
A Framework for Implementing Type Systems
Brian Dorn and Gary T. Leavens

TR #07-12a
July 2007

Keywords: Type inference, type checking, Scheme language, Typedscm language.
2006 CR Categories:

D.2.13 [Software Engineering] Reusable Software — reusable libraries; D.3.2 [Programming Languages] Language Classifications —
applicative (functional) languages, Scheme.

Submitted for publication.
Copyright c© 2007 by the authors.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA



A Framework for Implementing Type Systems

Brian Dorn
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

dorn@cc.gatech.edu

Gary T. Leavens
Department of Computer Science

Iowa State University
Ames, IA, USA

leavens@cs.iastate.edu

Abstract
Type systems are ubiquitous in the study of programming lan-
guages. Although the basic mechanisms are well understood, a new
type system can still be a challenge to implement. We present the
design and implementation of a domain-specific language (i.e., a
functional framework) for writing type system implementations.
This domain-specific language has been embedded in both Haskell
and Scheme. It allows users to write down the axioms and inference
rules of the type system in a stylized notation that closely resem-
bles the formal type rules, and automates the rest of the work of
type checking or type inference.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—applicative (functional)
languages, Scheme; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries

General Terms Languages

Keywords type inference, Scheme language, Typedscm language

1. Introduction
A type system for a programming language is typically presented as
a set of axioms and inference rules, possibly with various side con-
ditions. We call such a presentation a formal type system. Typically
the formal type system is syntax-directed in the sense that for each
case of the language’s abstract syntax, there is at least one axiom
or rule whose conclusion matches such an abstract syntax tree. If
there is exactly one rule for each kind of conclusion in such formal
type system, then the formal type system is said to be deterministic,
and the formal type system can be regarded as an algorithm for type
checking or type inference. Programming language researchers of-
ten present algorithms for type checking and type inference in this
way.

Ideally, such a deterministic formal type system would be di-
rectly executable. This would simplify and automate the process of
implementing such a formal type system for people working with
programming languages, implementors of tools, and researchers. It
would also ensure that the implementation correctly matches the
formal type system, since there would be no possibility of mak-
ing mistakes in the translation. It would also ease maintenance,

[Copyright notice will appear here once ’preprint’ option is removed.]

as changes could be made directly in the formal type system and
would be directly reflected in its implementation.

Unfortunately, this ideal seems difficult to realize. Formal type
systems are written in a variety of mathematical description nota-
tions, such as LATEX, and there is no universally agreed-upon con-
crete syntax that we could use as input. The dream of a compiler
from mathematics, even in the limited domain of formal type sys-
tems, seems beyond what is possible with present technology. Fur-
thermore, we are not interested in the kind of standardization effort
that would be needed to get all workers in the area of program-
ming languages to agree on a single concrete syntax for presenting
formal type systems.

The next best thing would be a domain-specific language, which
would allow writing the type system’s implementation in a nota-
tion that closely matches the formal type system. The advantages
of such a domain-specific language would be nearly as great as the
advantages of the ideal described above. That is, such a domain-
specific language would simplify and automate the process of im-
plementing a formal type system. It would also make it easy to
check that the implementation matches the formal type system,
minimizing the possibility of implementation mistakes. It would
also ease maintenance, as changes to the formal type system could
be easily reflected in its implementation.

To illustrate this point, consider the following two cases from
the formal type system of the simply typed lambda calculus with
constants. Our goal is to develop a notation that can be evaluated
by some host language (Scheme in this case), but at the same
time is a clear isomorph for the formal specification. It is often
the case that type system designers have a need for specifying
axioms. For example, the type of a constant in the lambda calculus
is traditionally denoted with the axiom:

Γ ` c : B

Choosing as direct a translation as possible from the formal nota-
tion, we might end up with something that looks like:

(tc:axiom (:- gamma (: c B)))

Note that the alterations are only surface level ones, made to fit
the syntax of the Scheme host language: transposition from infix
operators to prefix ones and the use of :- as a stand-in for `. We
also use names like tc:axiom, instead of just axiom, to avoid
the possibility of clashes in Scheme.

More often, type system designers specify inference rules with
both hypotheses and conclusions. The function application rule
from the lambda calculus is typical of such rules:

Γ ` e0 : τ → τ ′

Γ ` e1 : τ

Γ ` e0 e1 : τ ′

1 2007/7/11



Following a similar approach, we could imagine a resultant rule of
the form:
(tc:rule (list

(:- gamma (: e0 (function-type-expr tau tau*)))
(:- gamma (: e1 tau)))
;;---------------------------------------------
(:- gamma (: expr tau*)))))

Here we have a rule specified as a list of hypotheses and a con-
clusion, also in the prefix notation. The function-type-expr
procedure represents the type constructor→, and a comment mim-
ics the horizontal line used in inference rules.

Implementing the type system for the lambda calculus in this
way would result in a clear—and obvious—relationship between
the formal type rules and their implementation. However, evalu-
ating an expression using type rules written in this fashion would
require a framework capable of interpreting the various forms con-
tained therein (e.g., tc:rule, :-, tc:axiom). To be powerful
enough to be used in useful contexts, the framework would also re-
quire additional rule specification forms (e.g., rules with side con-
ditions). This is the goal of the system we describe in this paper.

To meet this goal, we have designed and implemented a domain-
specific language for implementing type systems. The language
was embedded both in Scheme and in Haskell; we present details
of the Scheme version here. An embedded implementation is ad-
vantageous for such a system, given that one often wishes to do
other aspects of language prototyping in the same language. In our
case, we originally developed the technique for Haskell as we were
using Haskell in teaching Schmidt’s The Structure of Typed Pro-
gramming Languages (1994), and so an embedding in Haskell was
helpful. This was revised, corrected, and greatly improved by the
first author in his M.S. thesis (Dorn, 2005) for use with teaching an
undergraduate language principles course using Friedman, Wand,
and Haynes’s book Essentials of Programming Languages (2001).1

For that use, we wanted the program to be understandable by stu-
dents working in Scheme, and hence a Scheme embedding was ap-
propriate. We conjecture that such an embedding would be helpful
for other language prototyping uses as well.

Most previous work on the implementation of type systems
has either been very generic, such as techniques for implementing
attribute grammars, or has simply offered material for teaching how
to write such type systems. (Examples of teaching material are
presented by Cardelli (1987) and Friedman et al. (2001).) However,
the domain-specific language approach offers more advantages to
the type system designer, as our experience testifies.

2. System Overview
Our experience comes from the evolution and maintenance of a
type system for Scheme used in a course, “Principles of Program-
ming Languages” taught at Iowa State University. The type checker
used in this course, which we refer to as Typedscm, is built upon our
framework. This framework provides a notation for typing rules,
and is capable of interpreting these rules to do the type checking
of student programs. This abstract framework was customized for
the Scheme dialect used in the book Essentials of Programming
Languages (Friedman et al., 2001), which was itself extended with
additional syntax for the type system (Leavens, Clifton, & Dorn,
2006).

The framework implements a standard process for type check-
ing or type inference, shown in Figure 1. This mirrors a tradi-
tional compiler/interpreter architecture of parsing, type checking,
and code generation/execution.

The “Typing Engine” component depicted in Figure 1 is of pri-
mary interest in the discussion here. The engine analyzes the ab-

1 The same corrections also work in the Haskell version.

Parser

Typing Engine

Interpreter Error Record Extractor

Error Output Handler

AST

Annotated AST

AER

Figure 1. Process Overview

stract syntax tree (AST) generated by the parser for typing anoma-
lies based on the specified typing rules. As it traverses the tree, it
builds an annotated AST that associates type annotations with each
abstract syntax component from the original AST nodes. The re-
sultant annotated AST is then examined for errors, and a decision
is made as to whether the program should be evaluated by the un-
derlying Scheme interpreter.

It is the implementation strategy used for the typing engine
which makes our approach unique. Three sub-components make
up the bulk of the engine: an abstract unification system, exten-
sions which provide details about the specific type system, and a
listing of the syntax-directed typing rules and axioms. These sub-
components are implemented by modules that we will refer to as
the type helpers, the method dictionary, and the type annotation
rules, respectively. Figure 2 illustrates the relationship of these
modules abstractly.

Type Annotation 
Rules

Type Helpers
(abstract unification system)

Method Dictionary
(concrete typing details)

Figure 2. Typing Engine

The type helpers designate an interface through which a type
system can be specified; that is, they provide the necessary frame-
work for evaluating the type rules which make up the type system.
The various Scheme procedures comprising the type helpers pro-
vide such functionality as the ability to declare axioms, to spec-
ify type rules, and to denote judgments within rules about sub-
expressions in a given piece of syntax. They also implement a mod-
ified Hindley-Milner unification algorithm (Milner, 1978; Cardelli,
1987) and are responsible for maintaining all information about the
unification process during type checking. This core component of
the typing engine is the reusable framework that can be applied to
many other type system implementations.

2 2007/7/11



The type helpers are internally oblivious to the specific repre-
sentation of syntax, types, and errors in a given type system imple-
mentation; they make use of abstract procedures that must be pro-
vided through a method dictionary in order to manipulate the spe-
cific representations. The method dictionary is a record which en-
capsulates several required procedures defined outside of the scope
of the type helpers. Put simply, these procedures provide an inter-
face to the specifics of the type expression grammar used and tailor
the type helpers to meet the needs of the client type system. For
example, the method dictionary contains procedures for extracting
a type expression’s subterms and for testing whether a given type
represents the super-most type in a type hierarchy.

When the type helpers are instantiated with a valid method dic-
tionary, they generate the concrete procedures used, in essence, to
evaluate type annotation rules. To complete a type system imple-
mentation, a designer then uses these concrete procedures to spec-
ify axioms and rules for each case of the implemented language’s
abstract syntax. For a non-trivial language, building these anno-
tation rules makes up the bulk of the designer’s implementation
effort. Fortunately, as we will see, these rules are built using a no-
tation that can be directly mapped to the underlying formal type
system.

The remainder of this paper elaborates on these components
from an external perspective. We treat the type helper framework as
a black box and illustrate the aspects of its use which a third-party
designer would need in order to implement his or her own type
system.2 The required components of the method dictionary are
outlined in Section 3. The type helpers that constitute our domain-
specific language are detailed in Section 4. An example implemen-
tation of a type system for the lambda calculus is presented in Sec-
tion 5. A brief overview of how type errors and their associated
messages can be generated is given in Section 6. The final sections
conclude with a commentary on related work and a discussion of
our experience using this approach to implement a relatively com-
plex type system.

3. The Method Dictionary
Type system designers wishing to use our framework need to spec-
ify a number of procedures that allow the abstract system to work
with the concrete, user-defined type expressions that are declared
outside of the framework. This collection of functionality is the
method dictionary. The dictionary is a record containing 21 proce-
dures, which are later extracted by the type helpers and used within
the typing engine.

This section enumerates the elements of the dictionary and ex-
plains the purpose of each in turn. Throughout, we use sample in-
vocations to describe the behavior of these procedures. Because
these invocations are not tied to any particular form of type expres-
sion, we use the word term to refer abstractly to a value that is a
type expression. One example of a term would include the result
of (function-type-expr tau tau*), shown above. The
exact definition of such terms is specified concretely in an exter-
nal module by defining a variant record where each production in
the type expression grammar is represented with a corresponding
variant.

3.1 Type Variables and Expressions
As with any implementation of a type system, our framework re-
quires some basic functionality for dealing with terms and type
variables. Typedscm provides the type system designer with a rep-
resentation of logical variables, variables that may be bound to

2 Those interested in the internal functioning of the type helpers are referred
to (Dorn, 2005) for full details.

specific terms, other logical variables, or nothing within the uni-
fication environment. It also defines the notion of a substitution
which serves as a function from logical variables to terms. The type
helpers then are able to process typing rules by using logical vari-
ables as placeholders for types not yet known, binding them to their
discovered values with substitutions in the unification environment,
and then resolving the variables at a later point by applying the var-
ious substitutions.

The following seven method dictionary elements are those re-
quired for basic manipulation of variables and simple terms by the
type helpers:

(to-term lv) converts the logical variable, lv, into a term that
represents lv. This requires that the type system designer pro-
vides a representation of type variables in his or her type ex-
pression grammar. Typically, this procedure would just wrap lv
up as data in the new term.

(get-var t) extracts a logical variable from a term, t. Its value
is a maybe3 that is (make-something lv) when t repre-
sents the logical variable lv, and (make-nothing) when it
does not. This procedure provides the opposite functionality of
to-term; it converts from terms to logical variables.

nullSubst is the empty substitution. When applied using the
framework procedure tc:subst-apply, it behaves as an
identity function in that, for all logical variables lv:

(tc:subst-apply nullSubst lv)
= (to-term lv).

Often the nullSubst is used as a seed value for the unifica-
tion environment when no types are initially known.

(bind lv t) produces a substitution that maps a particular log-
ical variable, lv, to a specific term, t. In all other cases, this
substitution behaves like nullSubst. In other words, when
the resulting substitution is applied to lv, the original term t is
returned.

(app s) transforms the substitution s into a function that maps
terms to terms. This is particularly useful within the type
helpers as it allows for direct manipulation of terms, rather
than logical variables.

(subterms t) returns a list of all subterms contained in t. Re-
visiting our previous example from the lambda calculus,

(subterms (function-type-expr tau tau*))

results in the list (tau tau*), where tau and tau* are
themselves terms.

(same-kind t s) is true if and only if t and s are the same
“kind” of term, which is to say that they have the same operator.
For example, if t and s were both function-type-expr
terms, then (same-kind t s) would return true.

3.2 Subtyping
The current type helpers allow for a primitive notion of subtyping.
Our restricted implementation allows for the types top (the super-
type of all types) and bottom (the subtype of all types), with all
other types having equal levels in the hierarchy between top and
bottom. This choice was made in order to enable the implemen-
tation of the type systems described in (Jenkins & Leavens, 1996)
and (Leavens et al., 2006), which we had used in previous offerings
of the aforementioned undergraduate course. However, a more ad-
vanced subtype unification algorithm could be implemented in the

3 As in Haskell, an instance of a maybe type represents a value that is either
an actual value or nothing at all.

3 2007/7/11



type helpers to enable more advanced schema. Additionally, such a
change could be made without impacting the makeup of the method
dictionary procedures related to subtyping. Note that it is also pos-
sible to disable subtyping by providing stubs for these procedures.
These eight required procedures are outlined below:

(is-bottom? t) returns true only when the term t is the bot-
tom type within the type hierarchy.

(is-top? t) tests whether t is the top type.

(contravar-subterms t) is a list of all subterms in t that
are to be considered contravariant in the unification of subtypes.
Contravariant subterms are treated in the inverse direction from
their containing types with respect to subtyping. For example,
if A <: B, then (contravar-subterms t) returns a list
of terms that should have types that are supertypes of A (such
as terms that have type B).

(covar-subterms t) extracts the covariant subterms of t. Co-
variant subterms are checked in the same direction as their con-
taining types for subtyping purposes.

(invar-subterms t) provides the subterms that are invari-
ant in t. Invariant subterms are those terms which are not to
be handled with the subtype unification algorithm. They are
instead checked with the same algorithm used for terms in
(subterms t).

(subtype-replace sub super) returns a pair, like (sub .
super), except that any special replacements due to subtyping
have been made. This is useful for the treatment of advanced
type constructs that need to be de-sugared to more simple types
during the tests for subtyping. For example, in the case of
variable arity function types it is necessary to rewrite the term
as a function type of a fixed length with the appropriate number
of parameters.

(find-intersection-subtyping i s) attempts to sub-
type unify its arguments and returns the result substitution of
the first type in i that unifies with s.

(find-intersection-supertyping s i) tries to find a
substitution that makes s a subtype of each type contained in i.
If no such substitution exists, it results in the empty list.

3.3 Special Types
The final six procedures needed allow the typing engine to test
and manipulate three special terms: error types, intersection types,
and declaration types. In addition to polymorphic variable types,
type system designers are also required to treat these three types in
their implementations. However, as with subtyping it is possible to
provide stubs for these procedures in the event that the designer’s
type system has no need for them.

(is-error? t) is true only when t is an error type.

(is-intersection-type? t) tests whether t is an intersec-
tion of types. That is, t is thought to have more than one type.

(is-dec-type-expr? t) is true when t is a type expression
that represents a declaration type in the system. Such types are
useful for specifying rules for syntax elements that result in new
variable bindings (e.g., formal parameter lists, definitions, etc).

(dec-type-expr->env d) extracts the environment of bind-
ings contained within the declaration type d.

(gen-error-mismatch s e i) returns an error term that
may contain an error record for the AST element s, generated
when there is a mismatch between the expected type e and the
inferred type i.

(gen-error-rule s ss) creates an error type expression,
which may contain a custom error record, for when the rule
corresponding to the AST element s fails, when ss is the list of
its immediate subtrees. This is used for generating more specific
error messages than can be achieved with the basic mismatch
generator.

In actual use, many of these procedures are commonly imple-
mented while specifying the other external aspects of a type sys-
tem, like type expressions. Thus, the method dictionary is fairly
simple to produce. We present example method dictionary entries
for a type checker for the simply typed lambda calculus later in
Section 5.

4. The Type Helpers
This section describes the type helpers, which users can treat as a
domain specific language for writing executable versions of formal
type systems. We discuss both the kinds of data used by the type
helpers and then the helpers themselves.

4.1 Data Structures for Type Systems
Several kinds of data are used to interface with the type helpers.

Logical variables, of type tc:logicalvar, are the most ba-
sic data. A logical variable is a simply a name that is unique in
some environment. Logical variables are the domain of the unifi-
cation system’s environment. Binding logical variables to values or
other logical variables is how the unification process gathers con-
straints (Milner, 1978; Cardelli, 1987).

Attributed syntax pairs are pairs that contain an AST and an at-
tribute, which is typically a type expression. The procedure named
“:” is used as a constructor for such pairs. Thus attributed syntax
pairs associate the given type information with a particular AST.

A judgment is used to specify a typing constraint to be checked
by the system. The code in Figure 3 defines a variant record for
judgments using the define-datatype syntax from Friedman,
Wand, and Haynes’ (2001) textbook. A define-datatype dec-
laration gives the name of the variant record (in this example,
tc:judgment), the name of a type predicate for the variant
record type (tc:judgment?), and several record declarations.
Each record declaration consists of a record name or tag (in Fig-
ure 3, the names are :-d, :?-, <:, and <:>), and a list of field-
type pairs. Each field-type pair consists of the name of a field (such
as lvar on line 4) and the name of a type predicate that tests for the
type of value stored in that field (such as tc:logicalvar? on
line 4). Each record represents a different kind of typing judgment,
which can be used with the various type helpers.

(define-datatype tc:judgment tc:judgment?
(:-d (env tc:environment?)

(attr-pair (tc:attrib-pair-of datum? datum?)))
(:?- (lvar tc:logicalvar?)

5 (attr-pair (tc:attrib-pair-of datum? datum?)))
(<: (subtype datum?) (supertype datum?))
(<:> (t1 datum?) (t2 datum?)

(subtype-var tc:logicalvar?)
(supertype-var tc:logicalvar?)))

Figure 3. The judgment datatype.

Each of the record names in the judgment datatype is also the
name of a procedure that constructs records of that type. Thus,
for example, (<: t1 t2) represents a judgment that the type
represented by t1 is a subtype of that represented by t2.

Typedscm also provides a convenience form, (<:> t1 t2
sub super), which asserts that one of two types, t1 and t2,
must subtype the other. In subsequent judgments, the logical vari-
ables sub and super are available as aliases for the subtype and

4 2007/7/11



supertype as they are bound appropriately during the processing
of the <:> form. While not often necessary, this syntactic sugar
significantly simplifies creating rules for expressions that have an
arbitrary number of subexpressions that must maintain a subtype
relationship. For example, in Typedscm, the inference rule for the
Scheme cond expression dynamically generates n − 1 of these
judgments to ensure that the n clauses have compatible types within
the hierarchy and that the result type is the super-most type of all
clause types.

The most common form of judgment, named :-, is derived
from :-d. The judgment (:- gamma (: s t)) says that in
the type environment gamma, the AST s has type t. In our Scheme
implementation, the :- form is a macro, defined as follows.

(define-syntax :-
(syntax-rules (:)
((:- gamma (: s t)) (:-d gamma (: s (delay t))))))

Thus :- delays evaluation of the type expression t, which often
depends on the computation in a rule’s hypotheses. The typing
engine internally forces the evaluation of this computation when
it is safe to do. In practice users of our framework only use the :-
form and never use :-d directly.

The remaining kind of judgment form, :?-, allows for the
environment field to be a logical variable, which can be defined
elsewhere in a rule. This is useful writing rules for ASTs that
contain internal declarations, such as let.

Since type expressions include logical variables, they may be
used freely in judgments wherever a type expression is desired. For
example, in a judgment of the form (<: t1 t2), both t1 and
t2 may be terms that represent logical variables.

4.2 tc:axiom
The first of the type helpers is tc:axiom. This helper allows
one to write axioms—rules with no hypotheses. Thus the judgment
provided in an axiom is always treated as true. This can be used
to both assert that some AST has a type determined outside of the
type system’s formal rules, or to assert an error type for an AST.
Both of these uses are shown in Figure 4.

(define tc:scheme-exp-annotate
(lambda (gamma e)
(cases tc:scheme-exp e

(tc:varref (variable)
5 ;; ...

(if (tc:env-bound? variable
(tc:global-var-types))

(let ((global-type
(tc:type-expr-instance

10 (tc:env-value
variable
(tc:global-var-types)))))

(tc:axiom (:- gamma (: e global-type))))
(tc:axiom

15 (:- gamma
(: e (tc:varref-error-maker e))))))

;; ... other expression cases
)))

Figure 4. A tc:axiom example from the implementation of
Typedscm, written in Typedscm

Figure 4 gives the declaration of a procedure for annotating
Scheme code. The procedure takes a type environment, gamma,
and an expression AST, e. It uses a cases expression (Friedman
et al., 2001) to take action depending on the tag of the AST. (The
cases expression takes the name of a type and an expression e,
and then has several clauses that match the tag of e’s value against
the tag named in each of the clauses. It executes the body of the
first matching clause, after positionally binding the fields of the

record to the clause’s formals.) The clause shown is for a variable
reference expression. In Typedscm, there is a fairly complex way to
determine the type of such a variable, one case of which is shown
in the figure, that of global variables (lines 6–16). In this case, each
branch of the if-expression that starts on line 6 ends in a use of
tc:axiom.

The other examples in this section are all taken from the same
procedure, as some of the additional cases alluded to by the ellipsis
on line 17 of Figure 4.

4.3 tc:rule
The most commonly used rule helper is tc:rule, which repre-
sents the notion of a type inference rule with a list of hypotheses
and a conclusion. The hypotheses and conclusion are all judgments.
An example appears in lines 4–8 of Figure 5. This example says that
if the subexpressions e1 and e2 both have type number (denoted
by the constant *tc:number*), then the equals expression itself
has type boolean.

(tc:equals-exp
(e1 e2)
(tc:rule-or
(tc:rule (list

5 (:- gamma (: e1 *tc:number*))
(:- gamma (: e2 *tc:number*)))
;;-------------------------
(:- gamma (: e *tc:boolean*)))

(tc:rule (list
10 (:- gamma (: e1 *tc:boolean*))

(:- gamma (: e2 *tc:boolean*)))
;;---------------------------
(:- gamma (:e *tc:boolean*)))))

Figure 5. Two tc:rule examples within a tc:rule-or exam-
ple

An instance of tc:rule fails if one of the hypotheses fails due
to a type error.

4.4 tc:rule-or
A convenience that allows a more fine-grained splitting of rules into
cases is tc:rule-or. It combines two or more rules and checks
that at least one of them holds. It is implemented as a macro that
delays the rules passed to it, so that it can process its rule arguments
in order, using the first one that does not fail.

An example rule for a hypothetical equals expression is shown
in Figure 5. This rule asserts that a tc:equals-exp expression
type checks with type boolean if its two subforms, e1 and e2,
either both have type number or if they both have type boolean.

4.4.1 tc:rule-if
Rules with simple side conditions can be specified using the
tc:rule-if form. It requires a list of hypotheses and a con-
clusion (like tc:rule), but it also takes two procedures. The first
is a function from a list of type attributes to a boolean. If the list
of the hypotheses checked without failure, then this procedure is
passed the list of the type attributes computed for the hypotheses.
If the procedure returns false when passed this list, then the rule
fails. Otherwise, the list of type attributes is passed to the second
procedure, which returns a substitution defining any number of new
variables in the unification environment. (When no definitions need
to be made, the second procedure can return the null substitution.)

Figure 6 depicts a simple use of this helper that checks a
lambda expression with multiple formal parameters. The single
hypothesis in the list checks that the body has a type, which is
bound to a logical variable (contained within rt). The side condi-
tion on lines 9–10 enforces the restriction that the formal parame-

5 2007/7/11



ters must be unique. The side definition procedure on lines 11–12
makes no new definitions.

(tc:lambda-exp
(formals body)
(let ((rt (tc:new-variable-type-expr))

(formal-ts (tc:listof-new-variable-type-expr
5 (length formals))))

(tc:rule-if (list
(:- (tc:extend-mult-env gamma formals formal-ts)

(: body rt)))
(lambda (ts) ;; Side Condition

10 (tc:no-duplicates? formals))
(lambda (ts) ;; Side Definition
(tc:type-expr-null-subst))

;;-------------------------------------------
(:- gamma

15 (: e (tc:function-type-expr formal-ts rt))))))

Figure 6. A tc:rule-if example

4.5 tc:rule-seq
The type helpers described above are adequate for encoding most
formal typing rules. However, an additional type helper form is
needed for a few cases, such as sequential declarations, in which the
programmer needs more explicit control over the order of checking
hypotheses, side conditions, and making side definitions. We pro-
vide a helper tc:rule-seq that allows this control at the price
of a slightly more verbose, but still declarative, specification of the
what happens when during processing of the rule. We omit addi-
tional discussion of this helper here given its infrequent use, though
those interested can consult Dorn’s thesis (2005) for full details.

5. An Example Implementation
Having examined the framework’s components in some detail, it
is now possible to use them to implement a complete type system.
In this section we present a basic implementation of a type sys-
tem for the lambda calculus using Hindley-Milner (Milner, 1978)
inference rules. We delineate a typical process a type system de-
signer would undertake when using our framework, and illustrate
the close relationship between various formalisms and their corre-
sponding Scheme encodings.

In what follows we first build the Scheme representations for
syntactic elements. Next we devise an abstraction for types. We
then develop the annotation procedure containing the inference
rules and build the method dictionary.

5.1 Language Syntax
The first step is to formally define the language’s abstract syntax
trees (ASTs). Figure 7 provides a Scheme variant record definition
on the left, and a corresponding grammar for lambda calculus terms
on the right. The tc:lambda-calc datatype has four variants,
one corresponding to each production in the formal grammar. The
tc:le-self-evaluating variant represents abstract syntax
trees self-evaluating terms (e.g., constants, literals); this record has
one field, named datum, which can hold any type (since the type
predicate datum? always returns true). In the tc:le-varref
ASTs, Scheme symbols are used to represent identifiers. The other
two productions, representing function applications and lambda
expressions, have fields that hold subexpressions that are recur-
sively tc:lambda-calc variants as indicated by the type pred-
icate tc:lambda-calc?. Thus there is a one-to-one mapping
between ASTs and the formal syntax.

5.2 Type Expressions
Now that we have a definition for the abstract syntax, the next step
is to specify a representation for the types associated with values

in the language. Figure 8 depicts a type expression grammar and
its associated Scheme datatype, tc:type-expr. The function
type (i.e., →) is represented by tc:function-type-expr,
which uses two type expression parameters for the argument and
result types. In addition, we want to support basic types for self-
evaluating constants. That is, a self-evaluating term B can take on a
value from a set of allowable basic types like {symbol, number}.
We use the tag tc:basic-type-expr for this type and its
internal symbol is used to store a value from the set of allowable
literal types. With these types the Scheme model again mirrors the
mathematical definition.

However, at this step we make two additions beyond that di-
rectly suggested by our formal grammar. Recall from the discus-
sion in Section 3 that the type helpers require a minimal set of
types to function. We must provide, through the method dictio-
nary, support for (or the explicit exclusion of) polymorphic vari-
able, error, intersection, and declaration types. We will exclude in-
tersections and declarations later when we define the method dic-
tionary as they are not needed in this example, but we do need
some means to represent both type variables and type errors. Our
tc:variable-type-expr need only envelope a logical vari-
able, a datatype provided by the framework, so that it is a valid type
expression. The tc:error-type-expr form allows us to note
the detection of a typing error, but for simplicity does not encapsu-
late any information about the nature of the error.

5.3 Annotation Rules
Leaving aside the creation of the method dictionary for the mo-
ment (see Section 5.4), we now describe how one can create the
annotation procedure that implements the type system. The Scheme
code for this procedure is given in Figure 9, along with the formal
lambda calculus rules for comparison.

The procedure tc:lambda-calc-annotate is the top
level procedure called to annotate a piece of abstract syntax with
its type information. It initializes the unification environment to be
empty and then calls tc:lambda-calc-annotate-lower
(described below), which is responsible for doing the bulk of the
annotation. In both procedures, gamma is the current type environ-
ment, and e is the expression being annotated.

In tc:lambda-calc-annotate-lower each variant in
the abstract syntax is handled individually with a corresponding
rule or axiom. Self evaluating expressions are annotated using an
axiom after looking up the basic type of the underlying datum
(lines 11–14).

Variable references are typed using the tc:rule-if form
and a new logical variable tau (lines 15–22). This rule has no
hypotheses per se, but it does require that the identifier be bound
in the type environment. We specify this in a side condition that
checks gamma for a binding of variable. The side definition to
tc:rule-if allows us to make the located value available in the
conclusion through tau.

Procedure calls are handled using a simple tc:rule with the
help of two new type variables (lines 23–30). This rule corresponds
exactly to its formal counterpart with a hypothesis for each of the
operator and operand.

The lambda expression form also uses a tc:rule and employs
a call to the framework procedure tc:extend-env to model
the extension of type environment Γ in the first hypothesis (lines
31–38). This completes the simply typed lambda calculus rule
implementation.

Clearly, there is a close mapping between the rule implemen-
tation in Figure 9 and the formal specification. The domain spe-
cific language provided by the type helpers coupled with carefully
selected abstract syntax and type expressions allows for a highly
readable implementation. Using our framework a type system de-

6 2007/7/11



Scheme Representation λ Calculus

(define-datatype tc:lambda-calc tc:lambda-calc?
(tc:le-self-evaluating (datum datum?))
(tc:le-varref (variable symbol?))
(tc:le-procedure-call (operator tc:lambda-calc?) (operand tc:lambda-calc?))

5 (tc:le-lambda-exp (formal symbol?) (body tc:lambda-calc?)))

〈e〉 ::=
se

| x
| 〈e0〉 〈e1〉
| λx. 〈e〉

Figure 7. Lambda Calculus Syntax

Scheme Representation λ Calculus

(define-datatype tc:type-expr tc:type-expr?
(tc:basic-type-expr (symbol symbol?))
(tc:function-type-expr (arg-type tc:type-expr?) (result-type tc:type-expr?))
;; For type helpers

5 (tc:variable-type-expr (lvar tc:logicalvar?))
(tc:error-type-expr))

〈τ〉 ::=
B

| 〈τ0〉 → 〈τ1〉

Figure 8. Lambda Calculus Types

Scheme Representation λ Calculus

(define tc:lambda-calc-annotate
(lambda (gamma e)
;; initialize the unification environment one the top level call

4 (tc:set-current-subst-list! (list (tc:null-subst)))
;; use helper function to do the annotation
(tc:lambda-calc-annotate-lower gamma e)))

(define tc:lambda-calc-annotate-lower
9 (lambda (gamma e)

(cases tc:lambda-calc e

(tc:le-self-evaluating (datum)
(let ((B (tc:infer-simple-datum-type datum)))
;;-----------------------------------------
(tc:axiom (:- gamma (: e B))))) Γ ` se : B

15 (tc:le-varref (variable)
(let ((tau (tc:new-logicalvar)))
(tc:rule-if
’() ;; no hypotheses here
(lambda (ts) (tc:env-bound? variable gamma))

20 (lambda (ts) (tc:type-expr-bind tau (tc:env-value variable gamma)))
;;----------------------------------------------------------------
(:- gamma (: e (tc:variable-type-expr tau))))))

x : τ ∈ Γ

Γ ` x : τ

(tc:le-procedure-call (operator operand)
(let ((tau (tc:new-variable-type-expr))

25 (tau* (tc:new-variable-type-expr)))
(tc:rule (list
(:- gamma (: operator (tc:function-type-expr tau tau*)))
(:- gamma (: operand tau)))
;;------------------------------------------------------

30 (:- gamma (: e tau*)))))

Γ ` e0 : τ → τ ′

Γ ` e1 : τ

Γ ` e0 e1 : τ ′

(tc:le-lambda-exp
(formal body)
(let ((tau (tc:new-variable-type-expr))

(tau* (tc:new-variable-type-expr)))
35 (tc:rule (list

(:- (tc:extend-env gamma formal tau) (: body tau*)))
;;--------------------------------------------------
(:- gamma (: e (tc:function-type-expr tau tau*))))))

40 )))

Γ, x : τ ` e : τ ′

Γ ` (λx : τ. e) : τ → τ ′

Figure 9. Lambda Calculus Inference Rules

7 2007/7/11



signer can fully specify a prototype with relatively little effort and
no need to rebuild the underlying unification infrastructure with
each new type system.

5.4 Defining the Method Dictionary
We now return to the remaining task, implementing the method
dictionary. Recall that the method dictionary is needed to allow the
type helpers to manipulate the representation of types. Figure 10
outlines a representative subset of nine dictionary elements. The
procedures not shown do not vary significantly in length or com-
plexity from those depicted (Dorn, 2005). The dictionary itself is
implemented as an instance of tc:unifiable-md-dict and
is comprised of a series of anonymous procedures. For clarity, we
comment each procedure’s name immediately preceding the corre-
sponding lambda.

The implementation for many of the procedures is quite straight-
forward. As shown, to-term, get-var, and subterms per-
form basic operations on the tc:type-expr datatype in order
to create variable terms, extract the logical variable from a term,
and build a list of subterms, respectively. In most type systems,
the implementation of these procedures will look similar, with the
possible exception that additional forms would be handled in the
procedure for subterm extraction.

Of all the method dictionary procedures, app is the most com-
plicated. Recall that its purpose is to create a function that maps
terms to terms based on a given substitution. It should be a cur-
ried procedure that applies the input substitution from the first ar-
gument recursively to the term given in the second argument. The
resultant term should be identical except that any indicated sub-
stitutions of its subterms have been made. The implementation in
Figure 10 illustrates the recursive substitution application in lines
25–33. Because the input substitution may indicate multiple—and
possibly overlapping—variable replacements, it is useful to have
app compute a fixed point prior to returning. Lines 34–38 show a
simple iteration until there are no further changes to the term from
the substitution.

We have noted previously that the method dictionary requires
several procedures that may or may not apply to a designer’s
type system. For example, this lambda calculus example requires
no notion of subtyping; yet, the dictionary procedures for sub-
typing must have some implementation to prevent runtime er-
rors. In this case, stub procedures are given that do not impact
the semantic behavior of the type system. In Figure 10 stubs are
given for contravar-subterms, subtype-replace, and
is-bottom?. These procedures return the empty list, the input
arguments unchanged, and the constant false (respectively). Addi-
tionally, stubs would be given for procedures related to intersection
and declaration types as they are not used in this type system.

The last two procedures given relate to errors. The first pro-
cedure, is-error?, determines if the argument term is an in-
stance of tc:error-type-expr. The procedure used to gener-
ate type errors when mismatches occur between expected and in-
ferred types (gen-error-mismatch) is artificially short in this
example. Since we chose not to encode any information about the
nature of errors, it simply builds an empty error expression. Typical
implementations would save some of the arguments for later use.

As we have shown, most aspects of the method dictionary
are trivial to implement. Nearly all of the functionality needed
is present once a designer specifies the set of type expressions us-
ing define-datatype, and only a small amount of additional
coding is required. The method dictionary provides functionality
to handle advanced typing constructs, but also accommodates the
needs of simpler type systems with convenient procedure stubs.

(define tc:type-expr-as-unifiable
(lambda ()
(tc:unifiable-md-dict
;; to-term

5 (lambda (lv) (tc:variable-type-expr lv))
;; get-var
(lambda (t)
(cases tc:type-expr t
(tc:variable-type-expr (v)

10 (make-something v))
(else (make-nothing))))

;; subterms
(lambda (t)
(cases tc:type-expr t

15 (tc:function-type-expr
(arg-type result-type)
(cons arg-type (list result-type)))

(else ’())))
;; app

20 (lambda (s)
(lambda (attrib)
(letrec
((app-once

(lambda (t)
25 (cases tc:type-expr t

(tc:variable-type-expr (lvar)
(tc:subst-apply s lvar))

(tc:function-type-expr
(arg-type result-type)

30 (tc:function-type-expr
(app-once arg-type)
(app-once result-type)))

(else t))))
(app

35 (lambda (attrib applied)
(if (equal? attrib applied)
applied
(app applied (app-once applied))))))

(app attrib (app-once attrib)))))
40 ;; contravar-subterms

(lambda (t) ’())
;; subtype-replace
(lambda (sub super) (cons sub super))
;; is-bottom?

45 (lambda (t) #f)
;; is-error?
(lambda (t)
(cases tc:type-expr t
(tc:error-type-expr () #t)

50 (else #f)))
;; gen-error-mismatch
(lambda (s e i)
(tc:error-type-expr))

;; ... additional method dictionary procedures
55 )))

Figure 10. Excerpt from the Lambda Calculus Method Dictionary

6. Error Handling
The example implementation in the previous section glossed over
the issue of error generation. However, given that the ability to
generate meaningful error messages is one of the most important
roles of any type checker, a more thorough discussion is warranted.
Our framework permits a great deal of flexibility in the way that
errors are handled. Through the method dictionary, type system
designers may specify highly advanced error message generation
routines or ones that do very little. As we saw in Section 5, it is
possible to define one generic error type generator that is used for
all errors and nothing more, though in practice, this is not very
helpful. The Typedscm implementation provides a good example
of detailed error processing.

Our approach to error message creation is strongly related to the
type annotation process. Type system designers using our frame-
work can leverage the fact that, given any particular piece of syntax,

8 2007/7/11



a list of the annotation results associated with its subexpressions,
and knowledge of the underlying inference rule, one can determine
what situation caused the error. After deducing the cause, we en-
capsulate the relevant information in an error record that will be
used to generate a message to the end-user at a later point. Error
records are implemented as another variant type where each form
corresponds to particular message to be displayed for the end-user.
They store information for later use by an error output mechanism.

Consider the annotation rule for conditional expressions given
in Figure 11. There are three possible error scenarios for such
a rule. First, a non-boolean value could be specified for the test
subexpression. Second, some general type error could be found in
the test, consequent, and/or alternate arms. Third, the consequent
and alternate types could be incompatible (neither being a subtype
of the other). Any one of these cases will produce an error in the
typing engine, and the type system designer’s gen-error-rule
method dictionary procedure will be invoked.

(tc:conditional-exp
(position test consequent alternate)
(let* ((t1 (tc:new-variable-type-expr))

(t2 (tc:new-variable-type-expr))
5 (supertype-var (tc:new-logicalvar))

(subtype-var (tc:new-logicalvar))
(super (tc:variable-type-expr supertype-var)))

(tc:rule (list
(:- gamma (: test *tc:boolean*))

10 (:- gamma (: consequent t1))
(:- gamma (: alternate t2))
(<:> t2 t1 subtype-var supertype-var))
;; -----------------------------------
(:- gamma (: e super)))))

Figure 11. If Inference Rule

An excerpt of the tc:scheme-exp-error-maker proce-
dure is shown in Figure 12. This procedure is supplied in the
Typedscm method dictionary for the gen-error-rule field. It
takes two arguments, s and ss, where the first is the syntax ele-
ment being checked and the second is a list containing the results
obtained from checking the immediate subexpressions. The spe-
cific element of the cases expression shown corresponds to the
inference rule above. Line 5 in the figure determines that s is a
tc:conditional-exp, and binds the fields of s to the variables
listed on line 6.

The rest of Figure 12 relies on the logic outlined above regard-
ing the possible causes for errors within the rule, treating each pos-
sible error cause in a sequential case analysis. The first case (lines
9–16) inspects the type of the test condition for errors and emits
a new error type containing a tc:badtest-error-record
to disambiguate the error’s cause. Any remaining errors from
the subexpressions will already contain detailed information (in-
serted at their point of generation) and the prior results can merely
be concatenated (lines 17–18). At this point the only remaining
source of failure in the rule is a bad subtyping relationship. Thus,
a tc:if-subtype-error-record can be produced contain-
ing information about the types inferred for the consequent and
alternate arms (lines 19–23).

It should be noted that our choice to make use of abstract
error records implemented as variant records was entirely optional.
The framework does not require any particular method for dealing
with errors. Our design decision was made based on a desire to
support multiple forms of error output like text-based messages and
syntax highlighting. Representing error messages more abstractly
allowed us to easily present them in numerous forms at a later
point. One might also take a more straightforward approach and
use gen-error-rule to directly build error message strings that
could be printed following type annotation.

(define tc:scheme-exp-error-maker
(lambda (s ss)
(let ((tree-tops (map tc:root trees)))
(cases tc:scheme-exp s

5 (tc:conditional-exp
(position test consequent alternate)
(let ((test-type (car ss)))
(cond
((and (tc:error-type-expr? test-type)

10 (tc:mismatch-error-record?
(tc:error-type-expr->error-record
test-type)))

(tc:error-type-expr
(tc:badtest-error-record

15 (tc:error-type-expr->error-record
test-type))))

((tc:contains-errors? ss)
(tc:composite-error-maker ss))

(else
20 (tc:error-type-expr

(tc:if-subtype-error-record
consequent (cadr ss)
alternate (caddr ss)))))))

;; ... rest of error record generators
25 ))))

Figure 12. Error Generation for Conditional

In any case, the actual point of error output is outside of the
type annotation process. Type system designers can freely interpret
the results of their chosen approach. For our implementation using
error records, we would note that the top-most resultant type is an
error, extract the internal error record from the type expression, and
provide this record to a message generator. The output mechanism
that interprets the records is trivial since all that need be done is to
print the necessary textual information along with the variable data
already contained in the error record.

7. Related Work
Component-based frameworks have be used to promote reuse
within type system development. For example, Vanilla (Dobson,
Nixon, Wade, Terzis, & Fuller, 1999) can be used to modularize
type checking (and behavior) of individual language elements. It
also provides the necessary framework for interpreting these mod-
ules. However, the modules remain written in the host language
(Java in Vanilla’s case), which can still be prone to implementation
errors in the translation from the formal typing rules.

A domain-specific language approach has been used in systems
that aim to support user-defined type refinements, like CLARITY
(Chin, Markstrum, & Millstein, 2005; Chin, Markstrum, Millstein,
& Palsberg, 2006) and in frameworks for the creation of pluggable
type systems, like JavaCOP (Andreae, Noble, Markstrum, & Mill-
stein, 2006). These frameworks are designed to enable third-party
type system extensions while ours is primarily targeted at users who
are prototyping complete type systems. However, we share a com-
mon goal in providing the user of the framework a natural way to
specify typing constraints. Andreae et al. elaborate on JavaCOP’s
use of a declarative rule-based language by noting: “While it would
be possible to write the rules directly in Java with respect to an AST
API, we believe rules in JavaCOP’s language will be significantly
easier for rule designers and programmers to understand and define
correctly” (2006, p. 58).

That said, the language presented to users in JavaCOP differs
substantially from ours. Figure 13 illustrates a JavaCOP rule named
checkNonNull that enforces a user-defined annotation that some
variables can not take on null values in an assignment. The rule’s ar-
gument specifies the AST syntax elements to which it applies and
the framework enables access to the syntax element’s sub-terms.

9 2007/7/11



The where and require clauses define the rule’s semantics, and
an error clause is used to provide feedback when the rule fails.
While certainly more readable than a Java-only implementation,
complex annotations may result in deeply nested clauses and inter-
woven error messages. Our work allows more separation between
error message generation and the rules.

rule checkNonNull(Assign a){
where(requiresNonNull(a.lhs)){
require(definitelyNotNull(a.rhs)):
error(a,"Possible null assignment"

+ " to @NonNull"); } }

Figure 13. Example JavaCOP Rule (Andreae et al., 2006, p. 57)

The ability to quickly prototype new type systems and easily
maintain them in the future was among our primary concerns in de-
veloping Typedscm. Levin and Pierce created the TinkerType sys-
tem with similar goals. TinkerType decomposes families of formal
systems into collections of clauses (inference rules) and features
that determine which clauses make up particular systems (Levin &
Pierce, 2003). Once a repository of clauses and features is created,
their TinkerType Assembler can be used to conveniently generate
numerous ML type checkers for instances in the language family.
The inference rules in TinkerType components are written in ML
so that they can be assembled into an executable type checker by
the system. However, the notation is still ML-based and also mixes
error message generation with the rule.

8. Discussion, Conclusions, and Future Work
The Typedscm dialect of Scheme (Leavens et al., 2006) is both an
example of what can be done with our framework and of its advan-
tages. The system has about 80 rules, using all the different helpers
provided by our framework. These rules handle declarations, state-
ments, and expressions, covering all of Scheme (except macros). In
comparison to a previous hand-written type checker used in the un-
dergraduate curriculum, we have found (anecdotally) that the Type-
dscm implementation using our framework is much easier to under-
stand and modify. For example, it was only a matter of 10 minutes
to add a dynamic type test expression to the language.

The framework also made it possible to incorporate more so-
phisticated typing rules. We have already mentioned the use of a
simple subtyping lattice. We were also able to handle data abstrac-
tion (Jenkins & Leavens, 1996), and variant record declarations
with their associated cases expressions (Friedman et al., 2001).
The framework also was sufficient to incorporate bi-directional
type checking (Pierce & Turner, 1998). Thus Typedscm uses top-
down type checking instead of bottom-up type inference for check-
ing procedures, when those procedures have a declared type. This
results in better error messages for students.

In summary, our framework provides a readable and easily
maintainable way to write type checking and inference rules for
real languages, with helpful error messages. Our domain-specific
language approach results in type system implementations that
have a clear relationship to the usual mathematical presentation of
such rules. Furthermore, our framework allows a clean separation
between the type system’s rules and error message output.

One avenue for future work is to do a comparative study of
our framework and systems like JavaCOP. We feel our choice of
syntax has advantages over other domain-specific languages for
typing constructs, but whether the differences matter to type system
designers in practice remains an open question. Evaluating which
rule styles are preferred by those experienced with formal type
systems could be insightful.

There are also several possibilities for merging the approaches
of Typedscm and TinkerType (Levin & Pierce, 2003). Internally,

TinkerType treats the body of the clause as an arbitrary string value.
Thus, we could easily create an ML embedding of our type helper
framework that would enable users to write clauses in a more nat-
ural syntax. Further, it may be possible to employ their notion of
features to build an assembler for Typedscm that not only emits
AST annotation procedures but also appropriate method dictionar-
ies for various classes of languages. This would be advantageous as
resulting type checkers would have the implementation quickness
of TinkerType and the code readability of Typedscm.

Our implementation of Typedscm, which includes the Scheme
realization of our type system framework, is available from http:
//www.cs.iastate.edu/∼leavens/typedscm/.

Acknowledgments
Thanks to Steven Jenkins and Curtis Clifton for their work on early
versions of Typedscm. We also thank Hridesh Rajan for comments
on an earlier draft. The work of Leavens was supported in part by
NSF grants CCF-0428078 and CCF-0429567.

References
Andreae, C., Noble, J., Markstrum, S., & Millstein, T. (2006). A

framework for implementing pluggable type systems. In
OOPSLA 2006: Proceedings of the 21st International Con-
ference on Object-Oriented Programming Systems, Lan-
guages, and Applications (p. 57-74).

Cardelli, L. (1987). Basic polymorphic typechecking. Science of
Computer Programming, 8(2), 147-172.

Chin, B., Markstrum, S., & Millstein, T. (2005). Semantic type
qualifiers. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (p. 85-95).

Chin, B., Markstrum, S., Millstein, T., & Palsberg, J. (2006).
Inference of user-defined type qualifiers and qualifier rules.
In European Symposium on Programming (ESOP 2006).

Dobson, S. A., Nixon, P., Wade, V. P., Terzis, S., & Fuller, J.
(1999). Vanilla: An open language framework. In GCSE
’99: Proceedings of the First International Symposium on
Generative and Component-Based Software Engineering (p.
91-104).

Dorn, B. J. (2005). Design and implementation of a reusable
type inference engine and its application to Scheme (Tech.
Rep. No. 05-16). 226 Atanasoff Hall, Ames, Iowa 50011:
Department of Computer Science, Iowa State University.

Friedman, D. P., Wand, M., & Haynes, C. T. (2001). Essentials
of programming languages (Second ed.). Cambridge, MA:
MIT Press.

Jenkins, S., & Leavens, G. T. (1996). Polymorphic type-checking
in Scheme. Computer Lanugages, 22(4), 215-223.

Leavens, G. T., Clifton, C., & Dorn, B. (2006). A type notation
for Scheme (Tech. Rep. No. 05-18a). Ames, Iowa, 50011:
Department of Computer Science, Iowa State University.

Levin, M. Y., & Pierce, B. C. (2003). TinkerType: A language
for playing with formal systems. Journal of Functional
Programming, 13(2).

Milner, R. (1978). A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17(3),
348-375.

Pierce, B. C., & Turner, D. N. (1998). Local type inference. In
POPL 98: The 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (p. 252-265).

Schmidt, D. A. (1994). The structure of typed programming
languages. Cambridge, MA: MIT Press.

10 2007/7/11


