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Abstract. The Java Modeling Language (JML) is a formal specifica-
tion language for Java that allows to express intended behavior through
assertions. Currently, users must embed these assertions in Java com-
ments, which complicates parsing and hinders tool support, leading to
poor usability. This paper describes a set of proposed Java 5 annota-
tions which reflect current JML assertions and provides for better tool
support. We consider three alternative designs for such annotations and
explain why the chosen design is preferred. This syntax is designed to
support both a design-by-contract subset of JML, and to be extensible
to the full language. We demonstrate that by building two tools: Modern
Jass, which provides almost-native support for design by contract, and
a prototype that works with a much larger set of JML.

1 Introduction

The Java Modeling Language (JML) is a specification language for Java that uses
Java comments to express its assertions throughout the body of the code. This
technique allows assertions to appear anywhere throughout the code but requires
quite a bit of preprocessing and does not provide any native code completion
support in integrated development environments (IDEs) such as Eclipse. Since
JML’s inception, the designers of Java have added new language constructs called
annotations to provide language metadata alongside the Java language [3]. We
decided to investigate whether there was a way to express JML assertions using
these annotations.

Loosely speaking, Java 5 annotations are type-safe comments. Their defini-
tion is similar to the interface type and they can be used to add arbitrary meta-
data to Java statements such as types, fields, methods, method parameters, and
local variables. To define an annotation the interface keyword, preceded by the
@-sign, must be used. An annotation body can specify attributes to allow varying
instances of that annotation. Figure 1 shows the declaration and instantiation
of a possible requires-assertion.

The declaration of the annotation shows one attribute, named assertion, of
the string type. Attributes allow all primitive types, the class and enum type,
? Master’s thesis[1]

?? Master’s thesis at the University of Oldenburg, Germany[2]



public @interface Requires {

String assertion ();

}

/* ... */

@Requires(assertion = "amount > 0")

abstract int doWithDraw(int amount );

Fig. 1. Declaration and exemplary use of an annotation

other annotations, and arrays as their data type. Annotating the doWithDraw
method is done by stating the annotation, preceded by the @-sign, and assigning
a value to the attribute.

In order to motivate the use Java 5 annotations to specify behavior, consider
an example of the current JML syntax in Figure 2, inspired by one in the JML
Reference Manual [4]:

public abstract class IntList {

//@ public model non_null int [] elements;

//@ ensures \result == elements.length;

public abstract /*@ pure @*/ int size ();

/*@ signals (IndexOutOfBoundsException e)

@ index < 0 || index >= elements.length;

@*/

public abstract /*@ pure @*/ int elementAt(int index)

throws IndexOutOfBoundsException;

}

Fig. 2. Base Example

Notice that the assertions in Figure 2 must appear both in // or /* style com-
ments and these comments must start with an at-sign (@) as their first character.
These special comments are recognized by and processed by JML’s tools. This
could be confusing to new JML users who are familiar with the @Identifier
syntax for Java annotations. This example could be translated into Java 5 an-
notations in several ways, from an all-encompassing annotation to many smaller
annotations. Several criteria were considered when judging how usable these
annotations were to the users and designers:



Consistency Annotations may appear in several places, and they must be writ-
ten the same way in each place.

Readability Annotations must appear without too much syntax around them
so that readers can clearly find and easily read the predicate.

Usability Annotations must be flexible in how they are used: intuitive and
straightforward for new users while being fully expressive for veteran users.

Extensibility Annotations must be able to be extended without disrupting the
current syntax.

Thus, in this paper, we aim to answer two questions:

– Is there a way to write design-by-contract annotations such that they are
consistent, readable, usable, and extensible?

– Is it possible that multiple design-by-contract implementation languages can
successfully use a subset of these annotations as a language?

The rest of the paper explores related projects, explains the three approaches
in more detail, and evaluates them using the criteria above.

2 Related Work

Both JSR 305 [5] and JSR 308 [6] discuss the idea of simple Java annotation
code checking constructs, by suggesting such annotations as @NonNull, @Nullity,
and @Pure. JSR 308 aims to allow Java annotations in more places (specifically,
type expressions), and JSR 305 aims to create a standard set of annotations to
assist code checking tools. However, neither of these propose adding annotations
for design-by-contract clauses such as ensures.

XVP [7] uses Java 5 annotations to manage assertions in a declarative form.
While it improves on JML by representing assertions using reflection, it only
defines two annotations (@Constraint and @Pure). The authors explain that this is
to allow for any constraint language to be substituted in place of JML. However,
this makes the constraints difficult to read; it is hard to find the starts and ends
of separate clauses without clear string formatting.

Contract4J [8] goes further by splitting the contracts into three annotations:
@Pre (preconditions), @Post (postconditions), and @Invar (invariants). However,
its expression language is not as expressive as JML, as there are no mechanisms
to denote assignable, pure, or model constructs.

OVal with AspectJ [9] defines many annotations similar to JML, such as
@NonNull and the purity indicator @IsInvariant. It allows the user to select the
expression language inside of the annotations from five different expression lan-
guages (BeanShell, Groovy, JavaScript, MVEL, and OGNL) and also comes with
a translator from Enterprise JavaBeans 3.0 (EJB3) to OVal annotations, allowing
users to put constraints on database objects. Again, while the annotations and
expressions as a whole cover more than Contract4J, they are not as expressive
as JML, leaving out full assignable support and model constructs altogether.



3 Three Approaches

This section discusses three different approaches to embedding a specification
language in Java annotations.

3.1 The Single Annotation

One extreme technique is to just put all of the assertion inside one grand anno-
tation. As mentioned previously, XVP takes this approach by using the encom-
passing @Constraint annotation to hold the entirety of a JML expression4. An
example is given in Figure 3.

@JML("public model non_null int [] elements;")

public abstract class IntList {

@JML("ensures #result == elements.length;")

public abstract @JML("pure") int size ();

@JML("signals (IndexOutOfBoundsException e)"

+ "index < 0 || index >= elements.length;")

public abstract @JML("pure") int elementAt(int index)

throws IndexOutOfBoundsException;

}

Fig. 3. Single Annotation Example

3.2 The Parameter Annotation

The other extreme technique is to separate every single part of the annotation
into its parts inside of the annotation. This was the original design of the JML
annotations, but later analysis will show that going fully by this philosophy
causes problems. The same example in the previous section is modified for this
approach in Figure 4.

3.3 The Clausal Annotation

Since the two previous techniques are opposite of each other, it makes sense to try
to compromise between them. The driving design decision behind this approach
is to give as much work to the current parser as possible without losing the type

4 To avoid confusion with JML’s constraint keyword, this chapter will use @JML as a
replacement for @Constraint



@Model(visibility = Visibility.PUBLIC , nonnull = true ,

value = "int [] elements;")

public abstract class IntList {

@Ensures("#result == elements.length;")

public abstract @Pure int size ();

@Signals(type = "IndexOutOfBoundsException", ident = "e",

value = "index < 0 || index >= elements.length;")

public abstract @Pure int elementAt(int index)

throws IndexOutOfBoundsException;

}

Fig. 4. Parameter Annotation Example

of the assertion. This means that every clause that can occur by itself has an
annotation with that name and retains that structure throughout all expressions,
even within strings. Again, the same example in previous sections is modified
for this approach in Figure 5.

@Model("public @NonNull int [] elements;")

public abstract class IntList {

@Ensures("#result == elements.length;")

public abstract @Pure int size ();

@Signals("(IndexOutOfBoundsException e)"

+ "index < 0 || index >= elements.length;")

public abstract @Pure int elementAt(int index)

throws IndexOutOfBoundsException;

}

Fig. 5. Clausal Annotation Example

4 Discussion

Now we evaluate each approach based on the criteria stated above.



4.1 Consistency

The single annotation approach is the most consistent of the three, since the an-
notation encompasses the entire grammar. This becomes slightly less consistent
when using syntactic sugar like @Pure, since there are now two ways of specifying
a single pure assertion on a method. The clausal approach is slightly less con-
sistent than the single annotation approach, especially when it comes to more
advanced features of the language, such as a specification case5. However, since
the clausal approach requires that the content inside the strings is the same and
thus does not split up assertions, it is much more consistent than the parameter
approach.

4.2 Readability

The clausal approach is the most readable of the three, since it strikes a com-
promise between the two extreme approaches. The single annotation approach
obfuscates the assertion meaning by forcing the reader to read past @JML(..) to
figure out the actual assertion type. The parameter approach separates every
component of the predicate into different pieces in the annotation, eliminating
the sentence-like structure of the JML expressions. The signals clause in the
example illustrates this point well, since it translates into

@Signals(type = "IndexOutOfBoundsException", ident = "e",

value = "index < 0 || index >= elements.length;")

This translation becomes even more complicated for modifiers that turn into
their own language constructs, such as model. The parameter approach trans-
forms the model statement into

@Model(visibility = Visibility.PUBLIC , nonnull = true ,

value = "int [] elements;")

It is unreasonable to create fields for all of the other modifiers that can at-
tach to model since even slight language redesigns would require changes in this
annotation.

The clausal approach strikes a nice balance between the two, specifying the
type of the assertion while not splitting the predicate into pieces. In this approach
signals becomes

@Signals("(IndexOutOfBoundsException e)"

+ "index < 0 || index >= elements.length;")

while model turns into

@Model("public @NonNull int [] elements;")

a much shorter and more compact annotation.

5 For more information on the decisions on the specification case design, see Kristina
Taylor’s masters thesis [1]



4.3 Usability

The single annotation approach may be more usable by JML veterans, but it does
not guide new users on the different elements of the annotations. The parameter
approach is the most usable, as it lists in its specification the elements of the
annotation, their types, and whether or not they are required. For example, the
@Signals clause shows the user that while merely a type of exception is required,
the user can also specify an identifier and a predicate. The clausal approach only
specifies the type of the annotation and nothing about the inner syntax, so it is
only slightly more usable than the single annotation approach.

4.4 Extensibility

The single annotation and clausal approaches are the most extensible, since most
or all of the language extensions are handled by the parser. Thus, the parser
continues to be responsible for the error checking, while the hand-written code
only checks the type of the annotation and feeds all relevant information back
to the parser. In the parameter approach, a language change requires adding a
new annotation component as well as new hand-written code to feed it to the
parser, increasing the workload for the tool programmers and the possibility for
errors.

4.5 Summary

Using these criteria, we conclude that the single annotation approach is not
helpful to new users and that the parameter annotation approach is too com-
plicated. Thus, the clausal annotation approach seems the best compromise to
us. In addition, since the clausal annotation forwards much of the work to the
parser, it allows different projects, such as the Modern Jass project, to use the
basic JML language while implementing their own language enhancements and
expression grammars.

5 Tool Integration

This section discusses how we have experimented with this design by giving an
overview of two tools that use it: Modern Jass and JML5.

5.1 Modern Jass

Modern Jass is about enabling formal specifications without the cost of custom
development tools like pre-processors. To achieve this only Java features and
standardized programming interfaces were to be used. The components from
which Modern Jass is build, reflect the main requirements a specification tool
has to fulfill. Those are to:

– provide a way to write down specifications,



– validate specifications, so they can be evaluated without failure, and
– enforce that the specified behavior holds at runtime, and emit an event in

case it does not.

These requirements can be implemented using native Java programming inter-
faces, integrating seamlessly into every build process, being easy to use, and
independent of a development tool. To do this, Modern Jass uses Java 5 annota-
tions [3], the Annotation Processing and Compiler API [10,11], and the Bytecode
Instrumentation API [12].

The following lays out the workings of Modern Jass in detail. The behavior of
a program is specified using a set of Java 5 annotations, like the JMLAnnotations.
Currently, Modern Jass understands a subset of the JMLAnnotations which con-
tains the heavyweight specification case, invariants, and model variables as well
as lightweight specifications like the @Requires, @Ensures, and @NonNull annota-
tions. Before expounding on the Modern Jass annotation processor and bytecode
instrumenter, the corresponding programming interfaces are to be introduced.

The Annotation Processing API emerged from JSR 269 and was added to
the Java platform in its sixth major release (Java 6). It enables third party
developers to provide compiler plugins, called annotation processors, to discover
and validate the use of annotations. Access to all annotations and a signature
AST is provided, and an annotation processor can issue an error or warning if
an annotation is not used as expected. For example, if a specification refers to
a variable which is out of scope, the annotation processor will create a compile
error. Those errors will appear like ordinary compile errors, hence, be familiar
to most programmers. Having a framework to process annotations, raises the
question how invalid annotation values can be detected? Figure 6 shows a simple
specification which requires an index to be positive. However, the specification is
faulty, as it refers to the variable imdex instead of index 6. A part of specification-

@Requires("imdex >= 0") // wrong!

public abstract int elementAt(int index)

throws ArrayIndexOutOfBoundsException;

Fig. 6. A faulty specification (referring to an invalid variable).

validation is to detect such errors and report them to the end-user. Instead
of having a parser and code analyzer Modern Jass delegates this task to the
compiler using the Java Compiler API. This API (added via JSR 199 to Java
6), allows one to program

The last requirement is to enforce the specification during runtime. This
requires a bytecode representation of the specified behavior that can be exe-
6 Note that the Java compiler will not detect such errors as it just checks the syntax

(proper use of the string data type in this case) and not the actual semantics of the
annotation (referring to a method parameter).



cuted during program execution. To accomplish this, the Java Compiler API
is used to produce bytecode for runtime checking. When successfully compiling
specification code, bytecode is generated. This bytecode is used by a Java Instru-
mentation Agent and gets inserted, at runtime, while the corresponding classes
are loading into the Java virtual machine.

Summarizing, it can be said that using Java 5 annotation to specify the be-
havior of programs establishes a new way how specification tools can be written.
It allows for a much more native tool implementation which lowers the burden
for novice users, pleases veterans, and does not depend on a compiler implemen-
tation, build-process, or IDE.

5.2 JML5

While Modern Jass uses a subset of the annotation syntax described above,
JML5 uses all of its features. JML5 is based on the current JML compiler,
JML2, and so represents a different route to implementing annotation-based
specification languages. In JML2, abstract syntax trees (ASTs) are made up of
classes representing Java constructs (such as methods or fields) mixed in with
JML constructs (such as requires and ensures). JML5 works with these custom
ASTs without using the Annotation Processing API, and instead extends the
JML2 parser and tree walkers. The presence of visitor methods in all of the
necessary JML2 classes made this process easy since it allows a single visitor
class to walk through each element of the AST.

Parsing in JML5 happens in several phases. First, the compiler parses the
code just like Java code, ignoring the content inside of the strings of any JML
annotation it encounters. Second, it goes back to parse the strings and inserts
them into the previously created AST. In order to create these ASTs from the
strings in the annotations, we used a custom ANTLR parser-generator [13] to
create the parsing code for us. Every annotation (such as @Requires or @Ensures)
has a method in the parser, making it easy to call directly from the visitor
class. So, for example, adding a requires clause to a method in the JML AST
involves first calling the parser to get the AST for the clause, and then adding
the resulting JmlRequiresClause to the set of clauses in the JmlMethodDeclaration

container node.

6 Conclusion

In the introduction, we introduced two questions which this paper would hope-
fully answer:

– Is there a way to write design-by-contract annotations such that they are
consistent, readable, usable, and extensible?

– Is it possible that multiple design-by-contract implementation languages can
successfully use a subset of these annotations as a language?



We have demonstrated that the clausal annotation approach is consistent,
readable, usable, and extensible, making it the best choice for our new syntax.
We have also demonstrated two tools, Modern Jass and JML, that use this
syntax, showing that multiple design-by-contract tools based on Java can agree
on a single annotation structure. Adoption of this structure by other Java-based
tools would make it easier to switch from one tool to another and immediately
understand the language between two tools.

This opens up several avenues for future work. One is to expand the above
set of annotations to include all of the features of both JML and Modern Jass.
Another is to include other design-by-contract languages for Java in this effort,
making the above language even more standard for the community. Collabora-
tions like these are necessary in order to come up with a standard design-by-
contract syntax for Java and make formal methods for languages more accessible
and easier to use for a wider audience.
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