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Abstract. Aspect-oriented advice increases the number of places one must con-
sider during reasoning, since advice may affect all method calls and field ac-
cesses. MAO, a new variant of AspectJ, demonstrates how to simplify reasoning
by allowing programmers, if they choose, to declare limits on the control and heap
effects of advice. Heap effects, such as assignment to object fields, are specified
using concern domains—declared partitions of the heap. By declaring the con-
cern domains affected by methods and advice, programmers can separate objects
owned by the base program and by various aspects. When desired, programmers
can also use such concern domain annotations to check that advice cannot inter-
fere with the base program or with other aspects. Besides allowing programmers
to declare how concerns interact in a program, concern domains also support a
simple kind of semantic pointcut. These features make reasoning about control
and heap effects easier.

1 Introduction

Serve the People!1

Aspect-oriented software development [13] (and its conjugates such as subjectivity,
generative programming, Model-Driven Architecture and so on) are changing the way
programs are structured. Rather than a program being a hierarchy, with each module or
class defined in one place, a program becomes a heterarchy, where multiple crosscutting
aspects contribute to the definition of multiple components. Aspect-oriented designs
can help increase cohesion by reducing code scattering and tangling. This can positively
affect a system’s maintainability; each crosscutting concern can be dealt with in a single
module, making it much easier to change the policies that govern that concern.

In this paper we describe Modular Aspects with Ownership, MAO, a variant of
AspectJ 5 that helps programmers state and enforce restrictions on control and heap
effects. Control effects are caused by advice that perturbs the program’s control flow.
Heap effects are modifications to object fields. Giving programmers the ability to state
and enforce restrictions on these effects allows more effective reasoning in MAO than
is generally possible in aspect-oriented languages such as ApsectJ. By “reasoning” we
mean both informal checks, including desk-checking of code, and formal proofs.

MAO makes the following contributions:
1 Mao Tse-tung’s quotes are from http://art-bin.com/art/omaotoc.html.

Use of these quotations in no way indicates our approval of Mao or his actions.
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1. Surround Advice. We introduce surround and curbing advice annotations that
allow programmers to declare that their advice makes no (or limited) changes to
the advised control flow. Surround advice can be used in spectator aspects to ensure
they do not perturb the control flow of the base program [7, 9].

2. Concern Domains. We use a shallow ownership type and effect system [2, 5] to
identify explicitly the concerns that own each object or aspect in the program. Pro-
grammers and tools can inspect the domain declarations and so statically determine
how an aspect will interact with objects, or if two aspects may potentially interfere.

3. Writes Pointcut Designator. We introduce a new semantic pointcut designator,
writes, which uses the ownership and effect system to provide a robust declaration
for advice that matches all join points that may modify a particular concern domain.

4. Spectator Aspects. We state precise conditions on spectator aspects [7, 9]. Spec-
tator aspects write only their own concern domains and use only surround advice,
ensuring that they cannot affect the observable behavior of any other aspect or class
in the program.

MAO’s design is supported by MiniMAO3, a formal model of MAO. The full details
of MiniMAO3 are described within Clifton’s dissertation [7], including details we omit,
such as a proof of type soundness and an ownership invariant for concern domains.

The paper proceeds as follows: The next section briefly presents the problem. Then,
we informally introduce our solution with three sections describing the design of MAO.
We give a high-level overview of our formal results and discuss a practical evaluation
of our work. Finally, we conclude with a comparison to related work.

2 A Tale of Two Aspects

New things always have to experience difficulties and setbacks as they grow.

The key problem this paper addresses is reasoning about whether one module (class,
method, aspect, advice) may potentially affect the behavior of another module. This is
especially interesting for aspect-oriented programs, since interference among aspects
and between aspects and other code can be quite subtle. Consider the venerable aster-
oids game [3]. The positions and vectors of a spaceship and some asteroids are managed
by an N-body simulation — the spaceship can be influenced by player input. A Model
class runs the simulation and stores spaceships, asteroids, missiles and so on.

Adding a user interface to this game is done with the OutputWindow aspect in Fig. 1.
This aspect’s advice runs after the simulation updates, when it reads data from the
model, and then updates its output window. Reasoning about this aspect requires some
assumptions that are not explicit in its code.

First, suppose we want to find control effects of the OutputWindow aspect. A control
effect is a perturbation of the program’s flow of control, such as throwing an exception,
or stopping the call of a method. Since this aspect uses after advice, it does not seem
to have any control effects. But that reasoning is not sufficient — we also have to de-
termine that the advice will not throw an exception that may affect the continuation
of the program after the advice returns. This requires determining what exceptions can
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aspect OutputWindow {
private SpacewarWindow w = new SpacewarWindow();

after(Model m): target(m) && (call(void Model.set*())
|| call(void Model.moveShip())
|| call(void Model.updateAsteroids())) {

w.reset();
Spaceship s = m.getSpaceship();
w.drawSpaceship(s.getX(), s.getY(), s.getHeading());
for (Asteroid a : m.getAsteroids()) {

w.drawAsteroid(a.x, a.y, a.size); }
w.update();

}}

Fig. 1. The OutputWindow aspect.

be thrown by the methods called in the advice, which are not explicit if the code calls
methods that can throw unchecked exceptions.

Second, suppose we want to find the heap effects of the OutputWindow aspect. A
heap effect is an assignment to some object fields.2 The advice has no direct assign-
ments to object fields, but we must also determine the potential side effects of the
methods it calls. Methods like reset presumably have heap effects, and methods like
getSpaceship presumably do not, though in practice we would need to verify that.
Once we determine what method calls may have side effects the question becomes,
what objects are affected? It matters if the object affected is owned by the advice, such
as the window w, or not. In this case only w seems to be affected, but determining the
heap effects of methods is not obvious from the code.

Finally, to determine when the advice will execute, we must understand its point-
cut. The pointcut specifies when the display is to be updated. It does this by matching
methods that may change the state of the model. This is quite a large design-level de-
pendency on the program — we assume that the execution of any setter methods, plus a
couple of specific methods on the Model class (such as moveShip or updateAsteroids)
capture all effects on the model that need to be reflected. The problems with explicit
naming and syntactic patterns are well known [21, 30]. The core issue here is that the
pointcut specification is at the wrong level of abstraction. This advice should not match
“all calls where the first three characters of the method name are ‘set’, or where the
method is named moveShip or updateAsteroids”, instead what we need to express is:
“all calls to methods that may change the Model.” Such a heap effect dependency cannot
be expressed directly in AspectJ. While it could be expressed with XPIs [15, 31], the
XPI mechanism for expressing this is again an AspectJ pointcut, and does not provide
a way of checking that the methods in the pointcut accurately express the dependency.

We can compare the benign OutputWindow aspect with the Cheat aspect in Fig. 2
on the following page. This aspect aims to override the collision detection function in
the program, so that when the player’s Spaceship hits something the collision is ignored
and the ship’s shields are activated, rather than the ship being destroyed and the player

2 Heap effects implicitly include I/O, since object fields are used to represent I/O devices.
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losing! Compared with the OutputWindow aspect there are three main differences. First,
the aspect certainly has control effects: the around advice may return “false” rather than
calling proceed. Second, by looking at the code of raiseShields we could determine
that the advice also has heap effects on objects in the base program. On the other hand,
the pointcut in this aspect — which matches calls to the collision method — is not
expressing a heap effect dependency: it simply picks out a single method’s execution.

aspect Cheat {
boolean around(Model m, Thing one, Thing two) :

call(boolean Model.collision(Thing,Thing)) && target(m) && args(one,two) {
if ((one == m.getSpaceship()) || (two == m.getSpaceship())) {

m.getSpaceship().raiseShields();
return false;

} else { return proceed(m, one, two); }
}}

Fig. 2. The Cheat aspect.

These two aspects illustrate the three problems we address in this paper:

1. How can programmers find the control effects of advice?
2. How can programmers find the heap effects of advice?
3. How can programmers select join points according to their effects on the heap?

MAO provides solutions to each of these problems: control-limited advice mitigates
control effects, concern domains describe heap effects, and effect pointcut designators
select join points according to their effects on the heap. Compared with other work,
MAO is designed as an extension to AspectJ, rather than as a more idealized AO lan-
guage [11], and relies on types and annotations that can be checked locally, rather than
global control and dataflow analyses [19, 29].

3 Control-Limited Advice

We cannot do without freedom, nor can we do without discipline.

The first problem we address is how to make finding the control effects of advice
easier. All kinds of advice in AspectJ can cause control effects directly by throwing
exceptions. (However, we do not consider errors, which inherit from Error, to be ex-
ceptions. Since errors indicate failures of the virtual machine, they are outside the scope
of our analysis.) Around advice can also perturb control flow by not calling proceed, or
by calling it several times. It is also convenient to consider changing the result returned
by a computation (in around advice) to be a control effect. In AspectJ one can also
change the target (receiver) object in a method call with around advice, which causes
a control effect. The Cheat aspect in section 2 has two kinds of control effects, since it
does not call proceed in some cases, and in those cases it supplies a new return value.
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MAO allows programmers to declare that a piece of advice (or a whole aspect) has
no control effects, or that those effects are limited to exceptional cases. We call such
advice control-limited advice. MAO has two annotations for declaring that a piece of
advice is control-limited: @surround and @curbing.

Advice marked with @surround has no control effects. When invoked in a particular
state, @surround advice will proceed to the same join point, with the same arguments,
and return the same value or throw the same exception, as it would in absence of the
advice. (Note that this allows extra join points to be introduced, both within the advice
and within the advised code.) For example, the advice in the OutputWindow (Fig. 1 on
page 3) could have been declared using @surround, but not the Cheat aspect (of Fig. 2).

Advice whose only control effects are potentially to throw one or more exceptions
that would not have been thrown otherwise can be marked with the @curbing annota-
tion. Curbing advice can stop control flowing through a join point, but cannot augment
it or change it in any other way. Curbing advice can be used, for example, to check
authorizations or preconditions. The @surround and @curbing annotations can also be
applied to entire aspects: thus requiring all their advice to be curbing or surrounding.

MAO uses simple desugarings and conservative criteria to modularly check that
advice declared as control-limited actually is control-limited. These checks work dif-
ferently for different kinds of advice.

For before and after advice annotated with @surround, MAO translates the advice
body in such a way that all exceptions that might potentially be thrown out of their
bodies are caught and discarded. The user does not have to write code to catch these
exceptions, though she certainly may. But MAO automatically places the body inside a
statement of the form “try /∗body∗/ catch (Exception e) { ; }”, which discards
all exceptions that might otherwise perturb the control flow.

Since around advice is inherently more powerful, it requires stronger checks. MAO
checks that the advice has a body that is the sequential composition of a before part, a
top-level call to proceed, and an after part that returns the result of the call to proceed
(if any). No call to proceed may occur in either the before or the after part. MAO
statically checks that surround advice always proceeds exactly once to the advised join
point, unless the before part fails to terminate (e.g., loops forever). MAO automatically
translates the before and after parts, as above, to automatically discard exceptions that
occur in the code before and after the mandatory proceed call. Because the call to
proceed is at the top-level, exceptions from the call to proceed cannot be caught; they
must be propagated up the call stack as they would be in the absence of the advice.
Fig. 3 on the following page gives an example satisfying the restrictions.

MAO checks that any arguments passed to the join point are always the original
arguments and that the original arguments are declared to be final and @readonly (see
Sec. 4.4), so surround advice cannot mutate the arguments and cannot pass along new
arguments. The result returned from executing a piece of surround advice must be (if
the return type is not void) saved in a final, @readonly variable named reply, and must
be returned at the end of the after part. The after part expression has read-only access
to reply. From these restrictions it follows that the before and after parts of surround
advice are evaluated solely for their heap effects. Another way to think of such around
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@surround Object around() : call( Object *(..) ) {
// before part
int event_no = Logger.nextEventNumber();
this.log.append("before" + event_no);

// mandatory proceed to advised code
@readonly final Object reply = proceed();

// after part
this.log.append("after" + event_no + "reply:" + reply);
return reply;

}

Fig. 3. Example of @surround for around advice.

advice is as paired before and after advice, where the before part can declare variables
that the after part can access.

Checks on @curbing advice also differ depending on the advice type. Before or after
advice declared to be @curbing is unchanged from AspectJ, since control effects that
cause exceptions are permitted. Around advice that is declared to be @curbing must
satisfy all of MAO’s checks for @surround advice, but does not have exceptions that
arise in the before and after parts automatically caught and discarded. In particular it
must have the form illustrated in Fig. 3, so that it proceeds exactly once (unless the
before part throws an exception).

Control-limited advice makes reasoning about aspect-oriented programs easier in
three ways. First, by declaring a piece of advice as @surround or @curbing, program-
mers can express guaranteed limits on the control effects of their advice. MAO can
ensure an advice’s implementation matches the annotations on its declaration with an
efficient, local analysis. The straightforward tests required — and the error messages
MAO will produce if advice does not meet the conditions — should be easily com-
prehensible by programmers. Because the syntactic conditions can be checked locally,
requiring only the code of the advice, changes to other parts of the program will not
affect whether a particular piece of advice is surrounding or curbing.3

Second, because @surround and @curbing annotations are part of the interface of
advice, programmers can immediately tell, by examining that interface, whether the ad-
vice does perturb the existing control flow. Thus when reasoning about control effects,
one can simply ignore @surround advice. Furthermore one only has to look at @curbing
advice in reasoning about exceptions; when reasoning about other kinds of control flow
perturbation, one can also ignore @curbing advice.

Third, on a larger scale the search for control effects can be limited to non-spectator
and non-surround aspects, since only such aspects may contain non-@surround advice.
All of these represent some modest gains in effectiveness of reasoning.

3 Of course, other advice that is not control-limited can cause control effects that occur at join
points within control-limited advice. However, those control effects can be blamed on the
advice that is not control-limited; that is, if all advice in a program is control-limited advice,
then no control effects will affect the base program code.
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4 Concern Domains

Qualitatively different contradictions
can only be resolved by qualitatively different methods.

To identify the heap effects of advice and ease reasoning about interference among
and between aspect and base program code, MAO uses an ownership type-and-effect
system we call concern domains. As with other ownership and confined type systems [2,
4, 12, 24, 27] concern domains require programmers to identify objects with a particular
owner — in this case, a particular concern domain. For this reason, concern domains
partition the program’s heap, and so help answer the question of what object fields may
be read and written by a piece of advice.

4.1 Declaring Concern Domains

Concern domains themselves are declared by classes or aspects. Unlike many owner-
ship systems (but more like confined types [32]), concern domains are static: a particular
system configuration will have a fixed set of concern domains. Following Generic Con-
finement and Generic Ownership, we reify domains using inert marker classes [27, 28].

Programmers explicitly declare concern domains by declaring an empty, final
class that implements the interface Domain. Explicitly declared domains may be ei-
ther publicly available, or may be private to a class or aspect [2]. To keep them static,
however, they cannot be inner classes, although they can be static, nested classes.

Each concrete aspect implicitly defines a concern domain; that is the name of a
concrete aspect can be used as a concern domain. This is appropriate because each
such aspect is often associated with a concern in a well-designed program. Note that
all instances of a particular non-singleton aspect, such as instances created per-cflow,
all share a common concern domain. This sharing does not cause problems for MAO’s
effect analysis, though it does make it coarser.

MAO’s concern domain World owns all objects not owned by other domains.

4.2 Using Concern Domains

Every object creation expression names the new object’s owner, which may be a public
concern domain, or a private one visible in the class (or aspect) instantiating the object.
The ownership domain of every expression is statically tracked by the ownership type
system, and objects owned by private domains are inaccessible outside the scope of
those private domains (i.e. the class or package declaring the private domain).

The types of objects in the program can be annotated to describe the concern do-
mains to which they belong. Classes and abstract aspects can be made ownership-
parametric — in class and abstract aspect declarations a list of concern domain vari-
ables are given following the class or aspect name. The first concern domain variable
listed, typically called Owner, represents the owner domain for instances of the class or
aspect, that is, the domains to which they belong. Other concern domain variables allow
referencing objects in other domains.
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For example, the following code shows how the Model class could be defined with a
domain parameter named Owner. The Spaceship and Vectors of Asteroids within Model
are all stored in the same domain (Owner) as the Model object containing them.
class Model<Owner extends Domain> { /∗ ... ∗/

private Spaceship<Owner> s = new Spaceship<Owner>();
private Vector<Owner,Asteroids<Owner>> v =

new Vector<Owner,Asteroids<Owner>>();
}

Then we declare a new concern domain MODEL and in it allocate a new Model instance.
final class MODEL implements Domain {}
static Model<MODEL> myModel = new Model<MODEL>();

Thanks to the field declarations in the Model class, a new Spaceship and Vector are also
instantiated in the MODEL domain.

Instances of classes declared without domain annotations are owned by World.

4.3 Concern Domains and Aspects

As with classes, MAO aspects require ownership parameters to give them access to con-
cern domains. Because MAO extends AspectJ 5, generic (and hence abstract) aspects
cannot be instantiated directly, rather a concrete aspect extends the generic aspect while
instantiating the generic aspect’s type parameters. Thus, a concrete aspect cannot have
ownership parameters (or any other type parameters), rather, the concrete aspect binds
parameters of a generic aspect from which it inherits. Finally, so that aspects can have
their own private data, each concrete aspect has its own domain, and the name of the
concrete aspect is the name of that domain.

We rewrite the OutputWindow example (compare Fig. 1) in Fig. 4 on the next page,
using the ownership type parameter Owner for the aspect’s own concern domain, and
parameter Other for the type of the exposed context m.4 Note how the ownership types
describe the concern domains to which each variable or argument must belong. For
example the private field w belongs to the same concern domain as the aspect (its Owner)
while the model m is in the Other domain. To use this aspect, we instantiate it by making
a concrete aspect, binding the domain variables:
aspect ConcreteOutputWindow extends OutputWindow<ConcreteOutputWindow,MODEL>{}

the Owner variable is bound to the aspect’s domain, and the Other variable to the MODEL
domain. The Other domain could alternatively have been bound to any (public) domain
in the program, including the default World domain, or a public domain belonging to
another aspect (to support mutually-crosscutting aspects).

4.4 Effect Declarations

Concern domains and domain parameters separate expressions owned by different do-
mains via their types: within the annotated OutputWindow aspect, we know which ex-
pressions belong to the aspect (concern domain Owner) and which to the base program

4 AspectJ 1.5.3 does not allow Other to be used as a type parameter in advice formals and PCDs.
We leave compilation techniques that overcome this limitation as future work.
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@readonlyDomains({"Other"}) @depends({ @varies({"Owner", "Other"}) })
abstract aspect OutputWindow<Owner extends Domain,

Other extends Domain> {
private SpacewarWindow<Owner> w = new SpacewarWindow<Owner>();

@curbing @writes({"Owner"})
after(@readonly Model<Other> m):

target(m) && call(void Model<Other>.*()) && writes(Other) {
w.reset();
Spaceship<Other> s = m.getSpaceship();
w.drawSpaceship(s.getX(), s.getY(), s.getHeading());
for (Asteroid<Other> a : m.getAsteroids()) {

w.drawAsteroid(a.x, a.y, a.size); }
w.update();

}}

Fig. 4. The OutputWindow aspect with annotations.

(Other). To track aspect interference, we also need to determine when a method or ad-
vice execution may have a potential heap effect on the fields in a particular domain. For
this we augment the ownership type system with effects [5]. The basic effect annota-
tions are @writes, which is attached to method and advice declarations, and @readonly,
which is a type modifier.

The @writes annotation declares the concern domains that a particular method or
piece of advice can potentially mutate. Due to limitations of Java 5 annotations, this
annotation contains an array literal, with a comma-separated list of strings naming con-
cern domains or parameters. For example, the advice in the above example is allowed to
write into the Owner domain (which will be the ConcreteOutputWindow domain in that
concrete subaspect). Since Other is not named by this @writes annotation, however,
the advice is not allowed to write that domain—or MODEL in the concrete subaspect.
(Due to the inherent differences in how one reasons about methods, which are explic-
itly called, and advice, which is triggered implicitly, we do not consider the effects of
proceed as belonging to the effects of the advice. These effects do play a role in domain
dependencies discussed below.)

The @readonly annotation applies to types. Read-only fields and parameters can-
not be written into, although they can be read from. For example, the model m in the
above example is read-only, and hence the advice cannot mutate any field of an object
reachable through that reference — so @readonly is transitive.

As a shorthand, a method (or piece of advice) can be annotated with @pure, meaning
that all of its parameters (or variables in an advice’s exposed context) are read-only. It
is an error for a @pure method (or advice) to have a @writes annotation.

The programmer declares an ownership parameter of a class or aspect to be read-
only using the @readonlyDomains annotation; this annotation is then effective wherever
that parameter is used.5 Such a read-only concern domain cannot be mentioned in a
@writes annotation, making the whole concern domain read-only within the scope of

5 Planned Java enhancements (JSR 308) will allow @readonly annotations on type parameters.
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that ownership parameter’s declaration. If a method or advice has no @writes annota-
tion, then by default it can write to any non-read-only concern domain in scope.

In Fig. 4, for example, the advice is annotated @writes("Owner") because it writes
to the output window, which is allocated within the aspect’s own concern domain. The
important point is that the Other domain — representing the base program holding
the model — is a read-only domain, to which the aspect cannot write. In this way, the
effect annotations let programmers make their intentions clear and checkable. (The fact
that the Other domain is read-only means that the @readonly annotation on m’s type is
actually redundant in this example.)

Programmers using MAO can state their intention in another way also. In Fig. 4, the
@depends annotation on the aspect says that the Owner domain is allowed to vary when-
ever Other may. This dependency declaration allows the after advice in the example to
mutate the Owner domain while advising methods that mutate the Other domain. This
dependency is used both to check the @writes annotation on the advice and to reason
about potential effects without considering the internal details of the advice.

The effect annotations illustrate a key benefit of MAO’s ownership types: by in-
specting only the aspects and their annotations, we can be sure that OutputWindow does
not change any object owned by the base program. MAO’s type system enforces a non-
interference property so that a static, signature-level search can identify all the code
that might mutate a particular concern domain. By “static” we mean that the search can
be confined to areas of the program where the concern domain in question is visible,
either because it is directly visible or because it was passed as a domain parameter. By
“signature-level”, we mean that only method and advice headers, and not their bodies,
must be considered. In fact, if a programmer is just concerned about the effects of as-
pects on a method call, she can consider just the headers of aspects apart from their
advice. Thus MAO statically identifies code tangling, based on a separation of concerns
defined by the programmer.

Finally, we can combine concern domains with the control-limited advice from
Sec. 3 to define spectator aspects [10]. A @spectator aspect contains advice that
is (implicitly) @surround, all ownership parameters other than Owner are (implicitly)
@readonly, and the concrete concern domain used to instantiate a spectator aspect can-
not be shared. Thus, a spectator aspect concisely specifies advice that has no control
effects, and whose heap effects are confined within the aspect’s own concern domain.
In Sec. 6, we formally show that spectator aspects do not cause heap interference. Since
lack of control effects is direct from the definition of @surround advice, spectators do
not affect the execution of the base program in any way.

4.5 Annotating Base Code

We consider that annotating aspects with ownership types and effects is a necessary
price to pay for the tighter granularity of reasoning.

An important advantage of AOP, however, is that aspects can be attached to base
code that is oblivious to the aspects, that is the base code should not need to be changed
to have aspects applied to it. Thus it will often be infeasible to annotate preexisting
base code. MAO’s World domain, and the default that instances of unannotated classes
are owned by this domain, offers a broad brush solution to this problem. Because all
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objects created in the base program are owned by World, the base program still type
checks. Despite the coarseness of the World domain, MAO still has more than enough
information to separate base program objects from objects belonging to aspects, as the
OutputWindow example above illustrates.

5 Effect Pointcut Designators

If you want knowledge, you must take part in the practice of changing reality.

To select join points according to their effects on the heap, MAO introduces a new
kind of pointcut designator (PCD), writes. It allows programmers to use concern do-
main declarations to refine their aspect’s pointcut definitions. We call this PCD an effects
PCD, as it matches join points with heap effects on a given concern domain. Unlike As-
pectJ set and get PCDs, which describe heap effects and accesses syntactically (in
terms of concrete field names or patterns), effects PCDs describe effects semantically
(in terms of concern domains). Another difference is that they can work at the level of
methods and advice, instead of just at the lower level of individual operations on fields.

A MAO PCD of the form writes(D) expresses heap effect dependencies by match-
ing all join points that may write to concern domain D. MAO statically calculates the
heap effect of field sets based on the owner domain of the field type. MAO also stati-
cally calculates the heap effect of a method or advice, either from an explicit @writes
or @pure annotation, or from its default (see Sec. 4.4). Note that these PCDs do not de-
scribe method or advice call or execution join points that actually do write to a specific
concern domain, but to those that may possibly write to that concern domain.

For example, MAO’s writes PCD lets programmers express the heap effect depen-
dency implicit in Fig. 1 on page 3. Instead of saying that the call should be to meth-
ods whose name matches a method pattern (set*) or one of the two named methods
(moveShip or updateAsteriods), we can rewrite this PCD as in Fig. 4 on page 9, using
the Other concern domain:

target(m) && call(void Model<Other>.*()) && writes(Other)

Given that the set*, moveShip, and updateAsteriods methods and so on are anno-
tated with effects annotations, and that the OutputWindow aspect is instantiated with
an appropriate domain binding (see Sec. 4.3), then this pointcut will match exactly
the same methods as the previous explicit pointcut from Fig. 1. More importantly, if
there are other methods that are declared as writing the Other concern domain, this
pointcut will match those methods too. As the program evolves, if more methods are
added that write that domain, this pointcut will stay valid. Because the effect PCDs are
tied to the appropriate concern domain (MODEL which is bound to Other), these kind of
pointcut designators are more closely tied to the program’s semantics and can be auto-
matically checked. Automatic checking ensures they are maintained when the program
changes, unlike other, programmer-constructed pointcut abstractions, such as explicit
advice points from open modules [1] or design rules [15].

The main disadvantage of effects pointcuts is that currently they can only apply to
classes (and aspects) that have been annotated with concern domains and effect clauses.
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Defaulting base programs to a single World domain — while very effective for separat-
ing aspects from unmodified based programs — is almost completely ineffective here:
we can assign all base program objects to a single domain only because that assignment
is so indiscriminate. We expect that using a confined-types-style analysis [16] to assign
e.g., individual Java packages into their own domain, should make enough distinctions
to be useful in many cases.

6 Formal Model: MiniMAO3

When we look at a thing, we must examine its essence . . .

MiniMAO3 provides a formal model of MAO’s design, building on Clifton’s and
Leaven’s earlier formal model (MiniMAO1) that described around advice [8]. Space
constraints keep us from fully detailing MiniMAO3 here, but we aim to illuminate the
important issues. Clifton’s dissertation [7] provides full details of MiniMAO3.

6.1 The MiniMAO3 Language

The object-oriented core of MiniMAO3 is based on Featherweight Java (FJ) [18]. As
such, a MiniMAO3 program includes of a list of class declarations followed by an ex-
pression, which represents the main method in a Java program. Like FJ, class declara-
tions in MiniMAO3 contain a list of field declarations and a list of method declarations.

MiniMAO3 departs from FJ in several ways to support our study of heap effects
in aspect-oriented programs. As described in our earlier work on MiniMAO1 [8], we
use an imperative formal language with features from Classic Java [14]. Among other
things, this choice admits null values for fields, so we omit constructors from the lan-
guage. MiniMAO3 includes concern domain annotations on types and class declara-
tions. It also includes declaration forms that model MAO’s aspects, spectator aspects,
around and surround advice, domain dependencies, and ground concern domains.

Figure 5 gives the surface syntax of MiniMAO3. A program consists of a series
of declarations—of classes, regular aspects, and spectator aspects. These type declara-
tions are followed by a list of public concern domain declarations, like domain MODEL.
The public concern domains form the set of ground domains for the program and cor-
respond to MAO’s inert classes that implement the Domain interface. After the public
concern domain declarations, a program gives a list of aspect instantiation statements,
like use OutputWindow〈self,MODEL〉, that model MAO’s generic aspect instantiation.
In our formalism, all classes and aspects are polymorphic with respect to concern do-
mains. Class and aspect declarations give a list of concern domain variables, denoted by
the metavariable G in Figure 5. These variables are instantiated with ground domains
when the program is evaluated. The usual new expression instantiates a class; the new
use statement instantiates an aspect.

As mentioned, class and aspect declarations include a list of concern domain vari-
ables, 〈G∗〉, following the class or aspect name. The first concern domain variable listed
represents the home domain for instances of the class or aspect. The remaining vari-
ables are used to endow instances with permission to access objects in other domains,
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P :: = decl∗ {domain∗asp∗e}

decl :: = class c〈G∗〉 extends c〈G∗〉 {field∗ meth∗}

| aspect a〈G∗〉 {dep∗ field∗ adv∗}

| spectator a〈self, G∗〉 {field∗ surr∗}

field :: = t f;

meth :: = t m(form∗) eff {e}

dep :: = γ varies with γ;

adv :: = t around(form∗) eff : pcd {e}

surr :: = surround (form∗) : pcd {e; proceed; e}

eff :: = writes 〈γ∗〉
pcd :: = call(pat) | execution(pat) | writes(γ∗) | args(form∗)

| this(form) | target(form) | pcd && pcd | ! pcd | pcd || pcd

pat :: = t idPat(..)

form :: = t var , where var /∈ {this, reply}
e :: = new c〈γ∗〉() | var | null | e.m(e∗) | e.f | e.f = e

| cast t e | e; e | e.proceed(e∗)

t, s, u :: = δ∗ T 〈γ∗〉
δ :: = ε | readonly, where ε represents the empty string
T :: = c | a

γ :: = g | G | self

domains :: = domain g;, where g /∈ Gself

asp :: = use a〈g∗〉; | use a〈self, g∗〉;, where g /∈ Gself

G ∈ Gvar , the set of concern domain variable names
Gself = {selfloc · loc ∈ L} , the set of private concern domain names

g ∈ G ∪ Gself, where G is the set of public concern domain names
c, d, a, f, m ∈ I, the set of identifiers

var ∈ {this, reply} ∪ V , where V is the set of variable names
idPat ∈ IP , the set of identifier patterns

Fig. 5. Surface Syntax of MiniMAO3

e :: = . . . | v | (l (e∗)) | 〈e〉δ,γ̂ | e y e

| joinpt j(e∗) | chain B̄, j(e∗) | under e

v :: = locδ∗ | nullδ∗

l :: = fun m〈var∗〉.e : τ � γ̂

τ :: = t× . . .×t → t

t, s, u :: = . . . | >

γ̂ ∈ P(G ∪ Gvar ∪ Gself)

ĝ ∈ P(G ∪ Gself)

Fig. 6. Syntax Extensions for the Operational Semantics of MiniMAO3
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like concern domain parameters in MAO. For spectator aspects, we always write self
as the first concern domain variable. This is a special variable that represents the private
concern domain of the spectator. Each spectator instance has its own unique concern
domain as in MAO. Only the spectator instance, and any objects it creates in self, may
write to this private domain. Furthermore, the spectator and its progeny may only write
to this domain. These restrictions are enforced by MiniMAO3’s static type system.

Like MAO, regular aspects in MiniMAO3 include dependency declarations. These
declarations allow an aspect to declare that one concern domain may be modified when
code is executed that might modify some other domain. This allows an aspect to modify
its own accessible concern domains, like a concrete output window, when advising code
that modifies another concern domain, like the model in our game example. We would
indicate this like ConcreteOutputWindow varies with MODEL. Dependency declara-
tions allow—thanks to the aspect instantiation instructions—a static analysis of what
domains might be modified by any operation. Spectator aspects do not include depen-
dency declarations, because we assume a spectator’s private concern domain can always
vary. But since objects not owned by the spectator cannot observe the private concern
domain, this mutability does not matter for reasoning.

The writes clause specifies all the concern domains that a method or advice dec-
laration may modify. The type system ensures that only these domains, and those tran-
sitively reachable through dependency declarations, can be modified when the method
or advice executes. These features ensure that the modifiable domains for any operation
can be determined from a global “signature-level” analysis of the code, the bodies of
methods and advice need not be considered. The bodies are checked through local rules.

Spectator aspects may only include surround advice. Surround advice differs from
around advice by syntactically enforcing the restrictions described above for MAO’s
@surround advice. Note that in MiniMAO3, the proceed that separates the before and
after parts of surround advice is not an expression. It merely serves as a mnemonic
for the semantics of surround advice, which is to evaluate the before part, proceed to
the advised join point with the original arguments, evaluate the after part for its side-
effects, then return the value from the advised join point. The after part may use the
reserved variable reference reply to refer to the result of the advised code. Because of
this semantics no return type is declared for surround advice. Furthermore, surround
advice does not include a writes clause; every piece of surround advice implicitly
writes self and no other concern domains.

Types in MiniMAO3 have the form δ∗ T 〈γ1, . . . , γq〉, where δ is either readonly or
the empty string, T is a valid class or aspect name, and γ ranges over concern domain
variables and ground domains. Since readonly is idempotent, using δ∗ for multiple
such annotations lets us write readonly t to confer read-only status on any type t.

Other than including our new writes pointcut descriptor, the join point model for
MiniMAO3 is standard. Similarly, its expressions need no additional explanation.

6.2 Operational Semantics

Like most small-step operational semantics, that of MiniMAO3 relies on some addi-
tional syntax to represent intermediate states of computation. Figure 6 presents these
syntax extensions. We give the intuition behind these expressions here.
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Two new expressions, locδ∗ and nullδ∗ , represent values. The meta-variable v
ranges over values. The store in MiniMAO3, denoted by S, maps locations, loc ∈ L, to
objects. Values carry a subscript δ∗ that denotes whether the reference is read-only.

The other new expressions represent intermediate computation states. To model
method execution independently from method calls [8], we use a function application
expression, (l(e∗)), that represents a method and its operands. The meta-variable l
ranges over method representations. A context-sensitive translation converts method
declarations to more convenient method representations. For example, the declaration

boolean collision(Thing one, Thing two) writes 〈cache〉 { false }

inside a class Model is represented by

fun collision 〈one,two〉.false :
Model × Thing × Thing → boolean . {cache}.

Tagged expressions, written 〈e〉δ,γ̂ , propagate effect constraints through the seman-
tics (necessary for the soundness proof). In a tagged expression, the set γ̂ says which
concern domains may be mutated during the evaluation of e, and the subscript δ gives
the read-only status of any value that results from any (non-divergent) evaluation.

Leap expressions, written e1 y e2, represent intermediate evaluation of surround
advice, with e1 representing the advised code and e2 the after part of the advice. The
semantics first evaluates e1, then e2 for its side effects, replacing any occurrences of
reply in e2 with the value of e1. The result of the whole expression is the value arrived
at from evaluating e1—the value of e1 “leaps” over the value of e2.

As in MiniMAO1 [8], joinpt, chain, and under expressions are used to represent
the intermediate stages of advice matching, execution, and proceeding to advised code.
A joinpt expression reifies a join point for advice binding. The meta-variable j ranges
over join points and records a join point kind and optional data including things like
the current this object, the method executing, and the writable concern domains in the
current context. The operational semantics also maintains a join point stack, a list of
join points that records dynamic context information needed for advice matching. The
join point stack is a formal analogue of the call stack information that can be matched
by AspectJ advice. A chain expression records the bodies of all advice matched at
a join point. The meta-variable B ranges over advice body representations. We elide
the details here, but it suffices to think of the advice body representations as like the
method representations in that they record all necessary context-sensitive information
about advice needed during evaluation. Finally, the operational semantics uses under
expressions to pop join points from the join-point stack when evaluation of the code
under the join point is complete.

The evaluation relation for MiniMAO3 has the form: 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉. It
takes an expression, a join point stack, and a store and produces a new expression or
an exception, plus a new stack and a new store. The exceptional results, NullPointer-
Exception and ClassCastException, handle dereferencing null pointers and bad casts.

6.3 Static Semantics of MiniMAO3

The static semantics of MiniMAO3 checks the restrictions of the concern domains type
system, read-only annotations, and effects clauses.



16

Like Featherweight Java [18], a global class table, denoted CT , records all the
class declarations in a MiniMAO3 program. MiniMAO3 extends the class table to
record aspect declarations as well. Additionally, an evaluation dependency table, DT ,
records the information embedded in the “varies with” dependency declarations, rei-
fied according to the aspect instantiation instructions. A dependency table is a re-
flexive, transitive relation on concern domain names and variables. It has the type
(G ∪ Gvar ∪ Gself) → (G ∪ Gvar ∪ Gself). Intuitively, for any pair of concern domain
names (g, g′) ∈ DT , code that is allowed to mutate g may also trigger mutation of g′.

We use the notation t 4 s to denote that the type t is a subtype of the type s.
The subtyping relationship starts with the reflexive and transitive closure induced by
the extends declarations of classes, with every type a subtype of >. To this we add a
few additional tweaks. A couple of these handle read-only objects: t 4 readonly t,
allowing writable objects to be passed where read-only ones are expected, but not the
converse; and t 4 s implies that readonly t 4 readonly s, allowing a read-only
object of a subtype to be passed where a read-only object of a supertype is expected,
which is necessary for subsumption. The other tweak handles concern domains: follow-
ing Aldrich and Chambers [2], a subtype must have at least as many concern domains
as its supertype and the concern domains must be positionally invariant. For example,
IterImpl〈H,E,D〉 4 Iterator〈H,E〉.

The typing judgment for expressions in MiniMAO3 has the form Γ � γ̂ D̀T e : t. This
says that, given the type environment Γ , the set of writable concern domain domains γ̂,
and the concern dependency table DT , we can derive that the expression e has type t.

For example, the typing rule for set expressions is:

T-SET
Γ � γ̂ D̀T e1 : T 〈γ1, . . . ,γn〉

γ1 ∈ γ̂ fieldsOf (T 〈γ1, . . . ,γn〉) (f) = t Γ � γ̂ D̀T e2 : s s 4 t

Γ � γ̂ D̀T e1.f = e2 : s

This is mostly standard except for the hypothesis γ1 ∈ γ̂ that ensures that the domain
containing the object to be mutated is in the set of writable concern domains.

As another example, the typing rule for method calls is:

T-CALL
Γ � γ̂ D̀T e0 : δ T0〈γ1, . . . ,γp〉 ∀i ∈ {1..n} · Γ � γ̂ D̀T ei : ui

methodType(δ T0〈γ1, . . . ,γp〉,m) = t1× . . .×tn → t
writable(δ T0〈γ1, . . . ,γp〉,m) = γ̂′

depCloseDT (γ̂′) ⊆ γ̂ (δ = readonly) =⇒ (γ̂′ = ∅) ∀i ∈ {1..n} · ui 4 ti

Γ � γ̂ D̀T e0.m(e1, . . . ,en) : t

Again, much of this is standard. Interestingly, if the read-only status δ of the receiver
expression is in fact readonly, the second to last hypothesis ensures that no domains
are writable in the body of the called method. The hypothesis depCloseDT (γ̂′) ⊆ γ̂
ensures that the potentially writable domains in the body of the method form a subset
of those writable in the context of the method call. The dependency closure function,
depCloseDT , operates on a dependency table and a set of concern domains. It places
a bound on the concern domains that might be modified by a given method call in the
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presence of a given set of advice.

depCloseDT (γ̂) = {γ′ · ∃γ ∈ γ̂ · (γ, γ′) ∈ DT}
∪ {selfloc · (∃loc ∈ L · (selfloc , selfloc) ∈ DT )} .

6.4 Meta-Theory of MiniMAO3

This section highlights the key theorems in the meta-theory of MiniMAO3. These in-
clude static type safety and two theorems related to effects and the (un-)observability
of mutations made by spectators.

Type safety is proved using the standard subject reduction and progress theorems.
In the meta-theory, the type environment maps variables and store locations to types.

Additionally, the type environment records the ground concern domains, so that for a
ground concern domain g, Γ (g) = domain. A type environment Γ is concern complete
for a program P if every ground concern domain in P is in the domain of Γ .

A type environment Γ is consistent with a store S, written Γ ≈ S, if all objects
in the store conform to their types, both as declared and as given by Γ , and if the sets
of locations in the domains of both Γ and S are the same. A valid store for a program
P contains objects (with the appropriate concrete concern domains) representing every
aspect instantiated in P . Additionally, for a store to be valid there must exist some type
environment consistent with it. Similarly, a join point stack J is consistent with a store
S, written J ≈ S, if all locations named in J appear in S’s domain.

The Subject Reduction theorem says that, given a configuration that meets appropri-
ate initial conditions including having a well-typed expression, single-step evaluation
results in a new configuration that satisfies the same conditions and that has an expres-
sion that is a subtype of the original expression.

Theorem 1 (Subject Reduction). Given a well-typed program P with public concern
domains ĝ and private concern domains ĝ′, for an expression e, a valid store S, a stack
J consistent with S, a concern-complete type environment Γ consistent with S, a set of
concern domains γ̂ with ĝ′ ⊆ γ̂ ⊆ (ĝ ∪ ĝ′), and the evaluation dependency table, DT ,
of P , if Γ � γ̂ D̀T e : t and 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉, then J ′ ≈ S′, S′ is valid, and there
exist concern-complete Γ ′ ≈ S′ and t′ 4 t, such that Γ ′ � γ̂ D̀T e′ : t′.

The Progress theorem says that, given a configuration that meets these same conditions,
the expression is either a value or can be evaluated in a single step to a configuration
giving a new expression or an exception.

Theorem 2 (Progress). Given a well-typed program, P , with public concern domains
ĝ and private concern domains ĝ′, for an expression e, a valid store S, a stack J consis-
tent with S, a concern-complete type environment Γ consistent with S, a set of concern
domains γ̂ such that ĝ′ ⊆ γ̂ ⊆ (ĝ ∪ ĝ′), and the evaluation dependency table DT , such
that the triple 〈e, J, S〉 is reached in the evaluation of P , if Γ � γ̂ D̀T e : t then either:

– e = locδ for some δ and loc ∈ dom(S),
– e = nullδ for some δ, or
– one of the following hold:
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• 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉,
• 〈e, J, S〉 ↪→ 〈NullPointerException, J ′, S′〉, or
• 〈e, J, S〉 ↪→ 〈ClassCastException, J ′, S′〉.

The Type Safety theorem says that a well-typed program either diverges or evaluates to
a value or exception.

Theorem 3 (Type Safety). Given a program P , with main expression e, concern do-
mains ĝ, ` P OK, and a valid store S0, then either the evaluation of e diverges or else
〈e, •, S0〉

∗
↪→ 〈x, J, S〉 and one of the following hold for x:

– x = locδ for some δ and loc ∈ dom(S),
– x = nullδ for some δ,
– x = NullPointerException, or
– x = ClassCastException

Besides static type safety, MiniMAO3 provably enforces the constraints given by ef-
fects clauses and concern domain dependency declarations. The central theorem here is
called Tag Frame Soundness. It states that for any concern domain g that is not directly
or transitively declared to be mutable for a given expression e, the portion of the store
corresponding to g will be unchanged when e is evaluated to a value.

The formal statement of this theorem demands just a bit more terminology. Like
Classic Java, we use evaluation context rules, denoted by E to implicitly define the
congruence rules and give a non-constructive definition of evaluation order [14]. The
rules are completely standard and are omitted here. To refer to the portion of the store
S corresponding to a particular ground concern domain g, we write S|g, which is the
set of all mappings in the store where the owner domain of the mapped object is g.

Theorem 4 (Tag Frame Soundness). Let P be a well-typed program with concern do-
mains ĝ and evaluation dependency table DT . If the configuration 〈E[〈e〉δ,γ̂ ], J, S〉 ap-
pears in an evaluation of P , then either the evaluation diverges or 〈E[〈e〉δ,γ̂ ], J, S〉 ∗

↪→
〈E[v], J ′, S′〉, where ∀g ∈ (ĝ \ depCloseDT (γ̂)) · S|g = S′|g.

The last theorem we discuss here applies to programs that meet a particular restric-
tion, discussed below. In such programs, no mutation is possible by dereferencing a
read-only location. This is different than Tag Frame Soundness in that it says a read-
only reference may not be used for mutation even if it points to a writable domain.

The formal statement of this theorem uses several auxiliary functions. Intuitively,
domainsS(loc) gives the set of ground concern domains for the object pointed to by loc
in the store S; locations(e) gives every location appearing syntactically in e; GS(loc)
is the “object graph” of a location, whose nodes are locations and whose edges are
field references; repS(loc) gives the nodes in GS(loc); and writeReach(S) is the re-
flexive, transitive closure of all the write-enabled field references in the store. That is,(
loc, loc′) ∈ writeReach(S) implies that a program with a reference to loc can obtain

a write-enabled reference to loc′ by a series of field references.
Given all that, the theorem assumes an intermediate state with expression e in the

evaluation of a program and some location loc that only names public, not private,
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concern domains. Then—supposing that any references from e to loc are read-only
(assumption 1), that e does not have any aliases into the object graph of loc (assumption
2), and certain restrictions on the program hold (assumption 3)—we can conclude that
the evaluation of e to a value will not mutate the object graph of loc.

Theorem 5 (Read-only Soundness). Suppose the configuration 〈E[e], J, S〉 appears
in the evaluation of a well-typed program P . Let loc be a location in dom(S) such that
domainsS(loc) ⊂ G, i.e., S(loc) only names public concern domains. Let GS(loc) =
(L,E), and let the following assumptions hold:

1. ∀δ · (locδ ∈ locations (e)) =⇒ (δ = readonly).
2. ∀loc′

δ ∈ locations (e) ·
(δ = ε) =⇒

(
∀loc′′ ∈ repS(loc) ·

(
loc′, loc′′) /∈ writeReach(S)

)
.

3. ∀loc′ ∈ dom (S) · S
(
loc′) = [t � F ] =⇒ isClass(t) ∨ isSpectator(t).

If 〈E[e], J, S〉 ∗
↪→ 〈E[v], J ′, S′〉, then GS(loc) = GS′(loc).

So what is this restricted class of programs? Just those that do not contain regular
aspects! These non-spectator aspects can “leak” pointers into the computation without
being explicitly referenced. Thus, the restrictions on aliasing in assumption 2, which
are sufficient without regular aspects, are not sufficient in their presence.

By Read-only Soundness, spectators can be used in a program without breaking the
read-only references mechanism. The first two assumptions of the theorem are local
properties of an expression. The other assumption just restricts the sorts of programs
that are considered. So the statement of the theorem can be viewed as a formalization
of local reasoning about the expression. Said another way, we need whole-program
knowledge at the level of effects clauses, aspect instantiation, and dependency declara-
tions to reason about the effects of regular aspects. But with just spectator aspects, we
can reason about the effects of a method call solely based on its effects clause—aspect
instantiation and dependency declarations are not necessary.

The Tag Frame Soundness theorem allows unseen, private concern domains to be
modified during method or advice execution, since the dependency closure of the eval-
uation dependency table includes all private concern domains. However, because of the
(elided) Respect for Privacy theorem—which states that only a spectator and objects di-
rectly or transitively created by the spectator may appear in or reference the spectator’s
private concern domain—one can still reason about the effects of a method or piece of
advice. To reason about the execution of a method or piece of advice one must know
its signature including its effects clause, the concern domains of the target object, and
the configuration of non-spectator aspects in the program, as represented by the aspect
instantiation instructions and dependency declarations. By Respect for Privacy, if the
concern domains of the target object do not include any private concern domains, then
no changes made by unseen spectators will be visible in the code being considered.
The side effects of spectators are effectively sequestered. Thus, spectators can be used
non-invasively.
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7 Evaluation

Many things . . . may become encumbrances if we cling to them blindly and uncritically.

The theoretical analysis above demonstrates the soundness of MAO’s effect speci-
fications. However, this says nothing about MAO’s usefulness — that is, the extent to
which MAO’s annotations benefit programmers. In this section, we present a small case
study that attempts to give a preliminary answer to this question.

Our case study is based on packages in version 1.5.3 of the AspectJ Programmer’s
Guide [3]. We omitted introduction and ltw, since these very small packages are just
for demonstrating AspectJ tools. For the other 7 packages, we specified each aspect
using MAO annotations, and then examined the result to determine how much these
specifications aided reasoning. The case study’s files are available at http://www.cs.
iastate.edu/~leavens/modular-aop/ajpg-153-examples/.

7.1 Case Study Data

This subsection presents the raw data from our case study in a pair of tables. The sub-
sequent subsection analyzes the data.

Basic statistics about the packages we studied are presented in Table 1. We counted:
(1) the number of .java files, but in the tracing package we only counted files for
version 3; (2) the number of lines in these files, with the first 12 lines for each file (a
copyright notice) omitted; (3) the number of aspects and (4) abstract aspects; (5) the
number of lines (determined by inspection) in the original AspectJ code that would
need to be searched to determine control and heap effects of the aspect’s advice — this
equals the number of lines in advice and method bodies in all aspects6; (6) the number
of lines (by inspection) in the MAO code that would need to be searched for control
effects — this is 0 for @surround advice, and 1 for @curbing advice, and otherwise
includes all lines in advice and method bodies called, if those are part of the aspect; and
(7) the number of lines (by inspection) in the MAO code that would need to be searched
for heap effects — this is 1 for advice or methods with @writes or @pure annotations,
otherwise it includes all lines in other advice and method bodies.

Table 2 presents some statistics on the use of various features in MAO. We counted:
(1) the number of times the @surround annotation was used — not counting implicit
uses in spectator aspects (2) the number of times @curbing was used, (3) the number
of times @writes was used as a method or advice annotation — we only used this
within aspects and did not count implicit uses in spectator aspects, (4) the number of
times @spectator was used, (5) the number of lines that would have to be searched in
AspectJ, within the relevant classes, to determine all the methods that would correspond
to the writes PCDs that the MAO code used. The MAO code used writes once in each
of the two relevant packages.

6 This assumes, pessimistically, that all code in an aspect can have control and heap effects.
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Table 1. Basic statistics about the packages studied.

Original Original Aspects Abstract AspectJ lines MAO search MAO search
Files Lines aspects to search for control for heap

Package for effects effects effects

tjp 2 62 1 17 0 1
tracing (v3) 6 352 2 1 18 0 0
bean 3 203 1 9 2 2
observer 8 164 2 1 9 0 1
telecom 13 593 3 20 0 4
spacewar 19 2049 8 177 19 23
coordination 8 673 1 1 118 0 0

Table 2. Usage statistics on the packages studied.

MAO count MAO count MAO count MAO count AspectJ lines to
use of use of use of use of search for equivalent

Package @surround @curbing @writes @spectator of @writes PCDs

tjp 1 1
tracing (v3) 0 2
bean 0 3 1
observer 1 2 18
telecom 4 4 1
spacewar 5 2 27 27
coordination 1

7.2 Lessons Learned from the Case Study

Table 2 contains lessons about MAO annotation usage. We found many instances of
@surround advice, especially if one counts the implicit uses of @surround in aspects
that are annotated with @spectator or @surround. By contrast, @curbing was only used
twice. There were also many uses of @writes, especially in spacewar’s Debug aspect.
Moreover, each of the uses of @spectator on an aspect suppresses several uses of the
@writes annotation. While we found several spectators, we found three aspects, like
spacewar’s Debug aspect, do not qualify, principally because they perform I/O and have
heap effects on the GUI. For these three aspects it was convenient to use @surround at
the aspect-level, which is a shorthand for listing @surround on each piece of advice.

Lessons about reasoning can be drawn from Table 1. First, the use of MAO’s fea-
tures significantly cuts down the number of lines that need to be inspected to determine
control and heap effects. This is important, as we noticed that for examples as large as
the telecom package or larger it becomes quite difficult to determine the control and
heap effects of advice by hand. Thus we believe that a person trying to understand a pro-
gram, even of such a modest size as telecom, would benefit from the use of annotations
on advice. The real problem here is not the efficiency of the analysis: it is that without
MAO’s modular aspect interfaces, any analysis to determine control and heap effects
must depend upon fine implementation details of advice body code. Relatively sophis-
ticated static techniques [11, 29] can certainly compute these dependencies, and IDEs
present it to programmers [6, 22] but these dependencies will be fragile: whenever the
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configuration of the system, the implementation of the base program, and (especially)
the internals of an aspect changes, then this analysis must be repeated and the results
may change in nonlocal, unpredictable ways. The advantage of MAO’s effect specifi-
cations are, ultimately, that they provide aspects with specifications that act both as a
unit of analysis and as a boundary to changes. By writing such specifications in MAO
annotations, a programmer can make their intentions clear: a tracing aspect can be de-
clared be a spectator upon the program, with no control nor heap effects. If subsequent
evolution of the aspect invalidates this intention, the change can be detected statically.

We also found that using the default ownership domain of World for everything
outside an aspect worked well. This gives some hope that the annotation burden may
mostly fall on aspects, and not on the base program, which is usually much larger. It
also gives some hope that annotations are not necessary for Java libraries.

In summary, the case study gives some preliminary indications that the features of
MAO help in reasoning about control and heap effects in aspect-oriented code. The case
study does not contain enough places where the writes pointcut designator is used to
make even much of a preliminary estimate as to its utility.

8 Related Work

All reactionaries are paper tigers. In appearance, the reactionaries are terrifying, but
in reality they are not so powerful.

Mulet, Malenfant, and Cointe [25] identified a similar problem: composing metaob-
jects. They offer language mechanisms that make composition possible, but offer no
language mechanisms to help programmers control interference.

Dantas and Walker’s Harmless Advice [11] is probably the closest formal system to
MAO. Harmless advice is similar to our notion of spectators but allows advice to have
“curbing” control effects and to write to what we would call a system I/O domain. So,
while technically spectators are more restrictive than harmless aspects, both restrict as-
pects to make reasoning about heap effects easier. Harmless Advice is formalized using
an information flow analysis that establishes that the computation in advice cannot af-
fect the base program’s computation. As the name implies, all the advice in this system
is harmless, and the user-level calculus offers only one protection domain for the base
program. MAO does not restrict advice to be harmless, as it can document different
kinds of advice. MAO also has a more precise set of annotations, separately docu-
menting control and heap effects, and allowing more fine-grained specification of heap
effects. Thus MAO allows specification of control and heap effects that are outside the
range allowed by Harmless Advice, but are useful in AspectJ programs (for example, in
the spacewar example). MAO’s explicit domain declarations and aspect domain param-
eters allow concern domains to cross-cut the program’s modularity structure, whereas
the protection domain structure of Harmless Advice is tied to the program’s structure.

Kiczales and Mezini [22] take a different approach to the problem of reasoning
about aspect-oriented software, by introducing “aspect-aware interfaces.” These inter-
faces are computed from a whole program’s configuration and provide a bi-directional
mapping from methods to associated advice, and from advice to advised methods. This
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certainly is helpful in reasoning about control effects of advice that may apply at a given
join point or program point. As such it could be used in conjunction with MAO’s an-
notations to determine whether the advice being applied has potential control effects.
Aspect-aware interfaces give no help in reasoning about potential heap effects of advice
or in reasoning, apart from helping one find what advice might have to be considered.
By contrast MAO’s annotations can provide more help with such questions.

Another route towards helping people reason about aspect-oriented software is pro-
vided by research that establishes interfaces for aspect-oriented program modules. Gen-
erally, these systems attach interfaces to base code elements that either permit or pro-
hibit advice from being applied, or describe what advice has been applied. So, Pointcut
Interfaces [17], Open Modules [1, 26], Aspectual Collaborations [23], and XPIs [15, 31]
all require code to declare or specify the join points to which aspects may be attached.
In contrast our focus is on specifying aspects and their effects. That is, MAO allows
programmers to specify aspects to make reasoning about their effects easier, instead of
restricting what they can do. Thus, in MAO, rather than describing potential pointcuts
in the base code, programmers describe the important properties of their designs, such
as what concerns exist, what advice writes what concerns, etc. These annotations are
contained within existing interfaces in their code. MAO allows the use of some of these
annotations in writing semantic PCDs, with its writes PCD. Furthermore, MAO’s stati-
cally checked annotations help make reasoning about control and heap effects easier.

MAO is also related to a range of work on categorizing and classifying aspects
[19, 20, 29]. Generally, this work identifies a number of (relatively) fine-grained aspect
categories, either via manual or automatic analysis. MAO, however, does not address
categorization per se: rather, our aim is to provide practical language constructs pro-
grammers can use to express properties of their aspects.

In terms of language mechanisms, MAO and especially its concern domains are
closely related to other ownership and confined type systems [2, 4, 5, 12, 16, 24, 27,
28, 32]. MAO’s novelty here is in demonstrating how ownership types can be used to
capture the concerns in an aspect-oriented system: the techniques providing concern
domains (a statically fixed set of ownership domains; objects tied to domains by type
parameterization and defaults; domains for effect disjointness) are now well known.
MAO shows how even a such a simple ownership type and effect system can aid rea-
soning about the subtle heap effects that may occur in aspect-oriented systems.

9 Conclusion

Conclusions invariably come after investigation, and not before.

In this paper, we have presented Modular Aspects with Ownership, MAO. MAO
makes four contributions to the design of Aspect-Oriented languages, to make it easier
for programmers to determine how aspects will affect the base code of the program, and
how they interfere with each other.

First, surround advice uses simple syntactic restrictions so that programmers can en-
sure that an aspect will not perturb the control flow of the program to which it is bound.
Second, concern domains provide an ownership type and effect system to make clear
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whether aspects modify data structures in the base program, and if so, what parts of the
data they modify. Third, the writes PCD leverages concern domains to provide succinct,
precise designations for pointcuts that modify data. Finally, MAO is underpinned with
a formal model and demonstrates that spectator aspects (defining only surround advice,
and writing only their own concern domain) cannot materially affect the execution of
other classes or aspects in the program.

Using MAO, programmers can specify the full range of their aspects’ interactions
with the base program and their interference with one another, making aspect oriented
programs more precisely documented and easier to reason about.
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