 is :R1, and R3 is
\false." The Ri characterize the various cases exhaus-
tively by de�nition. Hence the last subgoal of the [if]
rule holds:

` (R1jR2jR3) = true: (6:37)

Furthermore, since R3 is false, the other subgoals in-
volving R3 hold trivially, using [carry] and [conseq].
The subgoal

`
(i 2 s1)&:(isEmpty(s1 \ s2))
fv elem(s2,i)g
true

(6:38)

in which one shows termination of the test is proved
by using [rename] and the axiom [mp-a] for elem and
[conseq]. Thus the remaining subgoals center around
the true and false cases. For the \true" case, one must
show the following.

`
(i 2 s1) & :(isEmpty(s1 \ s2)) & (i 2 s2)
fv elem(s2,i)g
v = true

(6.39)

`
(i 2 s1) & :(isEmpty(s1 \ s2)) & (i 2 s2)
fj ig
(j 2 s1) & (j 2 s2)

(6.40)

54

The �rst of the above goals follows by using [re-
name] and the axiom [mp-a] for elem and [conseq].
The second goal for the \true" case follows from the
rules [ident] and [conseq]. For the \false" case one
must show that

`
(i 2 s1)&:(isEmpty(s1 \ s2))&:(i 2 s2)
fv elem(s2,i)g
v = false

(6.41)

`
(i 2 s1)&:(isEmpty(s1 \ s2))&:(i 2 s2)
fj E3g
(j 2 s1)&(j 2 s2)

(6.42)

The �rst of these goals follows as in the \true" case.
Thus it su�ces to show the second goal of the \false"
case.
The second goal of the \false" case follows from the

[fcall-b], [comb], the axiom [funcall-a] for testFor, the
axioms [mp-a] for choose and remove, [rename], and
[conseq]. Using the rule [fcall-b] one rewrites the ex-
pression E3 as the following combination.

(fun (i:Int, s1,s2:IntSet)

testFor(i,s1,s2))

(choose(remove(s1,i)), remove(s1,i), s2)

The rule [comb] generates the following subgoals.

`

(i 2 t1)
& (:(isEmpty(s1 \ t2))
&(s1 == delete(t1; t0)))
& (s2 == t2)
fj testFor(i,s1,s2)g
(j 2 t1) & (j 2 t2)

(6.43)

`

(i 2 s1)
& :(isEmpty(s1 \ s2))
& :(i 2 s2)
fv1 choose(remove(s1,i))g
v1 2 s1

(6.44)

`

(i 2 s1)
& :(isEmpty(s1 \ s2))
& :(i 2 s2)
fv2 remove(s1,i)g
:(isEmpty(v2 \ s2))
&(v2 == delete(s1; i))

(6.45)

`

(i 2 s1)
& :(isEmpty(s1 \ s2))
& :(i 2 s2)
fv3 s2g
v3 == s2

(6.46)

The fresh identi�ers ~z demanded by [comb] are t0,
t1, and t2, which refer to the nonlocal bindings of i,
s1, and s2 from within the function abstract. Thus
the hypothesis of the �rst subgoal says that i is in
the original set s1, and the new s1 argument inter-
sects the original set s2 in addition to being formed
from the original s1 by deleting the original i, and

that the new s2 has the same elements as the original
s2. To prove the second subgoal, one must show that
remove(s1,i) is not empty. This follows from the pre-
condition, since there s1 intersects s2 and i is not in
s2. To prove the third subgoal one must show that re-
moving i from s1 does not leave the intersection with
s2 empty, but this will follow from the pre-condition
of that goal, since i is not in s2 and thus not in the
intersection.

6.3 Soundness of Hoare-style Veri�ca-
tion for NOAL

The soundness of the Hoare logic for NOAL and the
method for verifying NOAL programs given above
are proved in this section. The logic and veri�ca-
tion method reach valid conclusions when the speci-
�cation's � relation is a subtype relation. The key to
the soundness proof is the existence of an algebra and
a simulation that are guaranteed by the de�nition of
subtype relations.
There are several lemmas used in the soundness

proof. The �rst set of lemmas shows that assertions
can be lifted to supertypes and remain valid. The sec-
ond set of lemmas shows that truth is preserved by
simulation for subtype-constraining assertions. The
third set of lemmas shows that subtype-constraining
assertions provable from the traits of a speci�cation
are valid even in environments that admit subtyping.
Finally the fourth set of lemmas establishes soundness
by induction on the length of proof in the Hoare logic.

6.3.1 Assertions can be Lifted

The main lemma of this section states that if a for-
mula is valid, then it remains valid when one changes
the types of some of the identi�ers to supertypes of
their initial types. The proviso is that the formula
must still sort-check when the types of the identi�ers
are changed. It is technically convenient to regard the
process as moving renamings from the formula into
the environment; that is, if the formula (renamed with
subtypes for the identi�ers), is modeled by the environ-
ment, then the environment (extended by binding the
previous values to identi�ers at the supertype) models
the unrenamed formula.
In essence, the main lemma holds because the re-

sult of a speci�cation function does not depend on the
nominal type of an argument. This is shown formally
in the following lemma.
The notation �[�(~v)=~x] means the environment � ex-

tended by simultaneously binding the identi�ers xi to
�(vi), for all i.

Lemma 6.3.1. Let SPEC be a set of type speci�-
cations. Let � be the presumed subtype relation of
SIG(SPEC). Let C be a SPEC -algebra. Let X be
a set of identi�ers containing ~x : ~T. Let Y be a set
of identi�ers containing ~v : ~S such that ~S � ~T and
Y [fxi : Tigi � X . Let Q be a SIG(SPEC)-term with
free identi�ers from X . Let � : Y ! jCj be a proper
SIG(SPEC)-environment.
Then

�[[Q[~v=~x]]] = �[�(~v)=~x][[Q]]:

55

Proof: (by induction on the structure of terms.)
For the basis, suppose that Q is a nullary speci�ca-

tion function or an identi�er. In the former case, the
value of Q does not depend on the environment. In
the latter case, the result follows because of the way
the environments are set up. That is, if Q is x, then

Q[v=x] = v (6.47)

�[[v]] = �(v) (6.48)

�[�(v)=x][[Q]] = �(v): (6.49)

For the inductive step, assume that the lemma holds
for all subterms of Q. There are two cases.

� Suppose Q has the form f(~E), where \f" is a spec-
i�cation function. Then by the de�nition of the
extended environment and the inductive hypoth-
esis:

�[[f(~E)[~v=~x]]] = fC(�[[~E[~v=~x]]]) (6.50)

= fC(�[�(~v)=~x][[~E]]) (6.51)

= �[�(~v)=~x][[f(~E)]]: (6.52)

� Suppose Q has the form E1 = E2. By de�nition
of substitution, the extended environment and the
inductive hypothesis:

�[[(E1 = E2)[~v=~x]]]

= �[[E1[~v=~x] = E2[~v=~x]]] (6.53)

=

8<
:

true if �[[E1[~v=~x]]]
= �[[E2[~v=~x]]]

false otherwise
(6.54)

=

8<
:

true if �[�(~v)=~x][[E1]]

= �[�(~v)=~x][[E2]]
false otherwise

(6.55)

= �[�(~v)=~x][[E1 = E2]]: (6.56)

The following lemma is the \main lemma" of this
section.

Lemma 6.3.2. Let SPEC be a set of type speci�-
cations. Let � be the presumed subtype relation of
SIG(SPEC). Let C be a SPEC -algebra. Let X be
a set of identi�ers containing ~x : ~T. Let Y be a set
of identi�ers containing ~v : ~S such that ~S � ~T and
Y [fxi : Tigi � X . Let Q be a SIG(SPEC)-assertion
with free identi�ers from X . Let � : Y ! jCj be a
proper SIG(SPEC)-environment.
If (C; �) j= Q[~v=~x], then (C; �[�(~v)=~x]) j= Q.

Proof: Suppose (C; �) j= Q[~v=~x]. By de�nition,
�[[Q[~v=~x]]] = true. By the above lemma,

�[[Q[~v=~x]]] = �[�(~v)=~x][[Q]]: (6:57)

So by de�nition, (C; �[�(~v)=~x]) j= Q.

6.3.2 Simulation is Preserved by Subtype-
Constraining Assertions

The following lemmas describe the relationship be-
tween simulation and validity for subtype-constraining
assertions. The �rst lemma says that simulation is
preserved by subtype-constraining terms. The second
specializes the �rst lemma to assertions.
The �rst lemma is analogous to the fundamental

theorem of logical relations for speci�cation functions.
Environments are related pointwise. Given �-

environments �B : X ! jBj and �A : X ! jAj, the
notation �B R �A means that for all sorts T, for all
x : T 2 X , �B(x)RT �A(x).

Lemma 6.3.3. Let � be a signature. Let C and A
be a �-algebras. Let X be a set of identi�ers. Let S
be a sort of �. Let Q be an term with free identi�ers
from X and nominal sort S.
If Q is subtype-constraining, R is a �-simulation

relation between C and A, and �C : X ! jCj and
�A : X ! jAj are environments such that �C R �A,
then

�C [[Q]]RS �A[[Q]]:

Proof: (by induction on the structure of terms).
For the basis there are two cases. If Q is an identi�er

x : S, then by hypothesis �C(x) RS �A(x). If Q is a
nullary speci�cation function, then by the substitution
property for speci�cation functions, �C [[Q]]RS �A[[Q]].
For the inductive step, assume that the result holds

for all subterms of Q. There are also two cases.
If Q has the form f(~E), then by the inductive hy-

pothesis, for each of the Ei, if the nominal sort of Ei is
Si, then �C[[Ei]]RSi �A[[Ei]]. Thus the result follows by
the substitution property for speci�cation functions.
If Q has the form E1 = E2, then since Q is subtype-

constraining, E1 the nominal sort of E1 is a visible
sort, say T. By the inductive hypothesis, for each of
the Ei, �C [[Ei]]RT �A[[Ei]]. Since T is visible, RT is
the identity on T. Since there can be no subtypes of
a visible type, for each of the Ei, �C [[Ei]] = �A[[Ei]].
So if �C[[E1]] = �C [[E2]], then �A[[E1]] = �A[[E2]] and if
�C[[E1]] 6= �C[[E2]], then �A[[E1]] 6= �A[[E2]].
An important consequence of the above lemma is

that if one environment simulates another, then the
same set of subtype-constraining assertions is valid in
each.

Lemma 6.3.4. Let � be a signature. Let C and A
be a �-algebras. Let X be a set of identi�ers. Let Q
be a �-assertion with free identi�ers from X .
If Q is subtype-constraining, R is a �-simulation

relation between C and A, and �C : X ! jCj and
�A : X ! jAj are environments such that �C R �A,
then (C; �C) j= Q if and only if (A; �A) j= Q.

Proof: Suppose Q is subtype-constraining,R is a �-
simulation relation between C and A, and �C : X !
jCj and �A : X ! jAj are environments such that
�C R �A. Since Q is an assertion, its nominal sort is
Bool. So by lemma 6.3.3,

�C[[Q]]RBool �A[[Q]]: (6:58)

But RBool is the identity, so either both �C [[Q]] and
�A[[Q]] are true or neither is.

56

6.3.3 Provable and Subtype-Constraining As-
sertions are Valid

Assertions provable from the traits of a speci�cation
are only required to be valid in nominal environments,
since that is the \standard de�nition of satisfaction"
for traits. The following lemma shows that subtype-
constraining assertions that are provable from a spec-
i�cation are valid in all environments, even those that
admit subtyping, provided the presumed subtype re-
lation is really a subtype relation.
The restriction to subtype-constraining assertions is

necessary, since properties of a supertype that are not
subtype-constraining may not hold for a subtype. An
example is the following assertion, where s : IntSet:

isEmpty(s)) s = fg: (6:59)

The above assertion is provable from the trait IntSet-
Trait, which describes the abstract values of type
IntSet, but it does not hold for environments where s
may denote a PSchd object (since the abstract values
of PSchd objects are pairs).

Lemma 6.3.5. Let SPEC be a set of type speci�-
cations. Let X be a set of identi�ers. Let Q be a
SIG(SPEC)-assertion with free identi�ers from X .
If Q is subtype-constraining, SPEC ` Q, and � is

a subtype relation on the types of SPEC , then for
all SPEC -algebras C and for all proper SIG(SPEC)-
environments �C : X ! jCj, (C; �C) j= Q.

Proof: Suppose that SPEC ` Q and that � is a
subtype relation.
Let C be a SPEC -algebra. Let �C : X ! jCj, be a

proper SIG(SPEC)-environment.
By de�nition of subtype relations, there is some

SPEC -algebra A such that there is a SIG(SPEC)-
simulation relation, R, between C and A. Construct
a nominal environment �A : X ! jAj so that for each
type T and for each x : T 2 X ,

�A(x) 2 TA (6.60)

�C(x) RT �A(x): (6.61)

It is always possible to build such a nominal environ-
ment, because of the coercion properties of the simula-
tion R, which guarantee that each object of a subtype
of T simulates some object of type T. (That �C(x) 2 SC

for some S � T is guaranteed by the de�nition of a
SIG(SPEC)-environment.)
Since SPEC ` Q, and �A is nominal, by de�nition

of when an algebra satis�es its traits,

�A[[Q]] = true: (6:62)

Hence (A; �A) j= Q.
Since Q is subtype-constraining, by Lemma 6.3.4,

(C; �C) j= Q.

6.3.4 Soundness Theorems

The following lemma is the essential step in proving
soundness for the Hoare logic. It says that if some
Hoare-triple is provable, then it is valid. Soundness
follows directly.

The lemma's proof is by induction on the length of
proof in the Hoare logic. The interesting cases are the
axiom schemes [mp-a], and the rules [comb] and [carry]
since these are the rules where there is a substantial
di�erence from standard Hoare logics. The soundness
of the [mp-a] and [comb] rules relies on the simula-
tion that is implicit in a subtype relation. The proof
of the rule [carry] relies on the lack of mutation and
assignment in NOAL.

Lemma 6.3.6. Let (SPEC ;FSPEC) be a pair of type
and function speci�cation sets. Let � be the presumed
subtype relation of SIG(SPEC).
Suppose � is a subtype relation on the types of

SPEC .
Then for all Hoare-triples for (SPEC ;FSPEC), if

(SPEC ;FSPEC) ` P fy : T Eg Q;

then

(SPEC ;FSPEC) j= P fy : T Eg Q:

Proof: (by induction on the length of proof in the
Hoare logic.)
Let P fy : T Eg Q be a Hoare-triple. Suppose

that

(SPEC ;FSPEC) ` P fy : T Eg Q: (6:63)

Let X be a set of identi�ers such that X contains
all the free identi�ers of P and E and Q except y.
For each function identi�er f in the domain of

SIG(FSPEC), let F [[f]] be a function denotation with
signature SIG(FSPEC)(f) such that F [[f]] satis�es the
speci�cation of f with respect to SPEC . To �nd the
set of possible results of a NOAL expression with free
function identi�ers one needs an environment that is
de�ned on the function identi�ers in FSPEC . Given
an environment � over an algebra C, the desired envi-
ronment is constructed by extending � so that for each
function identi�er f , �(f) = F [[f]](C). Since this ex-
pansion is unique, to avoid notational complications,
the expansion is not mentioned below.
By Lemma 5.3.3, the type of each possible result is

a subtype of the result identi�er of the Hoare-triple.
For the basis, the result must be shown for each of

the axiom schemes. For these cases, let C be a SPEC -
algebra and �C an appropriate �-environment.

� Suppose the proof consists of an instance of the
axiom scheme [ident]

` true fv xg v = x:

It is trivial that (C; �C) j= true. By de�nition,
M[[x]](C; �C) = f�C(x)g. Since �C is proper �C(x)
is also proper. Therefore, (C; �C[�C(x)=v]) j= v =
x.

� Suppose the proof consists of an instance of the
axiom scheme [bot]

` false fv bottom[T]g true:

Then the result follows trivially, since �C does not
model the pre-condition \false."

57

� Suppose the proof consists of an instance of the
axiom scheme [mp-a]:

` Pre(g;~S) fy : T g(~x)g Post(g;~S):

where T = ResSort(g;~S).

Suppose that (C; �C) j= Pre(g;~S).

Since� is a subtype relation, there is some SPEC -
algebra A, such that there is a SIG(SPEC)-
simulation relation, R, between C and A. Con-
struct a nominal environment �A : X ! jAj so
that for each type U and for each x : U 2 X ,

�A(x) 2 UA (6.64)

�C(x) RU �A(x): (6.65)

It is always possible to build such a nominal envi-
ronment, because of the coercion properties of the
simulation R, which guarantee that each object
of a subtype of U simulates some object of type U.
(That �C(x) 2 VC for some V � U is guaranteed
by the de�nition of a SIG(SPEC)-environment.)

Since the assertion Pre(g;~S) must be subtype-
constraining, by Lemma 6.3.4

(A; �A) j= Pre(g;~S): (6:66)

By de�nition of NOAL,

M[[g(~x)]](C; �C) = gC(�C(~x)) (6.67)

M[[g(~x)]](A; �A) = gA(�A(~x)): (6.68)

By construction of �A, �C(~x)R~S
�A(~x), and thus

by the substitution property of simulation rela-
tions (see Figure 6.5):

8(q 2 gC(�C(~x)))9(r 2 gA(�A(~x)))qRT r: (6:69)

Since �A is a nominal environment, by de�nition
of when an operation satis�es its speci�cation, for
all possible results r 2 gA(�A(~x)), r 6= ? and
(A; �A[r=y]) j= Post(g;~S). SinceRT is bistrict, for
all q 2 gC(�C(~x)), q 6= ?. Finally, since Post(g;~S)
is subtype-constraining, for each q 2 gC(�C(~x))
there is some r 2 gA(�A(~x)) such that q RT r,
and since all such r satisfy the post-condition,
(C; �C[q=y]) j= Post(g;~S) by Lemma 6.3.4.

� Suppose the proof consists of an instance of the
axiom scheme [fcall-a]:

` Pre(f ;~S) fy f(~x)g Post(f ;~S):

Suppose that (C; �C) j= Pre(f ;~S). By hypoth-
esis, f satis�es its speci�cation with respect to
SPEC . So by de�nition for all possible results
r 2 M[[f(~x)]](C; �C), r 6= ? and (C; �C[r=y]) j=
Post(f ;~S).

For the inductive step, suppose that the result holds
for all proofs of length less than n. Consider a proof
of length n > 1. The last step of the proof must be
either an axiom or the conclusion of an inference rule.
The axioms were covered above, so it remains to deal
with each of the rules of inference. Since all the con-
clusions of the rules of inference have a similar form
the following conventions are established here to avoid
repetition in each case. Let the nominal type of the
expression (E) be T. Let C be a SPEC -algebra and �C
an appropriate environment.

� Suppose the last step is the conclusion of the rule
[mp-b]:

` P
n
y g(~E)

o
Q:

The hypothesis of this rule

` P
n
y (fun (~x : ~S) g(~x)) (~E)

o
Q

must therefore appear in an earlier step. Since by
de�nition of NOAL,

M[[g(~E)]](C; �C)

= M[[(fun (~x : ~S) g(~x)) (~E)]](C; �C)(6.70)

the result follows.

� Suppose the last step is the conclusion of the rule
[fcall-b]. Then the claim follows as for the rule
[mp-b].

� The proof for [comb] is complex, so the following
overview may serve as a guide to the details. The
idea is that each possible result qi of the actual ar-
gument expression Ei satis�es (by the inductive
hypothesis) the condition (Ri[vi=xi])[~x=~z]. The
renamings are shifted into the environment, so
the assertions Ri characterize the formals of the
function abstract. Then the inductive hypothe-
sis is used to show that the possible results of
the body E0 satisfy the renamed post-condition
Q[~z=~x]. These renamings are also shifted into the
environment, and then the renamings in the en-
vironment are manipulated to express the desired
result.

Suppose the last step is the conclusion of the rule
[comb]:

` P

�
y

(fun (~x : ~S) E0)

(E1; . . . ; En)

�
Q:

Suppose (C; �C) j= P .

There must be some earlier step in the proof of
the form

` R1 & � � � &Rn fy E0g Q[~z=~x] (6:71)

where the ~z : ~S are not free in P or Q, and none
of the xi is y. By the inductive hypothesis, the
above Hoare-triple is valid; that is:

(SPEC ;FSPEC) j=
R1 & � � � & Rn

fy E0g
Q[~z=~x]

: (6:72)

58

-

- Post(g;~S)Pre(g;~S)

gC

gA

q�C(~x)

�A(~x) r

6 6
R~S RT

Figure 6.5: Soundness of the message passing axiom scheme.

For each i from 1 to n, there are earlier steps in
the proof of the form:

` P fvi Eig (Ri[vi=xi])[~x=~z]:

By the inductive hypothesis, this Hoare-triple is
valid in (C; �C). Since (C; �C) j= P by hypothesis,
for all possible results qi 2M[[Ei]](C; �C), qi 6= ?,
and (C; �C[qi=vi]) j= (Ri[vi=xi])[~x=~z]. Let ~q be a
tuple of the qi that are possible results of the Ei.
By the above (C; �C) j= (Ri[vi=xi])[~x=~z], and thus

(C; �C)

j=
(R1[v1=x1])[~x=~z]
& � � � &
(Rn[vn=xn])[~x=~z]

(6.73)

By Lemma 6.3.2,

(C; �C[�C(~x)=~z])

j= R1[v1=x1] & � � � & Rn[vn=xn] (6.74)

and applying Lemma 6.3.2 again:

(C; (�C[�C(~x)=~z])[�C(~v)=~x])

j= R1 & � � � &Rn: (6.75)

Notice that these bindings place the values of the
outer xi variables in the fresh zi and then the vi
in the xi. Let �C 0 be the environment de�ned by

�C
0 def= (�C [�C(~x)=~z])[�C(~v)=~x]: (6:76)

Since formula 6.72 holds, it follows that for all
r 2 M[[E0]](C; �C0), r 6= ? and (C; �C 0[r=y]) j=
Q[~z=~x].

Let �C 00 be de�ned by

�C
00 def= �C

0[r=y]: (6:77)

Now by Lemma 6.3.2, the renamings on Q can be
moved to the environment, hence:

(C; �C
00[�C

00(~z)=~x]) j= Q (6:78)

Since y is not the same as any of the xi, �C 00(~z) =
�C 0(~z), and the binding of ~z to �0(~x) can be inter-
changed with the binding of y to r:

�C
00[�C

00(~z)=~x] = (�C
0[�C

0(~z)=~x])[r=y]: (6:79)

By construction �C 0(~z) = �C(~x). Furthermore, if
one extends an environment �rst with one binding
for a variable and then with another binding for
the variable, then the �rst extension no longer has
any e�ect. Therefore,

�C
0[�C

0(~z)=~x]

= �C
0[�C(~x)=~x] (6.80)

= ((�C [�C(~x)=~z])[�C(~v)=~x])[�C(~x)=~x] (6.81)

= (�C [�C(~x)=~z])[�C(~x)=~x] (6.82)

= �C [�C(~x)=~z]: (6.83)

So it follows from the above that

(C; (�C[�C(~x)=~z])[r=y]) j= Q: (6:84)

Since the zi are fresh, they do not appear free in
Q, and thus

(C; �C[r=y]) j=Q: (6:85)

By the de�nition of NOAL,

M[[(fun (~x : ~S) E0) (~E)]](C; �C)

=
[

~q2M[[~E]](C;�C)

M[[E0]](C; �C[~q=~x]): (6.86)

Hence each r above is in the denotation of the
combination.

� Suppose the last step is the conclusion of the rule
[if]:

` P fy if E1 then E2 else E3 fig Q:

Suppose (C; �C) j= P .

There must be an earlier step in the proof of the
form

` P fv E1g true: (6:87)

59

So by the inductive hypothesis, for all r1 2
M[[E1]](C; �C), r1 6= ?.

Since E1 has nominal type Bool and no other
types are related to Bool by �, each r1 must have
type Bool.

There must be an earlier step in the proof of the
form

` P & R1 fv E1g v = true: (6:88)

By the inductive hypothesis, if (C; �C) j= P &R1,
then M[[E1]](C; �C) = ftrueg. Furthermore,
there must be an earlier step in the proof of the
form

` P & R1 fy E2g Q: (6:89)

So if (C; �C) j= P & R1, then for all r2 2
M[[E2]](C; �C), r2 6= ? and (C; �C[r2=y]) j=Q.

There must also be earlier steps in the proof of
the form

` P &R2 fv E1g v = false (6.90)

` P &R2 fy E3g Q: (6.91)

As above, if (C; �C) j= P & R2, then for all r3 2
M[[E3]](C; �C), r3 6= ? and (C; �C[r3=y]) j=Q.

There must also be earlier steps in the proof of
the form

` P & R3 fy E2g Q (6.92)

` P & R3 fy E3g Q: (6.93)

So if (C; �C) j= P & R3, then for all

r23 2M[[E2]](C; �C) [M[[E3]](C; �C);

r23 6= ? and (C; �C[r23=y]) j= Q.

Finally, there must be an earlier step in the proof
of the form

SPEC ` (R1jR2jR3) = true: (6:94)

Since (C; �C) j= P , it follows that for some i from
1 to 3, (C; �C) j= P&Ri. Let r be a possible result
of the if expression in (C; �C); that is suppose
that

r 2
[

r12M[[E1]](C;�C)

8>>>>>><
>>>>>>:

M[[E2]](C; �C)
if r1 = true

M[[E3]](C; �C)
if r1 = false

f?g
otherwise

(6:95)
Then r 6= ?, because by the above, the only pos-
sible results of E1 are either true or false. Fur-
thermore, for each i such that �C[[P &Ri]] = true,
r 6= ? and (C; �C[r=y]) j= Q by the above.

� Suppose the last step is the conclusion of the rule
[erratic]:

` P
�
y E1 E2

	
Q:

Suppose (C; �C) j= P . There must be earlier steps
in the proof of the form:

` P fy E1g Q (6.96)

` P fy E2g Q: (6.97)

Each possible result of E1 E2 is a possible result
of either E1 or E2. By the inductive hypothesis
for each possible result r of either E1 or E2 in
(C; �C), r 6= ? and (C; �C[r=y]) j= Q.

� Suppose the last step is the conclusion of the rule
[angelic]. Then the result follows as for the rule
[erratic], since each possible result of E1 5 E2 is
a possible result of either E1 or E2.

� Suppose the last step is the conclusion of the rule
[isDef]:

` P fy isDef?(E)g y = true:

Suppose (C; �C) j= P . There must be an earlier
step in the proof of the form

` P fy Eg true:

By the inductive hypothesis, for all r 2
M[[E]](C; �C), r 6= ?. Therefore, by de�nition
of NOAL,M[[isDef?(E)]](C; �C) = ftrueg. Fur-
thermore, since true is the only possible result it
only remains to show that (C; �C[true=y]) j= y =
true, which is trivially true.

� Suppose the last step is the conclusion of the rule
[conseq]:

` P fy Eg Q:

Suppose (C; �C) j= P .

There must be steps in the proof of the form
SPEC ` P) P1 and SPEC ` Q1) Q. In
general, P1 and Q1 may have more free identi-
�ers than P and Q. For example, the formula
\true) i = i" and its converse are both valid.
Let ~z : ~S be a tuple of all the free identi�ers of
P1 and Q1 except for the result identi�er y : T
that are not in X (i.e., that are not in the do-
main of �C). Let ~q 2 ~SC be a tuple of proper
elements. Since SPEC ` P) P1 and since P
and P1 are subtype-constraining, by Lemma 6.3.5,
(C; �C[~q=~z]) j= P) P1. Since (C; �C[~q=~z]) j= P ,
it follows that

(C; �C[~q=~z]) j= P1: (6:98)

There must also be a step in the proof of the form
` P1 fy Eg Q1. By the inductive hypothesis
and the above, for all r 2M[[E]](C; �C[~q=~z]), r 6=
?, and

(C; (�C[~q=~z])[r=y]) j= Q1: (6:99)

Since Q and Q1 are subtype-constraining, by
Lemma 6.3.5, (C; (�C[~q=~z])[r=y]) j= Q1) Q and
thus

(C; (�C[~q=~z])[r=y]) j=Q: (6:100)

Since the zi are not free in Q,

(C; �C[r=y]) j= Q: (6:101)

60

� Suppose the last step is the conclusion of the rule
[equal]:

` P fy Eg M [y=z] =M [N=z]:

where y; z : T. Suppose (C; �C) j= P . There
must be an earlier step in the proof of the form
` P fy Eg y = N . By the inductive hypothe-
sis, for all r 2M[[E]](C; �C), r 6= ? and

(C; �C[r=y]) j= y = N: (6:102)

Therefore for all such r, r = �C [r=y][[N]], and thus

(C; �C[r=y]) j=M [y=z] =M [N=z]: (6:103)

� Suppose the last step is the conclusion of the rule
[carry]:

` P fy Eg P &Q:

Suppose (C; �C) j= P . There must be an earlier
step in the proof of the form

` P fy Eg Q:

By the inductive hypothesis, for all r 2
M[[E]](C; �C), r 6= ? and

(C; �C[r=y]) j=Q: (6:104)

Since (C; �C) j= P , and y is not free in P :

(C; �C[r=y]) j= P: (6:105)

Therefore,

(C; �C[r=y]) j= P &Q: (6:106)

� Suppose the last step is the conclusion of the rule
[rename]:

` P fy Eg Q:

Since the identi�ers ~z are fresh, the possible re-
sults of E[~z=~x] in �C[�C(~x)=~z] are the same as the
possible results of E in (C; �C).

In the above lemma, it was assumed that the NOAL
functions from the surrounding program satis�ed their
speci�cations. By making such an assumption, the
above result can be used to show the soundness of
the Hoare logic for proving the partial correctness of
NOAL programs and recursively de�ned NOAL func-
tions. Since the treatment of veri�cation of recursive
functions is standard, the partial correctness of recur-
sive functions is not formally proved below. Such a
proof would proceed by �xedpoint induction, but since
there are three �xedpoint constructions used to de�ne
the semantics of recursively de�ned NOAL functions
(due to the use of erratic and angelic choice, see Ap-
pendix C), the proof is complex and outside the scope
of this report.
The following corollary is the soundness result for

program veri�cation. It is a trivial consequence of the
above lemma and Lemma 5.3.4, which says that the
possible results of a type-safe NOAL program must be
instances of subtypes of the program's nominal type.
This connection to the type system of NOAL is ex-
plored further below.

Corollary 6.3.7. Let p be a program speci�cation
with pre-condition R and post-condition Q and nom-
inal result type S. Let (SPEC ;FSPEC) be a pair
of type and function speci�cation sets. Let � be
the presumed subtype relation of SIG(SPEC). Let

P be the NOAL program ~F; program (~x : ~T):S =E

where ~F is a system of mutually recursive NOAL
functions whose names and nominal signatures match
SIG(FSPEC).
Suppose that � is a subtype relation on the types

of SPEC and the denotation of each function in ~F
satis�es its speci�cation with respect to SPEC . If
(SPEC ;FSPEC) ` R fy Eg Q, then the program
P satis�es the speci�cation p with respect to SPEC .

6.4 Modularity

The soundness results of the previous section do not
completely vindicate the claim that the Hoare logic al-
lows modular reasoning. The soundness result shows
that one can, for a given set of type speci�cations, rea-
son about a function or program using nominal type
information without explicitly considering subtypes.
Yet modularity demands that such veri�cations still
be valid when new subtypes are added to a program.
The precise notion of extension is given in the follow-
ing de�nition.

De�nition 6.4.1 (extends).
Let SPEC 1 and SPEC 2 be sets of type speci�cations.
The set SPEC 2 extends SPEC 1 if and only if the
type speci�cations SPEC 1 are included in SPEC 2 and
SIG(SPEC 1) is a subsignature of SIG(SPEC 2)

The requirement that the original signature be a
subsignature of the extension's guarantees that no new
subtype relationships are added between the original
types, and that the nominal result types of existing
expressions must be subtypes of their original types.
The following lemma and its corollary shows that

the veri�cation of expressions is modular. It states
that a veri�cation using an smaller set of speci�ca-
tions necessarily is a veri�cation using an extended set
of speci�cations. In other words, the extended set's
theory includes the smaller's theory.

Lemma 6.4.2. Let SPEC 1 and SPEC 2 be sets of
type speci�cations. Let FSPEC be a set of function
speci�cations whose base speci�cation set is contained
in SPEC 1.
Suppose that the set of type speci�cations SPEC 2

extends the set SPEC 1. Then for all Hoare-triples for
(SPEC 1;FSPEC), if

(SPEC 1;FSPEC) ` P fy Eg Q;

then

(SPEC 2;FSPEC) ` P fy Eg Q:

Proof: Suppose that

(SPEC 1;FSPEC) ` P fy Eg Q: (6:107)

Since SPEC 2 extends SPEC 1, each axiom of the pair
(SPEC 1;FSPEC) is an axiom of (SPEC 2;FSPEC).

61

Since the signature SIG(SPEC 1) is a subsigna-
ture of SIG(SPEC 2), by Lemma 5.3.1, the nominal
type of each NOAL expression E with respect to
SIG(SPEC 1) and SIG(FSPEC) is a supertype of the
nominal type of the expression E's nominal type with
respect to SIG(SPEC 2) and SIG(FSPEC). So each
Hoare-triple for (SPEC 1;FSPEC) is a Hoare-triple for
(SPEC2;FSPEC).
It must also be checked that the type constraints

of the Hoare-logic's inference rules are satis�ed. The
actual arguments ~E in the inference rules [mp-b] and
[fcall-b] have types ~� with respect to SIG(SPEC 1) and
SIG(FSPEC), and ~� �1 ~S, where �1 is the presumed
subtype relation of SIG(SPEC 1). By Lemma 5.3.1,

the nominal types of the actual arguments ~E must
be some ~� �2 ~�. Since �1��2, ~� �2 ~S. The type
constraints on the inference rules [equal] and [rename]
only ensure that the nominal sorts of certain identi�ers
are the same. Therefore the proof for the triple is a
proof in (SPEC 2;FSPEC).
The following corollary states that an expression

veri�cation done with a smaller speci�cation is valid
for an extended speci�cation, if the presumed subtype
relation on the extended speci�cation satis�es the se-
mantic constraints for subtype relations. The proof is
direct from the above lemma and Lemma 6.3.6.

Corollary 6.4.3. Let SPEC 1 and SPEC 2 be sets of
type speci�cations. Let FSPEC be a set of function
speci�cations whose base speci�cation set is contained
in SPEC 1.
Suppose that SPEC 2 extends SPEC 1. Suppose that

the presumed subtype relation �2 of SIG(SPEC 2) is
a subtype relation on the types of SPEC 2. Then for
all Hoare-triples for (SPEC 1;FSPEC), if

(SPEC 1;FSPEC) ` P fy Eg Q;

then

(SPEC 2;FSPEC) j= P fy Eg Q:

The story for modularity is not, however, as simple
as the above corollary would indicate. The compli-
cation is that the implementations of NOAL functions
are veri�ed using the smaller type speci�cation set but
not reveri�ed using the expanded set of type speci�-
cations. Since the veri�cation of recursively de�ned
NOAL functions using the Hoare logic only shows par-
tial correctness, knowing that proof of partial correct-
ness using the smaller speci�cation set gives a proof
of partial correctness for the expanded speci�cation
set is not enough to satisfy the conditions of Corol-
lary 6.3.7. To avoid redoing the proof of termination of
recursively de�ned NOAL functions one needs to know
that if a NOAL function satis�es its speci�cation with
respect to the smaller set of type speci�cations, then it
satis�es its speci�cation with respect to an expanded
set of type speci�cations.
The following lemma asserts that such problems

do not occur for NOAL functions, provided that the
new subtype relation satis�es the necessary semantic
constraints. The proof is the source of the restric-
tion that function speci�cations may only use subtype-
constraining assertions.

Lemma 6.4.4. Let SPEC 1 and SPEC 2 be sets of
type speci�cations. Let f be a function speci�cation
whose base speci�cation set is contained in SPEC 1.
Let f be the denotation of a NOAL function de�ni-
tion for f .
Suppose that SPEC 2 extends SPEC 1. Suppose that

the presumed subtype relation �2 of SIG(SPEC 2) is
a subtype relation on the types of SPEC 2. If f satis-
�es the speci�cation f with respect to SPEC 1, then f
satis�es the speci�cation f with respect to SPEC 2.

Proof: Suppose that f satis�es the speci�cation f
with respect to SPEC 1. Let C be a SPEC 2-algebra.
Let X be a set of identi�ers that includes the for-
mal arguments from the speci�cation of f . Let S be
the nominal result type of f . Let �C :X ! jCj be a
proper SIG(SPEC 2)-environment. Let R be the pre-
condition of f , and let Q be its post-condition and v
the formal result identi�er. Suppose that

(C; �C) j= R: (6:108)

Let q 2 f(C)(�C(~x)) be a possible result of f .
Since SPEC 2 extends SPEC 1 and since �C is a

SIG(SPEC 2)-environment, it must be that the nomi-
nal type of each xi is some Ti and each �C(xi) has a
type that Ui, such that Ui � Ti. Since �2 is a subtype
relation, there must be some SPEC 2-algebra A and
a SIG(SPEC 2)-simulation relation, R, from C to A.
Let �A be a nominal environment such that �C R �A;
such an environment can be constructed by the coer-
cion property of simulation relations. Let A0 be the
SIG(SPEC 1)-reduct of A. Since �A is nominal and
the base speci�cation of f is contained in SPEC 1, the
nominal types of the formals of the xi must be types
in SIG(SPEC 1), hence for each i, �A(xi) 2 A0.
Since f is the denotation of a NOAL function def-

inition and R is a simulation relation from C to A,
by Lemma 7.2.2, there is some possible result r 2
f(A)(�A(~x)), such that q RS r (where S is the nom-
inal result type of f). Since R is subtype-constraining,
by Lemma 6.3.4,

(A; �A) j= R: (6:109)

Since the function f satis�es its speci�cation with re-
spect to SPEC 1, and since �A(~x) is in the SPEC 1-
algebra A0,

(A; �A[r=v]) j=Q: (6:110)

Since Q is subtype-constraining and �C[q=v]R�A[r=v],
by Lemma 6.3.4,

(C; �C[q=v]) j=Q: (6:111)

The following corollary gives the modularity result
for program veri�cation. It may seem that the corol-
lary discusses adding new types to a program and then
the new types are never used, because the program is
unchanged. However, a NOAL program may take ar-
guments of any type, and so it may have an argument
whose nominal type is a supertype of a newly added
type. Hence the old program may be passed objects of
the new type, which is precisely what programmers are
concerned with. One should perhaps think of a NOAL
program in this context as an abstraction of the part
of a \real" program that processes objects after they
have been constructed from the \real" program's in-
put.

62

Corollary 6.4.5. Let p be a program speci�cation,
pre-condition R and post-condition Q and nominal re-
sult type S. Let (SPEC 1;FSPEC) be a pair of type
and function speci�cation sets. Let SPEC 2 be an ex-
tension of SPEC 1. Let �2 be the presumed subtype
relation of SIG(SPEC 2). Let P be the NOAL pro-

gram ~F; program (~x : ~T):S =E where ~F is a system
of mutually recursive NOAL functions whose names
and nominal signatures match SIG(FSPEC).
Suppose that �2 is a subtype relation on the types

of SPEC 2 and the denotation of each function in ~F
satis�es its speci�cation with respect to SPEC 1. If
(SPEC 1;FSPEC) ` R fy Eg Q, then the program
P satis�es the speci�cation p with respect to SPEC 2.

Proof: By the previous lemma, each the denotation

of each function in ~F satis�es its speci�cation with
respect to SPEC 2. Suppose that

(SPEC 1;FSPEC) ` R fy Eg Q: (6:112)

By Lemma 6.4.2, it follows that

(SPEC 2;FSPEC) ` R fy Eg Q: (6:113)

6.5 How a Type System can Aid Veri-
�cation

The aid that a type-checker can give a veri�er is dis-
cussed in this section.

6.5.1 Obedience in NOAL

For soundness of the veri�cation technique for NOAL
programs, the possible results of each expression must
be instances of a subtype of the expression's nominal
type. This property is called obedience. Fundamen-
tally, obedience is necessary to prevent functions from
being invoked outside their domains. Thus obedience
is crucial for soundness and was used in the soundness
theorems above.
Instead of checking obedience with the Hoare logic,

it is convenient to separate type checking from the rest
of the veri�cation problem. Separating type checking
from veri�cation allows the logic to be simpler than it
would be otherwise. Furthermore, type checking can
be mechanical, as in Trellis-Owl [SCB+86].
The NOAL type system can ensure obedience of

type-safe expressions over a speci�cation SPEC if the
conditions on signatures are met. See Section 5.3.

6.5.2 Veri�cation in Trellis/Owl

It is easiest to use the Hoare-style veri�cation tech-
niques described above in a statically typed object-
oriented programming language, such as Trellis/Owl
[SCB+86]. The Trellis/Owl type system was the in-
spiration for the NOAL type system, since it is static
and based on nominal signatures and a declared sub-
type relation.
Trellis/Owl limits presumed subtype relations to be

partial orders, that is re
exive, transitive, and anti-
symmetric relations on types. Although re
exive and

transitive relations are necessary for type-checking and
veri�cation, antisymmetry is not. Trellis/Owl requires
that a presumed subtype relation be antisymmetric,
because the implementation of each presumed sub-
type is also a subclass, and cyclic inheritance relation-
ships are nonsensical. However, symmetric subtype
relationships are useful. For example, consider types
HashTable and BTree. One can specify these types so
instances of these types obey a common protocol for
inserting and �nding elements and so that each is a
subtype of the other, although they can have di�erent
class operations.
The Trellis/Owl type system supports program veri-

�cation by ensuring obedience to the declared subtype
relation. If the declared subtype relation satis�es the
semantic constraints described in Chapter 4, then the
style of reasoning described above should be useful for
program veri�cation in Trellis/Owl.

6.5.3 Veri�cation in Emerald

Unlike Trellis/Owl the designers of Emerald [BHJL86]
have made the mistake of inferring subtype relation-
ships for abstract types from syntactic interfaces. Un-
fortunately, it is easy to specify types so that the bi-
nary relation that Emerald infers is not a subtype re-
lation (i.e., the inferred relation does not satisfy the
semantic constraints on subtype relations). Therefore
to ensure that every environment obeys a subtype re-
lation in an Emerald program, one has to duplicate
work that the type checker could have done.

6.5.4 Veri�cation in Smalltalk-80

Many object-oriented languages, such as Smalltalk-
80 and CLOS are not statically type-checked but
are type-checked dynamically. In Smalltalk-80, type
information is not checked during assignments, but
only on message sends. To support data abstraction,
Smalltalk-80 ensures that each object is manipulated
only by the instance operations de�ned by its class (in-
cluding those inherited from superclasses). Therefore,
when an instance operation named g is invoked on an
object q, the class that implements q must de�ne oper-
ation g; if it does not, an error occurs and is reported
to the user.
To use the above reasoning techniques on Smalltalk-

80 programs, one needs a notion of nominal type and
some way to ensure obedience to a subtype relation.
To supply Smalltalk-80 programs with a notion

of nominal type, one can annotate one's programs
with this information. The Smalltalk-80 programs in
Goldberg and Robson's book [GR83] already follow a
convention of putting type information into variable
names to aid understanding.
There are two ways to force expressions to obey a

subtype relation: dynamic or static checking. Notice
that one cannot rely on the dynamic type-checking of
Smalltalk-80 to ensure obedience, because Smalltalk-
80 only checks that an instance operation invoked on
an object q is de�ned by q's class.
Dynamic checking could use the type information

available at run-time in Smalltalk-80 programs. One
would place code in all operations to check that all the
operation's arguments have a type that is a subtype
of their nominal type. (Smalltalk-80 itself checks the
�rst or \controlling" argument, so no checking on the

63

�rst argument is needed.) A Smalltalk-80 program
with such dynamic type checks is said to be obedient
if these checks never detect an instance of some type
other than a subtype. Of course, there is no general
algorithm for deciding when a Smalltalk-80 program
is obedient.
Another way to ensure obedience would be to do

static type-checking using the nominal type informa-
tion added to programs as annotations. It should be
easy to adapt the NOAL type system to Smalltalk-80,
which would allow one to do some type checking by
hand, or to write a tool that used program annota-
tions to do static type checking.

64

Chapter 7

Observability

In this chapter the behavioral properties of subtype
relations and simulation are discussed. The results
can be thought of as another justi�cation for the de�-
nition of subtype relations given in Chapter 4, since it
is shown that subtyping prevents surprising behavior.
Thus the de�nition of subtype relations agrees with
the intuition that each instance of a subtype can be
manipulated as if it were an instance of the supertype.
The main tools for this investigation are the no-

tions of weak subtype relations and imitation. Weak
subtypes are like subtypes, and imitation is like sim-
ulation. However, weak subtyping and imitation vary
with respect to a set of observations. For example, q
might imitate r with respect to programs that only
observe them by using the message size, yet q might
not imitate r with respect to all NOAL programs. This
context dependence allows one to investigate notions of
subtyping appropriate for particular languages or lan-
guage subsets [Lea89]. It also shows how type checking
is crucial for preventing surprising behavior, since it
prevents programs from sending messages to objects to
which a subtype instance might react di�erently than
a supertype instance. (The subtype instance might do
something useful, while the supertype might just give
an error.)
The results of this section are largely independent of

the speci�cation language and the programming lan-
guage NOAL. NOAL programs are used as a notation
for observations, however.
In the rest of this chapter imitation is described �rst,

and then the relation of simulation and imitation is
discussed. Then weak subtype relations are described
and it is shown that subtyping implies weak subtyping.
The �nal discussion concerns testing and a comparison
of the two notions of subtyping.

7.1 Observations and Imitation

Intuitively, an observation is a program. Indeed, the
denotation of a NOAL program is formally an observa-
tion. A set of observations is thus like a programming
language or a subset of a programming language. For
example, the set of observations de�ned by all type-
safe NOAL programs is used often in what follows.
A behavior of an object is a result from a program

that takes the object as an argument.
The set of possible results of an observation are what

might be seen by a superhuman tester who runs the
program over and over again. This superhuman tester
is able to \observe" all possible results, even when a
possible result is nontermination (?) or when the set
of possible results is in�nite. Real testers are have
limitations that are re
ected in the ways that sets of

possible results are compared.

De�nition 7.1.1 (�-observation). Let � be a sig-
nature, and X is a set of typed identi�ers. A �-
observation with free identi�ers from X is a map-
ping that takes a �-algebra A and a �-environment
� : Y ! jAj such that X � Y , and returns a set of
possible results from A such that each possible result
has a visible type.

For example,

�(A; �) :M[[elem(x,2)]](A; �)

is a SIG(II)-observation with free identi�ers x :
IntSet that tests whether 2 is in x using the oper-
ation elem. This observation is the denotation of the
following NOAL program.

program (x:IntSet):Bool = elem(x,2)

The environment of the algebra-environment pair that
an observation takes as an argument provides a way
to access the objects to be observed.
The notion of imitation is the behavioral analog of

simulation (which is a purely algebraic notion). If q
imitates r, then q's behaviors should not be distin-
guishable from r's; that is, the behavior of q should
not surprise someone1 that expected to be observing r.
The concept of \imitation" de�ned below compares the
behaviors of algebra-environment pairs. This allows
one to discuss the behavior of several objects at a time.
In addition, algebra-environment pairs come equipped
with type assumptions about objects, since objects are
accessible from the environment only through typed
identi�ers.
For deterministic algebras, a satisfactory notion of

imitation is observable equivalence. The algebra-
environment pair (C; �C) is observably equivalent to
(A; �A) with respect to a set of observations OBS if and
only if for all observations P 2 OBS with free identi-
�ers from some subset of X , P (C; �C) = P (A; �A).
However, observable equivalence is too strong for

nondeterministic algebras. For nondeterministic alge-
bras, one algebra-environment pair should be allowed
to imitate another, even if the �rst is more determin-
istic. This corresponds to a limitation of human ob-
servers: one cannot predict which possible results will
be exhibited by a particular run of a program, hence
the lack of some possible results cannot be de�nitely
established by testing. Thus speci�cations limit the
set of possible results, but do not need to completely

1A person, not a superhuman.

65

determine the exact set of possible results of a non-
deterministic program. For example, if one speci�es
that a procedure g may return any even number, then
one should be satis�ed with an implementation of g
that can only return 4 or 8, it is not necessary for an
implementation of g to also be able to return 16.

De�nition 7.1.2 (imitates). Let � be a signature.
Let X be a set of typed identi�ers. Let OBS be a set
of �-observations with free identi�ers from X . Let C
and A be �-algebras. Let �C : X ! jCj and �A :
X ! jAj be �-environments. Then the pair (C; �C)
imitates (A; �A) with respect to OBS if and only if for
all observations P 2 OBS with free identi�ers from
some subset of X , P (C; �C) � P (A; �A).

For example, let P be the following observation

P =M[[program (x:IntSet):Int = choose(x)]]:
(7:1)

Consider II-algebras C and A and environments �C :
fx : IntSetg ! C and �A : fx : IntSetg ! A such
that

P (C; �C) = f1; 2g (7.2)

P (A; �A) = f1; 2; 3; 4g: (7.3)

Then (C; �C) imitates (A; �A) with respect to fP g, but
not vice versa.
When the set of observations is �xed, we simply say

that (C; �C) imitates (A; �A).
In general, the imitates relation with respect to a

�xed set of observations is not symmetric, as the ex-
ample above shows. It is re
exive and transitive, how-
ever.

Lemma 7.1.3. Let � be a signature. Let OBS be a
set of �-observations.
Then the imitates relation with respect to OBS is a

preorder.

On the other hand, for deterministic algebras, the
imitates relation is symmetric and the same as observ-
able equivalence.
Whenever one algebra-environment pair does not

imitate another with respect to a set of observations,
then there is some observation in that set that shows
a di�erence. However, if one thinks of running the
program that de�nes an observation in a real imple-
mentation, one might have to wait forever to \see" the
di�erence, because the di�erence may be that the pro-
gram fails to halt or that it might produce some result
nondeterministically. In the example above, (A; �A)
does not imitate (C; �C) with respect to the observa-
tion P that sends the message choose, because 3 is a
possible result from (A; �A). However, in a real im-
plementation there is no guarantee that the result \3"
will be produced in (A; �A) at any time.
The following facts about the how the imitates re-

lation depends on sets of observations are useful for
comparing di�erent programming languages. They are
similar to facts about observable equivalence studied
by others [ST85, Facts 2{3].
The �rst lemma below says that the imitates rela-

tion with respect to a larger set of observations is a
subset of the imitates relation with respect to smaller

sets of observations. As an extreme example, the imi-
tates relation with respect to the empty set of observa-
tions relates all algebra-environment pairs. In general,
adding observations may allow one to observe more
di�erences.

Lemma 7.1.4. Let � be a signature. Let OBS and
OBS 0 be sets of �-observations.
If OBS � OBS 0 and (C; �C) imitates (A; �A) with

respect to OBS , then (C; �C) imitates (A; �A) with
respect to OBS 0.

The following says that the imitates relation with
respect to a set of observations OBS is the intersection
of the imitates relations with respect to all subsets of
OBS .

Lemma 7.1.5. Let � be a signature. Let OBS =S
i2I OBS i be a set of �-observations.
If for each i 2 I, (C; �C) imitates (A; �A) with re-

spect to OBS i, then (C; �C) imitates (A; �A) with re-
spect to OBS .

7.2 Simulation as a Criteria for Imita-
tion

The goal of this section is to show that simulation is
stronger than imitation with respect to NOAL pro-
grams. This result is a justi�cation of the de�nition of
simulation; that is, simulation is preserved by NOAL
expressions and programs.
The following lemmas shows that simulation is pre-

served by NOAL programs, not just be single invoca-
tions of program operations. This property is analo-
gous to the \fundamental theorem of logical relations"
[Sta85].
The �rst lemma shows that simulation is preserved

by all type-safe NOAL expressions. This is done in
two steps. The �rst step assumes that the denotations
of NOAL functions are related by a simulation rela-
tion (in a way described below). The second lemma,
which states that the meaning of a function de�ni-
tion is appropriately related in the related algebras, is
summarized in this subsection, and proved formally in
Appendix C.
For a given algebra, the denotation of a NOAL func-

tion is a mapping from tuples of arguments to sets of
possible results. Such mappings are related by anal-
ogy to the de�nition of logical relations [Sta85] [Mit86].
That is, if R is family of sorted relations, it is extended
to the signatures of NOAL function identi�ers as fol-
lows:

R~�!�
def
= f(f1; f2) j ~qR~� ~r) f1(~q)R� f2(~r)g : (7:4)

That is, for all f1 and f2, f1 is related byR~�!� to f2 if
and only if whenever ~qR~� ~r, then for every q0 2 f1(~q),
there is some r0 2 f2(~r) such that q0R� r0. Notice that
this extension of R preserves the substitution property
of simulation relations. Since operations are not �rst-
class objects in NOAL, it is not necessary to show that
this extension has all the properties of a simulation
relation at each function signature.
To deal with NOAL expressions that have free func-

tion identi�ers, environments are allowed to map typed

66

function identi�ers to their denotations in the alge-
bra that is the environment's range (i.e., to set-valued
functions).
For brevity throughout the rest of this section, �x

a signature � and �-algebras A and B. As usual � is
such that:

� =

�
SORTS ;TYPES ;V ;�;
SFUNS ;POPS ;ResSort

�
:

Informally, the following lemma says that simulation
is preserved by NOAL expressions if it is preserved by
each recursively de�ned function.

Lemma 7.2.1. Let X be a set of typed identi�ers and
function identi�ers. Let �1 : X ! jAj and �2 : X !
jBj be �-environments.
If R is a �-simulation relation between A and B

and if �1 R �2, then for all types T and for all NOAL
expressions E of nominal type T whose free identi�ers
and function identi�ers are a subset of X ,

M[[E]](A; �1)RTM[[E]](B; �2):

Proof: (by induction on the structure of expres-
sions).
For the basis, suppose that the expression is either

an identi�er or bottom[T]. If the expression is an iden-
ti�er, then the result follows from �1 R �2. If the ex-
pression is bottom[T] for some type T, then the result
follows from the bistrictness of RT.
For the inductive step, assume that if �1 R �2, then

the denotation of each subexpression of nominal type
T in the environment �1 is related by RT to the deno-
tation of the same subexpression in the environment
�2. There are several cases (see Figures 5.1 and 5.2).

� Suppose the expression is g(~E). Since this ex-
pression has a nominal type, by the type inference
rules it must be that ~E : ~�, and ResSort(g; ~�) = T.

Let ~q 2 M[[~E]](A; �1) be given. By the inductive

hypothesis, there is some ~r 2 M[[~E]](B; �2) such
that ~q R~� ~r. Since ~q R~� ~r and R is a simulation
relation, it follows that

gA(~q)RT gB(~r): (7:5)

Therefore, for each q 2 M[[g(~E)]](A; �1) there is

some r 2 M[[g(~E)]](B; �2) such that qRT r.

� Suppose the expression is f (~E) and f is a function
identi�er with nominal signature ~S ! T. Since
this expression has a nominal type, by the type
inference rules it must be that ~E has nominal type

~� and ~� � ~S. Let ~q 2 M[[~E]](A; �1) be given.
By the inductive hypothesis, there is some ~r 2
M[[~E]](B; �2) such that ~q R~� ~r. Since ~� � ~S, by
the coercion properties of a �-simulation relation,
R~� � R~S

, and so ~qR~S
~r. Since �1R �2,

�1(f)R~S!T
�2(f); (7:6)

and thus

(�1(f))(~q)RT (�2(f))(~r): (7:7)

So, by de�nition of NOAL, for every possible

result q 2 M[[f (~E)]](A; �1) there is some r 2

M[[f (~E)]](B; �2) such that qRT r.

� Suppose the expression is (fun(~x : ~S)E0)(~E) and
that the nominal type of the entire expression is T.
Let ~q 2 M[[~E]](A; �1) be given. By the inductive

hypothesis, there is some ~r 2 M[[~E]](B; �2) such

that ~q R~� ~r, where ~� is the nominal type of ~E.
Since the expression has a nominal type, by the
type inference rules for NOAL it must be that
~� � ~S; thus ~qR~S

~r. It follows that if one binds ~x to

~q in �1 and ~x to ~r in �2, then (�1[~q=~x])R(�2[~r=~x]);
thus the result follows by the inductive hypothesis
(applied to E0).

� Suppose the expression is if E1 then E2 else
E3 fi. Since Bool is a visible type and R is V-
identical, the possible results from E1 in �1 are a
subset of those possible in �2. Therefore the result
follows from the inductive hypothesis applied to
E2 and E3.

� Suppose the expression is E1 E2. The possible
results of this expression are the union of those
from E1 and E2. Since the expression has a nom-
inal type, there is a type T that is the least upper
bound of the nominal types of E1 and E2. Let the
nominal type of E1 be S1 and the nominal type of
E2 be S2. By the inductive hypothesis, for every
possible result q of E1 in the environment �1 there
is some possible result r from E1 in the environ-
ment �2 such that q RS1 r; similarly for E2. By
the coercion properties of simulation relations, it
RS1 � RT, so qRT r; similarly for E2. Hence the
result follows.

� Suppose the expression is E1 5 E2, which has
nominal type T. The possible results of this ex-
pression are the union of those from E1 and E2,
except that ? appears only if it is a possible result
of both. This is the same as the previous case, ex-
cept that one must be careful about ?. Suppose,
for the sake of contradiction, that there was some
q inM[[E15E2]](A; �1) such that q is not related
by RT to some element of M[[E15 E2]](B; �2).
By the previous case, if M[[E1 E2]](B; �2) is the
same as M[[E15E2]](B; �2), then this would be
a contradiction; so assume that

? 62 M[[E15E2]](B; �2) (7.8)

q RT ?: (7.9)

Since RT is bistrict, q = ?. Furthermore, by
de�nition of 5, it must be that either E1 or E2
is guaranteed to terminate in B and �2. Without
loss of generality, suppose

? 62 M[[E1]](B; �2): (7:10)

67

So by the inductive hypothesis

M[[E1]](A; �1)RTM[[E1]](B; �2): (7:11)

Thus ? 62 M[[E1]](A; �1), since R is bistrict. But
then by de�nition of NOAL's angelic choice oper-
ator,

? 62 M[[E15E2]](A; �1): (7:12)

Since q = ?, the above contradicts the assump-
tion that q 2 M[[E15E2]](A; �1). Hence the re-
sult follows.

� If the expression is isDef?(E1), then the result
follows directly from the inductive hypothesis ap-
plied to E1 and the bistrictness of R.

The proof of the above lemma is the source of the
requirement that simulation relationships at a subtype
also hold at each supertype. This property guarantees
that expressions related at a subtype are also related
when a function call or a combination exploits subtype
polymorphism. For example, if E has nominal type S,
S is a subtype of T, and the function identi�er f has
nominal signature T! U, then the expression f(E) is
type-safe; furthermore, if the meanings of E in �1 and
�2 are related at type S and if the meanings of f are also
related at T ! U, then by this coercion property the
arguments are related at the nominal argument type
T, and so the results will be related at the nominal
result type U.
To show that the substitution property holds for

NOAL programs one needs to show that simulation is
preserved by recursively-de�ned NOAL functions. The
proof is involved because of NOAL's erratic and angelic
choice expressions and has therefore been relegated to
Appendix C. The idea of the proof is as follows. To
deal with functions that use only erratic choice one
uses a family of approximations, each of which is de-
terministic and that together cover the choices avail-
able to functions that use erratic choice. To deal with
angelic choice one �rst rewrites the functions, replac-
ing angelic with erratic choices and uses the limit of
the erratic choice approximations as a �rst approxima-
tion. Then one expands recursive calls in-line, obtain-
ing a series of approximations that use angelic choice
for deeper and deeper recursions. At each stage of
approximation, simulation is preserved. Simulation is
also preserved by the various limit operators. This
series of lemmas culminates in the following result.

Lemma 7.2.2. Let

fun f1(~x1 : ~S1) : T1 = E1;
...
fun fm(~xm : ~Sm) : Tm = Em

be a mutually recursive system of NOAL function def-
initions.
Suppose R is a �-simulation relation between �-

algebras A and B Then for each j from 1 to m,

F [[fj]](A)R ~Sj!Tj
F [[fj]](B): (7:13)

Proof: See Appendix C.
The main result of this section is the following the-

orem, which says that simulation is a valid criterion
for imitation. The signi�cance of the theorem is that
a simulation will not allow surprising behavior.

Theorem 7.2.3. Let � be a signature. Let � be the
presumed subtype relation of �. Let A and B be �-
algebras.
If R is a �-simulation relation between A and B,

then for all sets of typed identi�ers X , for all en-
vironments �A : X ! A, and for all environments
�B : X ! B, if �AR�B , then (A; �A) imitates (B; �B)
with respect to the set of all type-safe NOAL pro-
grams.

Proof: Suppose that R is a �-simulation relation
between A and B. Let X = f~x : ~Ug be a set of typed
identi�ers and let �1 : X ! A and �2 : X ! B be such
that �1R �2. Let P be a type-safe NOAL program of
the form:

fun f1 (~z1 : ~S1): T1 = E1;
...
fun fm (~zm : ~Sm): Tm = Em;

program (~x : ~U):T = Em.

Let Z be the set of typed function identi�ers that
contains the fj with their nominal signatures. Let
�01 : Z[X ! A and �02 : Z[X ! B be de�ned so that
for all xi 2 X , �01(xi) = �1(xi), �02(xi) = �2(xi) and for
all fj 2 Z, �01(fj) is F [[fj]](A) and �02(fj) is F [[fj]](B).
By Lemma 7.2.2, �01 R �02, since the denotations of

recursively de�ned functions are related by R. So by
Lemma 7.2.1,

M[[E]](A; �01)RTM[[E]](B; �02): (7:14)

Recall that this means that for each q 2 M[[E]](A; �01),
there is some r 2 M[[E]](B; �02) such that qRT r. Since
P is a program, the nominal type of E must be a visible
type; that is, T 2 V . By Lemma 5.3.4, each such q and
r has type T. Since Visible is the identity on the visible
types,

M[[E]](A; �01) = M[[P]](A; �1) (7.15)

M[[E]](B; �02) = M[[P]](B; �2): (7.16)

Since R is V-identical, for each q 2 M[[P]](A; �1),
there is some r 2 M[[P]](B; �2) such that q = r; that
is,

M[[P]](A; �1) �M[[P]](B; �2): (7:17)

Therefore (A; �1) imitates (B; �2) with respect to the
set of type-safe NOAL programs.

7.3 A Weaker De�nition of Subtyping
based on Imitation

As in [Lea89], it is possible to give a weaker de�nition
of subtype relations based on imitation. The advan-
tage of the following notion of \weak subtyping" is
that it is dependent on a set of observations, and can

68

thus be tailored more exactly to a given programming
language. Furthermore, weak subtyping does not de-
pend on the way that types are speci�ed; that is, the
behavior of the speci�cation functions does not have
to be preserved by a weak subtype.
Weak subtype relations are based strictly on observ-

able behavior, unlike subtype relations. The idea is
that, an instance of a subtype cannot be observed to
act di�erently than an instance of the supertype. Tech-
nically this condition is expressed by the requirement
that each environment that allows subtyping must im-
itate some nominal environment, which prevents sur-
prises from the interaction of several objects.

De�nition 7.3.1 (weak subtype relation). Let �
be a signature. Let SPEC be a nonempty collection of
�-algebras with the same SIG(B)-reduct, where B is
a �xed algebra that de�nes the visible types. Let � be
the presumed subtype relation of �. Let OBS be a set
of �-observations. Then � is a weak subtype relation
on the types of SPEC with respect to OBS if and only
if for all algebras C 2 SPEC , there is some A 2 SPEC
such that for all sets of typed identi�ers X and for all
�-environments �C : X ! jCj, there is some nominal
environment �A : X ! jAj such that (C; �C) imitates
(A; �A) with respect to OBS .

A trivial example of a weak subtype relation is the
identity relation on types; the identity relation is al-
ways a subtype relation because the imitates relation
is re
exive.

Example 7.3.2. Consider the speci�cation II. The
presumed subtype relation on II is the smallest re
ex-
ive relation on the types of II such that Interval �
IntSet. This relation � is a weak subtype relation
with respect to the following set of observations:

fM[[program (x:IntSet):Int = size(x)]]g:

To see this, let C be an II-algebra, and let �C : fx :
IntSetg ! C be a SIG(II)-environment. Let A be
an II-algebra. Let �A : fx : IntSetg ! A be de�ned
such that if �C(x) is a proper instance of Interval,
then �A(x) is an instance of IntSet or Interval such
that

sizeA(�A(x)) = sizeC(�C(x)): (7:18)

Otherwise, if �C(x) = ?, then let �A(x) = ?. Then
(C; �C) imitates (C; �2) with respect to the above set
of NOAL programs, as is easily checked.

Example 7.3.3. As a counter-example, consider a set
of type speci�cations including IntSet and Interval
such that IntSet � Interval. Call this speci�cation
II0. The relation� is not a weak subtype relation with
respect to the set of type-safe NOAL programs over the
SIG(II0). To see this, consider the observation that is
the denotation of the following NOAL program.

program (x:Interval):IntStream =

choose(x) &

(choose(x) & empty(IntStream))

When this program is applied to an II0-algebra and
a nominal environment that maps x to a proper

value of type Interval, the only possible results
are streams consisting of two identical integers (e.g.,
h2; 2i is the only possible result when the result of
create(Interval,2,3) is bound to x). However, if
this program is applied to an II0-algebra and an envi-
ronment where the IntSet with abstract value f2,3g is
bound to x, then the stream h2; 3i is a possible result.
Therefore, such an algebra-environment pair does not
imitate a nominal algebra-environment pair, and hence
this � is not a weak subtype relation.

As with the standard de�nition of subtype relations,
weak subtypes can be more deterministic and incom-
pletely speci�ed supertypes can be handled [Lea89,
Section 5.1].
Like the imitates relation, whether a binary relation

on types is a weak subtype relation varies with the
observations one makes. As a trivial example, every
binary relation on types is a weak subtype relation
with respect to the empty set of observations. One can
also show that a binary relation � such that IntSet �
Interval is a weak subtype relationship with respect
to the set of observations

fM[[program (x:Interval):Int = elem(x,2)]]g:

If a feature is added to one's programming language,
then some binary relations on types may cease to be
weak subtype relationships with respect to programs
written in the enlarged language. However, if one re-
moves a feature from a language, existing weak sub-
type relations remain valid.

Lemma 7.3.4. Let � be a signature. Let SPEC be
a set of �-algebras. Let OBS and OBS 0 be sets of
�-observations.
If OBS � OBS 0, then all weak subtype relations on

the types of SPEC with respect to OBS are also weak
subtype relations with respect to OBS 0.

One way to handle an enlarged programming lan-
guage is suggested by the following lemma. If one
knows that� is a weak subtype relation on the types of
SPEC with respect to OBS1, then to verify that � is
a weak subtype relation with respect to OBS1[OBS2
one merely has to verify that � is a weak subtype re-
lation with respect to OBS2.

Lemma 7.3.5. Let � be a signature. Let SPEC be a
set of �-algebras. Let OBS =

S
i2I OBS i be a set of

�-observations.
If for each i 2 I, � is a weak subtype relation on

the types of SPEC with respect to OBS i, then � is
a weak subtype relation on the types of SPEC with
respect to OBS .

Some other thoughts about how certain features of
programming languages a�ect subtype relations are
found in Chapter 9.

7.4 Subtype Relations are Weak Sub-
type Relations for NOAL

The main result of this section is a theorem that states
that each subtype relation is a weak subtype relation

69

with respect to type-safe NOAL programs. This theo-
rem guarantees that a subtype cannot exhibit surpris-
ing results in a NOAL program. Another consequence
of this theorem is that to prove that a relation is not a
subtype relation, one need only give a single program
that shows that the relation is not a weak subtype
relation.

Theorem 7.4.1. Let � be a signature. Let SPEC
be a nonempty collection of �-algebras with the same
SIG(B)-reduct, where B is a �xed algebra that de�nes
the visible types. Let � be the presumed subtype re-
lation of �.
If� is a subtype relation on the types of SPEC , then
� is a weak subtype relation on the types of SPEC
with respect to the set of type-safe NOAL programs
over �.

Proof: Suppose that � is a subtype relation. Let
C 2 SPEC be given. By de�nition of subtype rela-
tions, there is some A 2 SPEC and some �-simulation
relation R between C and A. Let X be a set of typed
identi�ers. Let �C : X ! jCj be a �-environment.
Let �A : X ! jAj be a nominal environment such that
�C R �A. The environment �A must exist, because of
the coercion property of a simulation relation. That
is, for each x : T 2 X , there is some type S � T such
that �C(x) 2 SC . By the coercion property, there is
some r 2 TA such that �C(x)R r. So let �A(x) be r.
Since �C R �A, by Theorem 7.2.3, (C; �C) imitates

(A; �A) with respect to the set of type-safe NOAL pro-
grams. So by de�nition, � is a weak subtype relation.

7.5 Discussion

7.5.1 Testing

Since each subtype relation is a weak subtype relation
with respect to NOAL programs, it follows that one
can disprove a subtype relation by showing that it is
not a weak subtype relation. That is, a test that shows
that a binary relation on types is not a weak subtype
relation automatically shows that it is not a subtype
relation. This is often easier than a direct proof.
If a test of a program that uses subtype polymor-

phism reveals an error (a surprising result), then there
can be several problems:

� the program logic is incorrect,

� the presumed subtype relation is not a subtype
relation, or

� the implementation of some type is incorrect.

However, it is not necessary to test the program's logic
using subtypes of the types explicitly mentioned in the
program. This is because the supertypes can exhibit
all the possible behaviors, subtypes can only exhibit a
subset of the behaviors of their supertypes. So if an
error can be revealed by testing, then there is some
implementation of the types explicitly used in the pro-
gram that can reveal it.

7.5.2 Comparing the two Notions of Subtyp-
ing

The notions of imitation and weak subtyping play a
crucial role in my dissertation [Lea89], where weak
subtype relations are called subtype relations. The
reasons for favoring an algebraic de�nition of subtype
relations based on simulation over a de�nition based
on observations and imitation in the present work are
the following.

� Only subtyping based on simulation is strong
enough to prove the soundness of the modular
veri�cation techniques that use nominal type in-
formation described in Chapter 6. This was true
even in my dissertation.

� The semantics of speci�cations are vastly simpli-
�ed by requiring that subtypes also interpret the
speci�cation functions of their supertypes. In con-
trast, the semantics of speci�cations in my disser-
tation are highly non-standard and considerable
e�ort is spent to show that the semantics is well-
de�ned. Even so, assertions in the speci�cations
of my dissertation must be program-observable as
opposed to merely subtype-constraining, as dis-
cussed in Chapter 3. By extending the notion
of simulation described in my dissertation to en-
compass speci�cation functions as well as program
operations, the proof of the soundness of the ver-
i�cation system becomes much simpler.

� Since the algebraic relationships of simulation and
subtype relations are not context dependent, they
are simpler, which has simpli�ed the presentation
of this report compared with my dissertation.

On the other hand, weak subtype relations may be
better for informal reasoning, since they are not de-
pendent on the way that types are speci�ed. As in
my dissertation, such informal speci�cations should be
con�ned to using program-observable assertions.

70

Chapter 8

Discussion

The discussion in this chapter covers what exten-
sions to the formal apparatus are needed for practical
applications, and future work.

8.1 Extensions Needed for Practical
Applications

At least two extensions of the results in this report
are needed if they are to be directly used in \real"
languages such as Smalltalk-80 or Trellis/Owl. These
extensions would extend the de�nition of subtype rela-
tions to other kinds of types and would give designers
a technique for proving subtype relations.
The most important extension would be to adapt

the results to languages with mutable types and alias-
ing. The algebraic models presented above are only
suited for modeling immutable types, but most object-
oriented programs make heavy use of mutation. Deal-
ing with mutation and aliasing will also complicate the
logic used for veri�cation.
Parameterized types, such as Set[T] are also not

considered above. This is not a severe limitation, how-
ever, since one can describe subtype relations and rea-
soning for instantiations of parameterized types. Still,
it would be interesting to describe the subtype re-
lationships among parameterized types more directly
and to use such relationships to derive subtype rela-
tionships on their instantiations1.

8.2 Future Work

This section describes future work in the areas of spec-
i�cation, veri�cation, and language design.

8.2.1 Future Work on Speci�cation

Inheritance of speci�cations by subtypes is attractive
and would help make a practical speci�cation lan-
guage.
Another question is whether one can factor proofs

of subtype relationships by taking advantage of con-
trolled inheritance of speci�cations. For example, if
the speci�cation of a type S incorporates the speci�-
cation of a type T, then it should be possible to take
advantage of this relationship when proving that S is
a subtype of T.
There is also work to be done in overcoming the

limitations of the speci�cation language in describing

1A related question is what kind of parameterization is nec-
essary or useful in a language with subtype polymorphism.

the e�ect of functions on subtypes. These limitations
are discussed in Chapter 3.
Finally, it would be helpful to be able to derive traits

for subtypes in a more automatic fashion.

8.2.2 Future Work on Veri�cation

An important extension to the veri�cation techniques
would be to support the veri�cation of modules that
implement abstract types (classes). There are two as-
pects to this problem. The �rst involves showing that
a class meets the speci�cation of the type it purports to
implement in the presence of subtype polymorphism.
The second aspect is how to factor the proof of cor-
rectness for a subclass to take advantage of the proof
of correctness of its superclasses.
The other side of the veri�cation problem is that of

verifying that a speci�ed relation on types is a sub-
type relation. The idea of specifying the simulation
relation along with a set of type speci�cations should
help, but a symbolic technique for this veri�cation is
needed. The direct use of the de�nition of subtype
relations, by constructing the algebras and simulation
relations, is too mathematically taxing to be generally
useful. One approach to such a result is to work with
implications between the pre- and post-conditions of
operation speci�cations (and invariants), following the
lead of Meyer [Mey88] or America [Ame89]. It might
also be useful to have a proof-theoretic de�nition of
subtype relations. That is, how can one character-
ize subtype relations using the set of valid assertions
that can be made about the objects of various abstract
types?
Another set of important questions for the veri�ca-

tion of subtype relations concerns how to prove sub-
type relationships in a modular fashion. If one adds
a new type speci�cation to an existing design, the fol-
lowing questions arise.

� What conditions on the speci�cation of the new
type will ensure that the old subtype relation is
still a subtype relation?

� What has to be shown to add new subtype rela-
tionships involving the new type to the old sub-
type relation?

8.2.3 Future Work on Language Design

One long-range project would be to design an object-
oriented programming language that would support
subtype polymorphism, subtyping, inheritance, and
program veri�cation. Such a language should have a
type system that can ensure obedience to a subtype

71

relation. However, it is too early to tell what other
features a language would need to support program
veri�cation. For example, it is not yet known what
features of an inheritance mechanism help or hinder
veri�cation.
A more modest language design project would be to

solve the name-clash (or interface control) problem for
languages with message passing mechanisms [LL85].
In a language with message passing, each object's in-
stance operations form a behavioral interface that is
analogous to the behavioral interface of an abstract
type. However, in all languages with message pass-
ing mechanisms, there is no way to change an object's
interface. Therefore each object presents the same in-
terface to all parts of a program (except for the class
that implements the object's behavior). It can be dif-
�cult and costly to combine independently designed
program parts that assume that the same instance op-
eration name means di�erent things.
Furthermore, subtyping depends on object inter-

faces. For example, a type Interval2 whose objects
behave like Intervals, but has an instance operations
named pick instead of choose will not be a subtype
of IntSet even though instances of type Interval2
otherwise behave like instances of IntSet.
A mechanism to mediate between independently de-

signed abstractions with �xed interfaces is a feature
of several languages without message passing mecha-
nisms (e.g., OBJ2 [FGJM85], Argus [LDH+87], and
Ada [Ada83]), where one can change the interface of a
type parameter. In a language with a message passing
mechanism, one wants to be able to change the inter-
faces of objects. The ability to change object interfaces
could also be exploited to provide access control for
objects [JL76] [JL78].

72

Chapter 9

Summary and Conclusions

A high-level summary of results and their signi�-
cance is o�ered in this chapter, as well as some conclu-
sions about programming and programming language
design.

9.1 Summary of Results

The twomain results in this report are a new de�nition
of subtype relations and new techniques for the modu-
lar speci�cation and veri�cation of object-oriented pro-
grams that use subtype polymorphism.
The precise de�nition of subtype relations embodies

the intuition that each instance of a subtype simulates
some instance of that type's supertypes. So programs
can manipulate instances of a subtype as if they were
instances of that type's supertypes without surprising
results.
The most important property of the de�nition of

subtype relations is that it allows abstract types to
be compared, based on their speci�cations. Techni-
cally, this is because the de�nition of subtype rela-
tions is based on the semantics of speci�cations. Most
other work on subtyping only describes subtype rela-
tionships for a �xed set of built-in types (e.g., [Car84]).
The de�nition of subtype relations also allows incom-
pletely speci�ed and nondeterministic types to be com-
pared, so it is more widely applicable than Bruce and
Wegner's de�nition [BW87a].
Simulation as de�ned in this report handles non-

determinism as follows. A nondeterministic object q
simulates an object r if q has only the behaviors that
r has; however, q may be more deterministic.
The de�nition of subtype relations takes the poten-

tial incompleteness of speci�cations into account as fol-
lows. For any given implementation of the subtype,
there must be some implementation of the supertype
such that each object of the subtype simulates some
object of the supertype, for those implementations.
This de�nition applies even to speci�cations for which
no single implementation captures all the permitted
behavior.
Modular speci�cation is ensured by requiring that

the speci�cation functions used to specify a supertype
also apply to subtypes. The meanings of such speci�-
cation functions must be preserved by subtypes.
Finally, modular veri�cation of NOAL programs is

possible because of the semantic restrictions on sub-
type relations. The veri�cation is modular in that
one can verify programs using static type information,
without explicit concern for possible subtypes. More-
over, one can add new types to a program without up-
dating the veri�cation. The only signi�cant di�erence
from standard program veri�cation is that the veri�er

must also show that the speci�ed subtype relation has
the necessary semantic properties.

9.2 Conclusions for Programmers

The signi�cance of the results in this report and
some lessons for programmers who work with object-
oriented programming languages that have message
passing are described in this section.
Subtype relations are a new tool for programmers.

Subtype relationships are similar to re�nement rela-
tionships among abstract types; the di�erence is that
the syntax of class operations does not matter for a
subtype relationship. Subtype relations are useful dur-
ing program design, where they can help track the evo-
lution of abstractions, limit the e�ects of speci�cation
changes, and group and classify related types [Lis88].
In a system like Smalltalk-80 where classes are also ob-
jects, subtype relationships among the types of classes
(metatypes) can also be used in similar ways. Subtype
relations can be used to write polymorphic speci�ca-
tions and to support careful reasoning.
Perhaps the most important lesson for programmers

is the most basic one: subtype relationships are based
on speci�ed behavior and they have nothing to do with
how a type is implemented [Sny86a]. That is, a sub-
type is not a subclass. While it is useful to record
inheritance relationships among implementations in a
subclass relation, one should organize abstract types
by a subtype relation. This distinction between sub-
classes and subtypes, when properly understood, can
be a powerful tool for separation of concerns. Sub-
type relations allow one to reason abstractly about in-
stances of abstract types.
The distinction between subtypes and subclasses is

not just academic. If one passes an argument whose
type is not a subtype of the expected formal argu-
ment type to a procedure, one has no guarantee that
the procedure will act as desired. If one uses an in-
stance of a subclass where instances of a superclass
are expected, then one's programs may behave in un-
expected ways. To prevent such problems one should
ensure that each expression denotes an object whose
type is a subtype of the expression's nominal type.
If one programs in a statically type-checked language
like Trellis/Owl, then the type system can check this
second property automatically, once it has been told
about a subtype relation.

73

9.3 Conclusions for Language Design-
ers

Some lessons for designers of new programming lan-
guages with message passing mechanisms are discussed
in this section.

9.3.1 Languages Should Have Declared Sub-
type Relations

If one is designing a type system for an object-oriented
programming language with a message passing mech-
anism, then subtype relations should be a part of that
type system. (Otherwise programs will not be able
to exploit subtype polymorphism.) Perhaps the most
important lesson for language designers is to make the
programmer declare the subtype relation for abstract
types.
The reason this lesson is so important is that the

programming language cannot, in general, �nd a non-
trivial subtype relation on the types of a program.
Most programming languages are not designed to in-
clude behavioral speci�cations as part of programs.
Each module is a speci�cation of that module's behav-
ior, but it is not the speci�cation that the programmer
worked from during design (and veri�cation). Even if
the program text included a behavioral speci�cation,
the problem of �nding a nontrivial subtype relation on
the types of a speci�cation is undecidable in general.
It seems more straight-forward to let the programmer
declare a subtype relation. Finally, a programmer may
wish to work in a subset of a full language, and thus
may only be concerned with weak subtype relations
with respect to that subset of programs.

9.3.2 TypeOf Operators Cause Problems for
Reasoning

Another lesson for language designers is that opera-
tors that tell the type of an object cause problems for
reasoning and should be avoided. This is a new twist
on an old lesson: if one wants to reason about ab-
stract types based on their speci�cations, then one's
language should only allow objects to be observed by
invoking their instance operations.
A typeOf operator returns the type of an object as a

string. For example, the program typeOf(x) will give
di�erent results in environments where x denotes ob-
jects of di�erent types. Such an operator destroys sub-
typing. It is easy to show that a weak subtype relation
with respect to the set of all programs that use typeOf
cannot relate di�erent types. So other methods must
be used to reason about parts of an implementation
that use a typeOf operator.

74

Appendix A

Summary of Notation

Notation used in earlier chapters is summarized in
this appendix. The de�nitions given in earlier chap-
ters are summarized by boolean functions (what is a
\subtype relation"?), whose signatures are given here.
Table A.1 lists some primitive domains, which are

just sets. Algebras are heterogeneous (i.e., sorted), so
one should think of Object as the disjoint union of
several sets (one for each sort). In this appendix the
carrier sets of various sorts are not distinguished for
the sake of simplicity. The notation ~q means a tuple
of objects, possibly empty.
As in Table A.1, phrases are often abbreviated. For

example, \ProgOpSym" should be read as \program
operation symbol."
The syntax of the terms in the speci�cation language

is given in Figure 3.1. The syntax of NOAL expres-
sions is given in Figure 5.1.
The following tables are organized by topic, which is

roughly by chapter, except that the syntax and seman-
tics of speci�cations and programs are treated sepa-
rately. For each topic there are one or two tables. One
table is organized like Table A.1 and describes the do-
mains related to that topic. The second table lists the
signi�cant questions (i.e., de�nitions) related to that
topic.
The following conventions are used to describe do-

mains. Each entry has the form d 2 D = E0 meaning
that d is the typical notation for an element of the
domain D, which is de�ned by E0. For example

� 2 Env = TypedIdent! Object

means that � is used to denote environments, which
are mappings from typed identi�ers to objects. The
following notations are used in describing domains.
The notation fDg means a nonempty set of elements
from the domain named D. The notation D� stands
for all �nite tuples of zero or more Ds. The notation
D1 ! D2 denotes the set of functions from a subset
of D1 to D2; that is, partial functions from D1 to D2.
The notation (D1; D2) stands for the set of all pairs
whose �rst element is from D1 and whose second ele-
ment is from D2. The notation f(D1; D2)g stands for
a binary relation between D1 and D2.
Table A.2 describes signatures, algebras and some

related operations from Chapter 2. The notation A(�),
where � is a signature, means the �-reduct of the al-
gebra A. The notation TA means the carrier set of T
in the algebra A. If q is an object, the notation q : T
means q 2 TA. The notation ~SA means a tuple of car-
rier sets, and ~q 2 ~SA means that qi 2 Si

A, for each i.
If Q and R are sets, the notation QRT R means that
for each q 2 Q there is some r 2 R such that q RT r.

The notation ~q R~S
~r means that for each i, qi RSi ri.

Table A.3 describes questions for algebras and the
de�nition of simulation relations.
Table A.4 describes the concepts used to describe

the syntax and semantics of the speci�cation language
of Chapter 3. The structure of Larch traits is not fur-
ther described. The notation � denotes the extension
of the environment � to a mapping from terms to the
elements of the carrier set of the algebra in the range
of �. If the environments � and �0 have the same do-
main, then the notation � R �0 means that for each
identi�er x : T in the domain, �(x)RT �

0(x).
Table A.5 describes the de�nitions of satisfaction

and related concepts from in Chapter 3.
Table A.6 describes the concepts used to de�ne ob-

servations in Chapter 7.
Table A.7 describes the concepts used in Chapter 5

and Appendix C to give semantics to NOAL programs
and to describe the NOAL type system. The operator
that takes the closure of a set is written as an overbar;
that is, the closure of a set Q is written Q.
Table A.8 describes the major de�nitions of Chap-

ter 5 and Appendix C.
Table A.9 describes subtype relations from Chap-

ter 4 and related concepts from Chapter 7.
Table A.10 describes the concept of a Hoare-triple

from Chapter 6 and table A.11 describes related de�-
nitions.

75

Notation for Members Name description
o, q, r 2 Object instances
S, T 2 Sort sort symbols

x, y, z 2 Identi�er identi�ers
f 2 FunIdent NOAL function identi�ers
g 2 ProgOpSym program operation symbols
f 2 SpecFunSym speci�cation function symbols

true, false 2 Bool the booleans
P , Q, R, 2 Term logical formulas

E 2 Expr programming language expressions

Table A.1: Primitive Domains

SORTS 2 SetOfSorts = fSortg
TYPES 2 SetOfTypes = fSortg

V 2 VisibleTypes = fSortg
� 2 PreordSort = f(Sort, Sort)g

SFUNS 2 SetOfSpecFunSym = fSpecFunSymg
POPS 2 SetOfProgOpSym = fProgOpSymg
OPS 2 OpSyms = fSpecFunSymg [fProgOpSymg

ResSort 2 ResultSortMap = OPS ; Sort� ! Sort

� 2 Signature =

0
@ SetOfSorts; SetOfTypes;VisibleTypes;

PreordSort; SetOfSpecFunSym;
SetOfOpSym;ResultSortMap

1
A

o; q; r 2 CarrierSet = Object
Q;R 2 SetOfPossRes = fObjectg
gA 2 Operation = Object� ! SetOfPossRes
fA 2 SpecFun = Object� ! Object

A;B; C 2 Algebra = (CarrierSet, fSpecFung, fOperationg)
A 2 TraitStruct = (CarrierSet, fSpecFung)

SPEC 2 SpecSemantics = fAlgebrag
R 2 FamilyOfRel = ff(Object, Object)gg

Table A.2: Algebras and Related Concepts

has sort? : Object, Algebra, Sort ! Bool
simulation rel? : Signature, Algebra, Algebra, FamilyOfRel! Bool

Table A.3: Questions for Algebras

76

P , Q, R 2 Assert = Term
~S! T 2 NomSig = (Sort�, Sort)

g 2 OpSpec = (ProgOpSym,NomSig,Assert,Assert)
SPEC 2 SetOfTypeSpec = (SetOfTypes, PreordSort, fTraitg, fOpSpecg)
SIG 2 SigOfSpec = SetOfTypeSpec ! Signature
x : T 2 TypedIdent = (Identi�er, Sort)

� 2 Env = TypedIdent ! Object
� 2 ExtendedEnv = Term ! Object
2 FunSpec = (FunIdent,NomSig,SetOfTypeSpec,Assert,Assert)

FSPEC 2 SetOfFunSpec = fFunSpecg
SIG 2 SigOfFunSpec = SetOfFunSpec ! (FunIdent! NomSig)

f 2 FunImpl = Algebra ! (Object� ! SetOfPossRes)

Table A.4: Speci�cations and Related Concepts

nominal? : Algebra, Env ! Bool
proper? : Env ! Bool
models? : Algebra, Env, Assert ! Bool
satis�es? : Algebra, SetOfTypeSpec ! Bool
satis�es? : FunImpl, FunSpec, SetOfTypeSpec ! Bool

Table A.5: Questions for Speci�cations

P 2 Observation = Algebra, Env ! SetOfPossRes
OBS 2 SetOfObs = fObservationg

Table A.6: Observations and Related Concepts

X , Y , Z 2 SetOfIdent = fTypedIdentg
M 2 Denotation = Expr ! Observation
F 2 FunDenotation = FunDef! FunImpl

H , X 2 TypeAssumptions = fTypedIdentg
v 2 DomainOrder = f(Object, Object)g
vE 2 DomOrdForSets = f(fObjectg, fObjectg)g

Table A.7: Programming Language Concepts

nominal type? : Expr, Signature ! Sort
monotonic? : Operation ! Bool
strongly monotonic? : Operation ! Bool
continuous? : Operation ! Bool

Table A.8: Questions for Programming Language

77

subtype relation? : SpecSemantics, PreordSort ! Bool
weak subtype relation? : SpecSemantics, PreordSort, SetOfObs ! Bool
imitates? : Algebra, Env, Algebra, Env, SetOfObs ! Bool

Table A.9: Subtype Relations and Related Concepts

R, P 2 PreCond = Assert
Q 2 PostCond = Assert

P fy Eg Q 2 HoareTriple = (PreCond,Identi�er,Expression,PostCond)

Table A.10: Veri�cation Concepts

models? : Algebra, Env, HoareTriple ! Bool
valid? : SpecSemantics, HoareTriple ! Bool
provable? : SetOfTypeSpec, HoareTriple ! Bool

Table A.11: Questions for Veri�cation

78

Appendix B

Visible Types and Streams

The models of the visible types �xed by the type
speci�cation language of Chapter 3 are described in
this appendix. These types are Bool, Int and two cor-
responding stream types: BoolStream and IntStream.
The model of the type Bool is found in Figure B.1.
The model of the type Int is found in Figure B.2.
The types IntStream and BoolStream are used to

model output. The cons operation of each type is lazy;
that is, cons is not strict in its second argument. Fig-
ure B.3 is an algebraic model IntStream. The model
of BoolStream is similar and can be obtained by re-
placing Bool for Int throughout.
The carrier set of IntStream is de�ned using the

operator Stream [Bro86], de�ned as

Stream(I)
def
= fI� [(I� � f?g)[I1g; (B:1)

where

� I� denotes the set of �nite streams, which are �-
nite sequences of elements of I, such as the empty
stream hi and hi1; i2; i3i,

� I� � f?g denotes the set of partial streams,
which are �nite sequences ending in ?, such as
hi1; i2; i3;?i and the totally unde�ned stream? =
h?i, and

� I1 denotes the set of in�nite streams, such as
hi1; i2; i3; . . .i.

The de�nition of the rest operation also needs some
explanation. The rest operation is strict, as Fig-
ure B.3 shows, since all speci�cation functions are
strict. Furthermore, one should think of the rest
operation as requiring that its argument stream not
be empty, since the set of possible results of invoking
rest on an empty stream is the entire carrier set of
IntStream. Finally, note that the cons operation is
not strict in its stream argument, as this is how partial
streams are constructed.

Carrier Sets

BoolB
def
= f?; true; falseg

BoolClassB
def
= f?;Boolg

Speci�cation Functions

BoolB()
def
= Bool

trueB()
def
= true

falseB()
def
= false

:#B(b)
def
=

�
false if b = true
true if b = false

#&#B(b1; b2)
def
=

�
true if b1 = b2 = true
false otherwise

#j#B(b1; b2)
def
=

�
false if b1 = b2 = false
true otherwise

#) #B(b1; b2)
def
=

8<
:

false if b1 = true
and b2 = false

true otherwise

� #B(b1; b2)
def
=

�
true if b1 = b2
false otherwise

Program Operations

BoolB()
def
= fBoolg

trueB(Bool)
def
= ftrueg

falseB(Bool)
def
= ffalseg

notB(b)
def
= f:#B(b)g

andB(b1; b2)
def
= f#&#B(b1; b2)g

orB(b1; b2)
def
= f#j#B(b1; b2)g

Figure B.1: Model of the visible type Bool.

79

Carrier sets

IntB
def
= f?; 0; 1;�1; 2;�2; . . .g

IntClassB
def
= f?; Intg

Speci�cation Functions

IntB()
def
= Int

0B()
def
= 0

1B()
def
= 1

#+#B(i; j)
def
= i+ j

#�#B(i; j)
def
= i� j

�#B(i)
def
= �i

�#B(i; j)
def
= i � j

#:eq#B(i; j)
def
=

�
true if i = j
false otherwise

< #B(i; j)
def
=

�
true if i < j
false otherwise

� #B(i; j)
def
= #j#B(# < #B(i; j);#:eq#B(i; j))

> #B(i; j)
def
= # < #B(j; i)

� #B(i; j)
def
= # � #B(j; i)

Program Operations

IntB()
def
= fIntg

oneB(Int)
def
= f1g

addB(i; j)
def
= f#+#B(i; j)g

negB(i)
def
= f�#B(i)g

subB(i; j)
def
= f#�#B(i; j)g

mulB(i; j)
def
= f# �#B(i; j)g

equal?B(i; j)
def
= f#:eq#B(i; j)g

lt?B(i; j)
def
= f# < #B(i; j)g

Figure B.2: Model of the visible type Int.

Carrier sets

IntStreamB
def
= Stream(f0; 1;�1; . . . ; g)

IntClassB
def
= f?; IntStreamg

Speci�cation Functions

IntStreamB()
def
= IntStream

emptyB()
def
= hi

consB(s; i)
def
=

�
hii if s = hi
hi; i1; . . .i if s = hi1; . . .i

�rstB(s)
def
=

�
0 if s = hi
i1 if s = hi1; . . .i

restB(s)
def
=

8<
:
hi if s = hi
hi if s = hi;?i
hi1; . . .i if s = hi; i1; . . .i

isEmpty?B(s)
def
=

�
true if s = hi
false if s = hi1; . . .i

Program Operations

IntStreamB()
def
= fIntStreamg

emptyB(IntStream)
def
= fhig

undefinedB(IntStream)
def
= f?g

firstB(s)
def
=

8>><
>>:
f�rstB(s)g

if s 6= hi
f?; 0; 1;�1; . . .g

if s = hi

restB(s)
def
=

8>>>>>>>><
>>>>>>>>:

frestB(s)g
if s 6= hi
and s 6= hi;?i

f?g
if s = hi;?i

IntStreamB

if s = hi

consB(s; i)
def
= fconsB(s; i)g

consB(?; i)
def
= fhi;?ig

isEmpty?B(s)
def
= fisEmpty?B(s)g

Figure B.3: Model of the visible type IntStream.

80

Appendix C

Recursively-De�ned NOAL Functions

The semantics of systems of mutually recursive
NOAL function de�nitions are de�ned in this ap-
pendix. This appendix also contains the proof of the
substitution property for NOAL functions.

C.1 Semantics of NOAL Functions

The semantics of NOAL functions are discussed in-
formally in Chapter 5. Thus only the formal details
are presented here. The semantics follows Broy's dis-
cussion of the semantics of AMPL [Bro86, Page 20].
As a preliminary to the semantics, the �rst subsec-
tion below describes how the carrier sets of an algebra
are viewed as a domain, which requires an assump-
tion about the domain ordering on the carrier sets of
algebras that can be observed by NOAL programs.
In what follows, �x a signature

� =

�
SORTS ;TYPES ;V ;�;
SFUNS ;POPS ;ResSort

�
:

C.1.1 Domains and Domain Orderings

The semantics of recursive function de�nitions require
the use of a partial order v on each type's carrier set
that makes that carrier set a pointed complete partial
order (i.e., a domain).
The following de�nition of a pointed complete par-

tial order is taken from [Sch86, Page 111]. For a par-
tially ordered set D, a subset Q of D is a chain if
it is nonempty and for all q1; q2 2 Q, either q1 v q2
or q2 v q1. A complete partial order is a set D with
a partial order v, such that every chain in D has a
least upper bound in D. The least upper bound of a
chain Q � D, written lub(Q), is the smallest element
of D that is at least as large as every element of Q.
A pointed complete partial order is a complete partial
order that has a least element, ?.
From now on pointed complete partial orders will

be called domains. Of primary interest are
at do-
mains, since the semantics for recursive functions as-
sumes that each carrier set, except for the carrier sets
of the stream types, is a
at domain [Bro86, Page 7].

De�nition C.1.1 (
at domain). A domain is
at if
and only if for all elements q and r, q v r if and only
if q = r or q = ?.

As usual, the notation q < r means q v r and q 6= r.
Therefore, in a
at domain, q < r if and only if q = ?.
The assumptions about the partial order v on the

carrier set of a �-algebra A are as follows. Recall that

the semantics of the visible types is �xed by conven-
tion; that is, the same reduct is used in all algebras for
the visible types. It is assumed that Bool is a visible
type with proper elements true and false; these are
needed to de�ne if expressions. It is assumed that for
each visible type v, the carrier set of v comes equipped
with a partial order v (de�ned by convention) that
makes vA a domain with ? as its least element. It
is further assumed that the carrier set of each visi-
ble type except BoolStream and IntStream is a
at
domain. For a non-visible type T, the ordering v is
de�ned so that the carrier set of T is a
at domain.
It is assumed that proper elements of visible types are
not related by v to proper elements of other types and
vice versa. (Thus, an algebra may not contain a non-
visible type with a carrier set that directly includes
proper elements of a visible type.)
The partial ordering v for the visible types

BoolStream and IntStream is as follows. Let A be
an algebra and q; r 2 BoolStreamA. Then q v r
if and only if either q = r or q is a partial stream
whose proper elements are a pre�x of r; similarly for
IntStream [Bro86, Section 2.1].
The carrier set of A itself is a domain formed by the

union of all its carrier sets. That is, q v r in A if and
only if q and r are in the same carrier set and q v r.
(Recall that there is a single ? that is in each type's
carrier set.)
The partial order v is extended to tuples as follows:

~q v ~r if and only if for all i, qi v ri.
For sets of possible results, the ordering vE is de-

�ned so that Q vE R if for each q 2 Q there is some
r 2 R such that q v r [Bro86, Page 13].
For the domain ordering on an algebra to be use-

ful, it must say something about the operations of the
algebra. In particular, the operations (both the pro-
gram operations and the speci�cation functions) of the
algebra must be monotonic and continuous.

De�nition C.1.2 (monotonic). An operation g is
monotonic if and only if for all ~q1, ~q2, if ~q1 v ~q2, then
g(~q1) vE g(~q2).

That is, g is monotonic if whenever ~q1 v ~q2 and r1 2
g(~q1), then there is some r2 2 g(~q2) such that r1 v r2.
To de�ne continuous operations, chains are viewed

as sequences. A sequence in v is a nonempty set
Q = fqi j i 2 Ig indexed by some well-ordered set
I (whose elements are ordered by �) with the prop-
erty that, if i � j, then qi v qj. A well-ordered set is a
totally-ordered set such that every non-empty subset
has a least element [Gr79, Page12]. The elements of a

81

sequence form a chain and conversely the elements of
a chain can be placed in a sequence.

De�nition C.1.3 (continuous). A monotonic oper-
ation g is continuous if and only if for every sequence
in v, Q = fqig, whenever R = frig is a sequence in v
indexed by the same set as Q such that for all indexes
i, ri 2 g(~qi), then lub(R) 2 g(lub(Q)).

The operations of an algebra are required to be con-
tinuous. The assumption that the carrier sets of all
types except IntStream and BoolStream are
at do-
mains is therefore restrictive, because there are some
abstract types whose carrier sets cannot be consid-
ered
at domains if their operations are to be mono-
tonic and continuous. For example, the carrier set of
IntStream cannot be a
at domain, since then the
cons operation would not be monotonic.
A set of values is closed if and only if for every chain

Q � D, its least upper bound, lub(Q), is also in D.
It is also assumed that each set of possible results

of an algebra's operations is closed with respect to the
algebra's domain ordering v. This assumption is nec-
essary for the assignment of denotations to mutually
recursive NOAL functions. This assumption also en-
sures that the set of possible results of each NOAL
expression is closed and thus accords with the princi-
ple of �nite observability [Bro86].

C.1.2 Semantics of Recursive Functions in
NOAL

The semantics of systems of mutually recursive NOAL
functions is given by several stages of approximation.
First the semantics of systems that do not use angelic
choice are de�ned. Approximations are obtained by
eliminating erratic choice operators () and textually
expanding recursive calls. Erratic choices are turned
into di�erent expansions.
The denotation of a system of recursive function def-

initions is a tuple of mappings, each of which takes an
algebra and returns a mapping from a tuple of argu-
ments to a set of possible results.
The notation F [[~F]]i stands for the denotation of the

i-th function in the system ~F . If the i-th function is
named fi, then the abbreviation F [[fi]] means F [[~F]]i.
The denotation of a system of function de�nitions

does not depend on the environment, because in the
body of a recursively de�ned NOAL function, there
can be no free identi�ers or function identi�ers, besides
those of the other recursively de�ned functions and the
function's formal arguments.
Fix an algebra A. Let

fun f1(~x1 : ~S1) : T1 = E1;
...
fun fm(~xm : ~Sm) : Tm = Em

be a mutually recursive system of NOAL function def-
initions, where the angelic choice operator (5) does
not occur in the Ej.
When eliminating erratic choice operators from an

expression, one makes choices of what expressions to
execute; each such choice is called a deterministic de-
scendant. An expression E00 is a deterministic descen-
dant of an expression E0 if E00 does not contain the

erratic choice operator () and can be obtained from

E0 by replacing subexpressions of the form
1
2 with
either
1 or
2.
A family D(j;i) of expressions is called a choice fam-

ily for the system of fj if for each j, D(j;0) is a deter-
ministic descendant of Ej , and D(j;i+1) is a determin-
istic descendant of D(j;i) with, for each k, the function

abstract (fun (~xk : ~Sk) Ek) substituted for each oc-
currence of fk in the body of D(j;i). The expression
D(j;i+1) di�ers from D(j;i) in that one more recursion
is unrolled, thus D(j;i+1) is a better approximation to
one computation of fj than D(j;i). For example, con-
sider a system with one recursively de�ned function,
where f1 is the function pick de�ned by

fun pick (x:Int): Int =

(x pick(add(x,1))).

There are in�nitely many choice families for this exam-
ple. One choice family for pick is for all i, D(1;i) = x.
Another choice family has D(1;i) = D(1;1) for all i > 1,
where

D(1;0) = pick(add(x,1))

D(1;1) = (fun (x:Int) x) (add(x,1)):

There is also a choice family that has an occurrence of
pick in every D(1;i).
As usual, an everywhere-? function is the �rst ap-

proximation to recursive invocations in the D(j;i). For
each j, let Gj be the function abstract of the form

(fun (~xj : ~Sj) bottom[Tj]).

The least upper bounds of sequences of approximate
results are used to de�ne the meaning of a function for
a given algebra. For each function index j, DDj (A)(~q)
denotes the set of all sequences of approximate results,
Qj(A)(~q), for all choice families for fj. Given a choice
familyD(j;i), a sequence of approximate results is such
that Qj(A)(~q) = hq̂ii, where for each i, q̂i is a possi-

ble result of M[[D(j;i)[~G=~f]]](A; �) and �(~xj) = ~q. As
Broy notes, there are such sequences in v because the
deterministic language constructs (and each operation
of A) are monotonic and because D(j;i+1) is derived
from D(j;i) by unrolling another recursion. Note that

D(j;i)[~G=~f] is recursion-free.
For the pick example, DD1(A)(0) would be the set

consisting of the sequence h?;?;?; . . .i and all se-
quences in v of the form

h?;?; . . . ;?| {z }
n

; n; n; n; . . .i

for some n � 0.
The denotation F [[fj]] of a function de�nition that

does not use angelic choice is de�ned as follows.

F [[fj]](A)(~q)

def
= flub(Qj(A)(~q)) j Qj(A)(~q) 2 DDj(A)(~q)g

(C.1)

82

That is, F [[fj]](A)(~q) is the closure of the set of all
the least upper bounds of all sequences in v from
DDj(A)(~q). The closure of a set Q, written Q, is the
smallest closed set that contains Q. Taking the clo-
sure ensures that the set of possible results is closed;
it might otherwise be possible to form a sequence from
the lub(Qj(A)(~q)) whose least upper bound was not in
the set.
For the pick example, the possible results of pick(0)

are determined as follows. The least upper bound of
the sequence

h?;?;?; . . .i

is ?. The least upper bound of a sequences of the form

h?;?;?; . . . ; n; n; n; . . .i

is n. Thus for all algebras A,

flub(Qj(A)(0)) j Qj(A)(0) 2 DD1(A)(0)g

= f?; 0; 1; 2; 3; . . .g:

This set is already closed in the v ordering (as the
carrier set of Int is a
at domain) so it is the set of
possible results.
The meaning of a system of recursive function def-

initions that uses angelic choice uses the meaning of
a system that does not use angelic choice as a �rst
approximation. Better approximations are obtained
by using earlier approximations to evaluate recursive
calls. The net e�ect is that each approximation uses
angelic choice for deeper recursions than the previous
approximation [Bro86, Page 19].
Let

fun f1(~x1 : ~S1) : T1 = E1;
...
fun fm(~xm : ~Sm) : Tm = Em

be a system of mutually recursive NOAL function def-
initions. Let E(j;0) be derived from Ej by replacing
all occurrences of the angelic choice operator (5) with
the erratic choice operator (). For each j let g(j;0)
refer to the de�nition of fj with E(j;0) replacing Ej.
For example, consider the function

fun pick2 (x:Int): Int =

(x 5 pick2(add(x,1))).

For this example, the system with 5 replaced by is

fun pick2 (x:Int): Int =

(x pick2(add(x,1)))

and g(1;0) refers to this altered de�nition of pick2.
For each j, F [[g(j;0)]] gives meaning to recursive calls

to fj. The next approximation obtained in this way is
called F [[g(j;1)]]. In this way a family F [[g(j;i)]] for each
j and i is de�ned as follows. For each natural number
i,

F [[g(j;i+1)]](A)(~q)
def
= M[[Ej]](A; �i); (C:2)

where
�i(~xj) = ~q (C:3)

and where for all k,

�i(fk) = F [[~g(k;i)]](A): (C:4)

So to �nd the possible results of F [[g(j;i+1)]](A)(~q), one
takes the possible results of Ej, which may use angelic
choice, in an environment where the formals of the
function de�nition fj are bound to the arguments ~q
and where F [[~g(k;i)]](A) is used as an approximation to
fk, for all k. (The only free identi�ers in Ej are the
~xj, and the only free function identi�ers are the fk.)
By construction, F [[~g(j;i)]](A) does i levels of recursion
using angelic choice and then reverts to erratic choice.
For the pick2 example,

F [[g(1;0)]](A)(0)

= f?; 0; 1; 2; 3; . . .g (C.5)

F [[g(1;1)]](A)(0)

def
= M[[x5 pick2(add(x; 1))]](A; �0) (C.6)

= f0g [(f?; 1; 2; 3; . . .g n f?g) (C.7)

= f0; 1; 2; 3; . . .g: (C.8)

where �0(x) = 0 and �0(pick2) = F [[g(1;0)]](A). By the
de�nition of angelic choice, ? is not a possible result
of the expression x 5 pick2(add(x,1)) in �, because
the only possible result of x is 0. The possible results
of F [[g(1;i)]](A)(0) for all i > 1 are also f0; 1; 2; 3; . . .g.
Following [Bro86, Page 19], for each j the meaning

of fj is

F [[fj]](A)(~q)
def
=

\
i

F [[g(j;i)]](A)(~q): (C.9)

For the pick2 example:

F [[pick2]](A)(0)
def
=

\
i

F [[g(1;i)]](A)(0)(C.10)

= f0; 1; 2; 3; . . .g: (C.11)

C.2 The Substitution Property for

Functions

The postponed proof of the substitution property for
NOAL functions, Lemma 7.2.2, is given in this section.
Because the semantics of systems of mutually recur-

sive function de�nitions involve closures and least up-
per bounds of sequences, it is convenient to �rst show
that simulation relations are strongly monotonic and
continuous.

De�nition C.2.1 (strongly monotonic).
A binary relation � between domains D1 and D2 is
strongly monotonic if and only if for all q1; q2 2 D1
and for all r1; r2 2 D2, whenever q1 < q2, q1 � r1,
and q2� r2, then r1 < r2.

This de�nition is illustrated in Figure C.1. A family
of relations R is strongly monotonic if each RT is a
strongly monotonic relation.
The following lemma says that each simulation re-

lation is strongly monotonic.

83

q1

q2

r1

r2

G

RT

RT RT

RT

G

q1

q2 r2

r1

GHH
��

Figure C.1: Strong monotonicity of RT.

Lemma C.2.2. Let � be a signature. Let C and A
be �-algebras.
If R is a �-simulation relation between C and A,

then R is strongly monotonic.

Proof: Let T be a sort. Suppose q1 < q2, q1 RT r1,
and q2 RT r2. Since q1 < q2, either q1 = ? and q2 is
proper or both q1 and q2 are proper elements of some
visible type with a non-
at carrier set.
If q1 = ? and q2 is proper, then since RT is bistrict,

r1 = ? and r2 is proper. So r1 < r2.
If q1 and q2 are proper elements of a visible type

then q1 = r1, and q2 = r2, because R is V-identical.
The following lemma says that each simulation rela-

tion is continuous. A family of relations is continuous
if it is continuous at each type.

Lemma C.2.3. Let � be a signature. Let A and B
be �-algebras.
If R is a �-simulation relation between A and B,

then R is continuous.

Proof: Let T be a sort. Let Q be a sequence in v of
elements of A. Let R be a sequence in v of elements
of B, indexed by the same set as Q, such that for all
indexes i, qiRT ri.
If the only elements of Q are ?, then the only ele-

ments of R are ?, since RT is bistrict; thus lub(Q) =
?RT ? = lub(R).
Otherwise, Q contains some proper elements. Since
RT is bistrict, R also contains some proper elements
and relates proper elements of Q to proper elements
of R. Since the proper elements of Q are related by
v, the proper elements must all be either elements of
a visible type or all elements of a non-visible type (by
one of the assumptions about algebras).
If the proper elements of Q are elements of a visi-

ble type, S, then since R is V-identical, for each i and
each qi 2 Q, qi = ri 2 R. Therefore lub(Q) = lub(R).
Since R is V-identical and S is a visible type, RT con-
tains RS and hence the identity on the carrier set of
S. Therefore lub(Q)RT lub(R).
LikewiseR must contain either visible or non-visible

elements. If R contains proper visible elements, then
sinceR is V-identical, for each i, qi = ri and the result
follows.
So the remaining case is that the proper elements

of both Q and R are elements of a non-visible type.
Hence they are all elements of a
at domain. So the
least upper bound of Q must occur in Q. Similarly,
the least upper bound of R must occur in R. Let j

be an index such that lub(Q) = qj 2 Q. Since R only
contains elements of a
at domain, lub(R) = rj.
The following lemma says that the closures of sets

related by a strongly monotonic and continuous rela-
tion are related. This lemma is needed because clo-
sures are used in the semantics of systems of recur-
sively de�ned NOAL functions.

Lemma C.2.4. Let D1 and D2 be domains. Let �
be a strongly monotonic and continuous relation be-
tween D1 and D2.
If Q � D1 and R � D2 are such that Q� R, then

Q� R.

Proof: Suppose q̂ 2 Q, but q̂ 62 Q. Since q̂ 2 Q,
there is some sequence in v, Q0, consisting of elements
of Q such that lub(Q0) = q̂. Let I be the well-ordered
set that indexes Q0 and let the elements of I be ordered
by �. Since Q � R, a sequence in v from R such
that lub(Q0) is related by� to its least upper bound
can be de�ned inductively as follows. As the basis,
let i0 be the least element of the index set I. Since
Q � R, there is some ri0 2 R such that qi0 � ri0 .
For the inductive step, suppose that rk is de�ned for
all k 2 I such that k � j. Let i be the least element
of I such that j < i; then ri can be chosen as follows.
If qj = qi, let ri = rj. Otherwise, if qj < qi, let
ri 2 R be such that qi � ri. Such an ri exists because
Q � R. Since � is strongly monotonic, if qj < qi,
then rj < ri. Therefore R0 = frig is a sequence in v,
such that for each i, qi � ri. Since � is continuous,
lub(Q0) � lub(R0). Finally, by de�nition of closure,
lub(R0) 2 R.
The lemma below shows that the substitution prop-

erty holds for recursively de�ned functions that do not
use angelic choice. The case without angelic choice
is treated �rst because this treatment parallels Broy's
semantics for recursive function de�nitions.

Lemma C.2.5. Let

fun f1(~x1 : ~S1) : T1 = E1;
...
fun fm(~xm : ~Sm) : Tm = Em

be a mutually recursive system of NOAL function def-
initions. Let � be a signature. Let A and B be �-
algebras.
Suppose that 5 does not occur in the function bod-

ies Ej. Suppose R is a �-simulation relation between

84

A and B. Then for each j from 1 to m,

F [[fj]](A)R ~Sj!Tj
F [[fj]](B): (C:12)

Proof: For each j, let Gj be the function abstract of
the form

(fun (~xj : ~Sj) bottom[Tj]).

Let k 2 f1; . . . ; mg be given. Let ~q and ~r have
the same length as ~xk and be such that ~q R ~Sk

~r. Let

�1(~xk) = ~q and �2(~xk) = ~r. By construction, �1 R �2.
LetD(j;i) be a choice family, and let Qk(A)(~q) = hq̂ii

be a sequence in v such that for each i, q̂i is a possible

result of M[[D(k;i)[~G=~f]]](A; �1). Let Qk(B)(~r) = hr̂ii,
be a sequence in v, where for each i, r̂i is a possible re-

sult ofM[[D(k;i)[~G=~f]]](B; �2) and q̂iRTk r̂i. Such a se-

quence can be found, because D(k;i)[~G=~f] is recursion-
free, (thus Lemma 7.2.1 applies) and because R is
strongly monotonic. Since RTk is a continuous rela-
tion, lub(Qk(A)(~q))RTj lub(Qk(B)(~r)).

Let DDk(A)(~q) denote the set of all such se-
quences Qk(A)(~q) in v for all choice families and let
DDk(B)(~r) be similarly de�ned. By the above, for ev-
ery Qk(A)(~q) 2 DDk(A)(~q), there is some Qk(B)(~r) 2
DDk(B)(~r) (obtained using the same choice family)
such that

lub(Qk(A)(~q))RTk lub(Qk(B)(~r)):

Therefore the following relationship holds.

flub(Qk(A)(~q)) j Qk(A)(~q) 2 DDk(A)(~q)g

RTk flub(Qk(B)(~r)) j Qk(A)(~r) 2 DDk(B)(~r)g

(C.13)

Since these sets of least upper bounds are related by
RTk and RTk is strongly monotonic and continuous,
by Lemma C.2.4 the closures of these sets are related
by RTk .
Therefore,

F [[fk]](A)(~q) (C.14)
def
= flub(Qk(A)(~q)) j Qk(A)(~q) 2 DDk(A)(~q)g

RTk flub(Qk(B)(~r)) j Qk(B)(~r) 2 DDk(B)(~r)g

(C.15)
def
= F [[fk]](B)(~r) (C.16)

So for each j from 1 to m,

F [[fj]](A)R ~Sj!Tj
F [[fj]](B):

The following lemma begins the treatment of sys-
tems of function de�nitions that use angelic choice.
Since the semantics of such systems is given by �rst
replacing angelic choice with erratic choice, the fol-
lowing lemma describes how the set of possible results
of an expression is a�ected by this substitution.

Lemma C.2.6. Let A be an algebra. Let X be a set
of typed identi�ers. Let � : X ! jAj be an environ-
ment such that for each function identi�er f, �(f) is
monotonic. Let
 be a NOAL expression.
Suppose
0 is derived from
 by replacing all the

angelic choice (5) operators in
 with erratic choice
operators (). Then

M[[
0]](A; �) vE M[[
]](A; �): (C.17)

Proof: (by induction on the structure of NOAL ex-
pressions.)
As a basis, if
 is an identi�er or bottom[T] for some

type T then the result is trivial.
For the inductive step, suppose that the result holds

for each subexpression. As Broy points out [Bro86,
Theorem 3.2], the meaning of each expression except
angelic choice that has subexpressions
1; . . . ;
n has
the form

M[[expr(~
)]](A; �) =
[

~q2M[[~
]](A;�)

h(~q)

for some monotonic set-valued function h. In particu-
lar, each operation of an algebra is monotonic and by
hypothesis, for each function identi�er f, �(f) is mono-

tonic in vE . If expr(~
0) is derived from expr(~
) by re-
placing all occurrences of 5 with , then by the induc-

tive hypothesis we haveM[[~
0]](A; �) vE M[[~
]](A; �).
Therefore,

M[[expr(~
0)]](A; �)

=
[

~q2M[[~
0]](A;�)

h(~q) (C.18)

vE
[

~q2M[[~
]](A;�)

h(~q) (C.19)

= M[[expr(~
)]](A; �): (C.20)

Finally, consider the expressions
1 5
2 and the
derived expression
01
02. By de�nition of NOAL,

M[[
01
02]](A; �)

def
= M[[
01]](A; �)[M[[
02]](A; �) (C.21)

vE M[[
1]](A; �)[M[[
2]](A; �) (C.22)
def
= M[[
1
2]](A; �) (C.23)

vE M[[
15
2]](A; �); (C.24)

which holds because M[[
1
2]](A; �) di�ers from
M[[
15
2]](A; �) in that the former may contain ?
when the latter does not.
The next lemma shows that the substitution prop-

erty holds for systems of recursively de�ned functions
that may use angelic choice. This lemma is the same
as Lemma 7.2.2.

Lemma C.2.7. Let

fun f1(~x1 : ~S1) : T1 = E1;
...
fun fm(~xm : ~Sm) : Tm = Em

85

be a mutually recursive system of NOAL function def-
initions.
Suppose R is a �-simulation relation between �-

algebras A and B. Then for each j from 1 to m,

F [[fj]](A)R ~Sj!Tj
F [[fj]](B): (C:25)

Proof: Let E(j;0) be derived from Ej by replacing
all occurrences of the angelic choice operator (5) with
the erratic choice operator (). For each j let g(j;0)
refer to the de�nition of fj with E(j;0) replacing Ej.
By Lemma C.2.5, for each j from 1 to m,

F [[g(j;0)]](A)R ~Sj!Tj
F [[g(j;0)]](B): (C:26)

The discussion of the semantics of recursive sys-
tems above inductively de�nes a family of approxi-

mations for the meaning of ~f in A, F [[g(j;i)]](A), and

a corresponding family for the meaning of ~f in B,
F [[g(j;i)]](B). The proof proceeds by showing two prop-
erties of these families of approximations.
The �rst property is that for all j from 1 to m,

F [[g(j;i)]](A)R ~Sj!Tj
F [[g(j;i)]](B): (C:27)

This follows by induction on i, using Lemma 7.2.1 and
Lemma C.2.4.
The second property is that for all natural numbers

i, for all j from 1 to m, and for all arguments ~q from
the algebra B,

F [[g(j;i)]](A)(~q) vE F [[g(j;i+1)]](B)(~q): (C.28)

Intuitively, this should hold because F [[g(j;i+1)]](B)
uses angelic choice for one more recursion than does
F [[g(j;i)]](B).
The second property is proved by induction on i.

For the basis, let j be �xed and let ~q be given. Let
�0 be an environment such that �0(~xj) = ~q and for all
k 2 f1; . . . ; mg, �0(fk) = F [[g(k;0)]](B). Each �0(fk) is
monotonic, because the bodies of the g(k;0) do not use
angelic choice. By construction of the F [[g(k;0)]](B),

F [[g(j;0)]](B)(~q) =M[[E(j;0)]](B; �0): (C:29)

By Lemma C.2.6,

M[[E(j;0)]](B; �0) vE M[[Ej]](B; �0) (C.30)

since E(j;0) is derived from Ej by replacing all the
angelic choice operators with erratic choice opera-
tors. Since by construction, the set M[[E(j;0)]](B; �0)
is closed,

M[[E(j;0)]](B; �) = M[[E(j;0)]](B; �) (C.31)

vE M[[Ej]](B; �) (C.32)

vE M[[Ej]](B; �): (C.33)

By de�nition,

F [[g(j;1)]](B)(~q) =M[[Ej]](B; �0): (C:34)

So combining the above,

F [[g(j;0)]](B)(~q) vE F [[g(j;1)]](B)(~q): (C.35)

For the inductive step, assume that for all j and all ~q,

F [[g(j;i�1)]](B)(~q) vE F [[g(j;i)]](B)(~q): (C.36)

Let �i�1 be an environment such that for all k 2
f1; . . . ; mg, �i�1(fk) = F [[g(k;i�1)]](B) and such that
�i�1(~xj) = ~q. Let �i be an environment such that for
all k 2 f1; . . . ; mg, �i(fk) = F [[g(k;i)]](B) and such that
�i(~xj) = ~q. By de�nition,

F [[g(j;i+1)]](B)(~q) = M[[Ej]](B; �i) (C.37)

F [[g(j;i)]](B)(~q) = M[[Ej]](B; �i�1): (C.38)

Furthermore, by induction on the structure of NOAL
expressions (as in Lemma C.2.6), the induction hy-
pothesis can be used to show that

M[[Ej]](B; �i�1) vE M[[Ej]](B; �i) (C.39)

So the second property (Formula C.28) holds.
Returning to the proof o fthe main result, let j be

�xed and suppose ~qj R ~Sj
~rj. By de�nition of NOAL

the following hold.

F [[fj]](A)(~qj)
def
=

\
i

F [[g(j;i)]](A)(~qj) (C.40)

F [[fj]](B)(~rj)
def
=

\
i

F [[g(j;i)]](B)(~rj) (C.41)

Suppose q 2 F [[fj]](A)(~qj). Then for all i, q 2
F [[g(j;i)]](A)(~qj). Since the �rst property (For-
mula C.27) holds for each i, there is some ri 2
F [[g(j;i)]](B)(~rj) such that q RTj ri. There are several
cases.

� If q = ?, then since RTj is bistrict, q can only
be related to ?. So each ri is ?, and thus ? 2
F [[fj]](B)(~rj). So q is related to some element of
F [[fj]](B)(~rj) by RTj .

� If q is a proper instance of a visible type, then
since R is V-identical, each ri = q, and thus q 2
F [[fj]](B)(~rj).

� If q is a proper instance of some non-visible
type, then each of the ri must be instances of a
non-visible type as well, since R is V-identical.
Suppose r0 62 F [[g(j;1)]](B)(~rj), then r0 6= r1
and hence r0 < r1, since F [[g(j;0)]](B)(~rj) vE
F [[g(j;1)]](B)(~rj). But since r0 and r1 are elements
of a non-visible type, they are elements of a
at
domain, and therefore r0 = ?. But this contra-
dicts the assumption that q is proper, since R is
bistrict. So it must be that r0 = r1. By induc-
tion on i, it follows that for all natural numbers i,
ri = r0. Therefore r0 2 F [[fj]](B)(~rj) and qRTj r0.

86

So whenever ~qj R ~Sj
~rj ,

F [[fj]](A)(~qj)RTj F [[fj]](B)(~rj): (C:42)

Therefore for all j,

F [[fj]](A)R ~Sj!Tj
F [[fj]](B): (C:43)

87

References

[Ada83] American National Standards Institute.
Reference Manual for the Ada Programming
Language, February 1983. ANSI/MIL-STD 1815A.
Also published by Springer-Verlag as LNCS 155.

[AK84] Hassan Ait-Kaci. A Lattice Theoretic
Approach to Computation Based on a Calculus of
Partially Ordered Type Structures. PhD thesis,
University of Pennsylvania, 1984.

[Ame89] Pierre America. A Behavioural Approach to
Subtyping in Object-Oriented Programming
Languages. Technical Report 443, Philips Research
Laboratories, Nederlandse Philips Bedrijven B. V.,
January 1989.

[BDMN73] Graham M. Birtwistle, Ole-Johan Dahl,
Bjorn Myhrhaug, and Kristen Nygaard. SIMULA
Begin. Auerbach Publishers, Philadelphia, Penn.,
1973.

[BHJ+87] Andrew Black, Norman Hutchinson, Eric
Jul, Henry Levy, and Larry Carter. Distribution and
Abstract Types in Emerald. IEEE Transactions on
Software Engineering, SE-13(1):65{76, January 1987.

[BHJL86] Andrew Black, Norman Hutchinson, Eric
Jul, and Henry Levy. Object Structure in the
Emerald System. ACM SIGPLAN Notices,
21(11):78{86, November 1986. OOPSLA '86
Conference Proceedings, Norman Meyrowitz (editor),
September 1986, Portland, Oregon.

[BL88] Kim B. Bruce and Giuseppe Longo. A
Modest Model of Records, Inheritance, and Bounded
Quanti�cation. In Y. Gurevich, editor, Logic in
Computer Science, pages 38{50. IEEE, July 1988.

[Bro86] Manfred Broy. A Theory for
Nondeterminism, Parallelism, Communication, and
Concurrency. Theoretical Computer Science,
45(1):1{61, 1986.

[BW86] Kim B. Bruce and Peter Wegner. An
Algebraic Model of Subtypes in Object-Oriented
Languages (Draft). ACM SIGPLAN Notices, 21(10),
October 1986.

[BW87a] Kim B. Bruce and Peter Wegner. Algebraic
and Lambda Calculus Models of Subtype and
Inheritance (Extended Abstract). Working paper?,
1987.

[BW87b] Kim B. Bruce and Peter Wegner. An
Algebraic Model of Subtype and Inheritance. To
appear in Database Programming Languages,
Francois Bancilhon and Peter Buneman (editors),
Addison-Wesley, Reading, Mass., August 1987.

[Car84] Luca Cardelli. A Semantics of Multiple
Inheritance. In D. B. MacQueen G. Kahn and
G. Plotkin, editors, Semantics of Data Types:
International Symposium, Sophia-Antipolis, France,
volume 173 of Lecture Notes in Computer Science,
pages 51{66. Springer-Verlag, New York, N.Y., June
1984. A revised version of this paper appears in
Information and Computation, volume 76, numbers
2/3, pages 138{164, February/March 1988.

[Car88] Luca Cardelli. Structural Subtyping and the
Notion of Power Type. In Conference Record of the
Fifteenth Annual ACM Symposium on Principles of
Programming Languages, San Diego, Calif., pages
70{79. ACM, January 1988.

[Car89] Luca Cardelli. Typeful Programming.
Research Report 45, Digital Equipement
Corporation, Systems Research Center, May 1989.

[CCH+89] Peter Canning, William Cook, Walter
Hill, John Mitchell, and Walter Oltho�. F-Bounded
Polymorphism for Object-Oriented Programming. In
Fourth International Conference on Functional
Programming and Computer Architecture. ACM,
September 1989. Also technical report STL-89-5,
from Software Technology Laboratory,
Hewlett-Packard Laboratories.

[Che89] Jolly Chen. The Larch/Generic Interface
Language. Technical report, Massachusetts Institute
of Technology, May 1989. The author's Bachelor's
thesis.

88

[CM89] Luca Cardelli and John C. Mitchell.
Operations on Records. In Fifth International
Conference on Mathematical Foundations of
Programming Semantics, March 1989.

[Cox86] Brad J. Cox. Object Oriented Programming:
an Evolutionary Approach. Addison-Wesley
Publishing Co., Reading, Mass., 1986.

[CW85] Luca Cardelli and Peter Wegner. On
Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys,
17(4):471{522, December 1985.

[EM85] Hartmut Ehrig and Bernd Mahr.
Fundamentals of Algebraic Speci�cation 1: Equations
and Initial Semantics. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, New
York, N.Y., 1985.

[End72] Herbert B. Enderton. A Mathematical
Introduction to Logic. Academic Press, Inc., Orlando,
Florida, 1972.

[FGJM85] Kokichi Futatsugi, Joseph A. Goguen,
Jean-Pierre Jouannaud, and Jose Meseguer.
Principles of OBJ2. In Conference Record of the
Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 52{66. ACM,
January 1985.

[GH78] J. Guttag and J. J. Horning. The Algebraic
Speci�cation of Abstract Data Types. Acta
Informatica, 10(1):27{52, 1978.

[GH86a] J. V. Guttag and J. J. Horning. A Larch
Shared Language Handbook. Science of Computer
Programming, 6:135{157, 1986.

[GH86b] J. V. Guttag and J. J. Horning. Report on
the Larch Shared Language. Science of Computer
Programming, 6:103{134, 1986.

[GHW85] J. V. Guttag, J. J. Horning, and J. M.
Wing. Larch in Five Easy Pieces. Technical Report 5,
Digital Systems Research Center, July 1985.

[GM87] Joseph A. Goguen and Jose Meseguer.
Order-Sorted Algebra Solves the
Constructor-Selector, Multiple Representation and
Coercion Problems. Technical Report CSLI-87-92,
Center for the Study of Language and Information,
March 1987.

[GMW79] Michael J. Gordon, Robin Milner, and
Christopher P. Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, New York, N.Y., 1979. The second

author is listed on the cover as Arthur J. Milner,
which is clearly a mistake.

[Gog84] Joseph A. Goguen. Parameterized
Programming. IEEE Transactions on Software
Engineering, SE-10(5):528{543, September 1984.

[Gol84] Adele Goldberg. Smalltalk-80: The
Interactive Programming Environment.
Addison-Wesley Publishing Co., Reading, Mass.,
1984.

[Goo75] J. B. Goodenough. Exception Handling:
Issues and a Proposed Notation. Communications of
the ACM, 18(12):683{696, December 1975.

[Gr79] George Gr�atzer. Universal Algebra.
Springer-Verlag, New York, N.Y., second edition,
1979.

[GR83] Adele Goldberg and David Robson.
Smalltalk-80, The Language and its Implementation.
Addison-Wesley Publishing Co., Reading, Mass.,
1983.

[Gut80] John Guttag. Notes on Type Abstractions
(Version 2). IEEE Transactions on Software
Engineering, SE-6(1):13{23, January 1980. Version 1
in Proceedings Speci�cations of Reliable Software,
Cambridge, Mass., IEEE, April, 1979.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for
Computer Programming. Communications of the
ACM, 12(10):576{583, October 1969.

[Hud89] Paul Hudak. Conception, Evolution, and
Application of Functional Programming Languages.
ACM Computing Surveys, 21(3):359{411, September
1989.

[JL76] Anita K. Jones and Barbara H. Liskov. A
Language Extension for Controlling Access to Shared
Data. IEEE Transactions on Software Engineering,
SE-2(4):277{285, December 1976.

[JL78] Anita K. Jones and Barbara H. Liskov. A
Language Extension for Expressing Constraints on
Data Access. Communications of the ACM,
21(5):358{367, May 1978.

[JM88] Lalita A. Jategaonkar and John C. Mitchell.
ML with Extended Patterm Matching and Subtypes
(preliminary version). In ACM Conference on LISP
and Functional Programming, Snowbird, Utah, pages
198{211, July 1988.

[Jon86] Cli� B. Jones. Program Speci�cation and
Veri�cation in VDM. Technical Report

89

UMCS-86-10-5, Department of Computer Science,
University of Manchester, November 1986.

[Kee89] Sonya E. Keene. Object-Oriented
Programming in Common Lisp. Addison Wesley,
Reading, Mass., 1989.

[LAB+81] Barbara Liskov, Russell Atkinson, Toby
Bloom, Eliot Moss, J. Craig Scha�ert, Robert
Schei
er, and Alan Snyder. CLU Reference Manual,
volume 114 of Lecture Notes in Computer Science.
Springer-Verlag, New York, N.Y., 1981.

[LaL89] Wilf R. LaLonde. Designing Families of
Data Types Using Exemplars. ACM Transactions on
Programming Languages and Systems, 11(2):212{248,
April 1989.

[LDH+87] Barbara Liskov, Mark Day, Maurice
Herlihy, Paul Johnson, Gary Leavens, Robert
Schei
er, and William Weihl. Argus Reference
Manual. Technical Report 400, Massachusetts
Institute of Technology, Laboratory for Computer
Science, October 1987. An earlier version appeared
as Programming Methodology Group Memo 54 in
March 1987.

[Lea88] Gary T. Leavens. Verifying Object-Oriented
Programs that use Subtypes. PhD thesis,
Massachusetts Institute of Technology, December
1988. Published as MIT/LCS/TR-439 in February
1989.

[Lea89] Gary T. Leavens. Verifying Object-Oriented
Programs that use Subtypes. Technical Report 439,
Massachusetts Institute of Technology, Laboratory
for Computer Science, February 1989. The author's
Ph.D. thesis.

[LG86] Barbara Liskov and John Guttag.
Abstraction and Speci�cation in Program
Development. The MIT Press, Cambridge, Mass.,
1986.

[Lie86] Henry Lieberman. Using Prototypical
Objects to Implement Shared Behavior in Object
Oriented Systems. ACM SIGPLAN Notices,
21(11):214{223, November 1986. OOPSLA '86
Conference Proceedings, Norman Meyrowitz (editor),
September 1986, Portland, Oregon.

[Lis88] Barbara Liskov. Data Abstraction and
Hierarchy. ACM SIGPLAN Notices, 23(5):17{34,
May 1988. Revised version of the keynote address
given at OOPSLA '87.

[LL85] Gary T. Leavens and Barbara Liskov. The
Name Clash Problem and a Proposed Solution. DSG
Note 130, Massachusetts Institute of Technology,
Laboratory for Computer Science, October 1985.

[LS79] Barbara H. Liskov and Alan Snyder.
Exception Handling in CLU. IEEE Transactions on
Software Engineering, SE-5(6):546{558, November
1979.

[LTP86] Wilf R. LaLonde, Dave A. Thomas, and
John R. Pugh. An Exemplar Based Smalltalk. ACM
SIGPLAN Notices, 21(11):322{330, November 1986.
OOPSLA '86 Conference Proceedings, Norman
Meyrowitz (editor), September 1986, Portland,
Oregon.

[LW90] Gary T. Leavens and William E. Weihl.
Reasoning about Object-oriented Programs that use
Subtypes (extended abstract). Technical Report
90-03, Iowa State University, Department of
Computer Science, March 1990. To appear in
ECOOP/OOPSLA '90.

[Mey88] Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, New York, N.Y., 1988.

[Mit86] John C. Mitchell. Representation
Independence and Data Abstraction (preliminary
version). In Conference Record of the Thirteenth
Annual ACM Symposium on Principles of
Programming Languages, St. Petersburg Beach,
Florida, pages 263{276. ACM, January 1986.

[MS82] D. B. MacQueen and Ravi Sethi. A Semantic
Model of Types for Applicative Languages. In ACM
Symp. on LISP and Functional Programming, pages
243{252. ACM, 1982.

[Nip86] Tobias Nipkow. Non-deterministic Data
Types: Models and Implementations. Acta
Informatica, 22(16):629{661, March 1986.

[Nip87] Tobias Nipkow. Behavioural Implementation
Concepts for Nondeterministic Data Types. PhD
thesis, University of Manchester, May 1987.

[Par72] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules.
Communications of the ACM, 15(12), December
1972.

[Rey80] John C. Reynolds. Using Category Theory
to Design Implicit Conversions and Generic
Operators. In Neil D. Jones, editor,
Semantics-Directed Compiler Generation,
Proceedings of a Workshop, Aarhus, Denmark,
volume 94 of Lecture Notes in Computer Science,
pages 211{258. Springer-Verlag, January 1980.

90

[Rey85] John C. Reynolds. Three Approaches to
Type Structure. In Hartmut Ehrig, Christiane Floyd,
Maurice Nivat, and James Thatcher, editors,
Mathematical Foundations of Software Development,
Proceedings of the International Joint Conference on
Theory and Practice of Software Development
(TAPSOFT), Berlin. Volume 1: Colloquium on Trees
in Algebra and Programming (CAAP '85), volume
185 of Lecture Notes in Computer Science, pages
97{138. Springer-Verlag, New York, N.Y., March
1985.

[SCB+86] Craig Scha�ert, Topher Cooper, Bruce
Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. ACM SIGPLAN
Notices, 21(11):9{16, November 1986. OOPSLA '86
Conference Proceedings, Norman Meyrowitz (editor),
September 1986, Portland, Oregon.

[Sch86] David A. Schmidt. Denotational Semantics:
A Methodology for Language Development. Allyn and
Bacon, Inc., Boston, Mass., 1986.

[SCW85] Craig Scha�ert, Topher Cooper, and Carrie
Wilpolt. Trellis Object-Based Environment:
Language Reference Manual. Technical Report
DEC-TR-372, Eastern Research Lab, Digital
Equipment Corp., Hudson, Mass., November 1985.

[SLU89] Lynn Andrea Stein, Henry Lieberman, and
David Ungar. A Shared View of Sharing: The Treaty
of Orlando. In Won Kim and Frederick H. Lochovsky,
editors, Object-Oriented Concepts, Databases, and
Applications, chapter 3, pages 31{48. Addison-Wesley
Publishing Co., Reading, Mass., 1989.

[Sny86a] Alan Snyder. CommonObjects: An
Overview. Technical Report STL-86-13, Software
Technology Laboratory, Hewlett-Packard
Laboratories, Palo Alto, California, June 1986.

[Sny86b] Alan Snyder. Encapsulation and
Inheritance in Object-Oriented Programming
Languages. ACM SIGPLAN Notices, 21(11):38{45,
November 1986. OOPSLA '86 Conference
Proceedings, Norman Meyrowitz (editor), September
1986, Portland, Oregon.

[ST85] Donald Sannella and Andrzej Tarlecki. On
Observational Equivalence and Algebraic
Speci�cation. In Hartmut Ehrig, Christiane Floyd,
Maurice Nivat, and James Thatcher, editors,
Mathematical Foundations of Software Development,
Proceedings of the International Joint Conference on
Theory and Practice of Software Development
(TAPSOFT), Berlin. Volume 1: Colloquium on Trees
in Algebra and Programming (CAAP '85), volume

185 of Lecture Notes in Computer Science, pages
308{322. Springer-Verlag, New York, N.Y., March
1985.

[Sta85] R. Statman. Logical Relations and the
Typed �-Calculus. Information and Control,
65(2/3):85{97, May/June 1985.

[Str86] B. Stroustrup. The C++ Programming
Language. Addison-Wesley Publishing Co., Reading,
Mass., 1986. Corrected reprinting, 1987.

[Sym84] Symbolics, Inc. Lisp Machine Manual.
Cambridge, Mass., March 1984. Eight volumes.

[WB89] Philip Wadler and Stephen Blott. How to
make ad-hoc Polymorphism less ad hoc. In
Conference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages,
pages 60{76. ACM, January 1989.

[Win83] Jeannette Marie Wing. A Two-Tiered
Approach to Specifying Programs. Technical Report
TR-299, Massachusetts Institute of Technology,
Laboratory for Computer Science, 1983.

[Win87] Jeannette M. Wing. Writing Larch Interface
Language Speci�cations. ACM Transactions on
Programming Languages and Systems, 9(1):1{24,
January 1987.

91

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR 90-09
Submission Date: July 5, 1990

	7-5-1990
	Modular Verification of Object-Oriented Programs with Subtypes
	Gary T. Leavens
	Recommended Citation

	tmp.1394744165.pdf.vf2x9

