
Multiple Concerns in Aspect-Oriented Language Design:
A Language Engineering Approach to Balancing Benefits, with

Examples
Gary T. Leavens and Curtis Clifton

TR #07-01a
February 2007

Keywords: Aspect-oriented programming language design, concerns, goals, quantification, obliviousness, scattering, tangling, ease of
reasoning, ease of maintenance, compromise, tradeoff, balance.

2007 CR Categories: D.1.5 [Programming Techniques] Object-oriented programming — aspect-oriented programming; D.2.10 [Software
Engineering] Design – methodologies; D.3.0 [Programming Languages] General — aspect-oriented language design; D.3.3 [Programming
Languages] Language Constructs and Features — control structures, modules, packages, procedures, functions and subroutines, advice,
aspects, quantification, obliviousness.

To appear in SPLAT ’07, March 12, 2007, Vancouver, British Columbia, Canada.

Copyright c© 2007 ACM ISBN 1-59593-656-1/07/03 . . . $5.00.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Multiple Concerns in Aspect-Oriented Language Design:
A Language Engineering Approach to Balancing Benefits, with Examples

Gary T. Leavens
Department of Computer Science,

Iowa State University,
229 Atanasoff Hall, Ames, IA 50011 USA

leavens@cs.iastate.edu

Curtis Clifton
Computer Science and Software Engineering,

Rose-Hulman Institute of Technology,
5500 Wabash Ave, Terre Haute, IN 47803 USA

clifton@rose-hulman.edu

Abstract
Some in the aspect-oriented community view a programming lan-
guage as aspect-oriented only if it allows programmers to perfectly
eliminate scattering and tangling. That is, languages that do not al-
low programmers to have maximal quantification and perfect obliv-
iousness are not viewed as aspect-oriented. On the other hand, some
detractors of aspect-oriented software development view maximal
quantification and perfect obliviousness as causing problems, such
as difficulties in reasoning or maintenance.

Both views ignore good language design and engineering prac-
tice, which suggests trying to simultaneously optimize for several
goals. That is, designers of aspect-oriented languages that are in-
tended for wide use should be prepared to compromise quantifica-
tion and obliviousness to some (small) extent, if doing so helps pro-
grammers solve other problems. Indeed, balancing competing re-
quirements is an essential part of engineering. Simultaneously op-
timizing for several language design goals becomes possible when
one views these goals, such as minimizing scattering and tangling,
not as all-or-nothing predicates, but as measures on a continuous
scale. Since most language design goals will only be partially met,
it seems best to call them “concerns.”

Categories and Subject Descriptors D.1.m [Programming Tech-
niques]: Miscellaneous—aspect-oriented programming; D.2.10
[Software Engineering]: Design—methodologies; D.3.0 [Pro-
gramming Languages]: General—aspect-oriented language de-
sign; D.3.3 [Programming Languages]: Language Constructs and
Features—control structures, modules, packages, procedures, func-
tions and subroutines, advice, aspects, quantification, oblivious-
ness.

General Terms Languages, Design

Keywords Aspect-oriented programming language design, con-
cerns, goals, quantification, obliviousness, scattering, tangling,
ease of reasoning, ease of maintenance, compromise, tradeoff, bal-
ance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop SPLAT ’07 March 12, 2007, Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM ISBN 1-59593-656-1/07/03. . . $5.00

1. Introduction
What makes a programming language aspect-oriented? Many agree
with Filman and Friedman’s definition [11, 12], that the lan-
guage must have both quantification and obliviousness. They de-
fine “quantified program statements” as those that “have effect on
many places in the underlying code” [12, Section 2.2]. Further-
more: “Obliviousness states that one can’t tell that the aspect code
will execute by examining the body of the base code” [12, Section
2.3] (italics added).

One of several authors who think well of Filman and Friedman’s
definition is Steimann [28]. In his OOPSLA 2006 essay, “The Para-
doxical Success of Aspect-Oriented Programming,” he uses Filman
and Friedman’s definition as part of his argument that while aspect-
oriented programming aims to “modularize crosscutting concerns,”
“Its very nature . . . breaks modularity” [28, Section 8].

1.1 Views of Aspect-Oriented Languages
Steimann’s essay helped crystallize our thinking about the goals
of aspect-oriented language design, in particular about the portion
of such languages that provides quantification and obliviousness.
In particular Leavens thought about that essay carefully in his
role as the “discussant” for Steimann’s presentation at OOPSLA.
This position paper is, in large part, an expanded reflection of that
discussion’s key point.

This paper is also influenced by many conversations about
aspect-oriented language design that we have had with others in
the programming languages community. In these conversations,
we have found that several members are openly skeptical about the
benefits of aspect-oriented languages, saying that they think aspect-
oriented programming is overhyped or that there are only 4 or 5
real uses for aspects. Others express worries about how software
engineering concerns are affected by quantification and especially
obliviousness. Steimann’s OOPSLA essay discusses many of these
worries, and is rare only in that it is published.

We are also influenced by many conversations with people in
the aspect-oriented community, especially at the FOAL workshop
that we help organize, and at the AOSD conference. In these con-
versations, people in the aspect-oriented community have empha-
sized the extreme importance of quantification and obliviousness
for aspect-oriented languages. Indeed we have found that many are
frankly dismissive of language designs that limit quantification or
that do not have perfect obliviousness.

Our thesis is that both these viewpoints are short-sighted. First,
the larger programming language community should recognize the
value of quantification and obliviousness in promoting locality (i.e.,
reducing scattering) and separation of concerns (i.e., reducing tan-
gling), which are the main contributions of the aspect-oriented
paradigm. Second, the aspect-oriented community should recog-

nize the value of language designs that try to simultaneously opti-
mize several goals (such as ease of static reasoning about correct-
ness), even if doing so compromises quantification and oblivious-
ness to some small extent.

1.2 Language Design Concerns
Ideally, a language design would perfectly fulfill all of its goals.
Sometimes technical innovations make this happen; when they do,
such innovations are justly celebrated. For example, the Hindley-
Milner type system [25] simultaneously achieves the goals of type
safety and brevity of notation, since its use of type inference avoids
the need for type declarations.

However, it very often happens that a language design must
make compromises among its goals. For example, C++ allows pro-
grammers to more efficiently control space allocation by deciding
when objects should be stack or heap allocated, even though this
makes the language more complex. The design of C++ trades some
simplicity for fine-grained control of space allocation. Because of
such compromises, the goals of a language design will not all be
perfectly achieved but must be balanced and optimized as a group,
with appropriate weightings. To avoid cheap criticism that a lan-
guage design has “not perfectly achieved its goals” we suggest
using the phrase “design concerns”, or just “concerns” instead of
“goals”.

We believe that thinking about “concerns” of language design
will also make it easier for language designers to keep the following
two points in mind:

• there are multiple concerns in a language design, and
• all concerns should be addressed, jointly, as much as possible.

Of course, it is also scientifically interesting to experiment with
languages that focus on a very narrow sets of features and con-
cerns. Such efforts fit into our view of language design, by weight-
ing some design concerns very heavily. For example, an aspect-
oriented language design typically puts a very high weight on
the concerns of code locality (reducing scattering) and separation
of concerns (reducing tangling). This is fine, but we argue that
the community should see value in aspect-oriented language de-
signs that put somewhat less weight on these concerns and some-
what more weight on other design concerns. Such a weighting
may be important for aspect-oriented languages that aspire to more
widespread, general use.

1.3 Outline
In the rest of this paper we describe what some of these other
concerns are for the aspect-oriented language designer, discuss how
one can think about such concerns as measures, which allows them
to be compromised to a measurable extent, and discuss some of the
ways that quantification and obliviousness have been balanced with
other concerns in the literature. These examples of compromise are
intended as positive examples to provoke similar but better efforts
in the future. We are not promoting any particular compromise,
but rather the idea that some (small amount of) compromise is
acceptable, and indeed even necessary.

2. What Other Concerns?
What should be the concerns of aspect-oriented language design-
ers? For a start, language designers should think about concerns
that interact strongly with the traditional aspect-oriented concerns
of promoting locality and separating program concerns. The point-
cut and advice mechanisms of languages like AspectJ [2, 18, 21]
are ways to help promote these concerns, as are any mechanisms
that promote quantification and obliviousness. So aspect-oriented
language designers should consider any programming language or

software engineering concerns that interact with quantification and
obliviousness. From our own work and our discussions with peo-
ple in the programming language community, including Steimann
[28], it seems the most important such concerns are:

• ease of maintenance, and
• ease of reasoning (e.g., about correctness or efficiency).

It is precisely these important software engineering concerns that
are most affected by the extra indirection that aspect-oriented tech-
niques bring.

The concerns of easing maintenance and reasoning are broad,
general concerns. It is thus helpful to break them into smaller
concerns for purposes of evaluating a design. For example, the
broad concern of easing maintenance is aided by the concern of
allowing programmers to control coupling. (Coupling is the degree
to which one part of the system depends on others.) The broad
concern of easing reasoning (e.g., about correctness or efficiency)
is aided by the concerns of allowing programmers to easily enforce
information hiding and data encapsulation. Features that help these
concerns should also help ease maintenance. The ease with which
programmers can find code that may affect the values of a field
or that may cause various transfers of control (such as throwing
exceptions or looping) also affects both of these broad concerns.
As others have noted, these concerns are not completely orthogonal
to the traditional aspect-oriented concerns. For example, to the
extent that a maintenance activity aligns with code modularization,
support for locality of concerns strengthens support for the ease-of-
maintenance concern [19].

3. Measuring Concerns
In thinking about how to simultaneously optimize concerns for a
language design, it is important to keep two points in mind.

• Concerns should be measured on continuous scales.
• These scales should measure how easily one can write good

programs.

Together, these points allow us to evaluate a language design in a
multidimensional design space. We discuss each of these points in
turn below.

3.1 Continuous Scales
Small amounts of compromise in a design concern can only be
made if concerns are not thought of as all-or-nothing goals, but
rather as continuous scales measuring what is to be achieved. By
continuous, we mean that a scale or quality is not all-or-nothing (0
or 1), but that it permits some gradation and fractional values.

Most properties that seem inherently all-or-nothing can be made
into continuous measures by simple changes in wording and mea-
surement. For example, obliviousness as defined by Filman and
Friedman seems like an all-or-nothing property: “one can’t tell that
the aspect code will execute by examining the body of the base
code” [12, Section 2.3]. One can change this into a continuous
scale by measuring the extent to which the base code is coupled
to the aspect code. Similar remarks apply to the design concern
that motivates obliviousness: separation of program concerns; thus
one should measure how easy it is for programmers to separate
concerns (e.g., by using advice). Similarly, quantification can be
measured on a continuous scale by measuring what fraction of the
types of places in the base code, or events in the execution of the
base code, can be advised.

Concerns phrased as “ease of doing X”, like “ease of reason-
ing,” are already placed on a continuous scale.

Evaluating concerns on a continuous scale is necessarily more
difficult than using simple predicates. However, while measurable

concerns may be difficult to evaluate with precision, we have found
that language designers can get initial estimates for the measure of
a given concern by doing case studies with their new language [9].

3.2 Measuring the Good
Many of the objections to aspect-oriented languages are wor-
ries that any use of aspect-oriented features will result in “bad”
programs. What constitutes a “bad” program varies, but usu-
ally involves the program being incomprehensible, unmaintain-
able, overly long, overly complex, etc. A published example is
Steimann’s complaint about using aspects to address scattering.
He says [28, p. 488], that use of aspects to avoid scattering makes
programs bad in the sense that it hurts information hiding. Informa-
tion hiding suffers because moving “scattered subfunctions” from
a module (data abstraction) “into an aspect” introduces data depen-
dencies between them. Such data dependencies are bad because,
even if they are captured in an interface, “[i]ndependent evolability
is therefore compromised” [28, p. 488]. Steimann also complains
that use of advice causes “confusion” since it makes the control
flow of a program less obvious [28, p. 490].

Such complaints recall the debates about the “goto” statement in
the 1970s. Dijkstra famously [10] complained that any use of goto
statements made programs hard to read and understand. However,
Knuth [20] made the point that some uses of goto statements were
necessary to address other program concerns, such as efficiency,
reliability, and conciseness. Understanding of these other concerns
led to the development of features that addressed them, such as
exception handling [15, 23]. From our perspective, one can see Di-
jkstra’s complaints as being focused on a single concern, namely
understandability, and measuring the badness of programs by how
much that feature was used.1 On the other hand, the positive devel-
opments, such as exception handling mechanisms, resulted from
language designers thinking about and measuring multiple con-
cerns. That is, language designers thought not only about under-
standability, but also about the other program concerns that were
being addressed by various uses of the goto statement.

How can language designers keep multiple concerns in mind,
and not become sidetracked into endless debates about bad pro-
grams? Measuring what harm programmers might do, or be pre-
vented from doing, does not help. Instead, language designers
should measure the ease or extent to which programmers can write
good programs.

Another reason for focusing on such positive measures was
summarized by Flon [14], who said that no language can prevent
programmers from writing bad programs. The implication is that
since programmers are always able to abuse language mechanisms,
write bad code, or avoid writing good code, it does no good to
try to measure the extent to which a language “discourages” them
from doing bad things. (The only exception is that a language
could prohibit some bad coding practices completely when the cost
was judged small enough; for example, by eliminating the goto
statement entirely, or by prohibiting type errors.)

Therefore, it is vital to find positive measures that are aimed at
addressing multiple program concerns. That is, language designers
should use several measures that are aimed at helping programmers
write good programs, such as ease of separating concerns or ease
of reasoning.

3.3 A Multidimensional Design Space
Together, (1) positively stated concerns (2) measured on continu-
ous scales give aspect-oriented language designers a multidimen-

1 Dijkstra’s first sentence contains this measure “the quality of program-
mers is a decreasing function of the density of go to statements in the pro-
grams they produce” [10, p. 147].

sional design space in which to work. Fig. 1 represents one such
space. Several proposals for aspect-oriented languages have begun
exploring such design spaces. We discuss this work in the next sec-
tion.

separation of concerns

code lo
cali

ty

ea
se

 o
f m

ai
nt

en
an

ce

ea
se

of
rea

so
nin

g

Figure 1. Multiple concerns in the language design space.

4. Compromises in the Literature
We illustrate our prescription for aspect-oriented language design
by describing how some authors have balanced the aspect-oriented
concerns of promoting locality (quantification) and separation of
programmer concerns (obliviousness) in order to achieve better
measures for other software engineering concerns.

4.1 Gudmundson and Kiczales
Gudmundson and Kiczales’s paper “Addressing Practical Software
Development Issues in AspectJ with a Pointcut Interface” [17] is
a fascinating early presentation of such a compromise. The paper
addresses the “problems of large-scale systems, team development,
and maintenance in the context of AspectJ . . . programming” [17,
Section 1]. The paper advocates having each class and package
declare and export an interface consisting of named pointcuts. The
idea is that each class and package agrees to support that interface,
and that aspects only advise such exported pointcuts.2 The authors
note that their design balances obliviousness with other design
concerns, saying: “By having the pointcut interface exported by
the base code, we are clearly not making the aspects invisible”
[17, Section 4]. Note that the compromise in obliviousness is small,
since there is no direct coupling between the base code and aspects.
Since it strongly supports our position on the value of compromise,
it seems worth quoting in full the following paragraph defending
their design [17, Section 4]:

“Since obliviousness is such a desirable property, we
feel that some additional justification of our position is
required. In our experience and in several studies, special
care must be taken to ensure that the right join points are
exposed. While this might seem like a minor refactoring
in the context of a small case study, it must be viewed
objectively. Without having something to force the right
join points to be exposed, there is no reason to expect this
to happen naturally. Our pointcut interface serves as this

2 However, the authors do not propose enforcing this style by a language
design change.

constraint. The obliviousness perspective does not allow for
any influence to be exerted on the base code’s structure, and
thus cannot ensure that the join points will be exposed.”

4.2 Griswold et al.’s XPIs
Closest to Gudmundson and Kiczales’s idea of pointcut interfaces
is the work on crosscut programming interfaces (XPIs) by Gris-
wold et al. [16, 29]. Besides the maintenance difficulties described
by Gudmundson and Kiczales, Griswold et al. also address the
problem of ease of reasoning. They break ease of reasoning into
two subconcerns: ease of reasoning about correctness, and mini-
mizing the amount of code one needs to examine to “identify the
relevant join points” [16, p. 51]. The XPIs declare a set of scoped,
abstract pointcut definitions and a “partial implementation” of them
[16, p. 52]. The partial implementation maps the abstract pointcuts
(via patterns) to base code, and gives a set of “constraints” or “de-
sign rules” that describe how they may be used by aspects advis-
ing them. The base code does not itself contain the pointcut defini-
tions (which are found in the XPIs), hence there is no compromise
on obliviousness. However, advice must only advise the pointcuts
from the XPIs in conformance with the stated constraints,3 which
limits quantification to some extent. The authors argue that this
slight loss of locality (quantification) allows programmers to have
better control over maintainability and ease of reasoning, and give
two case studies to support these claims.

4.3 Aldrich’s Open Modules
In contrast to the work described above, Aldrich’s Open Modules
[1] is a language design and not a coding convention. Aldrich’s pa-
per addresses both of the concerns raised in Section 2: ease of main-
tenance and ease of reasoning (especially about correctness). This
paper is notable for making explicit compromises between quan-
tification and obliviousness (called “openness”), and these other
concerns (called “modularity”): “The goals of openness and mod-
ularity are in tension . . ., and so we try to achieve a compromise
between them” [1, Section 2]. The language allows programmers
to export pointcuts from modules, and advice that is external to
a module can only be applied to the exported pointcuts. The lan-
guage also restricts quantification, in that internal communication
events (e.g., calls within a module) cannot be advised by external
clients. These features together allow programmers to determine if
a change to their aspects or base code might cause maintenance or
reasoning problems. Note that, despite the small loss of quantifica-
tion and a user-determined loss of obliviousness, modules are not
strongly coupled to advice, as they do not know what, if any, advice
is being applied.

4.4 Clifton and Leavens
In prior work, we introduced a distinction between spectators (orig-
inally called observers) and assistants [6, 7]. That work addresses
the concerns of separate compilation and ease of reasoning. The
language proposed makes users categorize AspectJ-style aspects as
either spectators, which are not allowed to change the base pro-
gram’s computation, or assistants, which have no such limitations.
Spectators are unlimited in their use of quantification and base
code is oblivious to their existence. However, assistants must be
acknowledged by the base code, which limits both quantification
and obliviousness. Other features, such as aspect maps, make up
for some of the loss of quantification and obliviousness.

Clifton’s Ph.D. work focuses on a static analysis and annota-
tions that allow the language to check that spectators really have
no effect on the base program [5, 8]. A more recent design drops

3 These constraints are enforced using AspectJ’s declare errormech-
anism. Thus enforcement does not require a change to AspectJ.

the requirement that base code explicitly accepts the advice of the
assistants, and thus has no loss of obliviousness [9].

4.5 Other related work
We briefly review other relevant language designs below.

AspectJ [2, 18] limits quantification, since some events that are
internal to a method, such as the get and set of local variables, are
not considered to be join points. This limitation makes some kinds
local reasoning within a method easier.

Bergmans and Aksit’s Composition Filters [3, 4] is a language
mechanism that allows programmers to declaratively describe how
messages sent to objects are transformed. Composition Filters has
limited quantification, compared to AspectJ, its “superimpositions”
only apply at object interfaces, and cannot transform an object’s
internal messages. This loss of quantification is explicitly claimed
to promote encapsulation [4, Section 5.5.3].

Similarly Tarr et al.’s multi-dimensional separation of concerns
[30] has a similar limitation on quantification which enhances en-
capsulation, since it treats the “primitive units” of composition “as
indivisible” [30, p. 111]. By choosing the granularity of different
primitive units, the tradeoff between quantification and encapsula-
tion can be adjusted [30, pp. 115–116].

Larochelle et al. describe a design for hiding join points [22].
It allows programmers to restrict quantification as an aid to easing
modification and reasoning.

Ossher [26] also addresses the concerns of easing modification
and reasoning. His mechanism allows a class to confirm or deny
that a particular pointcut applies at a join point (such as a method
or class). It thus allows programmers to trade a small amount of
loss in obliviousness, in return for gains in ease of modification
and reasoning.

Filman and Havelund [13] examine two aspect-oriented lan-
guages. They identify a large number of software engineering con-
cerns that should be addressed in aspect-oriented language design,
and consider the extent to which two languages deal with them.

Lopez-Herrejon and Batory [24] propose a model for compos-
ing aspects that “bounds the scope of quantification” to support
ease of maintenance and “incremental development.”

5. Conclusions
The idea of thinking about multiple concerns during programming
language design is itself very aspect-oriented [30]. We have not
proposed any meta-linguistic techniques for aspect-oriented lan-
guage design in this paper. Such a way of composing separate
concerns4 has long been the holy grail of language design, and
thus we leave it as future work. However, we have emphasized
that good design principles apply equally to language designs, and
thus our point is that a good language should strike an appropriate
(weighted) compromise among all concerns.

As described in Section 4 on the previous page, many aspect-
oriented language designs already involve some compromises in
the aspect-oriented concerns of promoting locality (quantification)
and separation of program concerns (obliviousness). Thus no one
should complain that a language is not aspect-oriented, simply be-
cause it does not have maximal quantification and perfect obliv-
iousness. By viewing these concerns as continuous measures, as
opposed to all-or-nothing properties, one can discuss the extent to
which aspect-oriented languages make such compromises, or allow
their users to make such compromises for themselves.

Viewing these concerns as continuous measures also helps ex-
plain the “paradox” of aspect-oriented programming [28], since by

4 These language design concerns are often thought of as monads by
semantically-oriented language designers [27].

making slight compromises in quantification or obliviousness, lan-
guage designers can promote other software engineering concerns,
while only giving up a small amount of what makes them aspect-
oriented. Put another way, aspect-oriented languages can promote
increased locality (i.e., reduced scattering) and separation of con-
cerns (i.e., reducing tangling), while still promoting ease of main-
tenance and ease of reasoning. By keeping in mind that all these
concerns can be compromised in small amounts, language design-
ers can find creative ways to simultaneously promote them all.

Acknowledgments
Thanks to Hridesh Rajan and the SPLAT program committee
for comments on earlier drafts. Thanks to Friedrich Steimann
for his OOPSLA 2006 essay [28], which greatly stimulated our
thinking. Thanks to Richard Gabriel for asking Leavens to dis-
cuss Steimann’s essay at OOPSLA. Thanks to many others in the
aspect-oriented community, including Hridesh Rajan, James Noble,
William Griswold, Kevin Sullivan, Gregor Kiczales, Mira Mezini,
Klaus Ostermann, Jonathan Aldrich, Don Batory, Robert Filman,
Ehud Lamm, Mitchell Wand, and other participants at the FOAL
and SPLAT workshops, with whom we have had illuminating dis-
cussions. The work of both authors was supported in part by the US
National Science Foundation under grant CCF-048078. Leavens’s
work was also supported in part by NSF grant CCF-0429567.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In A. P.

Black, editor, ECOOP 2005 — Object-Oriented Programming 19th
European Conference, Glasgow, UK, volume 3586 of Lecture Notes
in Computer Science, pages 144–168. Springer-Verlag, Berlin, July
2005.

[2] AspectJ Team. The AspectJ programming guide. Version 1.5.3.
Available from http://eclipse.org/aspectj, 2006.

[3] L. Bergmans and M. Aksit. Composing crosscutting concerns using
Composition Filters. Commun. ACM, 44(10):51–57, Oct. 2001.

[4] L. Bergmans and M. Aksit. Principles and design rationale of
Composition Filters. In R. Filman, T. Elrad, S. Clarke, and M. Aksit,
editors, Aspect-Oriented Software Development. Addison-Wesley,
2004.

[5] C. Clifton. A design discipline and language features for modular
reasoning in aspect-oriented programs. Technical Report 05-
15, Department of Computer Science, Iowa State University, 226
Atanasoff Hall, Ames, Iowa 50011, July 2005.

[6] C. Clifton and G. T. Leavens. Observers and assistants: A proposal for
modular aspect-oriented reasoning. In G. T. Leavens and R. Cytron,
editors, FOAL 2002 Proceedings: Foundations of Aspect-Oriented
Languages Workshop at AOSD 2002, number 02-06 in Technical
Reports, pages 33–44. Department of Computer Science, Iowa State
University, Apr. 2002.

[7] C. Clifton and G. T. Leavens. Spectators and assistants: Enabling
modular aspect-oriented reasoning. Technical Report 02-10, Iowa
State University, Department of Computer Science, Oct. 2002.

[8] C. Clifton and G. T. Leavens. A design discipline and language
features for formal modular reasoning in aspect-oriented programs.
Technical Report 05-23, Dept. of Computer Science, Iowa State
University, Ames, IA, 50011, Jan. 2005.

[9] C. Clifton, G. T. Leavens, and J. Noble. Ownership and effects for
more effective reasoning about aspects. Technical Report 06-35,
Dept. of Computer Science, Iowa State University, Ames, IA, 50011,
Dec. 2006. To appear in ECOOP 2007.

[10] E. W. Dijkstra. Go to statement considered harmful. Commun. ACM,
11(3):147–148, Mar. 1968.

[11] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In OOPSLA 2000 Workshop on

Advanced Separation of Concerns, Minneapolis, MN, Oct. 2000.

[12] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In M. Akşit, S. Clarke, T. Elrad,
and R. E. Filman, editors, Aspect-Oriented Software Development.
Addison-Wesley, Reading, MA, 2004.

[13] R. E. Filman and K. Havelund. The effect of AOP on software
engineering, with particular attention to OIF and event quantification.
In SPLAT ’03, Mar. 2003. http://tinyurl.com/2euk95.

[14] L. Flon. On research in structured programming. ACM SIGPLAN
Notices, 10(10):16–17, Oct. 1975.

[15] J. B. Goodenough. Exception handling: Issues and a proposed
notation. Commun. ACM, 18(12):683–696, Dec. 1975.

[16] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai,
and H. Rajan. Modular software design with crosscutting interfaces.
IEEE Software, pages 51–60, Jan/Feb 2006.

[17] S. Gudmundson and G. Kiczales. Addressing practical software
development issues in AspectJ with a pointcut interface. In ECOOP
2001 Workshop on Advanced Separation of Concerns, 2001.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In J. L. Knudsen, editor, ECOOP
2001 — Object-Oriented Programming 15th European Conference,
Budapest Hungary, volume 2072 of Lecture Notes in Computer
Science, pages 327–353. Springer-Verlag, Berlin, June 2001.

[19] G. Kiczales and M. Mezini. Aspect-oriented programming and
modular reasoning. In Proc. of the 27th International Conference on
Software Engineering, pages 49–58. ACM, 2005.

[20] D. E. Knuth. Structured programming with goto statements. ACM
Comput. Surv., 6(4):261–301, Dec. 1974.

[21] R. Laddad. AspectJ in Action. Manning Publications Co., Grennwich,
Conn., 2003.

[22] D. Larochelle, K. Scheidt, K. Sullivan, Y. Wei, J. Winstead, and
A. Wood. Join point encapsulation. In SPLAT ’03, Mar. 2003.
http://tinyurl.com/26onl4.

[23] B. H. Liskov and A. Snyder. Exception handling in CLU. IEEE
Transactions on Software Engineering, SE-5(6):546–558, Nov. 1979.

[24] R. E. Lopez-Herrejon and D. Batory. Improving incremental
development in AspectJ by bounding quantification. In SPLAT ’05,
Mar. 2005. http://tinyurl.com/25shp3.

[25] R. Milner. A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3):348–375, Dec. 1978.

[26] H. Ossher. Confirmed join points. In SPLAT ’05, Mar. 2005.
http://tinyurl.com/2xzffu.

[27] G. L. Steele, Jr. Building interpreters by composing monads. In
Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland,
Oregon, pages 472–492. ACM, Jan. 1994.

[28] F. Steimann. The paradoxical success of aspect-oriented program-
ming. In OOPSLA 2006: Proceedings of the 21st International
Conference on Object-oriented Programming Systems, Languages,
and Applications, ACM SIGPLAN Notices, pages 481–497, New
York, NY, Oct. 2006. ACM.

[29] K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and
H. Rajan. Information hiding interfaces for aspect-oriented design.
In Proc. of the 13th ACM SIGSOFT symposium on the Foundations
of software engineering (FSE-13), pages 166–175, Lisbon, Portugal,
May 2005. ACM Press.

[30] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton Jr. N degrees
of separation: Multi-dimensional separation of concerns. In ICSE
’99: Proceedings of the 21st international conference on Software
engineering, pages 107–119, New York, NY, 1999. ACM.

http://eclipse.org/aspectj
http://tinyurl.com/2euk95
http://tinyurl.com/26onl4
http://tinyurl.com/25shp3
http://tinyurl.com/2xzffu

	Introduction
	Views of Aspect-Oriented Languages
	Language Design Concerns
	Outline

	What Other Concerns?
	Measuring Concerns
	Continuous Scales
	Measuring the Good
	A Multidimensional Design Space

	Compromises in the Literature
	Gudmundson and Kiczales
	Griswold et al.'s XPIs
	Aldrich's Open Modules
	Clifton and Leavens
	Other related work

	Conclusions

