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Abstract

This report describes the design of a distributed program that searched for peaks in certain
measures related to the 3x+1 problem. The searches for peaks in the number of steps taken,
the maximum value reached, and the number of steps before the values of the iterates fall
below the starting value exhibit a great deal of parallelism, but there is also some small
amount of synchronization necessary. The design of a reliable and long-lived distributed
system that searched for such peaks is discussed from the partitioning of the search to more
detailed design issues such as ways to limit the search. The search was implemented in the
distributed programming language Argus, and a few observations about Argus programming
are included. An appendix includes tables of various results from the three years that the
search program was running on six or more computers.
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Chapter 1

Introduction

The distributed system described in this report was designed to do some experimental math-
ematics and to allow some simple experimentation with the Argus distributed programming
language and system [LS83] [LDH+87]. The system as �nally implemented ran on six (and
sometimes more) computers over several years, with all the computers cooperating in the
search for certain numbers. The numbers themselves are related to the 3x+ 1 problem.

The rest of this chapter is devoted to describing the 3x+1 problem and the objects of the
search program itself: peaks in certain derived measures for the 3x+ 1 problem. Chapter 2
discusses the large-scale design issues involved in the search program, focusing on aspects of
the problem unique to distributed programming. Chapter 3 discusses smaller-scale e�ciency
issues, including ways to \cut o�" certain computations involved in the search. Chapter 4
draws some lessons about distributed programming and Argus.

Appendix A gives tables of results from the search. Appendix B gives a brief history of
the search.

1.1 The 3x + 1 Problem

The 3x+ 1 problem concerns iterates of the following function:

T (n) =

(
(3n + 1)=2; if n � 1 (mod 2),
n=2; if n � 0 (mod 2).

(1:1)

which takes odd integers n to (3n + 1)=2 and even integers n to n=2 [Lag85, Page 4]. \The
3x + 1 Conjecture asserts that, starting from any positive integer n, repeated iteration of
this function eventually produces the value 1" [Lag85, Page 3]. This conjecture, as Lagarias
states, is apparently intractable.

The program discussed in this report is not concerned with validating or disproving the
3x + 1 conjecture. Instead, the program is designed to investigate certain measures related
to the iterates of T (and the function H described below).

The iterates of T are simply de�ned. Let T (0)(n) = n, and for all integers k > 0,
let T (k)(n) = T (T (k�1)(n)). The sequences of iterates (n; T (n); T (2)(n); . . .) is called the
trajectory of n. For example, the trajectory of 7 is:

7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, 2, 1, . . .
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The alternative formulation of the function T , does not map odd integers n to (3n+1)=2,
but rather to 3n + 1

H(n) =

(
3n + 1; if n � 1 (mod 2),
n=2; if n � 0 (mod 2).

(1:2)

The function H is modeled after the so-called hailstone algorithm [Hay84]. Since the article
by Hayes was how I originally encountered the problem, the iterates of H �gured prominently
in the �rst searches.

One de�nes the iterates of H in the same way as T . For example, if n is 7, then the
sequence of successive iterates of H is:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .

Notice how the sequence of iterates for H di�ers from the sequence for T . The di�erence
is stated precisely in the following lemmas. The �rst states that the iterates of T are a
subsequence of the iterates of H, with the property that every even number in the sequence
of iterates of H can be paired with a number in the iterate sequence of T . The second lemma
states that every number k in the iterate sequence of H either occurs in the iterate sequence
of T or k=2 occurs in the iterate sequence of T .

Lemma 1.1.1. For all i > 0, for all n > 0, and for all k > 0, if T (i)(n) = k, then there
is some j � 0 such that, H(j)(n) = 2k, and H(j+1) = k.

Proof: (by induction on i).
For the basis, suppose i = 1. If n is odd, then T (1)(n) = (3n + 1)=2, H(1)(n) = 3n + 1,

and H(2)(n) = (3n+1)=2. If n is even, then T (1)(n) = n=2, H(0)(n) = n, and H(1)(n) = n=2.
For the inductive step, suppose the lemma holds for i > 0. Let n > 0, and k > 0 be given.

Let ki = T (i)(n). By the inductive hypothesis, there is some ji � 0 such that, H(ji)(n) = 2ki,
and H(ji+1)(n) = ki. There are two cases. If ki is odd, then T (i+1)(n) = (3ki + 1)=2 = k,
H(ji+1)(n) = 3ki + 1 = 2k, and H(ji+2)(n) = (3ki + 1)=2 = k. If n is even, then T (i+1)(n) =
ki=2 = k, H(ji)(n) = ki = 2k, and H(ji+1)(n) = ki=2 = k.

Lemma 1.1.2. For all j > 0, for all n > 0, and for all k > 0, if H(j)(n) = k, then there
is some i � 0 such that either T (i)(n) = k or T (i)(n) = k=2.

Proof: (by induction on j).
For the basis, suppose j = 1. If n is odd, then H(1)(n) = 3n + 1 is even, so H(2)(n) =

(3n + 1)=2 = T (1)(n). If n is even, then H(1)(n) = n=2 = T (1)(n).
For the inductive step, suppose the lemma holds for j > 0. Let n > 0, and k > 0 be

given. Let kj = H(j)(n). By the inductive hypothesis, there is some ij � 0 such that, either
T (ij)(n) = kj or T (ij)(n) = kj=2. There are two cases. If kj is odd, then H(j+1)(n) = 3kj + 1
is even, so H(j+2)(n) = (3kj + 1)=2 = T (ij+1)(n). If kj is even, then H(j+1)(n) = kj=2 =
T (i+1)(n).

There are graphs in the article by Hayes that show the wildly erratic and unpredicatable
behavior of the iterates of H [Hay84]. The behavior of T is, of course, similarly wild and
unpredictable.
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1.2 Derived Measures

The computer program described in this report was designed to �nd peaks in certain measures
derived from the iterates of the functions T and H. These derived measures are related to
the 3x + 1 conjecture, since one counts the number of iterations needed to reach 1, or the
maximum value reached in a trajectory.

1.2.1 Stopping Times and Steps

As Lagarias states, for n > 1, T (k)(n) = 1 cannot occur unless there is some m such that
T (m)(n) < n. The derived measures de�ned in this section are all concerned with counting
the number of iterates needed to reach one of these situations.

The stopping time function �(n) is the least whole number k such that T (k)(n) is less
than n or one1. If there is no such k, then let �(n) be 1. For example, �(7) = 7.

The total stopping time function �1(n) is the least whole number k such that T (k)(n) is
one2. If there is no such k, then let �1(n) be 1. For example, �1(7) = 11.

One can also de�ne similar measures for H.
The steps function steps(n) is the least whole number k such that H(k)(n) is one. If there

is no such k, then let steps(n) be 1. It is the analog of total stopping time for H. For
example, steps(7) = 16.

1.2.2 Maximum Value

The maximum value function max value(n) is the maximum of all the integers reached by
iterating H until the value of the iterates reach one. That is,

max value(n) = maxfH(k)(n) j 0 � k � steps(n)g: (1:3)

For example, max value(7) = 52.
Using T instead of H gives an alternative de�nition of maximum value3.

alt max value(n) = maxfT (k)(n) j 0 � k � �1(n)g: (1:4)

For example, alt max value(7) = 26.
The connection between these de�nitions is discussed below.

1.2.3 Peaks

The distributed system described in this report searches for peaks in the derived measures.
An integer n > 0 is a peak in a derived measure f , if and only if for all 0 < m < n,

f(m) < f(n). These numbers are called peaks because if one graphs the positive integers

1This de�nition di�ers from Lagarias's in the treatment of the number one. In Lagarias's paper [Lag85],
�(1) =1, but in the above de�nition �(1) = 0.

2Again, this de�nition di�ers from Lagarias's for the number one, since in Lagarias's paper �1(1) = 2
but in the above de�nition �1(1) = 0.

3This de�nition also di�ers slightly from Lagarias's, since by my de�nition alt max value(1) = 1, not 2.
However, the di�erence is immaterial for all other positive integers.
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on the x-axis and the value of some derived measure on the y-axis, then each peak will be a
point higher than has been reached before. For example, 3 is a peak in max value, because
max value(3) = 16, max value(2) = 2, and max value(1) = 1.

Peaks in a derived measure are also interesting because stating that there are no other
peaks in that measure between m and n says a great deal about the values of the derived
measure on all the numbers between m and n. Peaks appear more and more rarely as one
tests larger numbers, as the tables in Appendix A bear out. While it is easy to verify the
value of steps(n) or max value(n) for any particular n, it is very expensive to verify that n is
a peak in either derived measure, because this involves showing that all numbers less than
n have a smaller value for steps or max value.

1.2.4 Relationships Between Peaks in Derived Measures

The following summarizes the relationships between peaks in the various derived measures.
The question is whether peaks in one derived measure must be peaks in some other derived
measure.

Peaks in stopping time seem unrelated to peaks in any of the other measures. But for
the other kinds of peaks, there are relationships that result from the similar de�nitions of H
and T . The main connections are summarized above in lemmas 1.1.1 and 1.1.2.

Max Value and Alt Max Value

To show the relationship between max value and alt max value, the following lemma is
needed. It says that if a value occurs in the iterate sequence of a number greater than
two, then it must occur before the iterates reach one.

Lemma 1.2.1. For all n > 2, and for all k, if there is some i � 0 such that H(i)(n) = k,
then there is some 0 � j � steps(n) such that H(j)(n) = k; furthermore, if there is some
i � 0 such that T (i)(n) = k, then there is some 0 � j � �1(n) such that T (j)(n) = k.

Proof: If steps(n) is in�nite, then the result follows with j = i.
So suppose i > steps(n) and H(i)(n) = k. Since n > 2, steps(n) � 2, since steps(3) = 7

and for all n � 4, at least two steps are needed to reach 1. But ifH(m)(n) = 1 andm � 2, then
H(m�1)(n) = 2. (If H(m�1)(n) is odd, then 1 = H(m)(n) = 3(H(m�1)(n)) + 1 > H(m�1)(n),
which is a contradiction.) Similarly, if H(m)(n) = 1 and m � 2, then H(m�2)(n) = 4. Since
H(steps(n))(n) = 1 by de�nition, k must be either 4, 2, or 1. So if k = 1, take j = steps(n). If
k = 2, take j = steps(n)� 1. Finally, if k = 4, take j = steps(n)� 2.

The proof for T is similar to the above proof for H.
Peaks in alt max value are directly related to peaks in max value. This is shown in the

following lemma.

Lemma 1.2.2. If n > 2, then max value(n) = 2 � alt max value(n).

Proof: Suppose alt max value(n) = k. Let i � �1(n) be such that T (i)(n) = k. Then by
Lemma 1.1.1, there is some j � 0 such that H(j)(n) = 2k. By Lemma 1.2.1, one can choose
j � steps(n). Thus max value(n) � 2 � alt max value(n).
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Suppose max value(n) = m. Let j � steps(n) be such that H(j)(n) = m. Then m is
even, because otherwise H(j+1)(n) = 3m+1 > m. By Lemma 1.1.2, there is some i � 0 such
that either T (i)(n) = m or T (i)(n) = m=2. But the �rst case is a contradiction, since then
by Lemma 1.1.1, there would be some p � 0 such that H(p) = 2m > m. So it must be that
T (i)(n) = m=2. By Lemma 1.2.1, one can choose i � �1(n). Thus 2 � alt max value(n) �
max value(n).

Corollary 1.2.3. An integer k > 0 is a peak in max value if and only if k is a peak in
alt max value.

Steps and Total Stopping Time

The relationship between peaks in steps and peaks in �1 is one of the deep mathematical
questions that often appear in the study of the 3x + 1 problem. However, it is easy to see
that the total stopping time cannot be greater than the number of steps, nor as small as half
the number of steps.

Lemma 1.2.4. For all n > 0, if steps(n) 6=1, then steps(n)=2 < �1(n) � steps(n).

Proof: In any sequence of iterates of H, every step of the form 3x + 1 is followed by
a division by 2. Thus the iteration of T removes at most half of these steps. However, if
steps(n) is de�ned, then there must be more division by 2 steps in the standard algorithm
than there are steps that multiply by 3 and add one.

A di�erent relationship between total stopping time and steps was pointed out by Je�ery
Lagarias in a letter (1987). Let odd(n) be the number of odd integers in the iterate sequence
of H (excluding 1) and even(n) be the number of even integers that occur until 1 is reached.
That is:

odd(n)
def
= #fk j k mod 2 = 1; H(i)(n) = k; 0 � i < steps(n)g (1.5)

even(n)
def
= #fk j k mod 2 = 0; H(i)(n) = k; 0 � i < steps(n)g: (1.6)

Since every step produces an odd or an even number, the sum of odd and even is the
number of steps.

Lemma 1.2.5. For all n > 0, steps(n) = odd(n) + even(n).

It is interesting that the number of even steps is the same as the total stopping time.

Lemma 1.2.6. For all n > 0, �1(n) = even(n).

Proof: If �1(n) = 1, then even(n) = 1. Furthermore, �1(1) = 0 = even(1) and
�
1
(2) = 1 = even(2).
So suppose n > 2 and �1(n) = m < 1. By Lemma 1.1.1, for each 0 � i � �1(n),

there is some j � 0 such that 2T (i)(n) = H(j)(n). By Lemma 1.2.1 j can be chosen so that
j � steps(n). Thus �1(n) � even(n). However, if �1(n) > even(n), then there would
have to be two iterates of T with the same value (that is, 0 � i < l � �1(n), such that
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T (i)(n) = T (l)(n)), but if this happened there would be in�nitely many such cases, and so
�1(n) would be in�nite.

Unfortunately, the above analysis does not easily enable one to prove that peaks in steps
are also peaks in total stopping time, or vice versa. However, the peaks do coincide at
least to 12.3 billion (12:3� 109), as the search program veri�ed. Hence I o�er the following
conjecture.

Conjecture 1.2.7. An integer k > 0 is a peak in steps if and only if k is a peak in total
stopping time (�1).

Je�rey Lagarias was kind enough to write me (in 1987) to explain why this conjecture
would be di�cult to prove.

10



Chapter 2

Large Scale Design Issues

2.1 Partitioning the Search

2.1.1 Characteristics of the Problem

The search for peaks in the derived measures discussed in Chapter 1 has the following
characteristics.

1. The values of a derived measure can be computed for any n independently of any other
number.

2. To �nd peaks in a derived measure, it is not necessary to obtain the exact value for
the derived measure for each number. It is possible to stop computing if the input
can be shown to not be a peak. Some strategies for deciding when to stop computing
on a number require knowledge of previous peaks and are most e�ective if the input
number is not more than twice the previous peak.

3. A number is not de�nitely known to be a peak in a derived measure until all smaller
numbers have been checked.

The �rst item is the source of parallelism in the problem and the second two are the sources
of what little synchronization there is in the problem.

2.1.2 Partitioning the Search

Given some number of computers, the basic way to partition the problem is to give each
computer a number to check and have them report back on the results. However, it is not
e�cient to simply give each computer one number to check, because running the algorithm
takes very little time and there would be too much time spent in synchronization to obtain
the next number. This is especially true in Argus, where the computers are connected over a
network and communication among computers takes several orders of magnitude more time
than the time for checking an individual number [LS83].

Thus the program is designed to give each computer an interval of numbers instead of a
single number. Each computer checks all the numbers in the interval given to it. The size of
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the interval can be made large enough so that synchronization takes an insigni�cant fraction
of the total time spent in the search. Because the size of the interval is best determined by
performance considerations, it should be easily changed while the system is running.

Although the primary task in searching for peaks is checking individual numbers, there
are several bookkeeping tasks such as keeping track of the results and the intervals searched.
My design involves two separate guardians. (A guardian is the basic module of an Argus
program, and corresponds to an abstract resource.) The �rst kind of guardian is called a
search guardian; it is responsible for searching for peaks in the derived measures. The second
kind of guardian is called a coordinator ; it is responsible for the bookkeeping tasks. (The
coordinator evolved from an earlier design in which there were only search guardians and
I did the bookkeeping tasks manually.) The coordinator records the peaks (and candidate
peaks) that have been found, the intervals that are being searched, and the intervals that
have already been searched. However, the coordinator does not do any searching for peaks
on its own.

When the system is started, each search guardian immediately calls the coordinator
to obtain an interval to be searched. The coordinator synchronizes the search guardians,
handing out intervals so that there is no duplication of e�ort. Each search guardian checks
each number in the interval it is assigned and reports back to the coordinator.

2.2 Design Issues

2.2.1 Coordinator State

Argus supports two kinds of storage: stable and volatile. Information recorded on stable
storage survives (with high probability) the crash of a computer and any guardians running
on it. However, stable storage is more expensive than volatile storage, since duplicate copies
of information are necessary to ensure that it survives crashes [Lam81]. It is therefore
important to decide what information will be kept in stable storage, and what will be kept
in volatile storage.

Since the coordinator's purpose is to do bookkeeping, most of its information must be
kept in stable storage. This includes the following essential information.

1. The peaks in the derived measures that have been found.

2. Any candidate peaks. These are numbers that have higher values for the derived
measures than any known peaks, but which are not known to be true peaks because
not every smaller number has been checked.

3. A list of what intervals have been searched already (so that it can be determined what
numbers are peaks).

4. A list of what intervals have been handed out to search guardians (so that there will
not be any duplication of e�ort).

One could also imagine having the coordinator track what guardians are involved in
the search and what interval each guardian is searching. This information would allow the
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coordinator to exert more control over the search. For example, if one guardian was slow in
searching a critical interval, the coordinator could reassign it to a di�erent interval and assign
a faster guardian. Without knowing these pieces of information it is impossible to reassign
intervals in this fashion. On the other hand, this kind of ability does not seem essential
and it is di�cult to implement; so information about what interval particular guardians are
searching is not kept by my implementation.

2.2.2 Search Guardian State

The essential information that a search guardian must keep in stable storage is just the
interval it is assigned. If a search guardian were to loose this information, the interval it
was searching would never be searched, because the coordinator does not keep any record of
which intervals are being searched by which guardians.

However, it is a good idea to save other information on stable storage periodically (i.e.,
take a checkpoint) so that only a small amount of CPU time will be wasted in the event of
a crash. This allows one a greater probability of making progress in a long computation.
(DSG note 142 discusses this point in more detail [Lea86].) Thus the next number to be
searched and any (candidate) peaks found are kept on stable storage.

In addition, a search guardian also keeps information about earlier peaks in stable storage,
both for detecting when it has found a new peak and for algorithmic e�ciency (see below).
Finally, a search guardian keeps two handler objects that are its connection to the coordinator
on stable storage.

In Argus, information that is kept on stable storage must be stored in atomic data con-
tainers [LS83] that support synchronization and consistency in the face of parallel processing
and machine crashes. However, atomic data containers, such as atomic arrays, are less ef-
�cient than non-atomic data containers, as there is some overhead for locking, etc. Thus
non-atomic copies of all but the handlers are kept in volatile variables. A checkpoint there-
fore involves copying information from volatile variables to stable storage in an atomic action
(i.e., a transaction). This way of programming the problem also keeps the atomic actions
very short, since no searching for peaks happens inside an atomic action.

The search guardian takes a checkpoint after searching an interval of a certain size. The
size is set so that checkpoints happen about once every twenty minutes and so that the
checkpoint size evenly divides the size of the interval given to the search guardian by the
coordinator. Making the checkpoint interval longer reduces the amount of time spent on the
overhead of checkpointing as opposed to the \real work" of searching. The amount of time
spent on checkpointing in the actual implementation is well below 0.1% of the total CPU
time used by the guardian. Since it is important not to duplicate e�ort by searching past
the end of the assigned interval, a search guardian needs to test a count after each number's
search in any case; this check is combined with a check to see if it is time to take a checkpoint
by making the size of the checkpoint interval evenly divide the size of the interval given by
the coordinator.
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2.2.3 Synchronization

The search guardians are synchronized by the coordinator, since the coordinator keeps track
of the peaks and the intervals reported and taken for searching. It is possible for more than
one search guardian to attempt to report (by making a handler call) on the search results in
di�erent intervals at the same time. Hence the coordinator's design must synchronize these
possibly concurrent requests to ensure that no information is lost due to race conditions and
that there is no duplication of work.

In Argus, each report request appears at the coordinator in the form of a handler call
(a handler being the module that services remote procedure calls). If concurrent remote
procedure calls occur, then there will be more than one atomic action (i.e., process), active
in the coordinator guardian executing the code of the handler. Synchronization is achieved
by means of atomic data objects within the coordinator delaying actions as necessary to
ensure serialization.

While it may be possible for reports from the search guardians to be processed concur-
rently in the coordinator, concurrent processing does not seem to be necessary, because each
search guardian only reports, on the average, about once a day. This decision to ignore
opportunities for exploiting concurrency in the coordinator's processing of reports eases the
implementation of the coordinator. In particular, the coordinator uses the Argus atomic ar-
rays in a straight-forward fashion to implement various atomic types with low concurrency.
For example, the type peak list, which is used by the coordinator to keep track of the peaks
found, is built using atomic arrays. Because it uses atomic arrays, the implementation of
peak list is easy. A peak list object can only be used by one action (i.e., by one process) at
a time due to the strict locking rules for the atomic array that is used in its representation,
but this hardly matters.

It is easy to ensure that an abstract type constructed from a built-in atomic type such
as atomic arrays will provide the necessary synchronization and recovery. Thus the only
remaining problem for the coordinator is to ensure that there are no deadlocks.

To ensure that no deadlocks occur, the handler that processes a report �rst gets a write
lock on an atomic object. This ensures that reports are processed sequentially, and so avoids
deadlocks. Hence there is no real concurrency in the coordinator guardian, but again this
hardly matters.

2.2.4 The Reporting Interface

The search guardian needs to call the coordinator

� when the system is initially started to get an initial interval to search, and

� when it �nishes checking all the numbers in its assigned interval.

It is convenient to make the initial request for an interval look the same as other search
reports. Thus search guardians report that they have searched the interval from 1 to 3 right
after they are created. Because peaks are the object of the search, it is also convenient if
the search guardian can call the coordinator when it �nds a peak, even if it is not �nished
with its assigned interval.
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A search report consists of the lists of candidate peaks, the search guardian's assigned
interval, how far it has searched (in case it is not done yet), and the size of the interval
it desires. Having the search guardian tell the coordinator how large an interval it wants
allows some 
exibility in compensating for di�erences in the speed of various computers.
The coordinator must record as \searched" the interval from the beginning of the assigned
interval up to how far the guardian says it has searched. The coordinator must also record
any peaks. The normal return from a search report is a new search interval and other
information necessary to continue the search in that interval. The coordinator can also raise
an exception that tells the search guardian to continue searching in the interval it has already
been assigned.

There is also a handler call that a search guardian can make to report the results of a
search without receiving a new interval to search. This would be useful during recon�gura-
tion.

2.2.5 Reliability

The list of peaks produced by the system must correspond to the mathematical truth: that
is the whole point of the program. To verify the correctness of the results, one must verify
the correctness of the program. Thus the coding process was concerned with maintaining
invariants, etc. I never sacri�ced the program's correctness for the sake of e�ciency; doing
this would be pointless.

The coordinator also double checks the values of any peaks reported by the search
guardians, although it cannot check that they are truly peaks. Several bugs were caught by
having the coordinator double check the search guardian's reports.

The coordinator checks reports of peaks with a slow but sure algorithm. Furthermore,
the coordinator and the search guardians use di�erent implementations of the long integers
necessary for the search. (This is a feature of Argus, that each guardian can be indepen-
dently linked with di�erent implementations.) The coordinator uses an implementation of
long integers in which I have more con�dence, since it has not been extensively tuned for
performance, and since it has not been changed during the course of the search. (Not to
say that I do not have con�dence in the implementations used by the search guardians, but
there are varying degrees of con�dence that one can have in pieces of software.)

2.2.6 Security and Recon�guration

There is also a concern for \security," because one would like to ensure that search reports
only come from the search guardians. An easy way to do this is by not putting the handlers
for reporting search results in the Argus catalog (a guardian known to all other Argus
guardians); instead, these are given to the search guardians when the system is created.

Unfortunately, not putting handlers that the search guardians need in the catalog means
that search system is not easily recon�gured. This is not serious, since ease of recon�guration
is not a major requirement.

However, one can do guardian replacement as in Mark Day's thesis [Day87], even though
the coordinator's report handlers are not in the catalog. This is done as follows. It is easy
to replace the search guardians using Day's scheme. Replacing the coordinator, is done as
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in Day's scheme, except that instead of putting the new report handlers in the catalog,
they must be sent to the individual search guardians, which have a special handler for this
purpose.

In practice, however, it is just as easy to destroy the old search system and completely
create a new one. The stable state of the coordinator is stored in text �les during the
interim. (This also provides some recourse when \stable" storage is corrupted, as happened
infrequently in the early Argus implementation.)

2.2.7 Scaling

The partitioning of the search into intervals does not work well when the search is started
from scratch at 1. This is because the peaks are very close together near 1 and only spread
apart as the numbers increase. However, this is easily overcome by not partitioning the
problem at the beginning.

Similar problems arise when considering how many computers can be fruitfully brought
to bear on the problem. Certain strategies for stopping computing on a number work best if
the search guardians are searching intervals that do not extend past twice the largest known
peak. (This is true at least for the search for peaks in steps.) Thus, as the search proceeds
towards in�nity, there are larger and larger intervals available for searching. However, at
any given point one can only employ so many search guardians, because they should have
intervals large enough so that they do not spend most of their time communicating with the
coordinator. Furthermore, the coordinator is not designed to have the fastest algorithms for
checking and recording search reports. (The coordinator implementation, as noted above,
processes search reports sequentially.)

At the extreme of thousands of processors, perhaps the best way to proceed would be to
have each processor check a single number rather than an interval, have each processor that
found a peak record that peak, and then have each processor work on the next number as
determined by adding the number of processors1 to the number it worked on before [HS86].
This algorithm would be di�cult to manage if the processors could not move in lock step.
Moreover, it would be di�cult to synchronize the recording of peaks, since it is possible that
two processors would �nd a peak during the same step of the algorithm.

2.2.8 Availability

As the system stands, there is only one coordinator guardian, which is clearly an availability
bottleneck. However, the early implementation of Argus stable storage was (at the time I
implemented the search program) also a single point of failure. Furthermore, the computer
that the coordinator was running on was also fairly reliable. Thus the work involved in
replicating the coordinator did not seem justi�ed2.

The search guardians, on the other hand, have to be able to continue to function when
the coordinator cannot be reached. If the coordinator is unavailable when a search guardian
�nishes its interval, it simply continues searching from where it left o�. (This is the only

1Actually, since the search only has to check odd numbers, one would add twice the number of processors.
2Especially since I was trying to �nish my Ph.D. at the time and my thesis advisor would have been

extremely upset if I had spent even more time on this program.
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thing it can do without remembering more than the current amount of state information.)
Each time it takes a checkpoint, if it has reached the end of its assigned interval or surpassed
it, it tries to call the coordinator. Thus, when the coordinator cannot be reached, the search
guardian tries to call it more frequently, but it keeps on working. Chances are, however,
that the work it is doing will duplicate that already done by another search guardian.

2.2.9 Niceness and Politeness

The search guardians are CPU hogs. Originally it was thought that by running them at the
lowest possible Unix priority (also known as the \nice" value), they would not get in anyone's
way. Unfortunately, the 4.3 BSD Unix process scheduling algorithm handles CPU-intensive
low priority processes poorly3.

Thus, besides being nice, the search guardians are also polite; that is, they check, every
10 minutes, to see if anyone is logged in, and if so, they go to \sleep" by calling a built-in
sleep primitive of Argus. A sleeping search guardian uses no CPU time and little (real)
memory. A sleeping guardian awakens every hour to check if anyone is logged in; if no one
is logged in it starts searching again.

The original implementation of this login checking was done by the search whenever it
took a checkpoint. However, there was always a compromise between wanting to have a short
interval between checking for logins and wanting to have a fairly long interval between taking
checkpoints. Furthermore, as the search progressed towards in�nity, the search guardians
would tend to take longer intervals between checkpoints, so tuning the size of the checkpoint
interval was di�cult. At Mark Day's suggestion, I implemented the login checking as a
separate process within the search guardian. It is thus easy to set the time between checks
for logins. This process sets a boolean variable to tell the background process (running the
search proper) when to go to sleep. The background process's code checks this variable after
each number's search.

The search guardians also have a handler that can be called to set the variable indicating
that someone is logged in. Hence calling this handler causes the search guardian to go to
sleep immediately (after taking a checkpoint and calling the coordinator). People could thus
make the search guardian go to sleep as soon as they logged in my running a program (which
I provided). This program is also useful for making a search guardian call the coordinator;
for example before restarting the system.

2.2.10 Communication with the Outside World

Output from the search program is obtained by handler calls. The coordinator can be called
to return the list of peaks and the intervals reported and taken for searching. The search
guardians support a similar handler that allows one to �nd out the state of a particular

3It was observed that having the search guardian at lowest priority slowed down other jobs, especially
balanced I/O and CPU jobs such as document formatting. The hypothesis that seems to explain this behavior
is that when some high priority Unix process gives up the CPU (e.g., to do some I/O), the scheduling
algorithm would begin to bring the search guardian into main memory, causing some of the pages of the
high priority process that were in main memory to be written out to disk. This would diminish the working
set of the high priority process, cause more disk activity, and in short, slow down the high priority process.
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search guardian. The search guardians also support a handler call that makes them go to
sleep (see above).

Other handlers are available for changing various parameters that govern the performance
of the search. For example, the search guardians can be asked to change the size of the
interval that they request from the coordinator and how often they take checkpoints. This
kind of handler has been the source of much evolution during the development of the system,
as it seems that there is always one more number or variable that should be changeable while
the system is running.
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Chapter 3

Small Scale Design Issues

This chapter discusses the e�ciency of the search guardian, which amounts to a discussion of
the algorithms for iterating H and T . See Section 2.2.2 for a discussion of how the overhead
of the search is made insigni�cant.

A fundamental observation is that peaks are extremely rare. For example, in the �rst 50
billion integers, there are only 49 peaks in max value and only 78 peaks in steps. (One reason
why the search for peaks is so attractive is because there are minimal storage requirements
and the output is not overwhelming.) The peaks become more and more rare as the search
progresses; between 1 billion and 50 billion there are only 5 peaks in max value and 12 peaks
in steps. So a typical number is not a peak, and the main task of the search guardian is to
�nd this out as quickly as possible. There are two basic strategies for doing this.

� Discovering that the input number is not a peak before taking it through all the iterates
of H or T down to 1 (or until the values of the iterates fall below the starting value if
one is searching for peaks in stopping time). This is called cutting o� the search.

� Running the steps of the iteration algorithm faster. This is involves both faster al-
gorithms that are equivalent to iterating H or T and hackery to make multiplying,
dividing, adding, and comparing numbers faster.

3.1 Cutting o� the Search

The best way to cut o� the search on a given input number is to prove that the input cannot
be a peak and to ignore it without spending any time on it. This is called an a priori cuto�.
A less e�ective way to cut o� the search on a given input is to prove that the number cannot
be a peak after learning something about the path that it takes. This is called an a posteriori
cuto�.

3.1.1 A Priori Cuto�s

A basic result is that it is possible, a priori, to limit the search to odd numbers.
For max value, it su�ces to note that the �rst step of H for an even number is to divide

it by two.
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Lemma 3.1.1. For any k > 0, max value(2k) = maxf2k;max value(k)g.

Proof: H(2k) = k, and thereafter iterating H produces the same sequence of values as
iterating H on k.

Corollary 3.1.2. The number 2 is the only even peak in max value.

Proof: Let k > 1 be given. By the above lemma, max value(2k), is either the max-
imum of 2k or max value(k). If max value(2k) = max value(k), then 2k is not a peak.
So suppose max value(2k) = 2k. But then 2k is not a peak in max value either, since
max value(2k � 1 ) � 3(2k � 1) > 2k. The inequality max value(2k � 1 ) � 3(2k � 1) holds
because 2k � 1 is odd, hence H(2k � 1) = 3(2k � 1). That 3(2k � 1) > 2k holds for k > 1
holds is shown by the following:

k > 1 ) 4k > 4 (3.1)

) 4k � 3 > 1 (3.2)

) (6k � 3)� 2k > 1 (3.3)

) (6k � 3) > 2k + 1 (3.4)

) 3(2k � 1) > 2k: (3.5)

Results similar to the above apply to alt max value as well.
For steps, the same observation about the �rst step of H means that an even number k

will take only one more step than k=2 to return to 1.

Lemma 3.1.3. For any k > 0, steps(2k) = 1 + steps(k).

Corollary 3.1.4. If k is a peak in steps, then the least even number greater than k that
can be a peak in steps is 2k.

Proof: Let k be a peak in steps. By de�nition, for all 0 < j < k, steps(j) < steps(k).
Thus by the preceding lemma,

steps(2j) = 1 + steps(j) � steps(k) = steps(2k)� 1 < steps(2k):

A similar result applies to total stopping time.
By these corollaries, it is easy to predict all the even peaks in steps and max value. Thus

the search for these peaks can ignore all the even numbers and need only check the odd
numbers.

For stopping time, the �rst division by two means that an even number always has a
stopping time of 1.

Lemma 3.1.5. For any k > 0, �(2k) = 1.

Corollary 3.1.6. If k > 2 is a peak in stopping time, then k is odd.
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Proof: �(3) = 4 > 1.
So the search for peaks in stopping time can also ignore all the even numbers.
The following results allow the search for peaks in stopping time to e�ectively ignore half

of the odd numbers as well, that is, those that are equal to 1 modulo 4. (Mike Vermeulen
brought the numbers equal to 1 modulo 4 to my attention in connection with an idea for
cutting o� the search for peaks in max value.)

Lemma 3.1.7. For all k > 0, if k mod 4 = 1, then T (k) is even.

Proof: Suppose k > 0 and k mod 4 = 1. Then k mod 2 = 1, and hence T (k) =
(3k + 1)=2. But (3k + 1) is evenly divisible by 4:

k mod 4 = 1 ) 3k mod 4 = 3 (3.6)

) (3k + 1) mod 4 = 0; (3.7)

and therefore (3k + 1)=2 must be evenly divisible by 2.

Corollary 3.1.8. For all k > 1, if k mod 4 = 1, then �(k) = 2.

Proof: Suppose k > 1. Then (3k + 1)=4 < k. By the above lemma, T (k) = (3k + 1)=2.
But (3k + 1)=2 > k and (3k + 1)=2 is even, so T (2)(k) = (3k + 1)=4. So by de�nition, the
stopping time of k is 2.

Sad to say, I never used the above idea in my search for peaks in stopping time.
In contrast to the above cuto�s, which rely on what happens to a number when it is

used as input to iterations of H or T there are other a priori cuto�s that rely on how a
number can result from (smaller) numbers in the course of iterating H or T . The idea of
the following lemmas was brought to my attention by Mike Vermeulen. It is related to the
Collatz graph discussed in [Lag85].

Lemma 3.1.9. Let j and k be given so that 0 < j < k. If there is some m > 0 such that
H(m)(j) = k, then k cannot be a peak in steps or max value.

Proof: Since the steps taken by k are the same as those taken by j after m initial steps,
steps(j) = m+ steps(k) and max value(j) � max value(k).

Lemma 3.1.10. Let j and k be given so that 0 < j < k. If there is some m > 0 such that
T (m)(j) = k, then k cannot be a peak in stopping time, total stopping time, or alt max value.

Proof: The proof is the same as the proof of the previous lemma. Since the steps taken by
k are the same as those taken by j afterm initial steps, �(j) = m+�(k), �1(j) = m+�1(k),
and alt max value(j) � altmax value(k).

The most important practical example of this kind of a priori cuto� is that if k mod 6 = 5,
then k cannot be a peak in any of the derived measures mentioned in the lemmas above.
This is because if k mod 6 = 5, then k lies on the sequence of iterates of (2k� 1)=3, which is
smaller than k. Indeed the iterates of H �rst multiply (2k � 1)=3 by 3 and add 1, obtaining
2k, and then divide 2k by 2 obtaining k. This result, due to Mike Vermeulen [Ver86a], is
proved in the following lemma.
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Lemma 3.1.11. Let k > 0. If k mod 6 = 5, then T ((2k � 1=3)) = k and H(2)((2k �
1)=3) = k.

Proof: Suppose k > 0 and k mod 6 = 5. First we note that 2k � 1 is divisible by 3:

k mod 6 = 5 ) 2k mod 6 = 4 (3.8)

) 2k mod 3 = 1 (3.9)

) (2k � 1) mod 3 = 0 (3.10)

Note that (2k � 1)=3 is odd:

k mod 6 = 5 ) 2k mod 6 = 4 (3.11)

) (2k � 1) mod 6 = 3 (3.12)

) (2k � 1)=3 mod 2 = 1 (3.13)

The last implication above follows because there is some integer q such that:

(2k � 1) = 6q + 3 ) (2k � 1) = 3(2q) + 3 (3.14)

) (2k � 1)=3 = 2q + 1 (3.15)

Therefore, according to the de�nitions of T and H,

T ((2k � 1)=3) = k (3.16)

H((2k � 1)=3) = 2k (3.17)

H(2)((2k � 1)=3) = k (3.18)

Corollary 3.1.12. Let k > 0. If k mod 6 = 5, then k cannot be a peak in steps,
max value, stopping time, total stopping time, or alt max value.

The interested reader might see what happens when k mod 18 = 13. This idea can be
carried as far as one desires. For example, one could keep a table of which numbers modulo
216 cannot be peaks in max value or steps, and a counter that gives the value of the current
iterate modulo 216. One could then use the table to avoid testing numbers that have no
hope of being peaks. In the extreme, one can organize the entire search by constructing the
Collatz graph, but the space requirements become prohibitive.

Other a priori cuto�s are discussed below, after the introduction of composite polyno-
mials.

3.1.2 A Posteriori Cuto�s in Max value

When iterating H to search for peaks in max value, one has to check periodically to see if
the values produced are greater than the value of the previous iterate (or than the value of
the previous peak). However, these comparisons are fairly expensive. One way to reduce the
cost of these comparisons is to stop making them after a certain point. It should be obvious
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that one does not have to make a comparison after dividing by 2, since it becomes smaller
than it was before. Neither does one have to make a comparison after every 3n+1 step, but
only until the iterates have fallen below the initial value (or stopped), due to the following
result.

Lemma 3.1.13. Let k > 0 be a peak in max value. If for some m > 0, H(m)(k) < k,
then max value(k) = maxfH(i)(k) j 0 � i � mg.

Proof: Let m > 0, be such that H(m)(k) = j < k. Since j < k, max value(j) <
max value(k), because k is a peak. Since after this point the sequence of iterates of k is the
same as that taken by j, it cannot be the case that more iterations will reach or exceed the
maximum value obtained up to this point.

The way this lemma is used in an a posteriori cuto� is to stop making comparisons for
purposes of �nding a peak in max value after the sequence of iterates falls below the initial
input number, k. Note that the lemma depends on k being a peak in max value. If this is
not the case, the maximum value may be obtained after the value of an iterate falls below its
starting value. An example is the number 55, which reaches a value of 376 before it �rst falls
below 55 (to 47). It then goes on to reach a maximum value of 9,232. However, this is only
a problem if the search guardian thinks that such a number really is a peak in max value. It
will be a problem because the guardian will not obtain the correct maximum value for the
number, yet it will report to the coordinator that the number is a peak in max value. The
coordinator will then check the report and �nd it to be in error (which causes an unhandled
exception in the search guardian). However, this problem never causes trouble if each search
guardian knows about a peak in max value that is reasonably close to the interval that it is
searching. In practice this is only a problem if the search guardian does not know any peaks
in max value other than 1, which is one reason why the search cannot easily be partitioned
near 1.

3.1.3 A Posteriori Cuto�s in Steps

After the value of the an iterate of H has fallen below the input value, the search is only
concerned with whether or not the input number is a peak in steps (or total stopping time).
In such cases the cost is running the steps of the hailstone algorithm and checking the value
of the iterates to see if the algorithm should terminate. The following lemma and its practical
importance in a posteriori cuto�s was brought to my attention by Mike Vermeulen.

Lemma 3.1.14. For all k > 0, if H(p) = n � j, where j is a peak in steps, then
steps(k) � p+ steps(j)

Proof: If n = j, then steps(k) = p + steps(j). If n < j, then, since j is a peak in steps,
steps(n) < steps(j), by the de�nition of a peak.

In practice, the above lemma is used as follows. Let the initial value be k. After a step
where H divides the current iterate value by two, one �nds (if possible) the largest peak, j,
in steps such that the current iterate's value is no greater than j, and uses the lemma above
to bound steps(k). If this bound on steps(k) indicates that k is not a peak in steps, then k
can be dismissed as far as steps is concerned.
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The importance of this a posteriori cuto� is the empirical observation that the cuto�
allows the search for peaks in steps to be cut o�, on the average, after a constant number
of steps. This seems to be true in any su�ciently large interval, provided that all but one
or two peaks in steps less than the interval are known. That is, if one knows all the peaks
in steps up to j, and if j is su�ciently large, then over the interval from j + 1 to 2j one
should always be able to cut o� the search after an average of so many steps, independent
of the value of j. I have instrumented a program and shown that one can cut o� the search
in steps after about 15 steps, on the average.1 Considering that the number of steps taken
by a number goes up logarithmically with the input number, this cuto� makes sense as soon
as the average (odd) number starts taking more than 15 steps worth of time plus the time
required to see if the search can be cut o�.

3.2 Faster Iteration Algorithms

Even with the results above, there are still in�nitely many numbers that have to be run
through at least part of the hailstone algorithm of Figure 3.1, which computes the iterates of
H, or the similar algorithm that computes the iterates of T . Thus the problem of running the
hailstone algorithm e�ciently turns out to be important in extending the search for peaks
very far. The problem considered in this section is �nding an equivalent algorithm that can
be executed in less time. The focus in this section is on the hailstone algorithm, and the
search for peaks in steps and max value.

Figure 3.1: The hailstone algorithm, which computes iterates of H.

% input: an integer n > 0
% output: number of steps and max value reached
steps: int := 0
max value: bigint := n
while n 6= 1 do

if (n mod 2) = 0
then n := n / 2
else n := 3�n + 1

max value := max(max value, n)
end

steps := steps + 1
end

1I recorded data for the 100,000 odd numbers in the interval from 17,828,259,369 to 17,828,459,369. Note
that 17,828,259,369 is a peak in steps. In this interval the average number of steps is 276.
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Figure 3.2: Hailstone algorithm using make odd.

% input: an odd integer n > 0
while n 6= 1 do

% n is odd
n := 3�n + 1
% n is even
% check for max value
n, p := make odd(n)
% the number of steps taken this time around the loop is p+1
% check for a posteriori cuto�s

end

3.2.1 Make odd

Division by 2 is best implemented by shifting in a binary representation. Also, shifting a
number by several bit positions is roughly as fast as shifting a number by one bit position.
Thus, one idea for making a faster algorithm is to replace the division by 2 step in the
hailstone algorithm by a step that shifts the input as many bits as necessary in order to
make it odd. How e�ective will this be? If the value of the hailstone algorithm's variable n
were uniformly distributed among the even integers by the 3n+1 step, then half of the time
n would not be divisible by 4, and one fourth of the time n would not be divisible by 8, and
so on. Thus the expected number of bit positions that an even number would be shifted is

1=2 + 2(1=4) + 3(1=8) + 4(1=16) + � � � =
1X
i=1

i

2i
(3.19)

= 2 (3.20)

Thus on the average, shifting n by as many bits as necessary to make it odd does the work
of two divisions by 2 and should take the same amount of time.

Furthermore, a nice property of shifting n so that it is odd is that one no longer has to
check to see whether n is odd or even, because one can write the hailstone algorithm (for
odd inputs) as in Figure 3.2. In the �gure, the procedure make odd returns the new value of
n and the number of bit positions that the old value of n had to be shifted to make it odd.
Another pleasing property of this hailstone algorithm is that one can check for cuto�s when
n is as low as it can be before going up again, this means that one spends less time checking
for cuto�s, on the average.

3.2.2 Composite Polynomials

A more e�cient hailstone algorithm is the result of Mike Vermeulen's e�orts. The standard
hailstone algorithm looks at the last bit of the value of the variable n to decide what step
to take. By looking at the last m bits of the binary representation of n, one can decide
what the next several steps that will be taken are, combine all these steps into a polynomial,
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Figure 3.3: Hailstone algorithm using composite polynomials.

% input: an integer n > 0
while n 6= 1 do

p, s := mBitPoly(n mod 2m)
n := polyEval(p, n)
% the number of steps taken this time around the loop is s
% check for a posteriori cuto�s

end

and then do the work of all those steps by evaluating the polynomial at the value of n. An
algorithm that uses this idea for computing the iterates of H is shown in simpli�ed form in
Figure 3.3. In the �gure, mBitPoly returns both a polynomial and the number of steps that
the polynomial represents. Checking for max value is described below.

There are two strategies for expressing the polynomial.
One strategy is to obtain a polynomial of the form:

3kx+ z

2m

which is equivalent to the sequence of k+m steps taken. This standard polynomial , represents
k steps of the form 3n+1 and m divisions by 2. (It will be shown below why the number of
divisions by 2 is equal to the number of bits considered.) This polynomial can be evaluated
by multiplying by the appropriate power of 3, adding in the appropriate integer z and then
shifting by the appropriate power of 2. Since the shifting is done last, there is an opportunity
to use the make odd trick, ending up with an odd number.

For each n, the standard m bit polynomial for n will be written Spolym(n).
The strategy that Mike Vermeulen uses is to obtain a polynomial of the form:

�
x

2m

�
3k + y

This Vermeulen polynomial also represents k steps of the form 3n + 1 and m divisions by
2. Vermeulen polynomials will yield an answer equivalent to the normal sequence of steps
when evaluated in the following manner:

1. divide by 2m and truncate, that is, shift the binary representation right by m bits,

2. multiply the result (the most signi�cant part of n) by the appropriate power of 3, and

3. add y.

The idea is that a Vermeulen polynomial represents the e�ect of the steps on the most
signi�cant part of n only. The number y represents the over
ow from the least signi�cant m
bits. This strategy has the advantage of dealing with smaller numbers during the evaluation
of the polynomial. By contrast, the evaluation of a standard polynomial is more likely to
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incur the cost of creating larger representations intermediate results. Furthermore, when
evaluating a Vermeulen polynomial in the case where 3k < 2m, one can be sure that there
will be no over
ow in computing the intermediate result, because the shifting (division) is
done �rst.

For each n, the m bit Vermeulen polynomial for n will be written Vpolym(n).
To explain how these polynomials are generated, consider the following examples, adapted

from a mail message [Ver86b]. Items to the right of the dot (.) in last bits do not a�ect the
other bits, and items to the left of the dot do. The following is the generation of an 8 bit
Vermeulen polynomial, Vpoly8(3).

Max Last bits N Partial poly Next step

.00000011 3 X *3

.00001010 10 3X+1 /2

.0000101 5 3(X/2)+2 *3

* .0010000 16 9(X/2)+7 /16

.001 1 9(X/32)+1 *3

.100 4 27(X/32)+4 /4

.1 1 27(X/128)+1 *3

10.0 4 81(X/128)+2 /2

10. 2 81(X/256)+2

Notice that division by 2 removes one bit from the right, this corresponds to moving in bits
from the left that are unknown. The process of computing partial polynomials stops when
all the known bits are shifted out, that is, when m divisions by 2 have been performed. The
row marked with the asterisk indicates the partial polynomial which produces the largest
intermediate result. If one is checking for peaks in max value, then the evaluation must be
broken into three steps: evaluating the partial polynomial at this point, checking for a peak
in max value, and then evaluating the rest of the polynomial. For comparison, Spoly8(3) is
(81x + 269)=256.

As another example, Vpoly8(27) is bx=256c2187 + 242; for comparison Spoly8(27) is
(2187x + 2903)=256.

Although the composite polynomial idea leads to a hailstone algorithm that is perhaps
an order of magnitude faster than the algorithm in Figure 3.2, I have no proof that this
approach yields an optimal algorithm.

The practical drawback to such an algorithm is its complexity of implementation. One
needs automated tools for generating the polynominals. Furthermore, it is di�cult writing
the code to check for peaks in max value or stopping time. This implementation di�culty
makes the results of the algorithm less reliable (as the implementation is more di�cult to
verify).

However, even if composite polynomials are not used in the iteration algorithm, they can
be used to generate a priori cuto�s.

3.2.3 A Priori Cuto�s based on Composite Polynomials

Composite polynomials lead to new strategies for cuto�s [Ver86b].

27



Steps

Mike Vermeulen cuts o� the search for peaks in steps a priori as follows.

Lemma 3.2.1. Let m > 0 be given. Let 0 < r1 < r2 < 2m, Vpolym(r1) = Vpoly(r2).
Then there is no k � 2m + r1 such that k mod 2m = r2 and k is a peak in steps.

Proof: Let k � 2m + r1 be such that k mod 2m = r2. Let b be the largest number
such that b < k and b mod 2m = r1. Since the polynomials Vpolym(r1) and Vpolym(r2)
are identical they represent the same number of steps. After these steps, b and k take the
same steps since Vpolym(r1)(b) = Vpolym(r2)(k). So k cannot be a peak, because b < k and
steps(b) = steps(k).

Max Value

Mike Vermeulen cuts o� the search for peaks in max value a priori if the m bit Vermeulen
polynomial has as the coe�cient of x a term that is less than unity. For example, using 8
bit polynomials, he does not look for peaks in values when the last 8 bits are \.00000011,"
because Vpoly8(3) = bx=256c81 + 2 and 81=256 < 1. Another example: he does look for
peaks in values when the last 8 bits are \.00011011" because Vpoly8(27) = bx=256c2187+242.

This kind of cuto� is formalized using the notion of the \largest" partial polynomial.
A partial polynomial is a polynomial incorporating the �rst s � 0 steps of the hailstone
algorithm, as predicted (see above) from the least signi�cant m bits. We say that p � q for
m bit partial polynomials if there is some N > 0 such that, for all n > N , p(n) � q(n).

Let LVpolym(r) be the largest m bit partial Vermeulen polynomial predicted for r. Sim-
ilarly, let LSpolym(r) be the largest m bit partial standard polynomial predicted for r.

Lemma 3.2.2. Let m > 0 be given. Let polym(r) and Lpolym(r) denote either the
standard or Vermeulen m bit polynomial and largest m bit partial polynomial predicted for
r.

There is some N > 0 such that for all k > N , the following hold. If k mod 2m = r and

1. polym(r)(k) < k, and

2. there is some max value peak j < k such that Lpolym(r)(k) � max value(j),

then k is not a peak in max value.

Proof: Choose N such that for all k > N and for all predicted m bit partial polynomials,
p and q, p � q implies p(k) � q(k). Now, given k > N , the highest value the hailstone
algorithm's variable n reaches before falling below its initial value, k, is Lpoly(r)(k), where
r = k mod 2m. This is because poly(r)(k) < k, and so n falls below k (after the number of
steps represented by the polynomial) and because by construction Lpoly(r)(k) is the highest
value that n attains (in these �rst steps). Thus by Lemma 3.1.13, if k is a peak in max value,
then

Lpoly(r)(k) = max value(k) < max value(j)

which is a contradiction. So k cannot be a peak in max value.
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Note that the above lemma is independent of the kind of polynomial used. In practice,
the choice of N is not a problem, because the input numbers soon dwarf the coe�cients of
the composite polynomials.

The above lemma allows one to set up a table that tells which numbers modulo 2m need to
be checked for peaks in max value. For each 0 < r < 2m, one must check the two conditions
of the above lemma. For su�ciently large numbers, one can check the �rst condition of the
lemma above a priori.

One can also satisfy the second condition of the lemma a priori over a certain interval.
Suppose N is chosen to be the least number to satisfy the lemma and such that the �rst con-
dition of the lemma can be checked a priori. Suppose the largest known peak in max value,
call it j, is such that j > N . Finally, suppose that there is a rational number R > 0 such
that, for all k > N and for all 0 � r � 2m such that polym(r)(k) < k:

LVpolym(r)(k) < R � k:

Then in the interval from N to max value(j)=R the second condition of the lemma can be
checked a priori. In fact, in such an interval, the second condition of the lemma is satis�ed
whenever the �rst condition of the lemma is satis�ed.

Thus the practical justi�cation for setting up a table of cuto�s as described above is
that, for su�ciently large input numbers, the maximum value of the largest peak is many
orders of magnitude greater than the inputs numbers and the coe�cients of the Vermeulen
polynomial cannot be very large. In fact the following result holds.

Lemma 3.2.3. Let m > 1 be given. For all 0 < r < 2m, if there is some Mr such that
for all k > Mr, k mod 2m = r implies that Vpolym(r)(k) < k, then the coe�cient of x in
LVpolym(r) is at most 3j=2(j�1), where j is the largest integer such that 3j < 2m.

Proof: Every step in the hailstone algorithm of the form 3n+1 is followed by a step that
divides by 2. Thus the coe�cient of x in the partial Vermeulen polynomial is made as large
as possible when it is of the form 3j=2(j�1). However, because the �nal polynomial is of the
form 3j+p=2m + y, for some p � 0, 3j must be less than 2m if the Vermeulen polynomial is
to be such that Vpolym(r)(k) < k, for all su�ciently large k mod 2m = r.

As an example, for 8 bit Vermeulen polynomials, the coe�cient can be at most

35=24 = 243=16 = 15:1875:

Thus, as long as the is the largest peak j in max value is at least 16 times the input numbers
being checked, then for all su�ciently large k:

Vpoly8(r)(k) < k ) LVpoly8(r)(k) � max value(j):

This condition seems to be met for all numbers past 7.

3.2.4 Hackery

The search must deal with large precision integers. This is obvious as the input numbers
themselves become larger than the single precision integers implemented in Argus. However,
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the peaks in max value exceed the limitations of the built-in int type more quickly. For
example

max value(77,671) = 1,570,824,736: (3.21)

The implementation of multiple precision integers is thus the foundation upon which the
algorithms discussed above run. Thus the e�ciency of the routines for multiplication, and
so on have a great e�ect on the e�ciency of the search as a whole.

The basic hack is using a binary representation for multiple precision integers and writing
routines to return 3n + 1, etc. in assembly language to take advantage of the machine
arithmetic. Argus's built-in type int is quite slow for two reasons:

1. int's arithmetic operations are de�ned to check for over
ow, and

2. the representation chosen for int on the vax architecture makes checking for over
ow
ine�cient.

Essentially, after adding two ints, Argus must add them again and then check for over-

ow, taking three instructions overall for an addition. In assembly language, with a suitable
representation invariant, one can add numbers much faster. Similar remarks apply to mul-
tiplication and division.
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Chapter 4

Conclusions

4.1 Suitability of Argus

Argus proved to be a good implementation language because it provides good support for
making progress in long running computations. More speci�cally:

� Argus stable storage provides a convenient way to checkpoint intermediate states.

� Actions insure that checkpoints only record consistent states. This allows invariants
to be preserved across crashes.

� Handlers provide a convenient way to coordinate and monitor the state of the compu-
tation. In particular, the ability to separate the code that monitors the computation
from the code performing the actual computation makes program design easier, and
allows performance tuning of just the code that performs the computation.

� Guardians recover from machine crashes automatically.

Using a simple guardian with background code that periodically saves state in stable
storage is a general paradigm for long running computations. I was able to write a simple
program the perform a long-running search on one machine in a matter of hours.

Adding coordination of multiple guardians, however, took several days.

4.2 Lessons Learned about Argus

This section discusses observations about using Argus that I learned while writing the hail-
stone system. Observations relating to the e�ciency of the resulting program, however, are
discussed above.

A guardian's state variables are accessible throughout the guardian de�nition. There
is thus a tendency to not pass the objects they refer to routines that are internal to the
guardian, causing modularity problems. The problem is that it can be di�cult to extract a
routine from a guardian, if you want to compile and link it separately.

I never needed recover code. Initializations of the volatile variables always su�ced for
the hailstone system.
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I always created guardians by passing them an initial state, even though there is a well
de�ned distinguished initial state. This is partly because I usually wanted to continue from
where the search left o�, but also because it is easier to have just one way of creating the
hailstone system.

De�ning stable variables holding integers where the value can change is tricky. I used an
atomic record containing an integer. The problem is that one easily thinks of the variable
as an integer variable, whereas it is actually an atomic record variable.

Guardians have invariants that describe their state, especially the relationship of the
volatile variables to the stable variables. These invariants hold for action-consistent snap-
shots. I comment each guardian with an invariant. I also noticed that the invariants for
guardians tended to be much longer and more involved than those for clusters. But using
abstract types instead of using just atomic arrays and so on helps simplify the invariants.

I have an implementation of immutable and atomic integers whose rep is mutable and
nonatomic (an array). This works because I never modify the array after passing out a
pointer to it, although I never understood (or thought about) why it was resilient until I
talked to Elliot Kolodner.
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Appendix A

Tables of Peaks

This appendix contains tables of results from the various search programs.

A.1 Peaks in more than one Derived Measure

A few numbers have been found to be peaks in several derived measures. In a sense, these
are the most interesting numbers I found.

Tables A.5, A.6, and A.7 list the peaks in both steps and total stopping time; these are
known to be identical up to 12.3 billion (12:3� 109).

Table A.1 lists numbers that are peaks in other combinations of derived measures; each
entry is �lled in if the number is a peak in the corresponding function and left empty
otherwise.

Table A.1: Peaks in more than one derived measure.

n steps(n) �(n) max value(n)
1 0 0 1
2 1 1 2
3 7 4 16
7 16 7 52
27 111 59 9,232
703 170 81 250,504

26,623 307 106,358,020
270,271 164 24,648,077,896
626,331 508 176

63,728,127 949 376
12,235,060,455 1,184 547
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A.2 Maximum Values

The peaks in max value are listed in Tables A.2 and A.3. The peaks up to 100 billion
(100�109) have been veri�ed by two programs: mine and Mike Vermeulen's. Mike Vermeulen
is responsible for all the peaks above 100 billion. There is some question whether the peaks
in max value over 100 billion listed below can be trusted, due to a bug in Mike's program,
but they seem genuine. The list of the peaks he has found is complete up to 1.711 trillion
(1:711� 1012).

Of particular interest here are the peaks at n equal to 27, 6,631,675, and 319,804,831.
Also listed in the tables is the ratio of the peak's maximum value reached to the previ-
ous maximum value reached (labeled \ratio") and the expansion factor (labeled s(n)); the
expansion factor, s(n), de�ned by max value(n)=(2n), is rounded to two signi�cant digits.
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Table A.2: Peaks in max value up to n = 5,000,000.

n max value(n) ratio s(n)
1 1 0.5
2 2 2.0 0.5
3 16 8.0 2.7
7 52 3.3 3.7
15 160 3.1 5.3
27 9,232 57.7 1:7� 102

255 13,120 1.4 2:5� 101

447 39,364 3.0 4:4� 101

639 41,524 1.1 3:2� 101

703 250,504 6.0 1:8� 102

1,819 1,276,936 5.1 3:5� 102

4,255 6,810,136 5.3 8:0� 102

4,591 8,153,620 1.2 8:9� 102

9,663 27,114,424 3.3 1:4� 103

20,895 50,143,264 1.8 1:2� 103

26,623 106,358,020 2.1 2:0� 103

31,911 121,012,864 1.1 1:9� 103

60,975 593,279,152 4.9 4:9� 103

77,671 1,570,824,736 2.6 1:0� 104

113,383 2,482,111,348 1.6 1:1� 104

138,367 2,798,323,360 1.1 1:0� 104

159,487 17,202,377,752 6.1 5:4� 104

270,271 24,648,077,896 1.4 4:6� 104

665,215 52,483,285,312 2.1 3:9� 104

704,511 56,991,483,520 1.1 4:0� 104

1,042,431 90,239,155,648 1.6 4:3� 104

1,212,415 139,646,736,808 1.5 5:8� 104

1,441,407 151,629,574,372 1.1 5:3� 104

1,875,711 155,904,349,696 1.0 4:2� 104

1,988,859 156,914,378,224 1.0 3:9� 104

2,643,183 190,459,818,484 1.2 3:6� 104

2,684,647 352,617,812,944 1.9 6:6� 104

3,041,127 622,717,901,620 1.8 1:0� 105

3,873,535 858,555,169,576 1.4 1:1� 105

4,637,979 1,318,802,294,932 1.5 1:4� 105

5,656,191 2,412,493,616,608 1.8 2:1� 105
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Table A.3: Peaks in max value from n = 5,000,000 to 1,711,000,000,000.

n max value(n) ratio s(n)
5,656,191 2,412,493,616,608 1.8 2:1� 105

6,416,623 4,799,996,945,368 2.0 3:7� 105

6,631,675 60,342,610,919,632 12.6 4:5� 106

19,638,399 306,296,925,203,752 5.1 7:7� 106

38,595,583 474,637,698,851,092 1.5 6:1� 106

80,049,391 2,185,143,829,170,100 4.6 1:4� 107

120,080,895 3,277,901,576,118,580 1.5 1:4� 107

210,964,383 6,404,797,161,121,264 2.0 1:5� 107

319,804,831 1,414,236,446,719,942,480 220.8 2:2� 109

1,410,123,943 7,125,885,122,794,452,160 5.0 2:5� 109

8,528,817,511 18,144,594,937,356,598,024 2.5 1:1� 109

12,327,829,503 20,722,398,914,405,051,728 1.1 8:4� 108

23,035,537,407 68,838,156,641,548,227,040 3.3 1:5� 109

45,871,962,271 82,341,648,902,022,834,004 1.2 9:0� 108

51,739,336,447 114,639,617,141,613,998,440 1.4 1:1� 109

59,152,641,055 151,499,365,062,390,201,544 1.3 1:3� 109

59,436,135,663 205,736,389,371,841,852,168 1.4 1:7� 109

70,141,259,775 420,967,113,788,389,829,704 2.0 3:0� 109

77,566,362,559 916,613,029,076,867,799,856 2.2 5:9� 109

110,243,094,271 1,372,453,649,566,268,380,360 1.5 6:2� 109

204,430,613,247 1,415,260,793,009,654,991,088 1.0 3:4� 109

231,913,730,799 2,190,343,823,882,874,513,556 1.5 4:7� 109

272,025,660,543 21,948,483,635,670,417,963,748 10.0 4:0� 1010

446,559,217,279 39,533,276,910,778,060,381,072 1.8 4:4� 1010

567,839,862,631 100,540,173,225,585,986,235,988 2.5 8:8� 1010

871,673,828,443 400,558,740,821,250,122,033,728 4.0 2:3� 1011
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A.3 Steps and Total Stopping Time

Peaks in steps are listed in Tables A.5, A.6, and A.7. The peaks up to 100 billion (100 �
109) have been veri�ed by two programs: mine and Mike Vermeulen's. Mike Vermeulen is
responsible for all the peaks above 100 billion, and his list is believed to be complete up to
1:711 � 1012. It seems that every peak in steps is also a peak in total stopping time, �1,
although I have only veri�ed this conjecture up to 12:3 � 109. That is the tables A.5, A.6,
and A.7 also contain peaks in total stopping time, up to 12.3 billion.

Also listed in these tables are the di�erence between each peak's number of steps and the
previous peak's number of steps, the value of the stopping time �(n), the value of �1(n),
and the maximum value reached.

Of particular interest here are the peaks at n equal to 27 and 63,728,127 which have large
increments in the number of steps and the peaks that are simply twice the previous peak in
steps, found in Table A.4.

Table A.4: Even Peaks in steps up to 1,711,000,000,000.

peak (n) steps(n)
2 1
6 8
18 20
54 112

31,466,382 705
127,456,254 950
537,099,606 965

1,341,234,558 987
9,780,657,630 1,132
63,389,366,646 1,220
404,970,804,222 1,308
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Table A.5: Peaks in steps up to n = 100,000.

n steps(n) di�. �(n) �1(n) max value(n)
1 0 0 0 1
2 1 1 1 1 2
3 7 6 4 5 16
6 8 1 1 6 16
7 16 8 7 11 52
9 19 3 2 13 52
18 20 1 1 14 52
25 23 3 2 16 88
27 111 88 59 70 9,232
54 112 1 1 71 9,232
73 115 3 2 73 9,232
97 118 3 2 75 9,232
129 121 3 2 77 9,232
171 124 3 5 79 9,232
231 127 3 12 81 9,232
313 130 3 2 83 9,232
327 143 7 21 91 9,232
649 144 1 2 92 9,232
703 170 26 81 108 250,504
871 178 8 35 113 190,996

1,161 181 3 2 115 190,996
2,223 182 1 8 116 250,504
2,463 208 26 21 132 250,504
2,919 216 8 26 137 250,504
3,711 237 21 37 150 481,624
6,171 261 24 58 165 975,400
10,971 267 6 8 169 975,400
13,255 275 8 8 174 497,176
17,647 278 3 73 176 11,003,416
23,529 281 3 2 178 11,003,416
26,623 307 26 65 194 106,358,020
34,239 310 3 92 196 18,976,192
35,655 323 13 135 204 41,163,712
52,527 339 16 18 214 106,358,020
77,031 350 11 89 221 21,933,016
106,239 353 3 97 223 104,674,192
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Table A.6: Peaks in steps from n = 100,000 to n = 5,000,000,000.

n steps(n) di�. �(n) �1(n) max value(n)
106,239 353 3 97 223 104,674,192
142,587 374 21 24 236 593,279,152
156,159 382 8 37 241 41,163,712
216,367 385 3 83 243 11,843,332
230,631 442 57 73 278 76,778,008
410,011 448 6 75 282 76,778,008
511,935 469 21 16 295 76,778,008
626,331 508 39 176 319 7,222,283,188
837,799 524 16 105 329 2,974,984,576

1,117,065 527 3 2 331 2,974,984,576
1,501,353 530 3 2 333 90,239,155,648
1,723,519 556 26 176 349 46,571,871,940
2,298,025 559 3 2 351 46,571,871,940
3,064,033 562 3 2 353 46,571,871,940
3,542,887 583 21 180 366 294,475,592,320
3,732,423 596 13 8 374 294,475,592,320
5,649,499 612 16 116 384 1,017,886,660
6,649,279 664 52 146 416 15,208,728,208
8,400,511 685 21 214 429 159,424,614,880
11,200,681 688 3 2 431 159,424,614,880
14,934,241 691 3 2 433 159,424,614,880
15,733,191 704 13 8 441 159,424,614,880
31,466,382 705 1 1 442 159,424,614,880
36,791,535 744 39 34 466 159,424,614,880
63,728,127 949 205 376 592 966,616,035,460
127,456,254 950 1 1 593 966,616,035,460
169,941,673 953 3 2 595 966,616,035,460
226,588,897 956 3 2 597 966,616,035,460
268,549,803 964 8 5 602 966,616,035,460
537,099,606 965 1 1 603 966,616,035,460
670,617,279 986 21 18 616 966,616,035,460

1,341,234,558 987 1 1 617 966,616,035,460
1,412,987,847 1,000 13 8 625 966,616,035,460
1,674,652,263 1,008 8 13 630 966,616,035,460
2,610,744,987 1,050 42 46 656 966,616,035,460
4,578,853,915 1,087 37 81 679 966,616,035,460
4,890,328,815 1,131 44 135 706 319,497,287,463,520
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Table A.7: Peaks in steps from n = 5,000,000,000 to 1,711,000,000,000.

n steps(n) di�. �(n) �1(n) max value(n)
4,890,328,815 1,131 44 135 706 319,497,287,463,520
9,780,657,630 1,132 2 1 707 319,497,287,463,520
12,212,032,815 1,153 21 15 720 319,497,287,463,520
12,235,060,455 1,184 31 547 739 1,037,298,361,093,936
13,371,194,527 1,210 26 62 755 319,497,287,463,520
17,828,259,369 1,213 3 2 757 319,497,287,463,520
31,694,683,323 1,219 6 7 761 319,497,287,463,520
63,389,366,646 1,220 1 1 762 319,497,287,463,520
75,128,138,247 1,228 8 7 767 319,497,287,463,520
133,561,134,663 1,234 6 10 771 319,497,287,463,520
158,294,678,119 1,242 8 15 776 319,497,287,463,520
202,485,402,111 1,307 65 270 816 2,662,567,439,048,656
404,970,804,222 1,308 1 1 817 2,662,567,439,048,656
426,635,908,975 1,321 13 40 825 2,662,567,439,048,656
568,847,878,633 1,324 3 2 827 2,662,567,439,048,656
674,190,078,379 1,332 8 5 832 2,662,567,439,048,656
881,715,740,415 1,335 3 329 834 5,234,135,688,127,384
989,345,275,647 1,348 13 165 842 1,219,624,271,099,764

1,122,382,791,663 1,356 8 16 847 2,662,567,439,048,656
1,444,338,092,271 1,408 52 202 879 1,219,624,271,099,764
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A.4 Stopping Time

Peaks in stopping time, �, are not necessarily peaks in steps, and conversely peaks in steps
are not necessarily peaks in stopping time. The same remark applies to total stopping time.

Table A.8 lists the peaks in stopping time as found by my program. (These results have
not been veri�ed by another program.) This list is complete up to 1.043 trillion (1:043�1012).
The most interesting of these peaks is 12,235,060,455.

Also listed are the di�erence between each peak's stopping time and the stopping time
of the previous peak (labeled \di�."), the value of steps for that peak, the total stopping
time �1, and the maximum value reached. Unlike the peaks in steps, the maximum values
reached by these peaks rarely repeat.

Table A.8: Peaks in stopping time, �, up to 1,043,000,000,000.

n �(n) di�. steps(n) �1(n) max value(n)
1 0 0 0 1
2 1 1 1 1 2
3 4 3 7 5 16
7 7 4 16 11 52
27 59 52 111 70 9,232
703 81 22 170 108 250,504

10,087 105 24 223 142 2,484,916
35,655 135 30 323 204 41,163,712
270,271 164 29 406 256 24,648,077,896
362,343 165 1 360 228 565,335,124
381,727 173 8 373 236 565,335,124
626,331 176 3 508 319 7,222,283,188

1,027,431 183 7 377 239 17,808,240,724
1,126,015 224 41 527 331 90,239,155,648
8,088,063 246 22 566 356 16,155,154,672
13,421,671 287 41 608 382 1,591,706,254,336
20,638,335 292 5 694 435 89,243,211,616
26,716,671 298 6 658 413 3,696,858,621,088
56,924,955 308 10 742 465 7,209,046,267,252
63,728,127 376 68 949 592 966,616,035,460
217,740,015 395 19 793 395 2,516,021,527,120

1,200,991,791 398 3 873 547 35,681,506,677,556
1,827,397,567 433 25 928 581 118,736,698,851,769,012
2,788,008,987 447 14 944 591 81,887,769,175,732
12,235,060,455 547 100 1,184 739 1,037,298,361,093,936
898,696,369,947 550 3 1,136 712 791,612,079,014,220,715,456
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Appendix B

History of the Search Programs

This appendix contains a history of the search programs that were run at MIT during my
time as a graduate student. The entries in this appendix were taken from a �le that I
maintained while the search was running, except that the last two entries were made as this
report was being written (since at the time I was in the midst of �nishing my dissertation).

There were three searches programs in all. The �rst was a search for peaks in steps and
max value. The second was a search for peaks in total stopping time (�1). The third was a
search for peaks in stopping time �.

The entries all follow the same format. The date, followed by the number reached in the
search is reported �rst. This is followed by a comment.

In the comments, the name \Paul" refers to Paul Johnson, and \Mike" means Mike
Vermeulen.

The names \rinso," \prj," \duz," and so on are the names of particular machines at
MIT. Their characteristics are listed in Table B.1. The idle time on six micro-vax II's (VAX
stations) and two VAX 3200s (the con�guration used for the third search for a long time)
was generally enough to search an interval of size 95 billion for peaks in stopping time (�) in
a month. The amount searched would be more or less, depending on the time of year (e.g.,
during holidays no one would be logged in), the number and type of the machines involved,
and the e�ciency of the algorithms used. At the end, each VAX station could search an
interval with a size of approximately 264,000 numbers for peaks in � in a minute (of real
time). Other comments on the speed of the search are found below.

Mike Vermeulen has searched the interval from 1 to at least 1.711 trillion (1:711� 1012)
for peaks in steps and max value. His search is now also defunct. Until sometime in 1989
he was using a HP 9000/350 computer1 and a program written in C and assembly language,
which was running at HP Labs in Fort Collins, Colorado since December 1986.

B.1 The First Search: Peaks in Steps and Max Value

The �rst search began in May 1986 and searched for peaks in steps and max value. It was
ended when it reached 100,085,608,537, over a year later. The initial version of the program
is described in an internal note at MIT [Lea86]. The more-or-less �nal version of the system

1Until about August 1988, Mike used 7 machines.
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Table B.1: Machines used in the search.

name machine type
rinso DEC VAX 750
duz DEC VAX 750
prj,pm-prj DEC micro-vax II
electron DEC micro-vax II
graviton DEC micro-vax II
proton DEC micro-vax II
neutron DEC micro-vax II
positron DEC micro-vax II
photon DEC micro-vax II
muon DEC micro-vax II
kaon DEC VAX 3200
meson DEC VAX 3200

was described in a similar internal note [Lea87], which has been updated in the main body
of this report.

8 May 1986 77,671 First guardian written. The search started using only rinso.

15 May 1986 3,272,371 Started using 2 machines. Rinso and prj.

20 May 1986 8,210,229 Rinso catches up to prj by reaching 5,004,427. The search
slows down prj, however, so it's back to just rinso.

6 June 1986 14,024,621 Duz is found to be faster than rinso (probably because its
users are on vacation). The search is moved to duz.

20 June 1986 19,686,965 Complaints surface that even at lowest priority, the search is
slowing down duz. The guardians are recoded so that they go to sleep when someone
logs in. The search is put up on all 5 machines (rinso at 19,686,965, bold at
22,000,001, fab at 25,000,001, duz at 30,000,001, and prj at 40,000,001).

30 June 1986 31,466,382 Found (even) peak in steps at 31,466,382 almost in time for
grads meeting.

8 July 1986 39,000,001 Mike Vermeulen comes up with an optimization of the
algorithm to cut o� the search if the starting number cannot produce a new peak in
steps. This is coded, tested, and the guardians are started up again, with provisions
for updating a list of peaks in steps (the cuto�s list) as they run. Managing the
guardians is becoming more complex.

23 July 1986 175,881,671 Guardians are given slices 200,000,000 apart so that there
will be no overlap during Gary's vacation.
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21 August 1986 259,618,047 Hailstone coordinator guardian tested and put into use.
Search continues on 5 machines.

26 August 1986 321,324,733 Spurred on by Mike Vermeulen's C version of the
hailstone search, various low-level optimizations are made. The search guardians on a
micro vax are able to search an interval of about 6000 in a minute. Mike's version
reaches 1 billion.

3 Sept 1986 537,099,606 Finding another double peak in steps prompts rewriting of
search guardians to only search the odd numbers, while the coordinator predicts the
double peaks in steps.

12 Sept 1986 718,823,481 It becomes obvious that the slice from 718,823,481 to
719,823,481 has been forgotten. Some guardian was assigned it but never reported it
to the coordinator. It will have to be re-searched.

15 Sept 1986 718,823,481 Bold, duz, and fab are taken away. The unreported slice is
still unreported. Restarting the search on rinso and prj uncovers a harmless bug in
the coordinator's predicting of double peaks in steps, which is �xed.

16 Sept 1986 841,830,793 Rinso and prj have �lled in the gaps in the search, but the
Argus system starts to have problems with stable storage and bringing up the new
microvaxes. Missing slice problems appear because of some Argus problems and so
the search is soon halted.

23 Sept 1986 849,310,791 Argus is running on all the microvaxes, and the search is
started on the 4 microvaxes (electron, neutron, proton, pm-prj) and rinso.

27 Sept 1986 891,105,783 Designed, coded, tested and installed new version of
unsignedints specially designed for the hailstone search problem. Seems to have
speeded up the search by about a factor of 3. Prj and rinso continually have
problems with sendmails running to the exclusion of the search guardians.

28 Sept 1986 1,033,537,851 Search passes 1 billion. Parameters adjusted so that
coordinator hands out slices of size 5,000,000 and search guardians checkpoint after
every 100,000 searches.

30 Sept 1986 1,101,537,851 Some �ne tuning of the new representation.
Measurements indicate that the search guardians on a microvax can search an
interval of about 20000 in a minute, a speedup of about a factor of 3.

6 Oct. 1986 1,694,000,001 More �ne tuning of the new representation. Measurements
indicate the rate on a microvax is an interval of about 25,000 in a minute.

28 Oct. 1986 3,886,291,371 Another round of representations and tuning by rewriting
part of it in assembly language. Rate is an interval of about 42500/minute on a
microvax (neutron) in the interval from 3.89 to 3.93 billion. This is a speedup of a
factor of 2 or more from the previous version.
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28 Nov. 1986 11,378,406,329 Three new microvaxes are installed. A slight
improvement is made in the code for 3n+1 in assembly language. It is installed after
some testing but not before Paul has looked at it, because a bug is discovered in the
spec of the check for logins handler (poke search). The speed is holding pretty steady
at an interval of 50000/minute.

15 Dec. 1986 20,295,987,881 A assembly language routine is written for adding 2 to
an unsigned integer, which results in a speed up. The search speed is now slightly
faster than an interval of 80000/minute in the range around 20 billion. The previous
week saw the �rst stable storage problem in a hailstone search guardian.

17 Dec. 1986 20,486,895,159 An improved version of make odd in assembly language
causes some trauma when a bug is discovered. The bug is �xed, but a day's work had
to be abandoned because the guardians were running with the faulty code.
Preliminary measurements indicate a speed of about an interval of 98000/minute in
the range around 20 billion.

9 Jan. 1987 37,145,592,705 Received a message from Mike Vermeulen that his search
is up to 115 billion and going strong.

12 Feb. 1987 50,830,226,819 Search passes 50 billion. Reorganized the search
guardian's code to make optimization easier, added in a priori cuto� for n mod 6 = 5.
Preliminary measurements indicate rate is an interval of 94000/minute. Mike's search
has passed 300 billion.

13 Feb. 1987 Added a priori cuto�s based on Vermeulen polynomials. Preliminary
measurements show a rate of an interval of 127000/minute.

16 Mar. 1987 75,716,745,243 Added an eighth micro-vax (muon) to the machines
doing the search. Search passes 75 billion. Mike's search is past 500 billion.

7 Apr. 1987 100,085,608,537 Stopped the search after reaching 100 billion.

B.2 The Second Search: Peaks in Total Stopping Time

The second search looked for peaks in total stopping time (�1). It was started in April
1987, and continued for less than a month, until May 1987, when it reached 12.3 billion
(12:3� 109). At this point it seemed that all the peaks in �1 would also be peaks in steps,
although that is only a conjecture. Thus the search was not very interesting after the easy
peaks were found.

29 Apr. 1987 2,432,000,001 Searching for steps in total stopping time (sigma in�nity).
Conjecture is veri�ed up to 2.4 billion.

16 May 1987 12.3 billion Conjecture that all steps in total stopping time are also
peaks in steps veri�ed up to 12.3 billion. Shut down of this search.
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B.3 The Third Search: Peaks in Stopping Time

The third search ran for the longest time, and looked for peaks in stopping time (�). It
was amazing and frustrating, because after discovering several peaks including the one at
12,235,060,455 during the �rst month of the search, no new peaks were discovered for over
a year and a half!

16 May 1987 787,141,743 Looking for peaks in stopping time (sigma) now. Found
peaks di�erent from that in steps (or total stopping time).

19 May 1987 2.5 billion

26 May 1987 6,271,600,001 Improvements made to the algorithm and coding speed up
the search by a factor of about 2.5.

27 May 1987 7,360,383,283 Speed of the sigma search measured at an interval of
264000/minute (approximately).

17 June 1987 30,552,706,183 Search reaches 30 billion. No new peaks since
12,235,060,455.

9 Nov. 1987 204,867,151,963 Using 6 machines. No new peaks since 12,235,060,455.

8 Jan. 1988 301,507,887,715 No changes, and still no new peaks since 12,235,060,455.

10 Feb. 1988 352,723,633,185 No changes. Remeasured speed at about an interval of
266000/minute, which as close to the previous measurement as quantization allows.

29 Feb. 1988 379,386,592,257 Still no new peaks.

14 Mar. 1988 399,958,386,665 No changes, still no new peaks.

21 Apr. 1988 450,613,332,285 Now running under Unix 4.3 on neutron. Still no new
peaks.

4 June 1988 501,514,648,555 Now running on graviton (a VAX station) as well as
kaon (a VAX 3200). Still no new peaks.

8 June 1988 512,778,240,151 Now running on meson (a VAX 3200). This makes 9
machines total, of which 6 are VAX stations. Still no new peaks.

21 June 1988 554,041,256,259 Still no new peaks. Also running on kaon.

10 July 1988 615,182,955,057 Still no new peaks.

22 July 1988 650,340,880,339 Still no new peaks.

9 Aug. 1988 700,521,112,239 Still no new peaks.

26 Aug. 1988 749,652,024,883 No longer running on kaon. Not enough disk swap
space for Argus stable storage.
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29 Aug. 1988 754,962,262,075 Still no new peaks.

30 Aug. 1988 755,180,044,185 No longer running on meson. Back to 7 microvaxes.

23 Sept. 1988 800,794,838,815 Still no new peaks.

2 Nov. 1988 855,258,557,331 Running again on kaon and meson. No longer running
on proton (guardian won't start for some reason). Still no new peaks.

17 Nov. 1988 900,243,884,863 Found new peak in stopping time: 898,696,369,947
takes 550 steps!

1 Dec. 1988 944,761,925,329 Still no new peaks.

3 Jan. 1989 1,043,596,025,277 Reached a trillion. No new peaks. Terminating the
search, since no longer at MIT.
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