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ABSTRACT

The documentation of object-oriented frameworks and class libraries needs to provide enough
information so programmers can reason about the correctness of subclass methods without superclass
code. Even though a superclass method satisfies its specification and behaves properly in the context
of the superclass itself, a new subclass may cause that method to have unexpected or unverifiable
behavior. For example, inherited superclass code can call down to subclass methods which may cause
a superclass method to no longer satisfy its specification. Furthermore, without superclass code,
downcalls can result in unverifiable side-effects. Aliasing can also result in unexpected or unverifiable
side-effects.

In this dissertation, we present a reasoning technique that allows programmers, who have no
access to superclass code, to avoid the problems caused by downcalls and aliasing. The rules use the
specification of the abstract data representation of a class and the frame axiom of each method to
determine when a method override is necessary and when verifiers can safely reason about the
behavior of super-calls.

We describe a type system and propose a tool that would warn when a super-call is unsafe or when
a superclass method needs to be overridden. A verification logic is also presented and proved sound.
The verification logic is based on specifications given in the Java Modeling Language (JML) and uses
superclass and subclass specifications to modularly verify the correctness of subclass code. 

A set of guidelines is proposed for class library implementers that, if followed, guarantees that
superclass methods will always be safe to call and that our verification logic can safely be used. These
guidelines make our technique easy to use in practice. 
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CHAPTER 1: INTRODUCTION

1.1  Background
One major benefit of object-oriented (OO) frameworks and class libraries is software reuse. For

example, one or more components of a framework or class library may provide a functionality similar
to the requirements of a new system. In such situations, rather than completely rewriting the code,
classes in the library can be reused, customized, and recombined to provide the new functionality and
without changing library source code. Frameworks and class libraries have two kinds of reusers,
clients who simply use the classes in the framework or library in their programs, and customizers who
extend and override parts of these classes to customize them for a specific application. An important
requirement for the customizer of a framework is the ability to write new code and then combine it
with the existing code in such a way that a new implementation is created. The mechanism that allows
such combining is inheritance, where the subclass inherits method and field definitions from the
superclass. In addition, the customizer can adapt and extend the behavior of the superclass by
overriding superclass methods and adding new methods to the new subclass. 

Documentation plays an important role in the reuse of frameworks and class libraries. For clients,
software reuse depends on understanding the behavior of public methods and constructors of existing
classes in the framework. In contrast, customizers not only need an understanding of the behavior of
public components but also the behavior of protected components and how public and protected
components interact. For example, overriding one method of a class may also require overriding other
methods that interact with this method [KL92, Lam93, RL00]. 

Furthermore, documentation of the superclass needs to be precise enough so that clients and
customizers can reuse and modify the framework. At the same time, it should not be overly specific,
thereby limiting the possible implementations of superclasses. For example, documentation should
allow library implementations to be improved or made more efficient without affecting the correctness
of subclass implementations. Moreover, the documentation should allow modular reasoning about the
behavior of superclasses and subclasses, that is, without knowing the contexts where these classes will
be used and without requiring that superclasses know anything about their subclasses. 

1.2  The Problem
A long term goal of the research presented in this dissertation is to discover what makes good

quality documentation of OO frameworks and class libraries. In addition to the above mentioned
characteristics, the goal has been to discover what information is needed by programmers so library
classes can safely be extended even when the framework or library provider does not make the
superclass code available. Usually programmers must study the library’s source code when writing
subclasses, especially if unexpected problems arise, because frameworks and class libraries do not
provide enough documentation. One benefit of sufficient and unambiguous documentation would be to
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allow companies to protect their investment in source code. In particular, this would allow a company
to only ship compiled code and documentation. 

The formal notations and reasoning systems developed and described in this dissertation provide
an understanding of some of the requirements of quality documentation. The reasoning technique is
formalized with a set of rules and some new forms of specification. The technique demonstrates what
information is necessary in library documentation, and how to use it to create subclasses that do not
exhibit problems such as non-termination or unexpected behavior. The specification and reasoning
technique allows programmers, who have no access to the code of the superclass, to determine when it
is safe for a subclass to make a superclass call, and when a method must be overridden to avoid
potential problems [RL00]. 

Because the rules assume the superclass code is unavailable, they also provide another benefit;
they specify the conditions under which modular verification of subclass methods is possible. A
subclass method can be verified modularly if it can be verified using only the implementation code of
the subclass and the specifications of the classes in scope. If the rules in our system are violated, as will
be illustrated by the examples that follow (here and in Chapters 2 and 3), then in general the superclass
code is needed for sound verification. 

Furthermore, Perry and Kaiser [PK90] point out that inherited superclass methods must be retested
unless “the new subclass is a pure extension of the superclass, that is, … there are no interactions in
either direction between the new [subclass] instance variables and methods and any inherited instance
variables and methods.” They further show that a different set of tests may be needed to retest these
inherited methods. However, our technique identifies the interactions between superclasses and
subclasses that create problems. So if the documentation and reasoning technique we propose is
followed, then inherited methods would not need to be retested in the context of the new subclass. 

The reasoning system uses some new forms of specification that are being embodied in the Java
Modeling Language (JML) [LBR98, LBR01], a specification language tailored to Java programs.
Although the ideas and techniques are intended to be independent of any particular programming
language, for concreteness a subset of Java and JML will be used as the programming and
specification notations. 

A further goal of the research has been to develop a tool to automatically extract the information
needed to apply the formal rules. This tool would also be used to aid in reasoning about the correctness
of subclasses by checking the specifications of subclasses and enforcing the formal rules. 

Another goal has been to determine how framework and class library designers and implementers
can simplify the reasoning problems of reusers. To this end, the formal rules have been used as the
basis of a set of guidelines for library designers and implementers; [RL00] shows that such guidelines
can significantly simplify the reasoning of reusers, and in particular customizers of a class library. 

The research so far has shown that framework and class library documentation needs to include at
least four things. 
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1. It has to include the usual documentation specifying the functional behavior of public methods 
in the library so library classes and their subclasses can safely be used in client code. 

2. It has to include documentation of the behavior of protected methods and data fields so cus-
tomizers can reuse methods and data visible in subclasses but without seeing the superclass 
code.

3. It needs to include the method calling structure and variables accessed (read) by methods of 
library classes so programmers can safely override superclass methods without studying the 
superclass code (see Section 1.4) [RL00]. 

4. It needs to specify when a method modifies protected and private fields (i.e., fields not visible 
to clients of a class) so customizers can prevent unexpected side-effects to internal objects that 
disallow sound, modular reasoning (see Section 1.5).

The examples in the following sections illustrate why this kind of information is needed in
documentation. 

1.3  Specification of Method Behavior
Programmers need to know the behavior of methods in a framework or class library so they can

use the library classes in client programs. Furthermore, behavioral specifications are needed so
programmers can create behavioral subtypes when inheriting from and extending these classes.
Behavioral subtyping is based on the behavior of types and ensures that subtype objects behave like
supertype objects. Hence, behavioral subtype objects can be used in place of supertype objects without
producing any unexpected behavior [Ame91, DL96, LW93, LW94]. A subclass implements a
behavioral subtype if each overriding subclass method refines the method it overrides. Method
refinement is a relationship between behavioral specifications. The basic idea is that specification B
refines specification A if the allowed behavior of B is a subset of the allowed behavior of A [Ame91,
BvW98, Heh93, Mor94]. A practical definition of method refinement is given in Figure 1.11 (a more
extensive discussion is found in Section 2.9.1). 

1.3.1  Public Specifications
Figure 1.2 shows a formal public JML specification of a simple IntCell class. As a public

specification, it documents the behavior of public methods and instance variables, and therefore
protected and private members are not included. This is the kind of information that would be provided
to clients of the class. 

1. This definition is equivalent when proof obligation 2 of Figure 1.1 is replaced with the following 
[CC00, DL96]:

2'.    Theory(S)  |-  (\old(Prem
S)  ⇒  PostmS )  ⇒  (\old(Prem

C)  ⇒  PostmC )
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JML blends the Eiffel [Mey97] and Larch [GHG+93] traditions, and following Eiffel, uses Java
expressions within assertions. JML behavioral specifications are found between the annotation
markers /*@ and @*/ and on lines starting with //@. The JML tools distinguish between ordinary
comments and JML specifications via the “@” that follows the comment delimiters “//” and “/*” at
the beginning of a JML specification (see Figure 1.2). Because JML specifications are included inside
Java comments, they are ignored by the Java compiler; this allows specifications to be embedded in
Java programs. Within multi-line annotations, initial at-signs (@) on a line are ignored. Method
specifications appear before the method header declaration. 

JML also permits methods to be called in specifications, such as in the pre- or postcondition of a
requires or ensures clause. However, only methods without side-effects may be called in these
assertions; this is specified using the pure modifier. That is, the modifier pure specifies that a method
has no side-effects, and thus could be used in assertions. 

The modifier model in a declaration means that the declaration is for use in specifications and
need not be part of the implementation2. For example, in Figure 1.2, value is an instance variable
used only for specifying method behavior. Note also that the declaration of value is enclosed entirely
in a JML annotation. In JML method specifications, preconditions are preceded by the keyword
requires, postconditions with ensures, and frame conditions with assignable. An assignable
clause specifies the variables that may be modified by the method3; for example, in the method
setValue, only model variable value, and, implicitly, the concrete variables in its associated data
group (see subsection 1.4.1 below) may be changed.4 

2. Model variables are similar to ghost or auxiliary variables.
3. The assignable clause is similar to the frame axiom in other specification languages. However, the 

assignable clause is stronger than the frame axiom in that it requires that variables be listed even 
when they are temporarily assigned and then restored to their original value before exiting the 
method (see assumptions in subsection 1.6.6). 

4. In JML, the modifiable keyword is a synonym for assignable, and also specifies the same prohibition 
against assigning to variables not listed in the clause. 

_________________________________________________________________________________

Suppose S is a subtype of C, then the public and protected specification of method m in S refines that 
of method m in C if 

1. Theory(S)  |-  \old(Prem
C)  ⇒  \old(Prem

S)

2. Theory(S)  |-  \old(Prem
C)  ⇒  (PostmS  ⇒  PostmC)

3. Theory(S)  |-  Assignablem
S  ⊆  Assignablem

C  

Figure 1.1:   A practical notion of method refinement [Ame91, BvW98, Mey88, Mor94]. 
_________________________________________________________________________________
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The pseudo-variable \result specifies the return value of a method as in the postconditions of
methods getValue and equals. 

The “normal” in the normal_behavior keyword indicates that the constructor or method must not
signal exceptions, and thus, when its precondition is satisfied, its final state must satisfy the
corresponding postcondition. Also, the public modifier means that the specification is a public

_________________________________________________________________________

public class IntCell {
   //@ public model int value;      // model variable

  /*@  public normal_behavior
    @    assignable value;
    @    ensures value == initVal;   @*/ 
  public IntCell(int initVal);

  /*@  public normal_behavior
    @    ensures \result == value;   @*/
  public /*@ pure @*/ int getValue();

  /*@  public normal_behavior
    @    assignable value;
    @    ensures value == newVal;   @*/ 
   public void setValue(int newVal);

  /*@  public normal_behavior
    @    requires c != null;
    @    assignable value;
    @    ensures value == c.value;  @*/ 
   public void setFrom(IntCell c);

  /*@  also
    @  public normal_behavior
    @    requires c instanceof IntCell;
    @    ensures !\result || (this.value == ((IntCell)c).value);
    @  also
    @  public normal_behavior
    @    requires !(c instanceof IntCell);
    @    ensures \result == false;   @*/ 
   public /*@ pure @*/ boolean equals(Object c);
}

Figure 1.2:  IntCell’s public specification from file IntCell.jml-refined. JML behavioral specifications 
are found on lines starting with //@ and between the annotation markers /*@ and @*/. Within annotations, an 
initial at-sign (@) on a line is ignored.
_________________________________________________________________________
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specification, and thus only public variables and methods are in scope; for example, in a public
specification, no protected variables can be mentioned. 

To make specifications easier to read, JML allows them to be divided into several specification
cases. Specification cases are specifications separated by the keyword also. For example, the equals
method of Figure 1.2 has two specification cases. Furthermore, when a method specification has more
than one case, then all must be satisfied by that method’s implementation. Moreover, preconditions
can overlap. When the preconditions of more than one specification case hold at the same time, then
the postconditions of these overlapping cases must all be satisfied. 

Furthermore, when the entire method specification is preceded by the also keyword, as in the
specification of equals in Figure 1.2, it means that we are extending that method’s specification with
additional cases. In this example, these two specification cases have to be satisfied in addition to any
inherited from a supertype, i.e., from Object. These two cases do not overlap, but they will overlap
with the specification cases inherited from Object. 

1.4  Specification of the Method Calling Structure
The following subsections give a simple example to illustrate how downcalls can cause problems

when trying to reason about the behavior of subclass methods. The example also shows why the
calling structure of methods is needed in specifications. 

A downcall occurs when a superclass method directly or indirectly calls a method that has been
overridden by the subclass. We also say that the superclass “calls down to” the overriding method,
because we visualize the class diagram with subclasses below superclasses. Figure 1.3 shows an
example of a downcall introduced by class B when it overrides method m2. When method m1 is called
on instances of class B, m1 calls m2 of the subclass rather than m2 of class A. Downcalls and method
overrides are important because, in a correct implementation, problems such as non-termination or
unexpected behavior do not occur when a superclass calls one of its own methods. On the other hand,
when the superclass calls down to an overriding method, the called method may behave differently
than the superclass method expects. 

Downcalls are also related to callbacks [SGM02](p. 120). A callback occurs when a method in
class A calls a method of some other class B which then directly or indirectly calls back to a method of
class A. In the presence of downcalls, callbacks happen, for example, when a subclass method calls a
superclass method that then makes a downcall leading back to the subclass. Similarly, a superclass
method can make a downcall to a subclass method that calls back to a superclass method. However,
not every downcall results in a callback. For example, Figure 1.3 shows a superclass calling down to
an overriding method, but the subclass does not call any superclass methods. 
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1.4.1  Subclasses and Specification Inheritance
Figure 1.4 shows the public specification of class CellPlusTotal; it is a subclass of IntCell

and adds the instance variable totalChg to keep track of the total changes made to the cell’s value
since its instantiation. This subclass also adds method getTotalChange and adds to the
specifications for setFrom and setValue. In JML, a subclass inherits method specifications from its
superclasses and the interfaces it implements. Therefore, any overriding subclass method, like
setFrom or setValue, must satisfy the specification of the superclass method it overrides. In JML,
when a subclass method overrides a method of a superclass, its additional specification is introduced
by the keyword also. The expression \old(e) means evaluate expression e in the pre-state as, for
example, in the postcondition of setValue and setFrom. 

To satisfy the specification of CellPlusTotal the methods setFrom and setValue must be
able to assign to totalChg. However, the method specifications inherited from class IntCell appear
to only allow value to be assigned. Such situations are resolved in JML using the concept of data
groups [Lei95, Lei98, LPHZ02]. 

A data group is an abstraction over a set of fields that are grouped together because they tend to
change as a group. These groups are used to control which variables can be assigned by methods. In
JML, the declaration of a model field automatically creates a data group with the same name;
furthermore, the declared field is always a member of the group it creates. Typically a public model
field, like value in Figure 1.3, is declared to represent part of an abstract value of a type. All related
fields are then declared to be members of the associated data group. The members of the associated
data group will include those concrete fields used to compute the abstract value of the model field. 

In JML, a field or group can become a member of another group through the data group clauses
that follow the field declaration. For example, in Figure 1.4 the ‘in clause’ says that the subclass model
variable totalChg is a member of the data group created by the value model field5; this allows
totalChg to be modified by a method whenever value is assignable. Without this clause, totalChg

_________________________________________________________________________

public class A {
    public int m1() { ...  m2();  ... }
    public void m2() { ... }
}

public class B extends A {
    public void m2() { ... }
}

Figure 1.3:  An example of a downcall introduced by the override of method m2 in subclass B.
_________________________________________________________________________
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cannot be assigned by any of the overriding methods of CellPlusTotal, and therefore without it the
specification given in Figure 1.4 would not be correctly implementable. Thus, in JML, the names listed
in a method’s assignable clause not only denote specific fields but data groups (and their members)
as well. 

Notice that in this example, we need to change a field that was not in scope when the value model
field was declared. Thus, as is often the case, not all members of a data group will be in scope when the

5. We also say in short that totalChg is a member of value. 

_________________________________________________________________________

public class CellPlusTotal extends IntCell {

  //@ public model int totalChg;
  //@                      in value;

  /*@  public normal_behavior
    @    assignable value, totalChg;
    @    ensures value == initVal && totalChg == 0;
    @*/
  public CellPlusTotal(int initVal);

  /*@ also
    @  public normal_behavior
    @    assignable totalChg;
    @    ensures totalChg == \old(totalChg) + Math.abs(value - \old(value));
    @*/
  public void setValue(int newVal);

  /*@ also
    @  public normal_behavior
    @    requires c != null;
    @    assignable totalChg;
    @    ensures totalChg == \old(totalChg) + Math.abs(value - \old(value));
    @*/
  public void setFrom(IntCell c);

  /*@  public normal_behavior
    @    ensures \result == totalChg;
    @*/
  public /*@ pure @*/ int getTotalChange();
}

Figure 1.4:  CellPlusTotal's public specification from the file CellPlusTotal.jml-refined.
_________________________________________________________________________
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group (i.e., model field) is first declared. However, for modularity and soundness, all data group
memberships of a new field must be specified within the same context as its declaration [Lei95, Lei98,
LPHZ02, LN00, LN02]; this is ensured through syntax that requires that all data group clauses
immediately follow a field declaration. Thus a new field and its data group memberships can only be
declared in the same context.

1.4.2  Protected Specifications
In addition, programmers implementing CellPlusTotal need more information about any

protected instance variables and methods of the superclass. In JML, the protected specification
provides the additional documentation needed. The protected specification specifies the parts of the
class visible to subclasses, including protected instance variables and the behavior of protected
constructors and methods. It includes information about public instance variables and methods that is
not of interest to clients, but will be of interest to the implementer of a subclass. It also includes
information about protected variables and methods needed to verify the correctness of the
implementation of the class. Figure 1.5 gives the protected specification of class IntCell; it specifies
the relationship between the public and protected instance variables and gives the specification of a
protected constructor. The protected specifications in Figure 1.5 are combined with the public
specifications in Figure 1.2 because of the refines clause found after the package declaration in Figure
1.5.  

In Figure 1.5, the data group and represents clauses are used to specify a relationship between
variables. These clauses are typically used to specify a relationship between variables defined in two
different places as in this case where they are defined in the public and protected specifications of
IntCell, or, as in Figures 1.2 and 1.4, in the superclass and subclass; in particular, the variables often
have different visibility and different scope. The data group and represents clauses of Figure 1.5
specify the relation between the public specification-only (model) variables and the protected concrete
variables of class IntCell. The term concrete means part of the implementation of a class6. The
public variables are used for reasoning about the behavior of public methods, whereas the protected
variables are needed so the implementation is not exposed to clients of the class. As described earlier,
the data group clauses control which concrete variables can be assigned by method implementations.7

In Figure 1.6, the data group clause illustrates the transitive property of the data group relation; that is,
concrete variable _totalChg is a member of totalChg which is a member of value and therefore
_totalChg is also a member of the value data group.

6. In this dissertation, to distinguish concrete variables from model variables, concrete variables will 
begin with the underbar (_) character. 

7. Note that the data group clauses do not control what names are in scope in a specification.
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The represents clauses also specify a relationship between variables; they specify how a variable
(typically a model field) can be derived from one or more other variables. For example, the first
represents clause specifies how the value of value can be derived from the concrete variable _val,
i.e., in this case they must have the same value. Note that the protected instance variable _val will also
appear in the implementation of the class (see Figures 1.5 and 1.8) since it is not a model variable (the
JML type checker emits an error message if it is not in the implementation). 

The data group and represents clauses are abstraction mechanisms used to keep non-public
concrete variables hidden from clients. That is, they are used so the public behavior of methods can be

_________________________________________________________________________

//@ refines "IntCell.jml-refined";

public class IntCell {

  protected int _val;
  //@              in value;

  //@ protected represents value <- _val;

  /*@ protected normal_behavior
    @   requires c != null;
    @   assignable value;
    @   ensures this.value == c.value;
    @*/
  protected IntCell(IntCell c);
}

Figure 1.5:  IntCell’s protected specification in file IntCell.jml.
_________________________________________________________________________
_________________________________________________________________________

//@ refines "CellPlusTotal.jml-refined";

public class CellPlusTotal extends IntCell {

   protected int _totalChg;
  //@                in totalChg;

  //@ protected represents totalChg <- _totalChg;
}

Figure 1.6:  CellPlusTotal's protected specification from CellPlusTotal.jml.
_________________________________________________________________________
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specified without mentioning concrete variables [Lei95]. Therefore, programmers can implement the
specified public behavior while keeping the underlying data structures hidden. 

_________________________________________________________________________

//@ refines "CellPlusTotal.jml";

public class CellPlusTotal extends IntCell {

  protected int _totalChg;

  // ... 

  public void setValue(int newVal) {
      _totalChg += Math.abs(newVal - _val);
      super.setValue(newVal)
  }
  public void setFrom(IntCell c) {
      _totalChg += Math.abs(c.getValue() - _val);
      super.setFrom(c);  // may introduce a callback
  }
}

Figure 1.7:  A fragment of CellPlusTotal's implementation from the file CellPlusTotal.java.
_________________________________________________________________________
_________________________________________________________________________

//@ refines "IntCell.jml";

public class IntCell {

  protected int _val;

  public void setValue(int newVal) {
      _val = newVal;
  }
  public void setFrom(IntCell c) {
      if (! this.equals(c) ) {
          setValue(c.getValue());  // possible downcall here
      }
  }
  ...
}

Figure 1.8:  A fragment of IntCell's implementation from the file IntCell.java.
_________________________________________________________________________
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Figure 1.6 gives the protected specification of CellPlusTotal. Figure 1.7 shows a possible
implementation of CellPlusTotal based on its public and protected specifications and those of its
superclass IntCell. This seems like a reasonable implementation since the superclass method is
called to satisfy the inherited specification and then _totalChg is updated to satisfy the additional
subclass specification. However, this implementation may not work correctly depending on the
implementation of the superclass methods. Consider the implementation of method setFrom of class
IntCell given in Figure 1.8. This superclass method calls methods setValue and equals. Because
setValue is overridden, when super.setFrom is invoked by subclass methods, a downcall is made
to setValue as shown in Figure 1.9. Because of this downcall to setValue, _totalChg will
sometimes be updated twice. Therefore, without the code of the superclass and because of possible
downcalls, it is not possible to reason about the state of the new instance variable _totalChg unless
the documentation includes more information about the implementation of the superclass. Chapter 2
shows how such downcall problems can be avoided through a set of formal rules that specify when a
superclass method must be overridden and when it can safely be called. These rules use the methods
called and variables accessed by superclass and subclass methods in order to avoid these downcall
problems. In JML, the calling structure is given in the callable clause of the subclassing contract, and
the variables directly accessed is given in the accessible clause. 

class IntCell

setFrom(IntCell c)

setFrom(IntCell c) setValue(int newVal)

class CellPlusTotal

Figure 1.9:  Diagram showing the downcall introduced by the override of methods setFrom and setValue in 
class CellPlusTotal based on the code shown in Figures 1.7 and 1.8.
_________________________________________________________________________
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1.4.3  The Subclassing Contract
A primary purpose of the subclassing contract is to give programmers additional information they

can use to avoid problems like those caused by downcalls. The tool described in Chapter 6
automatically generates the subclassing contract for the concrete methods of a class. Because
constructors can also be involved in downcall problems, the subclassing contract is also generated for
constructors. 

The subclassing contract is composed of the callable and accessible clauses that occur in
method specifications (see Figure 1.10). These clauses specify properties of the method’s
implementation and provide the additional information needed to safely create correct subclasses
without superclass code. The callable clause lists the signatures of methods (and constructors) that can
be called by the method being specified; and the accessible clause lists the variables whose value is
accessed (read). 

Also, the subclassing contract will normally be part of the protected specification since its primary
users will be customizers and not clients of the class, even though some specification cases containing
accessible and callable clauses may be public (Chapter 4 will explain why these clauses may have to
be public). The subclassing contracts in Figure 1.10 show the callable and accessible clauses for
class IntCell. In particular, Figure 1.10 shows the clauses for methods setFrom and setValue that
would automatically be derived from the code given in Figure 1.8 (see Chapters 4 and 6 for more
details).  

1.4.4  Summary
The above example shows one of the ways that downcalls can be problematic when reasoning

about the behavior of subclasses. Chapter 2 provides an analysis of other kinds of problems that can
arise due to downcalls, and it describes a formal system for reasoning about how to create correct
subclasses using only the specification of the superclass. Our technique demonstrates how the potential
problems caused by downcalls can be avoided using the information specified in the subclassing
contract. In particular, our technique avoids downcall problems through a set of rules that use the
subclassing contract’s specification of the methods called and variables accessed by superclass
methods. 

Downcall problems are closely related to the so-called semantic fragile base class problem
[MS98] [SGM02, pp. 115-117], which is concerned with how to change superclasses without
invalidating existing subclasses. The problem being addressed in this thesis might be called the
semantic fragile subclassing problem, because it deals with how to create a valid subclass; that is, how
to make super-calls and override superclass methods in such a way that the subclass and its superclass
methods are free from problems caused by downcalls. 
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_________________________________________________________________

//@ refines "IntCell.java";

public class IntCell {
  /*@ also
    @ public code normal_behavior
    @   accessible initVal;
    @   callable \nothing;    @*/
  public IntCell(int initVal);

  /*@ also
    @ public code normal_behavior
    @   accessible newVal;
    @   callable \nothing;    @*/
  public void setValue(int newVal);

  /*@ also
    @ public code normal_behavior
    @   accessible c, c.value;
    @   callable this.equals(IntCell), this.setValue(int);    @*/
  public void setFrom(IntCell c);

  /*@ also
    @ public code normal_behavior
    @   accessible c, IntCell.value, this.value;
    @   callable IntCell.getValue();    @*/
  public /*@ pure @*/ boolean equals(Object c);

  /*@ also
    @ public code normal_behavior
    @   accessible this.value;
    @   callable \nothing;    @*/
  public /*@ pure @*/ int getValue();

  /*@ also
    @ protected code normal_behavior
    @   requires c != null;
    @   accessible c.value;
    @   callable c.getValue();    @*/
  protected IntCell(IntCell c);
}

Figure 1.10:  IntCell’s subclassing contract from IntCell.refines-java.
_________________________________________________________________
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1.5  Protecting Internal Objects
Reasoning from specifications can be unsound without some method for controlling or preventing

unwanted aliasing and side-effects. This is because the state of an object x can change unexpectedly
when some other external object makes changes to an aliased internal component of x. When this
happens the state of x appears to be changing on its own8. As the following example will show, such
modifications can make it difficult to maintain the integrity and correctness of internal objects or to
maintain invariant properties of an abstraction. By definition an object is internal to object o if it can
be referenced through one of o’s instance variables or indirectly through the fields of one of o’s other
internal objects. 

Internal objects are not protected from aliasing or representation exposure by most object-oriented
programming languages. Scope rules and visibility modifiers, like private and protected in Java and
C++, encapsulate and restrict access to the names of instance variables, but not the objects referenced
by these names. Furthermore, in Java, an object can access private instance variables in other objects
of the same class or protected instance variables in the same package. Therefore, the documentation of
a class should have enough information so programmers can control and prevent the unwanted aliasing
of its internal objects. The example in Figures 1.11-1.13 shows some of the kinds of problems that can
arise when internal objects are aliased. Figure 1.11 gives a formal public specification of class
DeltaCell and Figure 1.12 gives its protected specification. The JML keyword invariant introduces
a class invariant; this assertion must hold on entry and exit from all public methods. Therefore, the
invariant is implicitly conjoined with the pre- and postconditions of public methods9. 

Aliasing becomes an issue when an object’s abstract value is implemented in terms of the fields of
other objects, i.e., when its abstract value is determined from the state of one or more of its internal
objects. This is the case in Figure 1.12, that is, DeltaCell is implemented using an IntCell object
referenced by field _delta. Furthermore, the represents clause says that the abstract value of delta
is determined from the value model field of _delta. Therefore, we need to specify that
_delta.value is a member of the delta data group since any change in one will change the other;
this is done through the maps clause given in Figure 1.12. The maps clause is used to specify that a
field referenced indirectly (e.g. value) via the declared field (_delta) is a member of a data group
(delta) [Lei98, LPHZ02]. 

If the class DeltaCell is implemented as in Figure 1.13, then aliasing of _delta is possible,
even probable. Such an implementation behaves properly as long as any aliased internal IntCell
objects are never modified by other objects; however, this is not guaranteed. Therefore, as will be seen

8. The state of an internal object is only important if it determines or is part of the abstract value (i.e. 
abstract model) of x; this will be explained and formalized in Chapter 3. 

9. See Chapter 2 for more details. 
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_________________________________________________________________________

public class DeltaCell extends CellPlusTotal {

   //@ public model int delta;
   //@                     in value, totalChg;

   //@ protected invariant delta == Math.abs(totalChg - value);

  /*@  public normal_behavior
    @    requires delta != null;
    @    assignable value, totalChg, delta;
    @    ensures value == initVal && totalChg == 0
    @        && this.delta == Math.abs(initVal);
    @*/
  public DeltaCell(int initVal, IntCell delta);

  /*@  public normal_behavior
    @    ensures \result.value == delta;
    @*/
  public /*@ pure @*/ IntCell getDeltaCell();
}

Figure 1.11:  DeltaCell’s public specification from file CellPlusTotal.jml-refined.
_________________________________________________________________________
_________________________________________________________________________

//@ refines "DeltaCell.jml-refined";

public class DeltaCell extends CellPlusTotal {

    protected IntCell _delta;
   /*@                     in delta;
     @                     maps _delta.value \into delta;
     @*/

   //@ protected represents delta <- _delta.value;

   //@ protected constraint \old(_delta.value) <= _delta.value;

   //@ protected invariant _delta != null;
}

Figure 1.12:  DeltaCell’s protected specification in file DeltaCell.jml.
_________________________________________________________________________
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below, reasoning about the correctness of such an implementation requires knowing where every
actual and potential alias might occur in any client program (which is not modular and in general is not
possible). The difficulties caused by the combination of mutable objects and aliasing are not restricted
to reasoning about superclasses; they can also make reasoning about the correctness of subclasses
difficult. 

Figure 1.14 is a client program of classes IntCell and DeltaCell. The numbered comments
following some statements shows the trace of the state of the objects i1, d1, and d2 respectively. The
state of DeltaCell objects are represented by a triple where the first element is the value of _val, the
second the value of _totalChg, and the third the value of _delta.value. Consider the last
statement of method main, the statement before the comment line numbered (9). Reasoning about
whether or not this statement changes the state of d1 depends on whether or not method
d1.getDeltaCell exports d1._delta as its result; nothing about this can be mentioned in the
formal public specification of getDeltaCell in Figure 1.11 since protected variables are not visible
in public specifications. However, even more disconcerting is the fact that the state of i1 appears to be
changing on its own. Furthermore, when reasoning from public specifications, in the object d1, the
assertion “Math.abs(value - totalChg)” will no longer have the same value as _delta.value,
in violation of the invariant clause. Furthermore, because of aliasing, the invariant no longer holds at
comment lines (3), (7), and (9). Also, at lines (2), (4), (5), (8), and (9), the value of i1 is changing
contrary to the specification of the method called in the statement immediately preceding that
comment. Hence, standard correctness proofs using public pre- and postconditions and class invariants
will be unsound unless specifications provide the information necessary so one can reason about and
prevent unwanted aliasing. This also shows that reasoning about the program will require the code of
the superclasses IntCell and CellPlusTotal unless specifications have sufficient information
about the aliasing properties of methods.  

Aliasing of mutable objects makes understanding even a small, simple program like the one in
Figure 1.13 difficult. This example also shows that aliasing can, in a sense, create the same kinds of
reasoning problems that are caused by dynamic scope. In dynamic scope, the object to which a
parameter refers depends on the order of execution of procedure and function calls. Similarly, the
number of aliases and where they occur depends on the control flow of a program. This simple
example shows why reasoning can become difficult when the same statement may modify different
objects in the system depending on which object is being referenced; this in turn, like dynamic scope,
may depend on the statements previously executed by the program, including previous method calls. 

Therefore, some way of controlling aliasing and side-effects to internal objects is necessary to
make modular, useful, and sound static reasoning about the behavior of superclass methods possible.
Furthermore, correct subclasses cannot be created without superclass code unless this information is
available to reusers and programmers extending these classes. The alternative is to consider all
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possible patterns of behavior of the class; this requires knowledge of all possible subclasses and client
programs which in general is not possible for extensible class libraries. 

Our general approach to this problem is to specify when methods are allowed to create aliases and
when methods that modify the state of an existing object can be called. Furthermore, our technique
provides a set of rules that, if followed, allow some kinds of aliasing while preventing aliasing could
allow unexpected side-effects, that is, aliasing that disallows sound reasoning about method behavior
such as that shown in the above example. Chapter 3 describes the specification technique and rules that
control aliasing and side-effects. Also, tool support that can be used to enforce the restrictions
necessary to make the reasoning system sound and practical is described in Chapter 6. 

1.6  Approach, Contributions, and Assumptions

1.6.1  Approach
Our general approach to safely creating correct subclasses without seeing the superclass code has

been to analyze and categorize the ways that problems can arise when reasoning about the behavior of
subclasses, in particular, the ways that downcalls and aliasing can cause problems. When a problem is

_________________________________________________________________________

//@ refines "DeltaCell.jml";

public class DeltaCell extends CellPlusTotal {

  protected IntCell _delta;

  public DeltaCell(int initVal, IntCell delta) {
      super(initVal);
      _delta = delta;      // creates an alias
      _delta.setValue(Math.abs(initVal));
  }
  public void setFrom(IntCell c) {
      setValue(c.getValue());
  }
  public void setValue(int newVal) {
      super.setValue(newVal);
      _delta.setValue(Math.abs(_totalChg - _val));
  }
  public /*@ pure @*/ IntCell getDeltaCell() {
      return _delta; // exposes the internal representation to aliasing
  }
}

Figure 1.13:  A fragment of DeltaCell's implementation from the file DeltaCell.java.
_________________________________________________________________________
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discovered, information is added to the specification when necessary and a formal system is developed
with rules to prevent such problems. For example, a correct superclass method can only be problematic
when a new subclass overrides one or more methods, leading to downcalls. Chapters 2 and 3 describe
the formal systems and rules for disallowing the problems caused by downcalls and aliasing. In a few
cases, when there is no easy way to soundly prevent the problem, we give restrictions on superclass
code that would eliminate the problem (see assumptions below). 

To understand what information is needed by programmers, we have studied a formal version of
this problem. Our formal specifications for superclasses represent the documentation of a class library

_________________________________________________________________________

public class Main
{
    protected static IntCell i1;
    protected static DeltaCell d1;
    protected static DeltaCell d2;

    public static int main () {
        i1 = new IntCell(3);
        d1 = new DeltaCell(1, new IntCell(5));
                               // (1) i1=3, d1=(1,0,1)

        // after the next statement, field d2._delta and i1 are aliases

        d2 = new DeltaCell(2, i1);
                               // (2) i1=2, d1=(1,0,1),  d2=(2,0,2)
        i1.setValue(4);
                               // (3) i1=4, d1=(1,0,1),  d2=(2,0,4)
        d2.setValue(6);
                               // (4) i1=2, d1=(1,0,1),  d2=(6,4,2)
        d2.setFrom(d1);
                               // (5) i1=8, d1=(1,0,1),  d2=(1,9,8)
        i1 = d1.getDeltaCell();
                               // (6) i1=1, d1=(1,0,1),  d2=(1,9,8)
        i1.setValue(5);
                               // (7) i1=5, d1=(1,0,5),  d2=(1,9,8)
        d1.setValue(4);
                               // (8) i1=1, d1=(4,3,1),  d2=(1,9,8)
        d1.getDeltaCell().setValue(2);
                               // (9) i1=2, d1=(4,3,2),  d2=(1,9,8)
    }
}

Figure 1.14:  A program that uses classes IntCell and DeltaCell to illustrate the difficulties created by alias-
ing.
_________________________________________________________________________
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or framework. Our reasoning technique corresponds to using the documentation. The ability to prove
correctness of the subclass is used as a criteria to judge whether these specifications and the reasoning
technique are adequate. Chapter 4 provides a proof of the soundness of the rules and technique.
Therefore, we believe our study also provides sound guidance for providing adequate information in
user manuals and informal documentation. 

In our study, formal public and protected specifications were created for a base class which was
then implemented. Based on this implementation, a subclassing contract was derived by hand,
simulating what our tool would do. We next gave formal public and protected specifications for
several new subclasses and studied the problem of how to correctly implement them without access to
the superclass code. 

The rules presented in Chapters 2 and 3 generalize our experience and provide a formal system for
avoiding downcall and aliasing problems. The rules are conservative, because we are assuming that
superclass code is not available, and thus the rules can only use information from specifications. The
rules allow a programmer to determine which methods to override (Chapter 2), when it is safe to call a
superclass method (Chapter 2), and when it is safe to call methods with side-effects (Chapter 3). 

1.6.2  The Three Part Specification
To allow the safe creation of a subclass without using the source code of its superclasses, our

approach uses a three-part specification. The above example shows that the documentation and
specifications of classes in a library or framework should at least include the following three
components:

1. a public specification that uses a client-visible model of objects of the class to describe the 
behavior of each public method and constructor, 

2. a protected specification that describes any additional subclass-visible behavior, as well as the 
behavior of protected methods and constructors, and

3. a subclassing contract that specifies the methods that can be called and the variables that can 
be accessed by each public and protected method and constructor.

A complete specification is formed from the public and protected specifications, together with the
subclassing contract. The complete specification is what programmers would use to implement
subclasses. (JML also comes with a tool that can automatically combine specifications from various
files into a complete specification [RL03, BCC+03]).

1.6.3  Class Library and Framework Implementation Guidelines
Reasoning about how to override superclass methods in such a way that downcall problems are

avoided can become somewhat complicated [RL00]. Thus, to make the technique more practical,
another contribution of this dissertation is the development of a set of guidelines for library
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implementers that significantly simplifies the reasoning of programmers who are inheriting from
library classes. Chapter 5 describes these guidelines. 

1.6.4  Tool Support
Manually detecting the problems that may arise due to downcalls and aliasing can also become

complicated and difficult. The tools described in Chapter 6 show how customizers, when specializing
or extending library classes, can be assisted in the application of our technique. The rules form the
basis of our tools which automatically generate the subclassing contract and give error messages when
the rules are violated by the subclass. 

1.6.5  Notation and Terminology
The application of our rules (as given in Chapters 2 and 3) need to distinguish the various kinds of

calls, because the effects on downcall and aliasing problems can sometimes be subtly different, due to
the different semantics of each kind of call. The definitions are given here because they are also needed
in the assumptions given in the next subsection. 

A self-call is a call on the current receiver object, i.e., the object denoted by this in Java and C++.
For example, setValue(u) is a self-call, which is syntactic sugar for this.setValue(u) in Java
and this->setValue(u) in C++. 

A super-call is also a call on the current receiver object except that such calls invoke methods of a
superclass. In Java, the built-in variable super is used to indicate a super-call, e.g.,
super.setValue(u). In C++, super-calls are indicated by qualifying the name of the method, i.e.,
by giving both the superclass and the name of the method being invoked, e.g., IntCell ::
setValue(u). 

In our technique, a superclass constructor call must also be included in our definition of super-call
because it can be involved in the same kinds of downcall problems for the same reasons, and thus the
same rules apply to both. A superclass constructor call is an invocation of a superclass constructor by
a constructor of the subclass. For example, super(i) is a superclass constructor call in Java. In Java
these calls may only appear as the first statement in the body of a subclass constructor. In C++,
superclass constructor calls invoke the constructor of a specific, named superclass; they can only
appear in the member initializer list of a constructor declaration, e.g., a constructor invocation such as
IntCell(i) could appear in the initializer list of one of IntCell’s subclass constructor declarations. 

In contrast, an object-call is a call on an object other than the current receiver; e.g.,
o.setValue(u) is an object-call in Java or C++. Another kind of call is the new object constructor
call; it is an expression, such as new IntCell(5) in Java or C++, that creates and initializes a new
object by invoking a constructor. 

Subclass methods and constructors can call superclass methods and constructors through super-
calls. In the other direction, superclass methods and constructors can call subclass methods via
downcalls. Therefore, when necessary to avoid possible ambiguities, methods and constructors will
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sometimes be represented as C::M, where M is the method or constructor and C is the class in which
M is defined. This is the same notation used in C++. 

1.6.6  Assumptions
Our investigation focuses primarily on the issues involved in code inheritance and subclassing in a

single-dispatch10 OO programming language. Other language-specific features such as nested classes
and exceptions are not considered. We, therefore, make several simplifying assumptions about the
constructs allowed in our core OO programming and specification languages. 

A1: We assume that types do not declare inner types or anonymous types. 

A2: We assume that methods do not declare or throw exceptions. 

A3: We assume that types do not declare static variables or methods.

A4: We assume that types do not declare package (default) visible variables or methods. 

A5: We assume that types do not declare array variables. 

We do not include exceptions in our core Language because this feature can be simulated by other
constructs in Java. To further simplify our language, we do not include static variables and methods (in
the Java sense), even though we believe that they can be handled as variables and methods of special
class objects, as in Smalltalk; we leave this extension as future work. 

Although not included, we also believe that our technique can be extended to handle package
visible methods and fields. One approach would be to handle them in the same way as protected
members when they are visible to a particular subclass, i.e., by making a package visible specification
available to customizers of such subclasses. However, these members are not visible to all subclasses,
i.e., when the superclass and subclass are not in the same package; in this case, package visible
methods and fields have to be handled in the same way as private methods and variables so that, when
necessary, subclasses know that they exist (see subsections 2.6 and 3.6.2). We leave the details as
future work. 

We further believe that the technique given in Chapter 3 for protecting internal objects from
unexpected side-effects can be extended to handle arrays. However, arrays would have to be handled
as a special case since every array element is publicly visible. For example, array objects can be
simulated by an object that has one public field for each array element, but our technique assumes that
the concrete fields of an object are not public and can only be modified via an object-call (see
assumption A7, below). Thus if any array element is accessed by an invariant or represents clause,
then the state of that entire array object must be protected from unexpected side-effects. Furthermore,
we would need special rules to protect array elements when they are objects; we leave this and the
handling of objects with public fields as future work (see also Chapter 3). 

10.In single dispatch, the method to be executed is selected based on the dynamic type of the receiver. 
Smalltalk, C++, Eiffel, and Java use single dispatch.
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Assumptions A1-A5 are the main simplifying syntactic assumptions we make. Chapter 4 gives the
subset of Java and JML used in the formal soundness proof of our technique. However, the soundness
of our approach also requires that we make several additional assumptions about the programming
style of programmers and specifiers when they implement and document extensible types in a class
library. Assumption A6 disallows code that should rarely, if ever, occur in a Java program, and
certainly not when the superclass code is unavailable (explained in subsection 2.9.4.2). Assumption
A7 is included to simplify the soundness proof of our verification logic given in Chapter 4. The
assumptions, A8-A9, will be enforced by our tool since they are necessary for soundness. They restrict
the way side-effects on objects other than the receiver can be implemented in a method11; these
restrictions disallow assignments to concrete instance variables that could invalidate the run-time type
invariant. We use the term instance variable for what Java calls a non-static data field.

A6: We assume that no super-calls are made before a superclass constructor has initialized the
superclass fields (see subsection 2.9.4.2). 

A7: We assume that all represents clauses specify an abstraction function with a consistent, well
defined meaning [LM06], e.g., there are no cyclic or mutually recursive constraints among
multiple model fields (see subsection 4.6.2). 

A8: We assume that methods do not assign to instance variables of objects other than the current
receiver object, e.g., this in Java and C++ (see subsection 2.4.3). To prevent most such
assignments, we further assume that concrete instance variables do not have public visibility. 

A9: We assume that private methods with side-effects are only directly invoked via self-calls; that is,
they are not directly invoked via object-calls (see subsection 2.4.3). 

The next two assumptions are restrictions that either the specifier or the specification language
itself must enforce so our technique can be applied, i.e., so customizers (and our tool) have the
information needed to apply our rules. For example, assumption A11 would not always be possible
without assumption A10 since assumption A10 permits private fields to be referenced in the protected
specification used by customizers; these two assumptions allow our technique (and our tool) to
properly handle fields that otherwise would not be visible in the subclass. 

A10: We assume that all private concrete fields are declared with the JML spec_protected modifier
(see subsection 2.6.1). This modifier allows such fields to have private visibility in Java but
protected visibility in JML specifications. 

A11: We assume that all class invariants12 are declared with public or protected visibility (or
spec_protected) so they are visible to customizers (see subsections 2.6.2 and 3.3.2). 

11.The rules in Chapter 3 require additional restrictions on assignment statements to control aliasing. 
12.The represents clause specifies an invariant relationship between concrete variables and a model 

field. Therefore, both the invariant and represents clauses must be visible to customizers. 
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The next two assumptions, if followed, cause fewer subclasses to be unimplementable when the
superclass code is not available (see subsection 2.9.3). 

A12: We assume that if a class is extensible (e.g., is non-final in Java), then all of its methods visible to
clients and customizers (e.g., public and protected in Java) are overrideable (e.g., are virtual in
C++ or non-final in Java) if they have side-effects (see subsections 2.9.2 and 2.9.3). 

A13: We assume that classes do not have methods that are mutually recursive with methods from
unrelated classes (see Section 2.5). An unrelated class of C means a class other than C or one of
C's ancestors or descendents, i.e., outside the class hierarchy of C. 

The last two assumptions below are only required if a concrete data refinement is necessary when
implementing a subclass (see subsection 2.7); they are extensions of the closely related assumptions
A8 and A12. 

A14: We assume that methods do not access (read) instance variables, even public ones, of objects other
than the current receiver object (see Section 2.7). 

A15: We assume that if a class is extensible, then all of its non-private methods are overrideable if they
access (read) instance variables of the receiver (see Section 2.7). 

Chapters 2 and 3 give examples and further explain why the above assumptions are necessary and
why overrideable methods allow for more implementable subclasses (see subsection 2.9.3). 

1.7  Outline of Dissertation
Chapter 2 describes a formal system showing how potential downcall problems can be avoided

using only the behavioral specifications and subclassing contract of superclass methods. The need for
the rules and how they are applied will be illustrated using various examples; their soundness will be
proven in Chapter 4. 

Because aliasing can have surprising effects on assertions about the state of a system, the
soundness and modularity of any verification system depends on the ability to control and prevent
unwanted aliasing and side-effects. Chapter 3 provides a set of rules and a specification technique for
preventing the kind of unwanted aliasing that would otherwise undermine the soundness of our
reasoning technique. 

Chapter 4 introduces the subset of Java and JML that is used in the soundness proof; it includes the
core features of OO languages but omits some features that are not essential. Features are not essential
if they can be simulated by other constructs. For example, exceptions can be simulated using other
features of Java and will be excluded from the core language. Also features such as threads will be
excluded to avoid the added complexities of parallelism. Chapter 4 also gives the axiomatic semantics
of a core subset of JML. 

A proof of the soundness of the rules and technique described in Chapters 2 and 3 is given in
Chapter 5. The proof uses and is based on the core Java and JML languages introduced in Chapter 4.
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The soundness of the technique is based on the ability to verify correctness of the code of the new
subclass with respect to its specification. This is done using the formal specifications of both the
subclass and its superclasses, and the code of the subclass, but without any superclass code. 

Chapter 6 describes a set of guidelines for library implementers and reusers based on the rules
given in Chapters 2 and 3. It shows how the library provider can simplify reasoning of reusers
inheriting from the library if both adhere to these guidelines. In particular, it shows that the guidelines
can prevent some of the downcall problems from ever arising and thus the associated rules would
never have to be applied. Chapter 6 also briefly describes a tool that would automatically generate
subclassing contracts and assist in applying the rules given in Chapters 2 and 3. Chapter 7 discusses
related work, and offers some conclusions.
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CHAPTER 2: PREVENTING UNVERIFIABLE BEHAVIOR

2.1  Introduction
Programmers need some way of reasoning about how to avoid the kinds of downcall problems that

can arise when creating subclasses especially if the superclass code is not available. This chapter gives
a set of rules for dealing with these problems. The rules only use information in specifications, i.e., in
particular, they use the method behavior as specified in the public and protected specifications and the
subclassing contract. 

An important requirement of our technique is that it be statically checkable through an automated
tool. Therefore, our technique is more conservative than might otherwise be necessary. For example, if
our technique included rules that required handcrafted proofs or other human assistance, then we
could, in some cases, allow subclass implementations that are currently disallowed (see subsection
2.9.4 for examples). However, we wanted to keep our technique and rules as simple as possible,
statically checkable, yet not so restrictive as to be impractical. 

Furthermore, a primary goal of our tool is that it warn when the subclass implementation may not
be verifiable without the superclass code. Therefore, the tool will warn that a superclass method has to
be overridden when its behavior has been extended (refined) or when the superclass method may no
longer satisfy its specification. However, it may be that this method only has to be reverified (which is
not done because the tool assumes the superclass code is unavailable and it does not do verification).
Nonetheless, we believe that our tool and technique will be useful even when the superclass code is
available, because it warns of potential problems that all customizers of inherited superclasses must
reason about and handle. Furthermore, if the tool does not warn of potential problems, i.e., all our rules
have been followed, then the subclass implementation can be verified without superclass code and
none of the super-called or unoverridden superclass methods have to be reverified (formalized in
Chapter 4). 

The rules also assume that methods do not create unexpected side-effects. For example, if the
value of a field is directly or indirectly part of an object’s abstract value, then such fields can only be
modified during the execution of one of that object’s methods (formalized in Chapter 3). Such fields
are components of the representation and must not be exposed to objects in an unknown context where
they could be modified unexpectedly. Therefore, we assume these fields are not publicly visible and
the objects that contain them are not aliased. Chapter 3 describes how our technique controls and
prevents such unwanted aliasing and representation exposure.

There are two reasons that a superclass method will have to be overridden by a new subclass. First,
a superclass method has to be overridden if the subclass needs to extend (refine) its behavior. Second,
it must be overridden if it might no longer satisfy its specification or there are aspects of its behavior
that cannot be verified. Furthermore, a superclass method must not be super-called by subclass
methods if it may no longer satisfy its specification or it makes unexpected changes to subclass fields.
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Therefore, our rules fall into two main categories. There are rules for determining which methods must
be overridden and rules for determining when super-calls are unsafe. All rules are conservative
because we want them to be checkable by an automated tool and because we assume the superclass's
code is unavailable. 

The overriding rules determine which methods must be overridden. This set of rules must be
applied repeatedly until no additional methods are added to the set of methods to be overridden.
Downcall problems for the subclass, other than those caused by super-calls, are avoided when the
overriding rules are followed and our assumptions (see subsection 1.6.6) have also been followed. 

The invalidation rules specify when it is unsafe to make a super-call. These rules are closely
related to the overriding rules but their purpose is to prevent callback problems involving super-calls.
The rules state the conditions under which a superclass method cannot be called because it may no
longer satisfy its specification or may modify subclass variables in unverifiable ways; that is, they
specify when a superclass method has been invalidated by the new subclass. A superclass method is
invalidated by a new subclass if, because of downcalls, it might no longer satisfy its superclass
specification or it might cause side-effects to subclass variables that cannot be verified without the
superclass code. 

Some special rules related to the handling of private variables and super-calls are explained in
Sections 2.6 and 2.8. For example, there are situations where super-calls are mandatory; thus a special
rule is needed to handle such cases, e.g., when superclass methods modify and maintain private
instance variables. 

The sections describing our rules are followed by a discussion of some consequences. This
discussion and a summary appear in Section 2.9. 

2.2  New Subclass Instance Variables
When creating subclasses a programmer must be able to reason about the effects that methods

have on the subclass’s new instance variables. Our technique uses data groups (defined in subsection
1.4.1) to control which subclass variables can be modified by an overriding subclass method. If the
superclass code is not available, then reasoning about the state of subclass instance variables can be
problematic; these problems happen when a superclass method makes downcalls and there is a data
group dependency (defined below) between superclass and subclass variables. This section gives
examples that illustrate the kinds of reasoning problems that can result when superclass and subclass
fields have a dependency relationship and the superclass code is unavailable. This section also gives a
set of rules for avoiding and preventing these problems, i.e., our rules ensure that one can reason
soundly about the behavior of a newly created subclass. 
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2.2.1  Additional Side-Effects
We start by describing the main concepts and specification techniques used by our rules. In

particular, we introduce the concept of additional side-effects and provide more details about the use of
data groups and JML’s in, maps, and assignable clauses. 

2.2.1.1 Data groups
Our technique uses data groups together with the assignable clause to specify and control side-

effects. Recall that a data group represents a set of fields grouped together because they are related in
some way and tend to change as a group (see Section 1.4). In JML, the declaration of each model
instance field automatically creates an associated data group with the same name as the field1. A field
and its implicit data group always have the same visibility level. For example, in Figure 2.2, data group
oldVal has public visibility, the same as its associated model field. Furthermore, a field is always a
member of its associated data group. 

A model field and its data group are used to hide a subset of the underlying concrete instance
variables of a class. For example, model fields are usually public, but concrete fields are protected or
private so unrelated classes cannot directly access or assign to these concrete fields. When a field with
public or protected visibility, such as a model field, is listed in a method’s assignable clause, then this
denotes the associated data group. When a data group is listed in a method’s assignable clause, then
that method can assign or call methods that assign to any of the concrete fields in that group. However,
our technique only allows methods to directly assign to fields of the receiver object. That is, each
instance variable can only be directly assigned by methods of the object whose type or supertype
contains a direct declaration of that variable. An instance variable x is directly declared in type T if x
is declared as one of T’s data fields. Field x.V is indirectly declared in type T if x is directly declared
in T and x references an object with a directly or indirectly declared field V. Furthermore, we say that a
field is declared in type T if it is either directly or indirectly declared in T. For example, in Figure 1.12,
_delta and _delta.value are both declared in class DeltaCell. However, _delta is directly
declared and _delta.value is indirectly declared. Therefore, our restrictions on assignment allow
methods of DeltaCell to directly assign to _delta, but _delta.value can only be modified
through object-calls on _delta2.

2.2.1.2 Data group dependencies
Adding a field to a data group through an in or maps clause declares a data group dependency.

Thus a field has a dependency relationship if it is a member of another field’s data group. We say that
data group membership specifies a dependency relationship because, for example, a model field

1. Concrete instance fields can also have an associated data group when they have a spec_public or 
spec_protected modifier (see Chapter 4). 

2. Subsection 2.4.3 explains why this restriction is necessary in our technique; it is one of the assump-
tions given in subsection 1.6.6. 
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depends on the value of members of its data group. That is, a model field derives its abstract value
from some or all of the concrete fields in its data group as in Figures 1.5, 1.6, and 1.12. 

Data group dependencies can be static or dynamic [LS99, LN00, LPHZ02]. In JML, the in clause
declares a static dependency and the maps clause declares a dynamic dependency. Figure 2.1
illustrates the distinction; that is, the in clause of class Point declares a static dependency because it
relates a data group to a field from the same object, i.e., oth and x are members of this (the receiver).
In contrast, the maps clause adds an indirectly declared variable to a data group; it declares a dynamic
dependency between a group and field from different objects. For example, the maps clause in class
Point of Figure 2.1 relates a group and field from different objects, i.e., the indirectly declared field
oth.x is added to the data group this.x. We say the maps clause declares a dynamic dependency
because an indirectly declared field like oth.x also changes whenever the object referenced by oth
changes. The maps clause involving _delta.value in Figure 1.12 is another example of the
declaration of a dynamic dependency3. 

2.2.1.3 Visibility requirements
For modular soundness, the declaration of a data group dependency must be visible everywhere

that the field being added to a data group is visible [Lei98, LN00, LN02, LPHZ02]. For example, a
static dependency, like the one declared by the in clause of class Point in Figure 2.1, must be visible
everywhere that variable oth is visible. Similarly, the maps clause and the indirectly declared field it
adds to a data group must both have the same visibility. For example, the maps clause in class Point
must be visible everywhere that oth.x is visible (i.e., everywhere that oth is visible)4. 

This visibility requirement is enforced through JML’s syntax and type checker. For example, the
syntax requires that in clauses immediately follow the declaration of the field being added to data
groups. Also, the maps clauses must immediately follow the indirectly declared fields being added to
data groups, i.e., JML requires that the maps clause reference one of the indirectly declared fields
from the preceding field declaration. For example, the first maps clause of Figure 2.1 is allowed
because it references the indirectly declared field oth.x, one of the fields of oth. However, the two
maps clauses in subclass BadPoint are not allowed in JML because oth.y and this.y are not
being declared there; that is, the dependency relationships declared by those maps clauses are not
visible in the superclass where oth.y and this.y are declared and visible. 

To understand why this visibility restriction is required, consider again the two maps clauses in
subclass BadPoint of Figure 2.1. If these maps clauses were permitted, then an overriding subclass
method like BadPoint::setX would be allowed to modify additional superclass variables, i.e., y and

3.  A class level (i.e., static in Java) or global variable can also be a member of the data group of an 
instance variable but we do not consider those relationships here; we leave that for future work. 

4. A dynamic dependency like this one can have problems if oth is aliased in an unknown context (see 
the example in Section 1.5). Chapter 3 describes how our technique prevents such unwanted aliasing. 
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oth.y because they would now be members of x’s data group. However, assignments to y and oth.y
cannot be allowed since they are not permitted by the superclass specification of Point::setX in the
class where y and oth.y are declared. Furthermore, if such assignments were allowed, BadPoint
would no longer be a behavioral subtype of Point according to Point’s specification (see also
Section 2.9.1 and the definition of behavioral subtype in Figure 1.1). Therefore, the two maps clauses
in BadPoint cannot be allowed [Lei95, Lei98, LPHZ02, MPH01]. 

To summarize, a field and its dependency relationships are all declared together and, therefore, as
is required for soundness, within the same context and scope. Also, the data group (in and maps)
clauses have the same visibility level as the field being declared. For example, public is the visibility
of the data group clause in Figure 2.2, and protected for the one in Figure 2.3. Furthermore, JML type

_________________________________________________________________________

public class Point {

  //@ public model int x, y;

    protected Point  oth;
    //@              in x;
    //@              maps oth.x \into x;

  /*@ public normal_behavior
    @   assignable x;
    @   ensures x == newX && oth.x == \old(x);
    @*/
    public void setX(int newX);
}

public class BadPoint extends Point {

  /*@ public model int z;
    @                  in oth.x;              // illegal
    @                  maps oth.y \into x;     // illegal
    @                  maps this.y \into x;    // illegal
    @*/

  /*@ also 
    @ public normal_behavior
    @   assignable x;
    @   ensures y == newX && oth.y == \old(y);
    @*/
    public void setX(int newX);
}

Figure 2.1:  Example of the correct and incorrect use of the maps clause.
_________________________________________________________________________
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_________________________________________________________________________

public class CellPlusPrevious extends IntCell {

  //@ public model int oldVal;
  //@                     in value;

  /*@  public normal_behavior
    @    assignable value, oldVal;
    @    ensures value == initVal && oldVal == initVal;   @*/
  public CellPlusPrevious(int initVal);

  /*@ also
    @  public normal_behavior
    @    assignable value;
    @    ensures oldVal == \old(value);   @*/
  public void setValue(int newVal);

  /*@ also
    @  public normal_behavior
    @    requires c != null;
    @    assignable value, oldVal;
    @    ensures oldVal == \old(value);   @*/
  public void setFrom(IntCell c);

  /*@  public normal_behavior
    @    requires c != null;
    @    assignable value, oldVal;
    @    ensures value == c.value && oldVal == \old(value)
    @        && \result == Math.abs(value - oldVal);    @*/
  public int copyFrom(IntCell c);

  /*@  public normal_behavior
    @    ensures \result == Math.abs(value - oldVal);   @*/
  public /*@ pure @*/ int getChange();

  /*@  public normal_behavior
    @    requires c != null;
    @    ensures \result == Math.abs(this.value - c.value);   @*/ 
   public /*@ pure @*/ int difference(IntCell c);
}

Figure 2.2:  Public specification of CellPlusPrevious from file CellPlusPrevious.jml-refined.
_________________________________________________________________________
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checking does not allow a field to be a member of a data group that is less visible than it is since the
data group would not be in scope at the higher visibility level. For example, a public field cannot be a
member of a private or protected data group. 

Finally, the syntax also requires that the group referenced by an in or maps clause be a member of
the current receiver, i.e., a field cannot be added to an indirectly declared data group5. That is, a field
cannot be added to a group from an object other than the receiver; thus the only qualified data group
names allowed by the syntax of the in and maps clause are those with prefixes “this.” and
“super.” since these prefixes denote members of the current receiver. For example, the in clause of
BadPoint is not allowed because data group oth.x is from an object other than the receiver6. 

Nonetheless, data groups can contain fields that are members of different objects. For example, in
class DeltaCell of Figure 1.12, _delta and _delta.value are members of the same data group.
However, fields declared in the receiver, such as this._val, cannot be members of a data group
declared in another object, such as _delta.value, since the syntax of the in and maps clauses only
allow fields to be added to a data group declared in the current receiver; this restriction is necessary for
soundness. 

2.2.1.4 Nested data groups and indirect dependencies
Our technique also allows data groups to be nested. That is, if field V is a member of data group X,

then V’s data group will always be a subset of data group X. Nesting of data groups is necessary for
declaring indirect dependencies, e.g., the dependency between X and, by transitivity, members of V’s
data group. This is also a convenience because, otherwise, declaring this dependency would require

5. For simplicity we do not consider static methods, fields, or data groups in this dissertation; however, 
in JML, static fields can be added to a static data group that is not a member of a receiver object. We 
leave the details for handling static members as future work. 

6. There are also other syntactic restrictions required for alias control; this is described in Chapter 3. 

_________________________________________________________________________

//@ refines "CellPlusPrevious.jml-refined";

public class CellPlusPrevious extends IntCell {

    protected int _prevValue;
    //@                  in oldVal;

    //@ protected represents oldVal <- _prevValue;
}

Figure 2.3:  Protected specification of CellPlusPrevious from the file CellPlusPrevious.jml.
_________________________________________________________________________
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that V’s members also be explicitly added to data group X7. Notice, however, that the members of data
group V may be assignable in methods in which the other members of X are not assignable. 

A typical example of data group nesting and indirect dependencies is given in Figures 2.2 and 2.3.
Figure 2.2 shows the public specification of CellPlusPrevious, a new subclass of IntCell. This
subclass adds three new methods, copyFrom, getChange, and difference, and extends the
specifications of setValue and setFrom; the also keyword indicates that a method specification is
being extended. The protected specification is given in Figure 2.3. This new subclass adds a new
concrete instance variable, _prevValue, that stores the previous value of the cell object. The
dependency relationship declared by the in clause of Figure 2.2 nests the subclass data group oldVal
inside value from the superclass; this allows model field oldVal to be updated whenever value is
changed. The in clause of Figure 2.3 also allows the concrete variable _prevValue to be assigned
whenever methods can modify oldVal. This second in clause creates an indirect data group
relationship between value and _prevValue; that is, by transitivity, _prevValue can also change
when value changes. 

2.2.1.5 Additional side-effects
A superclass method can have additional side-effects if the subclass specification allows that

method to assign to fields in addition to those allowed by the superclass specification. This is permitted
when the subclass specification inserts additional fields into a data group that the superclass method
can already modify. However, for soundness, a subclass is not allowed to add superclass fields to a
data group (as explained in subsection 2.2.1.3). Therefore, a superclass method can only have
additional side-effects if the subclass specification allows that method to assign to a new subclass
variable8. 

More formally, a method M can have additional side-effects on W, if S is a subclass of C, M is
declared in superclass C, W is directly or indirectly declared in subclass S, and W is assignable by
C::M. To permit additional side-effects on W, W has to be added to a superclass data group. That is,
since the superclass knows nothing about potential subclass fields, the subclass specification can only
permit these additional side-effects by adding W to a superclass data group that is modifiable by C::M.
For example, in subclass CellPlusPrevious of Figure 2.2, a superclass method can have additional
side-effects if it is allowed to modify oldVal (or implicitly the members of its data group). Thus
methods setValue and setFrom are allowed to have additional side-effects because they can modify
value which contains oldVal; however, copyFrom does not have additional side-effects because it
is not defined in the superclass. Note also that field oldVal is superfluous in the assignable clause of
setFrom because oldVal is a member of value’s data group, i.e., both value and oldVal are

7. Such nesting is also used by the rules in our technique for alias control given in Chapter 3. 
8. Note that this includes both directly and indirectly declared subclass fields. Also, the preconditions 

in each specification case must also be considered when determining which fields can be assigned 
(see Chapter 4 for more details). 
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assignable any time value is listed. Thus the assignable clause of setValue is allowed to omit
oldVal without changing the meaning (although often it may be clearer for clients if superfluous
fields are listed).

Also, additional side-effects cannot be implemented directly in a superclass method because
subclass variables are not in scope in the superclass. That is, additional side-effects can only be
implemented through a method override, i.e. an implementation in the subclass, or through downcalls
to methods that assign to the subclass variable. 

When is it necessary to specify that a method has additional side-effects, i.e., when is it necessary
to add a subclass variable to a superclass data group? In general, a subclass is required to specify that a
method M can have additional side-effects on W if: 

1. M's postcondition implies an assertion A(W) involving a new subclass variable W, and 

2. M needs to be able to modify W in order to ensure that A(W) holds on exit from M. 

M's postcondition may refer to W either explicitly or implicitly; that is, it may explicitly reference
W or it may implicitly reference W through a variable V when the values of W and V are related
through either a represents clause or an invariant. For example, in Figure 2.2, the public
postconditions of setValue and setFrom explicitly reference oldVal; however, they implicitly
reference the concrete variable _prevValue, through the in and represents clauses in Figure 2.3. 

When an overriding method M can modify a subclass variable W, our approach requires both a
data group clause and an assertion, A(W), implied by M's postcondition. For example, if the superclass
specification allows M to modify a variable V and the subclass specification says M must also modify
W in order to achieve some effect related to V, then W must be added to V’s data group, i.e., a data
group clause relating V and W is required [Lei95, Lei98, LPHZ02]. For example, in Figure 2.2, the
specification of method setValue requires it to modify oldVal using the previous state of superclass
variable value. Therefore, the in clause shown in Figure 2.2 is needed to allow this. Furthermore, the
in clause shown in Figure 2.3 is also necessary, otherwise the JML type checker will emit an error
whenever an assignment to _prevValue occurs in the implementation of setValue and setFrom. 

On the other hand, if there is a data group clause in the subclass that allows M to modify W, then
M's postcondition needs to imply an assertion A(W) about the state of W; otherwise, if there is no
assertion, then W can take on an arbitrary value allowed by any applicable represents and invariant
clauses. Thus, another implicit assumption is that the subclass and its implementer care about the state
of W (although perhaps our assumption is too strong for those rare situations when the state of a
subclass instance variable does not matter). 

2.2.2  The Additional Side-Effects Overriding Rule
This subsection describes examples of both explicit and implicit specifications that require the

implementation of additional side-effects by a subclass. It explains how our rules handle these
additional side-effects through method overrides. 
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Additional side-effects are often required when an assertion A(W) in the subclass specification
relates a superclass field V to a subclass field W since changes in one variable may require changes to
the other. Therefore, without superclass code or more information, it cannot be proven that a
superclass method M that modifies V will make the correct changes to W so that the subclass
specification is satisfied. That is, either M's postcondition, as given in the subclass, or the subclass
invariant may not be satisfied unless M is overridden. 

For example, the assignable clauses in Figure 1.2 for methods setValue and setFrom together
with the data group clauses of Figures 2.2 and 2.3 specify that variables value, oldVal, and
_prevValue are assignable in these methods. The value of _prevValue is modified as specified in
the ensures clause of these methods, taking into account the represents clause in Figure 2.3. (This
represents clause says that the value of oldVal is given by the value of _prevValue.) The
specification of subclass CellPlusPrevious, says that all methods that change the cell’s value will
also have to store the previous value of the cell in _prevValue. The rule below requires method
overrides so this can be done. 

Additional Side-Effects Overriding Rule. Let S be a subclass of C. If S specifies that method C::M
can have additional side-effects on field W or if method C::M makes a self-call down to a method
that may have additional side-effects on W, then C::M must be overridden. 

This rule requires a method override if C::M can assign to a subclass field W. To specify that
C::M can have additional side-effects on W, W must be added to a superclass data group that is
assignable by C::M. Furthermore, the specification of S::M must not prohibit assignment to W. In
JML, assignment to W can be prohibited by adding the assertion \not_assigned(W) to S::M’s
postcondition. Additional side-effects are necessary when M's postcondition, in the subclass
specification, implies an assertion A(W) about the state of W. Thus the override is needed to ensure
that A(W) holds on exit from M since we assume that the superclass code is unavailable. 

When W is added to a superclass data group, this may also allow method C::M to modify W.
However, an override can be avoided, if C::M does not make downcalls to methods that assign to W
and S::M prohibits assignment to W. Therefore, when additional side-effects are not needed in M, an
override of M can sometimes be avoided in our technique by explicitly specifying that M does not
change W9; this situation usually occurs when additional side-effects are needed in some method other
than M. 

Notice, however, that when C::M makes a downcall to a method that can assign to W, this rule
requires an override because we assume the superclass code is unavailable. That is, even if S does not
allow C::M to assign to W, we cannot verify, without the code (or more information), that such

9. The specification would have to be such that \not_assigned(W) applies to the postconditions of all 
specification cases of S::M. 
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downcalls do not assign to W. Therefore, we have to assume that such downcalls may violate C::M’s
specification regarding side-effects to W10. 

Furthermore, when a method override is necessary because of additional side-effects on W, the
subclass needs to specify the behavior of M with respect to W, i.e., how to change W. That is, the
assertion A(W) about how M modifies W must be available in the specification of subclass S. This can
be done either explicitly in the postcondition of S::M or implicitly through a represents clause or
invariant. For example, in Figure 2.2 the assertions regarding the model variable oldVal are explicit
in the method specifications. However, due to subclass invariants and represents clauses, there may
be an implied assertion that does not appear explicitly as a conjunct in the postcondition. For example,
in Figure 2.2 the postconditions do not explicitly specify how _prevValue is to be changed by these
methods. However, this is specified indirectly by the represents clause shown in Figure 2.3, that is,
_prevValue must have the same value as oldVal. In some cases, when invariants are involved (see
discussion of Figure 2.4 in subsection 2.2.2.2 below), it is not as obvious as in Figure 2.2 that a
superclass method needs to be overridden. However, the rule tells us to inspect the superclass
specification and to identify the methods with additional side-effects any time a subclass field is added
to a superclass data group. The reason C::M has to be overridden is to make sure W is properly
modified and the specification is needed for this. 

The specification of M’s behavior is also necessary for the verification of the implementation of S
and its subclasses (whether they are concrete or abstract). Therefore, even if a subclass like
CellPlusPrevious were abstract, the behavior of every method allowed to modify subclass fields
(i.e., oldVal and _prevValue) must be given in the specification (as shown in Figures 2.2 and 2.3)
so verifiers know how these methods modify these subclass fields. 

2.2.2.1 Abstract classes
The above rule states that C::M has to be overridden, but it does not necessarily require that

method M be overridden in S. In particular, when S is abstract, it may not be necessary (or possible)
for S itself to implement the overriding method M. For example, W may be a model field and M may
be an abstract method. Thus the behavior of M could be specified in terms of W, but the represents
clause for W and the concrete fields used to compute the abstract value of W may not be specified in
S. Therefore, the concrete fields, the represents clause for W, and the overriding implementation of
M would have to be defined in a subclass of S. That is, the implementation of the additional side-
effects on W would have to be done in concrete subclasses of C, i.e., in S or in the concrete subclasses
of S by overriding or inheriting an override of M with the appropriate additional side-effects on W. 

Similarly, the above rule could also be applied to interfaces. For example, when an interface S
extends another interface C, then only the specification can be provided in S since all interface

10.JML’s checking of the assignable clause does not catch this error because it does not consider 
\not_assigned expressions in the postconditions of methods. 
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methods are abstract. The override occurs in the concrete class that implements S. We will not
consider interfaces further in this dissertation because they do not involve downcalls or callbacks and
all methods have to be overridden (implemented). However, the above rule can be used to determine
when a specification is required by an overriding interface method, i.e., an extending specification is
required when a method has additional side-effects (see also Section 2.3). 

In summary, the above rule specifies when C::M has to be overridden and, implicitly, when S::M
must provide a specification that has to be satisfied by this overriding method. However, the rule does
not require that an abstract subclass S override M, only that C::M be overridden by S or one of S’s
concrete subclasses. 

2.2.2.2 Subclass invariants
Another similar problem that occurs in the presence of subclass instance variables is related to

subclass invariants. In JML, the keyword invariant introduces properties that must hold in all publicly
visible states of objects of the class. If more than one invariant clause occurs in a class, then all the
given properties must hold in such states. Together, the conjunction of these properties is the invariant
for the class11. For example, subclass CellPlusInvariant, specified in Figures 2.4 and 2.5, has a
class invariant; the invariant, shown in Figure 2.5, specifies that the difference between the previous
cell value and the current value is to be stored in _diff. 

In JML each invariant clause has a visibility level, e.g., public, protected, or private. The class
invariant is the conjunction of all invariant clauses at all visibility levels. 

The class invariant must hold at the beginning and end of all methods; it must also hold on exit
from all constructors12. Therefore, when verifying an implementation of a method, the class invariant
will be conjoined with the method's pre- and postconditions. It is also conjoined with the postcondition
of all constructors. The class invariant is also conjoined with the precondition of Java finalizers, but
does not have to hold in their post-state. Similarly in C++, the class invariant is conjoined with the
precondition of destructors. 

For example, the invariant in Figure 2.5 is implicitly conjoined with the postconditions of all
methods and constructors declared in class CellPlusInvariant. This invariant specifies that the
value of concrete variable _diff is determined by value and oldVal. Thus _diff must be allowed
to change whenever value or oldVal change; this is done using the in clause, as shown in the
protected specification of Figure 2.5. Furthermore, the in clause and invariant clauses implicitly
extend the behavior of all methods that change variables value or oldVal. That is, they implicitly

11.JML also includes history constraints that, like invariants, have to be preserved by all methods; how-
ever, for simplicity, they will not be considered here. 

12.JML has a special modifier, helper, for private methods that are not required to establish the class 
invariant. Not requiring that a private method establish the class invariant is only sound because 
methods of other classes cannot call it. In such cases, if private methods could be called by other 
classes, then the class invariant may not always hold prior to a later method call that expects it. 
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introduce additional side-effects into the postcondition of methods setValue and setFrom because
the invariant must hold on exit from these methods. 

Therefore, when invariant relationships are specified in the subclass, the required behavior of
subclass methods can be implicit. That is, subclasses like CellPlusInvariant are not necessarily
required to explicitly specify the behavior of overriding methods because the extending specifications
are formed by conjoining the subclass invariant with the pre- and postconditions of the inherited
specifications. Hence, the subclass invariant specifies how subclass fields (e.g., _diff) are to be
modified by overriding methods with additional side-effects, as in Figure 2.5. 

However, without superclass code, it is not possible to know whether the subclass invariant has
been established prior to making a downcall to a non-private13 method. For example, a superclass
method, M, could modify variables that invalidate a subclass invariant; if this occurs, it is unsafe for M

13.Private methods are not involved in the downcall problems described here because they cannot be 
called or overridden by other classes. See subsection 2.6.4 to see how private methods are handled in 
our technique.

_________________________________________________________________________

public class CellPlusInvariant extends CellPlusPrevious {

  /*@ public normal_behavior
    @   assignable value, oldVal;
    @   ensures value == initVal && oldVal == initVal;
    @*/
  public CellPlusInvariant(int initVal);
}

Figure 2.4:   CellPlusInvariant's public specification, from CellPlusInvariant.jml-refined.
_________________________________________________________________________

_________________________________________________________________________

//@ refines "CellPlusInvariant.jml-refined";

public class CellPlusInvariant extends CellPlusPrevious {

   protected int _diff;
   //@            in value, oldVal;

   //@ protected invariant _diff == Math.abs(value - oldVal);
}

Figure 2.5:   CellPlusInvariant's protected specification, from CellPlusInvariant.jml.
_________________________________________________________________________
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to self-call down to a subclass method since it requires and assumes that this invariant holds. Consider,
for example, the implementations of classes CellPlusPrevious and CellPlusInvariant given
in Figures 2.6 and 2.7 respectively. Method copyFrom of CellPlusPrevious calls down to method
getChange of CellPlusInvariant which expects the subclass invariant given in Figure 2.5 to
hold. Since this invariant involving _diff may not hold, the return value may no longer satisfy
copyFrom’s superclass specification, i.e., it will always return the old value of _diff. 

However, such problems involving subclass invariants will often be prevented by the required
method overrides of the above Additional Side-Effects Overriding Rule. That is, the notion of data
groups (from subsection 2.2.1) can be used as a way of conservatively detecting which superclass and
subclass variables might be related by an invariant. For example, if assignment to a superclass variable
requires changing a subclass variable in order to satisfy a subclass invariant (as in
CellPlusInvariant of Figure 2.5), then these variables have to be members of the same superclass
data group14. Furthermore, when an inherited superclass method M can modify the fields in this data
group, then M can have additional side-effects. Therefore, relationships between variables, as in
CellPlusInvariant of Figure 2.5, require an override based on the Additional Side-Effects
Overriding Rule; also, the overriding method must ensure that the subclass invariant holds on exit. 

Furthermore, even though the subclass invariant is conjoined with the post-condition of every
instance method, this does not necessarily require that all superclass methods be overridden. That is,
we only have to require an override when it is necessary to make sure the subclass invariant holds on
exit from a superclass method. Therefore, a subclass invariant only requires an override if the
superclass method has side-effects that could change or invalidate the invariant, i.e., when it has
additional side-effects. 

2.2.3  The Additional Side-Effects Invalidation Rule
The concept of additional side-effects has another important purpose as related to super-calls.

Superclass methods can have unexpected behavior if they have unexpected additional side-effects. Our
first invalidation rule prevents subclass methods from making super-calls to methods with unexpected
or unverifiable additional side-effects. We say that a superclass method is invalidated by a subclass if
the superclass method may no longer satisfy its superclass specification or its behavior with respect to
subclass fields is unverifiable without the superclass code. 

Since subclass variables are not visible in the superclass, superclass methods can only have
additional side-effects if they make downcalls to methods that assign to subclass variables. For
example, consider again the Java implementation in Figure 1.7; the Additional Side-Effects Overriding
Rule above says that CellPlusTotal must override the two methods shown. Calling the superclass
method to satisfy the inherited superclass specification and then updating _totalChg seems like an

14.Chapter 3 also requires these data group relationships as part of our technique for alias control. 
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obvious implementation of these methods. However, these implementations will only be correct if we
can guarantee that the subclass fields are not changed during the super-calls. This cannot be guaranteed
because the superclass implementation of method setFrom shown in Figure 1.8 makes a downcall to
setValue; this may introduce unexpected side-effects to variable _totalChg that result in incorrect
behavior, i.e., _totalChg may be updated twice. Hence, such super-calls cannot safely be reasoned

________________________________________________________________________

public class CellPlusPrevious extends IntCell {

  protected int _prevValue;

  ...
  public int copyFrom(IntCell c) {
      _prevValue = _val;
      _val = c.getValue();
      return getChange(); // expects any class invariants to hold
  }
}

Figure 2.6:  A fragment of CellPlusPrevious's implementation from the file CellPlusPrevious.java.
_________________________________________________________________________

_________________________________________________________________________

public class CellPlusInvariant extends CellPlusPrevious {

  protected int _diff;

  public CellPlusInvariant(int initVal) {
      super(initVal);
      _diff = 0;
  }

  ...
  public int getChange() {
      return _diff;
  }
  public int copyFrom(IntCell c) {
      _diff = super.copyFrom(c);  // incorrect because of downcalls
      return _diff;
  }
}

Figure 2.7:  A fragment of CellPlusInvariant's implementation from the file CellPlusInvariant.java.
_________________________________________________________________________
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about without superclass code (or more information) because they may call down to a method with
additional side-effects15. To prevent such super-calls, we introduce the following invalidation rule. 

Additional Side-Effects Invalidation Rule. Let S be a subclass of C. Let S specify that superclass
method (or constructor) C::M can have additional side-effects on field W. If C::M self-calls down
to a method S::N that is allowed to modify W, then C::M may not be super-called by any method
(or constructor) of S. 

The above rule says that a superclass method is invalidated and cannot be called by the subclass, if
it directly or indirectly makes a downcall to a method that may have additional side-effects (this can be
determined from C::M’s subclassing contract). For example, the incorrect implementation of
setFrom, shown in Figure 1.7, would not be allowed because it makes a super-call to an invalidated
method. That is, because of the downcall to method setValue (that may modify _totalChg), the
method setFrom in Figure 1.8 cannot be super-called by methods in CellPlusTotal of Figure 1.7.
(The downcall would be indicated in the callable clause of IntCell :: setFrom.) Therefore, we say
that IntCell :: setFrom has been invalidated by the subclass CellPlusTotal based on the
Additional Side-Effects Invalidation Rule. 

On the other hand, the super-call in the implementation of setValue, shown in Figure 1.7, would
be permitted by this rule, since IntCell :: setValue has not been invalidated by the new subclass;
that is, it does not make any downcalls. 

In the statement of the above rule, M and N may refer to the same method, e.g., when M is
recursive; thus a method with additional side-effects is always invalidated by the subclass if it is
recursive. Also, the rule includes constructors since superclass constructors can be invoked by subclass
constructors, and when invoked from a subclass, they can have the same kinds of callback problems as
methods16. 

However, constructors cannot be overridden and the type of the object being initialized by a
constructor is determined statically, so, for constructors, the only problems that have to be avoided are
those introduced by super-calls. Therefore, constructors are not mentioned in the overriding rules but
are included in the invalidation rules, when applicable. 

In summary, we have given examples that show that anytime a superclass method M has additional
side-effects, then it may no longer satisfy its superclass specification or may have unverifiable
behavior (without superclass code) if it makes downcalls. That is, if M makes downcalls to methods
with additional side-effects, then, without superclass code, it is not possible to prove that these
modified subclass variables will have the correct value after the call. Furthermore, if M modifies a
superclass field that is constrained through a subclass invariant clause, then it may not be safe to make

15.In Section 2.8, we introduce an authorization rule that allows such super-calls if specific restrictions 
can be followed. 

16.Constructors can be viewed as methods invoked to initialize an object. 
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downcalls to methods that, on entry, may require that the subclass invariant hold. That is, we
illustrated with an example that, without superclass code (or more information), one may not be able to
prove that the subclass invariant holds prior to a downcall. Therefore, the above Additional Side-
Effects Invalidation Rule is needed so these superclass methods will not be super-called. 

2.3  Method Refinement
In the previous section we discussed the ramifications of adding new subclass variables and how

our technique controls and allows for the implementation of additional side-effects. However,
additional side-effects are not the only reason that a subclass specification may require a method
override. A method override is also required whenever the subclass refines (extends) the behavior of a
superclass method, even if there are no additional side-effects. In this section we describe a more
general overriding rule. This rule overlaps with the Additional Side-Effects Overriding Rule but does
not replace it. 

In particular, additional side-effects are not the only side-effects that could require an override. For
example, superclass methods that assign to any of the fields accessed by a subclass invariant may have
to be overridden to make sure the subclass invariant is not invalidated (our technique requires an
override since we assume the superclass code is unavailable17). Our next rule handles these more
general cases involving side-effects that could affect the validity of the subclass invariant. 

In addition, a method override may be required when a subclass explicitly extends the behavior of
a superclass method. For example, the superclass specifications of methods setValue and setFrom
are explicitly extended in Figure 2.2; the also in those specifications indicates that the superclass
specifications are being extended, i.e., refined. Therefore, in cases where the extended specifications
are explicit as in Figure 2.2, it should be obvious that an override is required. The override is needed so
the extended subclass specifications can be satisfied by the subclass implementation. Our next
overriding rule handles these cases where the subclass refines the superclass specification. 

Method Refinement Overriding Rule. Let S be a subclass of C. If the specification of S::M refines
the behavior of superclass method C::M, then C::M must be overridden. 

A subclass specification refines the behavior of a superclass method M if M can have side-effects
on fields referenced by a subclass invariant clause or if S::M has requires and/or ensures clauses
that extend M’s inherited behavior. Also, an ensures clause is not considered a refining specification
if its only assertion is a \not_assigned expression that prohibits additional side-effects (since the
purpose of such expressions is to avoid an override). Therefore, based on this definition, the behavior
of method C::M can be refined either by an explicit subclass specification, as in Figure 2.2, or through
a subclass invariant, as in Figure 2.4. 

17.If the superclass code is available, then the superclass method would have to be reverified or overrid-
den to ensure the subclass invariant holds. 
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Furthermore, we have defined refinement of method behavior so it can be used and applied
statically by our tool. Thus our tool will determine method refinement based on whether any of a
superclass method’s assignable fields are accessed by subclass invariant clauses18 and whether a
method’s subclass specification has requires or ensures clauses. 

The examples in Figures 2.2 and 2.4 also illustrate that the above rule overlaps with the Additional
Side-Effects Overriding Rule. However, the Additional Side-Effects Overriding Rule is still needed to
make sure a superclass method M is overridden if M makes downcalls to methods that may have
additional side-effects; this is necessary because, without the superclass code (or more information),
we cannot reason about M’s behavior with respect to the subclass fields modified by downcalls (also
detecting additional side-effects is easier than analyzing the subclass invariant and represents
clauses when determining whether an override is necessary, so this easier analysis can be done first by
the tool). 

Furthermore, the above method refinement rule is conservative because the rule (and the tool) do
not allow for a proof that a superclass method’s behavior does not invalidate the subclass invariant or
require an override. For example, when the subclass has invariant clauses, if the customizer can prove
that the postcondition of a superclass method implies the subclass invariant, then an override is not
necessary. Such a proof is trivial when a method does not assign to fields referenced by subclass
invariant clauses because such side-effects cannot change the invariant’s validity. Therefore, the
above rule does not require an override when a superclass method does not have side-effects that affect
the subclass invariant. Also, an override may not always be necessary when our tool detects side-
effects that are thought to affect the invariant. However, we do not believe this to be a problem with
our technique because the customizer would still have to do a proof that the invariant holds using the
superclass specification and code; thus this information is still useful to customizers because it warns
of potential problems. 

Furthermore, a superclass method will not necessarily be invalidated just because it had to be
overridden due to a refinement in its behavior. That is, a superclass method should not be invalidated
as long as it satisfies its superclass specification and does not assign to subclass fields; when this is
true, the superclass specification can be used in verification and in reasoning about super-calls because
super-calls are explicit and can be treated like static calls. 

However, when refining the specification of a superclass method, the specifier should make sure
the specifications do not conflict. That is, superclass method specifications are inherited by subclasses
in JML, so the inherited specification should not conflict with the subclass specification since both
have to be satisfied. Thus the combined specifications should not cause a method’s postcondition to be
false. For example, if the invariant in a subclass of IntCell requires that value always be positive,

18.Chapter 3 describes how our tool determines the fields accessed and the limitations of our technique.
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then this invariant would conflict with the postcondition of method setValue in Figure 1.2; that is,
the postcondition and invariant cannot both be satisfied when the parameter newVal is less than zero. 

2.4  Subclass Invariants
This section describes how our technique handles problems that may arise when the subclass

extends the superclass invariant, i.e., declares additional invariant clauses. In particular, we explain
why our invalidation rule and some of our assumptions are needed to prevent invalidation of the
subclass invariant and to prevent method calls while the subclass invariant does not hold. In subsection
2.4.1 we give an invalidation rule for preventing super-calls to methods that may make downcalls
while the subclass invariant is invalid. In subsection 2.4.2 we give a corresponding overriding rule that
makes sure self-calls and object-calls do not make downcalls while the subclass invariant does not
hold. In subsections 2.4.3 and 2.4.4, we explain why some of our assumptions are necessary for the
soundness of our technique, i.e., are necessary to prevent invalidation of subclass invariants. 

2.4.1  The Invariant Invalidation Rule
The above Additional Side-Effects Invalidation Rule (subsection 2.2.3) prevents super-calls when

that call may assign to a subclass field via downcalls; we do not allow such super-calls because,
without the superclass code (or more information), it may not be possible to verify or reason about the
state of the modified subclass fields. However, this invalidation rule is not strong enough to prevent all
super-calls to methods that may no longer satisfy their superclass specification, e.g., those that make
downcalls when the subclass invariant does not hold. Consider, for example, Figures 2.6 and 2.7. In
the implementation of method copyFrom of Figure 2.6, method getChange is called. However, the
super-call of copyFrom in Figure 2.7 cannot be allowed because the overriding getChange method
expects the subclass invariant to hold, i.e., it directly accesses the new subclass variable _diff. So
there is no way of verifying the behavior of superclass method copyFrom without superclass code (or
more information) and thus it must not be called from methods of CellPlusInvariant. 

However, this and other similar problems are not prevented by the above Additional Side-Effects
Invalidation Rule. For example, the above rule does not invalidate superclass method copyFrom of
Figure 2.6 because its only downcall is to getChange which does not modify _diff; in fact, super-
calls to copyFrom do not modify any subclass fields. Therefore, the above invalidation rule does not
disallow the incorrect implementation of copyFrom given in Figure 2.7. 

We could, however, consider strengthening the Additional Side-Effects Invalidation Rule so all
superclass methods with additional side-effects are invalidated if they also make downcalls. However,
this is also insufficient to prevent all the problems involving subclass invariants. For example, the
subclass invariant clauses may only reference and constrain superclass fields; so a superclass method
that invalidates the subclass invariant may not have additional side-effects. That is, additional side-
effects are not the only side-effects that could invalidate a subclass invariant. As explained above,
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assignments to any of the fields accessed by the subclass invariant could invalidate the subclass
invariant. 

Furthermore, strengthening this invalidation rule, in this way, would disallow super-calls that
should not be eliminated; that is, it would disallow some verifiably correct implementations because it
would, for example, invalidate superclass methods that make a downcall even though there are no
subclass invariant clauses (i.e., the subclass has the same invariant as the superclass). 

In summary, super-calls are safe if they satisfy their superclass specification and one can reason
about their side-effects on subclass variables. Thus a superclass method will satisfy its specification if
it does not make downcalls when the subclass invariant does not hold and does not make downcalls
that modify subclass fields19. Therefore, in addition to disallowing super-calls that modify subclass
fields via downcalls, our technique must also ensure that the subclass invariant holds prior to a method
call. Furthermore, a superclass method’s side-effects (if any) cannot invalidate a subclass invariant
since it cannot re-establish an invariant it knows nothing about. The next rule invalidates such
superclass methods when there is a subclass invariant that constrains assignable superclass fields. 

Invariant Invalidation Rule. Let S be a subclass of C. Let V be a concrete instance variable visible in
C. Let S specify an invariant that accesses and constrains the value of V. If superclass method C::M
can assign to V and it makes a self-call, then C::M may not be super-called by any method (or
constructor) of S. 

The above rule disallows the incorrect implementation of Figure 2.7; that is, methods allowed to
assign to value or oldVal may invalidate the subclass invariant because the subclass invariant
indirectly accesses concrete fields _val and _prevValue through value and oldVal respectively.
Hence, methods that also make downcalls would be invalidated, e.g., method copyFrom would be
invalidated by the downcall to getChange. We have to disallow such super-calls because, as in this
example, the superclass method may no longer satisfy its specification. 

Our tool and technique are conservative because they assume that the superclass invariant does not
imply the subclass invariant; however, if the customizer can prove this, then that method would not
have to be invalidated. Furthermore, this rule will invalidate a superclass method even though all of its
downcalls are made at a point where the subclass invariant holds, e.g., prior to any of that method’s
side-effects. Therefore, if the superclass code is available, then one may be able to reverify the
superclass code in the context of the new subclass; that is, one may be able to prove that the subclass
invariant always holds whenever an overridden method is downcalled. 

Our approach, however, is to require an override (the Method Refinement Overriding Rule in
Section 2.3) and to disallow super-calls to such methods (the above Invariant Invalidation Rule).
Nonetheless, our tool would still be useful to customizers when superclass code is available because it
warns when reverification is necessary and when there are potential problems in the implementation. 

19.This claim is formalized and proven in Chapter 4. 
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Our tool will enforce the Invariant Invalidation Rule by analyzing the assertions in the subclass
invariant clauses to determine which superclass fields are accessed and by determining whether these
fields are assignable, i.e., whether these fields are referenced in a method’s assignable clause (see
Chapter 3 for more details on the issues involved in determining the fields accessed in an invariant and
how this would be done). 

Note also that this rule has to prevent a superclass method from being called when it makes self-
calls, not just downcalls. That is, because subclasses lower in the hierarchy than S may override the
method being self-called, we have to consider all self-calls to be potential downcalls. Thus this rule
must invalidate superclass methods that make self-calls when S’s invariant may have been invalidated. 

2.4.2  The Invariant Overriding Rule
Downcalls can also occur during a self-call of an unoverridden superclass method. For example,

methods setValue and setFrom in CellPlusInvariant (Figure 2.4) are allowed to modify
value and oldVal which could invalidate the subclass invariant. Therefore, our technique must
require an override when a superclass method assigns to fields that could invalidate the subclass
invariant. This rule is similar to the Invariant Invalidation Rule except that we require an override to
prevent self-calls to invalidated superclass methods. 

Invariant Overriding Rule. Let S be a subclass of C. Let V be a concrete instance variable visible in
S. Let S specify an invariant that accesses and constrains the value of V. If superclass method C::M
can assign to V, then C::M must be overridden in S. 

Clearly such methods will usually have to be overridden since the superclass knows nothing about
subclass invariants. However, in general, it is possible that all super-class methods establish the
subclass invariant; since this would require a proof, our technique assumes that assignments to
superclass variables invalidate the subclass invariant. 

2.4.3  Explicit Parameter Objects
The rules given so far deal with problems caused by side-effects to fields of the implicit receiver

parameter (this in Java and C++). Our technique prevents these problems by overriding and
invalidating superclass methods and constructors. We would like to generalize these rules to handle
side-effects on explicit parameter objects. However, in a single dispatch language like Java we cannot
override methods based on the types of a method’s explicit arguments; they can only be overridden
based on the type of the receiver object.20 

Consider, as an example of these problems, Figure 2.8. A new method setTo has been added to
the public specification of class IntCell in that Figure; this method modifies the state of its argument
c by assigning its own value field to the value field of c. Figure 2.9 shows a possible

20.In the conclusion (Chapter 7), we consider the application of our rules to multiple dispatch lan-
guages, like MultiJava [CLCM00, Cli01], that allow overrides based on explicit argument types.
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implementation. However, c.setTo must also establish the subclass invariant when the receiver c has
type CellPlusInvariant. Furthermore, when implementing method setTo, all classes must satisfy
the specification given in Figure 2.10. This specification is implicit and comes into play as soon as
there can be objects of type CellPlusInvariant in the program. 

The implementation in Figure 2.9 creates problems because it directly assigns to a field of c,
which may invalidate the subclass invariant in c. Even unrelated classes in the same package must
satisfy this subclass invariant if they change the value of a cell object passed as an explicit argument.
This example shows that, in a single dispatch language like Java, these kinds of problems cannot be
eliminated by method overrides21. 

_________________________________________________________________________

public class IntCell {

   //@ public model int value;      // model variable

  /*@  public normal_behavior
    @    assignable value;
    @    ensures value == initVal;   @*/ 
  public IntCell(int initVal);

...  // other methods are the same as in Figure 1.2

  /*@  public normal_behavior
    @    requires c != null;
    @    assignable c.value;
    @    ensures this.value == c.value;  @*/ 
   public void setTo(IntCell c);
}

Figure 2.8:  Part of the public specification of IntCell in file IntCell.jml-refined. 
_________________________________________________________________________

__________________________________________________________________________

public class IntCell {
  protected int _val;
  ...
  public void setTo(IntCell c) {
      c._val = _val;
   }
}

Figure 2.9:   An incorrect implementation of method setTo for class IntCell. The code for setTo violates our 
assumptions, because it directly assigns to fields of another object.
__________________________________________________________________________
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Furthermore, direct assignment to instance variables of any object, other than the receiver, can
lead to similar problems that cannot be avoided by method overrides. Therefore, one cannot safely
assign to fields of any object other than the receiver because that object may have unknown subclass
invariants. 

In addition, object-calls to an unoverrideable method with side-effects can also lead to similar
problems. In fact, if a method M makes an object-call to an unoverrideable method o.N, then any
assignments by N to an instance variable V will have the same effect as M making direct assignments
to o.V, a field of an object other than the receiver. This is because N cannot be overridden so that it
establishes a subclass invariant involving V22. 

In summary, if the type of an object is extensible, then the invariants of all possible subclass
objects, including unknown new ones, must be established when modifying fields of that object. Thus
direct assignment to fields, other than those of the receiver, are unsafe in general because some new
subclass could cause those assignments to invalidate an invariant. Furthermore, such direct
assignments are not modular, i.e., they require whole program knowledge of all subclasses that have an
invariant involving subclass variables. In addition, all methods that directly assign to fields of an
object (other than the receiver) might have to be rewritten in order to establish a new invariant anytime
a new subclass is created and this subclass adds to the class invariant; this cannot be done for
superclass methods if superclass code is unavailable. 

Direct assignment to fields, other than those of the receiver, can also introduce unexpected
behavior when subclass methods have additional side-effects. For example, consider again the
implementation of method setTo given in Figure 2.9. When argument c has dynamic type

21.This problem is closely related to the well-known “binary method problem” [BCC+95].
22.However, this is also a problem for subclasses in general because, in such cases, the subclass would 

have a method that when called does not establish the subclass invariant. Therefore, in our technique, 
such subclasses are considered unimplementable (see subsection 2.9.3 ). 

_________________________________________________________________________

  /*@ also
    @ implies_that
    @ protected normal_behavior
    @   requires c instanceof CellPlusInvariant;
    @   assignable c.value, ((CellPlusInvariant)c)._diff;
    @   ensures ((CellPlusInvariant)c)._diff
    @                   ==  Math.abs(c.value - \old(c.value));
    @*/
  public void setTo(IntCell c);

Figure 2.10:  Implicit specification of method setTo that must be satisfied by all classes because of the subclass 
invariant in CellPlusInvariant. 
_________________________________________________________________________
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CellPlusPrevious (Figures 2.2 and 2.3), then _prevValue will not be updated with the previous
value of the cell, which clients would probably expect. However, a (possibly) worse case occurs when
c has dynamic type CellPlusTotal (Figures 1.4 and 1.6); in this situation, c._totalChg is not
being updated when c.value is changed. Therefore, _totalChg will no longer reflect the total
changes made to the cell’s value since its instantiation. These two examples illustrate how some rather
obscure bugs can be introduced when our restrictions on assignment are not followed. 

Our technique avoids these problems by disallowing assignment to fields of objects other than the
receiver, and by disallowing object-calls to unoverrideable methods (such as private methods) if they
have side-effects (see assumptions in subsection 1.6.6). In fact, because of subclass invariants, our
restrictions on assignment seem to be necessary unless the type of the object is unextensible23.
Furthermore, from a software engineering perspective, these restrictions seem to be good practice
because they simplify the reuse of superclasses. It is also our belief that non-private methods with side-
effects should always be overrideable if they are members of an extensible class (see subsections 2.9.2
and 2.9.3). 

Our restrictions on object-calls and assignment can certainly be incorporated into a programming
method for creating large systems. This is illustrated by the existence of large Smalltalk systems; all
methods in Smalltalk are overrideable and Smalltalk’s scope rules do not allow methods to access or
assign to fields of objects other than the receiver. 

A correct implementation of setTo is given in Figure 2.11. In this implementation, c.value is
modified by a call to the non-private method setValue and this method would have been overridden
so that the subclass invariant is properly established. Therefore, our assumptions require that all side-
effects to objects, other than the receiver, be accomplished indirectly through calls to overrideable
methods that are required to establish the class invariant (e.g., calls to private methods are not
allowed). In this way, the incorrect implementation given in Figure 2.9 is not allowed and an
implementation like the one given in Figure 2.11 is required24. 

Another important point, however, must be considered when reasoning about methods that modify
the state of argument objects. Our restrictions ensure that the subclass invariant is properly established,
but a client can only safely reason using the specification of the type of the receiver object. For
example, if c has type CellPlusInvariant and the receiver has type IntCell, then the client can
only reason about the behavior of setTo using the specification of IntCell (Figure 2.8). That is, the
client can reason about the value of c.value (since this is specified), but not about c.oldVal or

23.One could, however, consider allowing direct assignment to fields of objects that have an unextensi-
ble type, e.g., final classes in Java. However, all invariants and the fields involved would have to be 
appropriately visible in the context of the assignments so the invariants could be maintained. 

24.One could “loosen” these restrictions in situations where the dynamic type of the object is known, 
but, in general, the type will not be known, and in particular, the type cannot be determined when 
explicit parameters are involved.
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c._diff. To understand why, consider the implementation of setTo given in Figure 2.12. This
implementation satisfies IntCell’s specification (and our assignment restrictions), but variable
c.oldVal may be left unchanged, or it could equal either the pre-state or post-state value of
c.value, depending on how many times c.setValue is called. Therefore, without the superclass
code, one can only reason in general from the specification of the static type of the receiver. 

However, in the rare and unlikely case that 0, 1, or n calls to the methods listed in the callable
clause all produce the correct (same) result, then one may be able to verify, without superclass code,
that the superclass method making the object-call will assign the correct values to the subclass
variables.

2.4.4  Temporary Side-Effects
A method has temporary side-effects if it changes an instance variable and then restores the

original value before it returns. There are two kinds of problems that can arise when new instance

__________________________________________________________________________

public class IntCell {
  protected int _val;
  ...
  public int setTo(IntCell c) {
      c.setValue(_val);
   }
}

Figure 2.11:   A correct implementation of method setTo for class IntCell. The code for setTo no longer vio-
lates our assumptions, because it no longer directly assigns to fields of another object.
__________________________________________________________________________

__________________________________________________________________________

public class IntCell {
  protected int _val;
  ...
  public void setTo(IntCell c) {
      if (this.equals(c)) {
          return;
      } else if (_val < 0) {
          c.setValue(_val);
          c.setValue(_val);
      } else {
          c.setValue(_val);
      }
   }
}

Figure 2.12:   Another implementation of method setTo for class IntCell. 
__________________________________________________________________________
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variables are added to a subclass and a method has temporary side-effects. First, a problem can arise if
a superclass method makes a downcall to a method with additional side-effects but the original value
of the subclass field is never restored. For example, consider the implementation of
CellPlusPrevious shown in Figure 2.13. In that figure, method difference is implemented using
the setFrom and getChange methods. This implementation will not work properly when called from
subclass CellPlusInvariant, because setFrom has additional side-effects that are not handled.
That is, _diff will not be restored, in violation of the assignable clause of method difference.
Furthermore, the invariant will no longer hold. Therefore, difference must be overridden and
cannot be super-called by methods of CellPlusTotal. 

A second problem can arise when a superclass method makes a downcall before the original value
has been restored; this is illustrated by the implementation of subclass CellPlusPrevious given in
Figure 2.14. In this figure only the method getChange, which has no additional side-effects, is used in
the implementation of difference. However, even this implementation may not work correctly
when called from a subclass like CellPlusInvariant of Figures 2.4 and 2.5, because the subclass
invariant is not established before getChange is called. Since difference might not work correctly,
it cannot be super-called by methods of CellPlusInvariant and would have to be overridden. 

The first problem described is detected by JML’s typechecker, that is, JML does not allow
assignments to a subclass variable via downcalls unless the assignments are permitted by the method’s
assignable clause. But the second problem cannot be detected using only the specifications of a
method’s behavior because the downcall has no additional side-effects; that is, it cannot be determined
that difference has to be overridden unless the variables that have been temporarily changed appear

__________________________________________________________________________

public class CellPlusPrevious extends IntCell {
  protected int _prevValue;
  ...
  public int setFrom(IntCell g) { ... }
  public int getChange() { ... }
  public int difference(IntCell c) {
      int saveVal = _val;
      int saveOld = _prevValue;
      setFrom(c);
      int d = getChange();
      _val = saveVal;
      _prevValue = saveOld;
      return d;
   }
}

Figure 2.13:   An implementation of class CellPlusPrevious. The code for difference violates our assump-
tions, because it uses temporary side-effects.
__________________________________________________________________________
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in the assignable clause. Therefore, JML does not allow temporary side-effects25; that is, in JML,
variables may not be changed, even temporarily, by a method (or a method it calls) unless they are
directly or indirectly (through a data group relationship) mentioned in the assignable clause. In this
way, the additional side-effects overriding and invalidation rules can be used to prevent downcall
problems even if variables are temporarily changed. 

JML's semantics for the assignable clause is more restrictive than necessary since JML does not
allow methods to temporarily change and then restore variables without including these variables in
the assignable clause. That is, ignoring concurrency, it may only be necessary that temporary changes
be disallowed around calls to non-private methods so the invariant holds when these methods are
called. With this assumption, it suffices to interpret assignable clauses as only pertaining to
modification of the value of variables between the pre- and post-states of a method; this less restrictive
interpretation, however, is difficult to check statically, whereas the JML rule is easier to check
statically. 

2.4.5  Downcalls by Constructors
Some slightly different problems can occur when superclass constructors make downcalls. For

example, the subclass invariant may not have been established prior to the downcall or, worse yet, the
downcall may result in abnormal termination because a field contains a null pointer instead of a valid
object reference. These problems can arise because subclass variables do not have to be initialized and

25.In part, JML also disallows temporary side-effects because they cause problems for reasoning about 
concurrent programs.

__________________________________________________________________________

public class CellPlusPrevious extends IntCell {
  protected int _prevValue;
  ...
  public int getChange() {
      return Math.abs(_val - _prevValue);
  }
  public int difference(IntCell c) {
      int saveOld = _prevValue;
      _prevValue = c.getValue();
      int d = getChange();
      _prevValue = saveOld;
      return d;
  }
}

Figure 2.14:   Another implementation of class CellPlusPrevious, which also has temporary side-effects.
__________________________________________________________________________
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the type invariant does not have to hold prior to the invocation of a constructor. Our next rule disallows
a superclass constructor call if it makes downcalls and the subclass contains an invariant clause. 

Constructor Invariant Invalidation Rule. Let S be a subclass of C. If S specifies a subclass invariant
and constructor C::M self-calls down to a method S::N, then C::M may not be super-called by
constructors of S. 

Notice that this rule is more conservative than the rule for methods (subsection 2.4.1) because,
unlike constructors, the subclass invariant is established prior to the call of any superclass or subclass
methods. Furthermore, a superclass method has to establish the superclass invariant prior to any
downcalls so the only way a superclass method can invalidate the subclass invariant prior to a
downcall is through its assignments to superclass fields. However, invariant relationships involving
subclass variables will not change unless they are related to a modified superclass field. Therefore, a
superclass method only has to be invalidated when its modification of superclass fields may invalidate
the invariant specified in the subclass. Hence, the Invariant Invalidation Rule (subsection 2.4.1) only
invalidates methods that make downcalls when a subclass invariant clause accesses one of the
modifiable superclass fields. 

Another related problem can occur when a superclass constructor makes a downcall to a method
that accesses subclass variables before they have been properly initialized (subclass fields will not
normally be initialized prior to a superclass constructor call). Furthermore, this problem may arise
whether or not there is a subclass invariant clause; thus the next rule is necessary to prevent
constructors from making downcalls before subclass fields have been initialized. 

Constructor Initialization Invalidation Rule. Let S be a subclass of C. Let W be an instance variable
directly or indirectly declared in S. If constructor C::M self-calls down to a method S::N that
directly or indirectly accesses the value of W, then C::M may not be super-called by constructors
of S. 

This rule is conservative because it assumes subclass fields do not have valid values until after the
subclass constructor has been executed; however, this can sometimes be avoided through some special
coding tricks (see subsection 2.9.4.2). 

Furthermore, in Java, the first statement of every constructor is a call to a superclass constructor;
this is part of the semantics of Java. This constructor call can be explicit or implicit; the default
constructor of the superclass is implicitly called when this statement is omitted in the subclass.
Therefore, implementers of a subclass have to be careful when the superclass’s default constructor is
implicitly called. This implicit call has to be listed in the callable clause of the subclass constructor.
Because of this required constructor super-call, a subclass will be unimplementable if all superclass
constructors have been invalidated by the subclass. 
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2.5  Mutually Recursive Methods
So far we have described the way our technique handles additional side-effects when subclass

fields are related to superclass fields. Now we want to explain how our technique handles termination
issues. 

Potential nontermination may arise when new methods insert themselves into cycles of mutually
recursive methods. This section describes rules that make termination proofs possible when the code
for mutually recursive superclass methods is not available. The purpose of the rules in this section is to
prevent callback cycles involving both superclass and subclass methods. 

A callback cycle occurs when a method, M, makes a call to another method, which then calls back
to M (perhaps indirectly). A callback cycle means there is a cycle in the call graph, and thus there is
potential for non-termination. The following rule prevents callback cycles in the call graph that would
make a termination proof impossible without the superclass code or more detailed information26. 

Callback Cycle Overriding Rule. Let P be an overriding method in a subclass. If P self-calls a
superclass method M that self-calls back directly or indirectly to P, then M must be overridden. 

Because the above rule is applied repeatedly until all methods in the cycle have been overridden,
the callback cycle rule ensures that all methods in a call graph cycle are overridden if any method in
the cycle is overridden. The rule ensures that a callback cycle does not include both superclass and
subclass methods. However, a callback cycle that occurs in the superclass will not occur in the
subclass if the cycle is broken by one of the subclass methods. For example, consider Figure 2.15 in
which the callable clauses show that method search may call searchLeft which may call
searchRight which then may call back to search. However, this cycle does not occur in the
subclass, if search is overridden so it satisfies its specification, but this time without calling back to
searchLeft or searchRight. Therefore, when searchRight calls down to search, there is no
recursion; so search will terminate in a state satisfying its specification, and so will searchRight.
Thus, in this case, the callback cycle rule does not require that either searchLeft or searchRight be
overridden. 

Another related problem occurs with mutually recursive callbacks among methods of different
objects. However, our technique assumes, as stated in subsection 1.6.6, that groups of mutually
recursive methods do not contain methods from unrelated classes. This seems to be needed for
soundness because overriding all methods involved in such a cycle does not prevent nontermination,

26.Other features of a specification language, such as JML's measured_by clause, may make termina-
tion proofs possible in such cases, but these are outside the scope of this dissertation; our main pur-
pose is to identify situations where a superclass and one of its subclasses interact such that 
unexpected behavior may arise. These situations are used to demonstrate what additional information 
needs to be provided so a correct subclass can be implemented even though superclass code is 
unavailable and method behavior is specified informally.
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that is, overrides cannot prevent the callback cycle from including both superclass and subclass
methods. Consider for example Figure 2.16. In that figure, suppose A and C are classes for which no
code is available. Also, methods A::M and C::N are mutually recursive with A::M taking an argument
of type C27 and C::N taking an argument of type A. Figure 2.16 also shows subclasses B of A and D of
C that override M in B and N in D. However, these overrides do not help the termination proof. For
example, in Main::main the call to B::M passes an actual argument of type C, not one of type D.
Therefore, C::N rather than D::N will be called; this could lead to nontermination because the
superclass code for C::N is not available. 

Thus our technique must prevent the kinds of nontermination problems described above. To
accomplish this, our technique must invalidate those superclass methods that involve mutually
recursive callbacks whenever termination cannot be proved. Therefore, our rules must always prevent
a callback cycle that includes both superclass and subclass methods because we assume the superclass
code is not available. For this reason, some super-calls cannot be allowed. Consider, for example, the
implementation of CellPlusPrevious and CellPlusInvariant shown in Figures 2.17 and 2.18.

27.It could instead access a field of type C in one of its arguments.

________________________________________________________________________

public class C {

  /*@ 
    @ protected code normal_behavior
    @   callable searchLeft(int );
    @*/
  public void search(int val);
}

  /*@ 
    @ protected code normal_behavior
    @   callable searchRight(int );
    @*/
  public void searchLeft(int val);

  /*@ 
    @ protected code normal_behavior
    @   callable search(int val);
    @*/
  public void searchRight(int val);

Figure 2.15:   An example of a callback cycle involving methods search, searchLeft, and searchRight.
________________________________________________________________________
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The subclass method setFrom super-calls copyFrom which immediately calls back down to
setFrom thereby creating a nonterminating loop. To avoid such potential nontermination problems,
subclass methods cannot make super-calls that insert a superclass method into a callback cycle. The
following invalidation rule accomplishes this. 

________________________________________________________________________

public class A {

  /*@ 
    @ protected code normal_behavior
    @   callable pC.N(A );
    @*/
  public void M(C pC);
}

public class C {

  /*@ 
    @ protected code normal_behavior
    @   callable pA.M(C );
    @*/
  public void N(A pA);
}

public class B extends A {
  public void M(C pC) { ... pC.N(this); ... }
}

public class D extends C {
  public void N(A pA) { ... pA.M(this); ... }
}

public class Main {

  static int main (...) {
      C vC = new C();
      B vB = new B();
      vb.M(vC);  // calls B.M which calls C.N (code is not available)
  }
}

Figure 2.16:   An example of a callback cycle involving methods of more than one class.
________________________________________________________________________
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Callback Cycle Invalidation Rule. Let S be a subclass of C. Let P be an overriding method in S. If a
superclass method M directly or indirectly self-calls down to method S::P, then C::M cannot be
super-called by S::P. 

Notice that this rule does not invalidate method M for all subclass methods; it only says that a
subclass method S::P cannot super-call methods that call back to S::P. This rule disallows the
implementation in Figures 2.17 and 2.18 because superclass method copyFrom is invalidated with
respect to the subclass method setFrom, i.e., the super-call in Figure 2.18 inserts a superclass method
into a callback cycle which could, and in this case does, lead to nontermination. 

________________________________________________________________________

public class CellPlusPrevious extends IntCell {

  protected int _prevValue;

  ...
  public void setFrom(IntCell c) {
      _prevValue = _val;
      _val = c.getValue();
  }
  public int copyFrom(IntCell c) {
      setFrom(c);
      return getChange(); // expects any class invariants to hold
  }
}

Figure 2.17:  A fragment of CellPlusPrevious's implementation from the file CellPlusPrevious.java.
_________________________________________________________________________

_________________________________________________________________________

public class CellPlusInvariant extends CellPlusPrevious {

  protected int _diff;

  ...
  public void setFrom(IntCell c) {
      _diff = super.copyFrom(c);
  }
}

Figure 2.18:  A fragment of CellPlusInvariant's implementation from the file CellPlusInvariant.java.
_________________________________________________________________________
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2.6  Private Variables and Methods
In JML, variables and methods cannot appear in the public or protected specifications if they are

not in scope in these specifications. For example, in Java, only fields and methods with public or
protected visibility are visible to subclasses. Therefore, without some additional mechanism, private
members would not be allowed to appear in the public or protected specifications used by our
technique. However, private fields and methods need to be handled by our technique because, when
superclass methods call methods or assign to variables that are not visible to subclasses, it is not
possible to know the effect of these calls and changes on private instance variables without the
superclass code or more information. The rest of this section provides examples that further illustrate
the need for a way to handle the private fields and methods of a class and describes how our technique
accomplishes this; we also describe an alternative way that private fields could be handled. 

2.6.1  Maintaining private superclass fields
When creating a subclass, the customizer needs to know whether or not a superclass method is

maintaining variables that are not visible to the subclass, e.g., assigns to private variables. A subclass
needs to know when its superclass has such fields because the subclass may need to make super-calls
in order to update those variables28. This information is needed when overriding a superclass method
that has side-effects. 

To illustrate the need for our special handling of fields that are not visible to subclasses, consider
for example, the public and private specifications of class CellPlusPrivate given in Figures 2.19
and 2.20. Notice that this example is equivalent to class CellPlusInvariant given in Figures 2.4
and 2.5 except that _diff and the invariant are declared with private rather than protected visibility.
Also, the protected specification would have to be empty because there are no protected fields or
methods. If a new subclass of CellPlusPrivate needs to override method setFrom, then, because
oldVal is assignable (see Figure 2.2), the concrete field _diff must also be changed. However,
because _diff is not visible to the subclass, the overriding subclass method must make a super-call to
setFrom, otherwise the superclass specification will not be satisfied, that is, the superclass invariant
in Figure 2.20 will not be satisfied. 

However, the customizer, who only sees the public and protected specification, will not know that
CellPlusPrivate declares a private field (Figure 2.20 would not be available). This example shows
that subclasses usually need to know about superclass variables that are not visible to the subclass
because, in such cases, a subclass method must make super-calls whenever such superclass variables
need to be maintained. Specifically, an overriding subclass method needs to make a super-call so the

28.Package visible fields would have to be handled, in our technique, in the same way as private fields 
because they are not visible to all subclasses. However, in this dissertation, we assume that classes 
do not declare package visible members (see assumptions in subsection 1.6.6 and explanation in sub-
section 2.9.5). 
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private instance variables satisfy the inherited specification, which includes the private specification
(even though our technique does not use the private specification in reasoning because it is not seen by
customizers). 

Therefore, to handle such situations, our technique requires that all private variables be declared
with the spec_protected modifier (see assumptions in subsection 1.6.6). This JML modifier allows
private fields and methods to have private visibility in the Java implementation but protected visibility
in JML specifications. Figure 2.21 shows what the protected specification would look like when the
spec_protected modifier is used. Note that the invariant can now be included in the protected
specification (as required by our assumptions) because _diff has protected visibility in this
specification. Furthermore, the private specification of Figure 2.20 would now be redundant and would
no longer be necessary. In this way, our technique always allows customizers to know about private
fields so the customizer knows to make a super-call when these private fields need to be updated. 

To ensure that the required super-calls are made, we now introduce the Mandatory Super-Call
Rule. 

_________________________________________________________________________

public class CellPlusPrivate extends CellPlusPrevious {

  /*@ public normal_behavior
    @   assignable value, oldVal;
    @   ensures value == initVal && oldVal == initVal;
    @*/
  public CellPlusPrivate(int initVal);
}

Figure 2.19:   CellPlusPrivate's public specification, from CellPlusPrivate.jml-refined.
_________________________________________________________________________

_________________________________________________________________________

//@ refines "CellPlusPrivate.java";

public class CellPlusPrivate extends CellPlusPrevious {

   private int _diff;
   //@         in  value, oldVal;

   //@ private invariant _diff == Math.abs(value - oldVal);
}

Figure 2.20:   CellPlusPrivate's private specification, from CellPlusPrivate.refines-java.
_________________________________________________________________________
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Mandatory Super-Call Rule. Let S be a subclass of C. Let V be an instance variable declared in C.
Let V’s data group contain private variables. If S has to implement a new or overriding method (or
constructor) M that modifies V, then S::M can only modify V (along with the private variables in
V’s data group) by directly or indirectly super-calling methods (or constructors) of C. 

Our tool will enforce this rule by disallowing subclass methods from making direct assignments to
a superclass field when it is a member of a data group V that also contains private superclass fields.
This rule also means that when a class declares private fields, then more of its subclasses could become
unimplementable; this is because the rule only requires a super-call when there are fields that cannot
be directly assigned in the subclass. Furthermore, the needed superclass method may have been
invalidated so the required super-call would not be allowed, and this may make the subclass
specification unimplementable without superclass code (see subsection 2.9.3). This is also why we
suggest that concrete fields be declared with protected visibility in extensible classes. 

Note that the above rule also applies to indirectly declared variables of a private field; thus such
indirectly declared fields have to be mapped into a data group so subclasses know when a super-call is
required. 

In summary, our technique requires that all private variables be declared with the spec_protected
modifier so they can appear in the protected specification (see assumptions in subsection 1.6.6); this
enables the customizer (and our tool) to determine when private (or package visible29) superclass
fields have to be modified and maintained through super-calls. 

2.6.1.1 An alternative approach
The use of the spec_protected modifier makes it possible to include the private implementation

details of a superclass in the protected specification used by customizers. This assumption simplifies

29.For simplicity, we do not consider package (default) visible methods and variables in this disserta-
tion (see assumptions in subsection 1.6.6 and the explanation in subsection 2.9.5). 

_________________________________________________________________________

//@ refines "CellPlusPrivate.jml-refined";

public class CellPlusPrivate extends CellPlusPrevious {

   /*@ spec_protected @*/ private int _diff;
   //@                                in  value, oldVal;

   //@ protected invariant _diff == Math.abs(value - oldVal);
}

Figure 2.21:   CellPlusPrivate's protected specification, from CellPlusPrivate.refines-java.
_________________________________________________________________________
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and makes our soundness proof more regular. However, library providers may not want to make these
details available to customizers. Therefore, this section presents an alternative way of handling private
variables, i.e., allowing the above Mandatory Super-Call Rule to be applied but without exposing
private variables to subclasses. 

Our alternative approach is to place some restrictions on the way private fields are handled in the
private specification30. First we would require that private (and package visible) fields be members of
a public or protected data group visible to subclasses. We would also restrict the data group clauses
allowed in the declaration of such fields so the customizer (and our tool) can determine whether a
method assigns to them, i.e., to fields not shown in the public or protected specification. Furthermore,
this has to be possible using the public and protected specification and without the code. Therefore,
data groups listed in the maps and in clauses of a private concrete field declaration would have to
satisfy three conditions31: 

1. the data group must have public or protected visibility so it is visible to subclasses, 

2. the data group must be declared in the same class as the fields it contains (not in a superclass), 
and 

3. the data group must not contain any concrete fields visible to subclasses. 

Therefore, the customizer can assume that a data group contains some unknown private fields if
that group has no concrete member fields declared in the public or protected specification and there is
at least one non-abstract method that can assign to members of that data group. However, when a type
is an abstract class and all methods that can modify a data group are also abstract, then we assume the
concrete fields in that data group have not yet been declared, i.e., the data group does not yet contain
any concrete fields. If the type is an interface, then we always assume that the data group does not
contain concrete fields (since all interface methods are abstract and concrete instance fields cannot be
declared in an interface). 

For example, the in clause of Figure 2.20 would not be allowed because value and oldVal were
declared in a superclass (and they contain protected concrete fields from the superclass). Therefore,
_diff would have to be a member of a newly declared public (or protected) data group. 

Figures 2.22 and 2.23 show how the public and private specifications could instead be changed so
_diff could be kept private. Using Figure 2.22 and the fact that there is no protected specification, the
customizer can assume that difference contains concrete fields that are not visible to the subclass;
that is, since the type is not abstract and difference has no additional public or protected members,

30.Private specifications are used in the verification of superclass methods. Ordinarily, they would not 
be made available to programmers creating subclasses; this is so private specifications can be altered 
without affecting the behavior of subclasses. 

31.These conditions restrict the possible specifications allowed in JML and may require extra data 
groups. However, they do not restrict the kinds of data group relationships allowed for private fields. 
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it must contain private variables (used to determine its abstract value). Furthermore, since
difference is a member of both value and oldVal, these two data groups must also contain the
same unknown variables. Therefore, whenever methods of a subclass of CellPlusPrivate need to
modify value, oldVal, or difference, a super-call is required because these unknown variables
(i.e. _diff) can only be modified by methods of CellPlusPrivate. In summary, the public
invariant shown in Figure 2.22 can only be maintained via super-calls because difference must
contain (depend on) private concrete fields. 

2.6.1.2 Summary
The Mandatory Super-Call Rule requires a super-call when a subclass implements new or

overriding methods that need to modify data groups containing private fields; this is so these variables,
_diff in this case, will be properly maintained. 

_________________________________________________________________________

public class CellPlusPrivate extends CellPlusPrevious {

  //@ public model int difference;
  //@                  in  value, oldVal;

  //@ public invariant difference == Math.abs(value - oldVal);

  /*@ public normal_behavior
    @   assignable value, oldVal;
    @   ensures value == initVal && oldVal == initVal;
    @*/
  public CellPlusPrivate(int initVal);
}

Figure 2.22:   CellPlusPrivate's public specification, from CellPlusPrivate.jml-refined.
_________________________________________________________________________

_________________________________________________________________________

//@ refines "CellPlusPrivate.java";

public class CellPlusPrivate extends CellPlusPrevious {

  //@ private represents difference <- _diff;

   private int _diff;
   //@         in  difference;
}

Figure 2.23:   CellPlusPrivate's private specification, from CellPlusPrivate.refines-java.
_________________________________________________________________________
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For example, suppose a subclass of CellPlusPrivate overrides setFrom. The Mandatory
Super-Call Rule says that this overriding method must directly or indirectly super-call setFrom to
properly update _diff because value and oldVal are assignable. However, we do not require that
the super-call be to the method being overridden; we only require that the inherited public and
protected specification, regarding the data group (or model field) that contains private fields, be
satisfied through super-calls. Thus the inherited specification will automatically be satisfied since our
assumption is that every superclass method satisfies its specification when that method has not been
invalidated by the subclass. 

The above rule has another implication for customizers. That is, when a superclass data group
contains both protected and (possibly unknown) private concrete fields, there may be relationships
between these fields as specified in the invariant and represents clauses. Our technique handles this
like we did with side-effects on objects whose runtime type is unknown statically. For example, in
subsection 2.4.3, we illustrated some of the problems that can occur when directly assigning to fields
of objects other than the receiver. Recall that when the type of an object is a subclass of its static type,
there could be unknown additional fields related to the superclass fields being modified (e.g., through
a subclass invariant). Therefore, our technique requires that assignment to fields of an object, other
than the receiver, be done via object-calls since these methods know how to maintain the unknown
subclass variables. Our technique for handling unknown fields in the superclass is similar, i.e.,
assignment to fields in a data group containing private members must be done through super-calls
since these methods know how to maintain these private data fields and the subclass cannot directly
assign to them. The net effect for the customizer is that when a superclass data group contains both
protected and private fields that are not visible to a subclass implementation, the protected fields
become read-only, i.e., subclasses cannot directly assign to them. Our tool will enforce the Mandatory
Super-Call Rule by not allowing the subclass to assign to these read-only fields32. 

2.6.2  Visibility of type invariants
We also believe that invariant relationships between variables should be visible to customizers.

Therefore, our technique requires this (see assumptions in subsection 1.6.6), i.e., that all invariants
have public or protected visibility (a private invariant clause would have to be redundant)33. However,
in Figure 2.20, the invariant clause is private. Thus this invariant would have to be declared so it is

32.Thus our tool assumes that the private, package visible, and protected fields in a data group have an 
invariant relationship since determining this from the specification is not always easy or computable. 
However, the customizer may be able to determine by hand whether or not a protected field has to be 
considered read-only and can only be updated through super-calls. This is another reason why we 
believe superclass invariant and represents clauses should be visible to subclasses. 

33.This visibility requirement for invariants is also important to our alias control technique described in 
Chapter 3. 
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visible to customizers; this was corrected in Figure 2.21 where this invariant is made visible to
subclasses. 

2.6.3  Private field accesses
For soundness, the accessible clause of the subclassing contract must be part of the public

specification of public methods (see Chapter 4). However, private (or protected) variables cannot be
shown in a public accessible clause because they are not in scope. However, these variables can be
handled by our technique (as they are in the assignable clause). For example, a private variable W
would have to be a member of the data group of a public variable V. Thus the accessible clause for a
method M can list V whenever M reads variable W. Hence, when a model field is listed in the
accessible clause, it denotes the concrete fields in the model field’s data group. 

Therefore, every private (or protected) field must be a member of a data group visible to
subclasses if it is accessed by methods of the class. However, these fields already have to be members
of a public data group so they can be initialized by a public constructor. For example, a private variable
cannot be assigned to, even in a constructor, unless it is a member of a data group with at least the
visibility of the method (or constructor) where the assignment occurs. Therefore, there will usually be
a non-private data group that can be listed in the accessible clause in place of the private variable. 

Note, however, that when W has private visibility rather than protected visibility, then our
technique becomes more conservative, i.e., more constructors may be invalidated (see subsection
2.4.5) than would have otherwise been necessary, especially if V’s data group contains more variables
than just W. For example, downcalls to methods that access V may invalidate constructors in cases
where only those that access W need to be invalidated. This would be mitigated by our assumption that
private fields be declared with the spec_protected modifier. 

2.6.4  Private method calls
Private methods are those that can only be called by methods of the class where it is defined (i.e.,

methods with private visibility in Java34). In contrast, non-private methods can be called by
methods of other classes (i.e., public, protected, and default (package) visible methods in Java). 

Therefore, visibility control (in Java) prevents private methods from being called by subclass
methods (or by methods of unrelated classes). Furthermore, in our technique, private methods are not
in scope in the superclass specifications used by customizers; only public and protected specifications
are available35. Thus our technique has to handle private method calls without listing them in the
callable clause of the protected subclassing contract. 

34.Our technique does not allow object-calls to methods with private visibility and side-effects since 
these methods cannot be overridden (see assumptions in subsection 1.6.6 and explanation in subsec-
tion 2.4.3). Therefore, such object-calls would not be permitted in C++ even though C++’s friend 
feature allows them. Using the above definition, these unoverrideable methods could therefore be 
considered “private” since our technique does not allow friend methods to (object-)call them. 



65
We are able to do this because private methods are unoverrideable by subclasses36. That is,
unoverrideable methods cannot be involved in downcall problems, unless they make downcalls.
Therefore, in JML, private methods are handled by treating them as if they were inlined, i.e., each
method call or variable access made by a private method P is treated (in the subclassing contract) as if
it were made directly by the method that calls P. For example, suppose method M calls P. Method P
will not appear in the specification used by our technique, but P’s method calls and variable accesses
(those visible in the protected specification) will appear in M’s subclassing contract. Therefore, if P
would have been invalidated by a new subclass, then M will automatically be invalidated; that is, those
method calls or variable accesses that would have invalidated P will (as required for soundness) now
invalidate M. 

2.7  Concrete Data Refinement
So far we have assumed that the superclass's public and protected invariant is maintained by the

new subclass. In this section, we explore the ramifications of changing the way data is represented.
Data refinement is a program transformation in which either one set of variables is replaced by a

different set, or the set of variables is unchanged but their properties (e.g., invariants) are changed.
Data refinement is usually used to make representations more concrete or more efficient [GM94b,
GM94a, Mor94, MG90]. An example of data refinement, occurred in Figure 1.5 when IntCell's
model variable value was refined to the concrete variable _val. 

In a data refinement, a relation between the old and new variable is specified; this relation can be
used to show that no unexpected behaviors arise [GM94b, GM94a, Hoa72, Mor94, MG90]. In our
example, this relation was specified by the in and represents clauses in the protected specification for
IntCell (Figure 1.5). 

We distinguish two kinds of data refinement: model and concrete. Figure 1.5 is an example of
model data refinement, where model variables are refined to concrete variables. A model variable can
be replaced by a concrete variable because model variables, by definition, need not be part of the
implementation. 

Concrete data refinement means refinement of concrete variables to concrete variables. In this
section we explore concrete data refinement in a subclass, where its superclass's concrete instance
variables are data refined by the subclass's concrete instance variables. In most OO programming
languages, such as C++, Java, Eiffel, and Smalltalk, code inheritance does not allow an instance
variable of the superclass to be replaced or removed, since this is not type safe in general. The problem

35.Although C++ allows friend methods to make object-calls to private methods, the object-calls that 
cause problems (those with side-effects) are disallowed by our assumptions given in subsection 1.6.6 
(see also subsection 2.4.3). 

36.Final methods, in Java, could be handled in the same way because they are also unoverrideable, but 
this is unnecessary because final methods with public or protected visibility can be listed in the code 
contract. 
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is that inherited superclass methods would try to refer to missing or changed instance variables which
would not be prevented by the type system.

However, the programmer of a subclass can choose to ignore a superclass variable and use a
different data structure in the subclass as long as superclass methods are overridden such that unsafe
variable accesses are prevented. Furthermore, such concrete data refinement may permit a subclass to
be implemented when that subclass would otherwise be unimplementable without superclass code, i.e.,
because a super-call was required (Mandatory Super-Call Rule of subsection 2.6.1) to a method that
had been invalidated by the subclass. 

Figure 2.24 shows an example where the subclass NewRepCell uses a different representation of
oldVal. Ignoring (i.e., replacing) the concrete variable of the superclass and using the subclass
concrete variable is an example of concrete data refinement. In this case, the representation invariant
of superclass CellPlusPrevious would no longer hold for subclass objects (since _prevValue is
being ignored). Such a concrete data refinement would be useful if NewRepCell needs to extend the
behavior of CellPlusPrevious, but the represents clause is missing from Figure 2.3 or the
superclass representation is inefficient; then NewRepCell could ignore the superclass representation
and use the one given in Figure 2.24. 

_________________________________________________________________________

public class NewRepCell extends CellPlusPrevious {

  protected int _valDiff;
  //@               in oldVal;

  //@ protected represents oldVal <- _val + _valDiff;
}

Figure 2.24:  Protected specification of NewRepCell from the file NewRepCell.jml. An example of concrete 
data refinement if, through method overrides, superclass variable _prevValue is ignored and no longer used. 
_________________________________________________________________________

_________________________________________________________________________

public class RepChangeCell extends CellPlusPrevious {

  //@ protected represents oldVal <- _val + _prevValue;
}

Figure 2.25:  Protected specification of RepChangeCell from the file RepChangeCell.jml. An example of 
concrete data refinement that changes the way _prevValue is used; such changes in the representation invariant 
are not allowed by JML. 
_________________________________________________________________________
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Another kind of concrete data refinement occurs when the same superclass variables are used but
the data's properties are changed, and thus the way the data is interpreted and manipulated is changed.
For example, the subclass shown in Figure 2.25 interprets the value of _prevValue differently than
the superclass. The superclass expects it to contain the previous value of the cell, whereas the subclass
expects it to contain the difference between the previous value and the current value. Such a change of
interpretation would also mean that the representation invariant of CellPlusPrevious would no
longer hold for subclass objects. 

As mentioned earlier, situations that require a concrete data refinement could occur accidentally
when the documentation for the superclass is incomplete. However, concrete data refinement can only
be safe if certain restrictions are followed and the necessary methods are overridden. For example, in
both of the previous examples, all methods that access _prevValue must be overridden because the
superclass representation invariant involving that variable no longer holds. 

Our purpose in exploring concrete data refinement is to explore the ramifications of:

1. not providing the representation invariant to programmers reusing a software framework or 
class library (i.e., keeping the representation private),

2. making data structure changes to improve efficiency in comparison to inherited data struc-
tures, and

3. not being able to update private superclass fields because the required super-calls are unsafe, 
i.e., the superclass methods have been invalidated by our rules.

The next rule must be considered when a subclass method directly accesses or modifies concrete
variables of the superclass and either there is no protected invariant for the superclass or the subclass's
protected invariant does not imply the superclass's protected invariant. Recall that we assume that the
class invariant is visible to all subclasses, that is, there are no private invariants in the superclass (see
assumptions in subsection 1.6.6). “Direct access” means access that names specific instance variables;
these may be instance variables of the receiver or instance variables of another object. An access of a
field of the receiver object will be called a self-access; an access of a field of an object other than the
receiver is an object-access. 

Data Refinement Overriding Rule. Let S be a subclass of C. A method, M, must be overridden if
(i) C::M makes a direct self-access or object-access to a concrete variable V that is data refined by
S and (ii) the part of C's invariant37 that concerns V is not maintained by S. 

The above rule is concerned with accesses to variables in objects that are possible subclass objects;
these accesses are exactly those included in the accessible clause (see Chapter 4). Other kinds of
variable accesses are not allowed (see assumptions in subsection 1.6.6). 

37.The represents clause specifies an invariant relationship between a model field and concrete fields; 
therefore, we consider the represents clause to be a part of the superclass invariant that needs to be 
maintained unless the subclass is doing a concrete data refinement. 
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The concrete data refinement rule mandates that superclass methods be overridden when they are
expecting a different representation. For example, it would be unsafe to change the way the concrete
variable _prevValue is interpreted and used in a subclass without overriding all superclass methods
that access that variable. Furthermore, calling such superclass methods must not be allowed. The
following rule invalidates these methods. 

Data Refinement Invalidation Rule. A superclass method must not be super-called if it had to be
overridden based on the Data Refinement Overriding Rule. 

Although concrete data refinement requires that unrelated classes do not access instance variables
of a given class, several OO programming languages allow such access (see also assumptions in
subsection 1.6.6). For example, Java allows such access within packages, and C++ allows it with its
friend feature. Our rule for concrete data refinement can only ensure that methods of related classes do
not access concrete variables whose interpretation has changed because of a concrete data refinement;
they do not prevent unrelated classes from accessing these variables. Therefore, JML only allows such
concrete data refinements if the invariant of the subclass implies the invariant of the superclass.
Indeed, JML's use of specification inheritance forces the subclass to maintain the superclass's invariant
and representation. 

However, we did not limit our study to JML. For example, Smalltalk’s scope rules only allow
methods to access variables of the receiver object; thus Smalltalk prevents methods from accessing
variables of objects of unrelated classes. Also since Smalltalk methods are all public, these programs
do not require any special (manual or automatic) static analysis to ensure that a concrete data
refinement can safely be done through our technique of method overrides. 

2.8  Super-Calls
Often it is convenient to call a superclass method when making a minor extension to a method in a

subclass. Furthermore, in some cases it can be mandatory that the superclass method be called. For
example, an overriding method must make super-calls if the superclass representation is private or
hidden from the subclass (see Section 2.6 above). 

As illustrated by the examples given in this chapter, super-calls are not always safe. The solution
to this, and to other similar downcall problems, is to prevent super-calls to methods that have been
invalidated by the new subclass. The invalidation rules have been given for this purpose; they specify
when a superclass method might no longer satisfy its superclass specification or, because of downcalls,
it might have unverifiable (without superclass code) additional side-effects. 

Some languages with multiple inheritance, such as C++, permit calls to methods of any named
superclass; such calls are also super-calls and need to take the above rules into account. When applying
invalidation rules, one needs to use the subclassing contract of the superclass method being called; this
is because a method B::M could be invalidated while the method it overrides, A::M, is not invalidated
by a new subclass (e.g., if A::M does not make any downcalls but B::M does). 
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The authorization rule below is based on the following reasoning. Suppose a superclass method M
has been invalidated by the new subclass and thus should not be executed. If M has been overridden by
the subclass, then the only way it can be invoked is via a super-call (on an object of the subclass).
Therefore, super-calls to M must also be prevented. The following rule ensures that all super-called
methods satisfy their specifications and have no additional side-effects. 

Super-Call Authorization Rule. Let S be a subclass of C. A superclass method C::M may only be
called by subclass method S::P, if C::M has not been invalidated for S::P. 

Most invalidation rules invalidate a superclass method for all subclass methods. However, the
Callback Cycle Invalidation Rule invalidates a specific superclass method with respect to a specific
subclass method. Therefore, the above rule must also do the same, e.g., it disallows specific super-calls
(C::M) from within a specific subclass method (S::P). 

2.9  Discussion
In this section we discuss some consequences of our rules. The first subsection discusses the

consequences of an overriding method that does not satisfy the specification of the method it
overrides; although JML does not allow this, we provide a set of rules to handle such situations and
describe the motivation for and usefulness of those rules in OO languages like C++. The second
subsection discusses the consequences of and problems related to unoverrideable methods. The third
subsection then describes those situations where a correct subclass cannot be written without
superclass code. The fourth subsection revisits our invalidation rules and shows why they can
sometimes be more conservative than necessary. The fifth subsection discusses the subclassing
contract as a specification, and finally, the last subsection summarizes the results of our study of
downcalls. 

2.9.1  Non-Refining Methods
This section describes an overriding rule that deals with non-refining subclass methods, that is,

methods that do not conform to the superclass's specification. The notion of refinement relates
behavioral specifications as defined in Figure 1.1. A subclass method that refines the method it
overrides will be called a refining method, otherwise, an overriding method is a non-refining method.
A new subclass method that does not override a superclass method is neither a refining nor a non-
refining method. 

Method refinement, in contrast to behavioral subtyping [Ame91, DL96, LW93, LW94], is defined
from the point of view of the implementer rather than that of the client. Thus the protected
specification, rather than the public specification, must be used in reasoning about method refinement.
The protected specification combines the specifications that have either public or protected visibility.
For example, the protected specification for IntCell includes everything in Figures 1.2, 1.5, and
1.10. Notice also that the subclassing contract specifies properties of a method’s behavior, so it must
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also be included in the reasoning about method refinement (see Chapter 4 for more details about the
use of the subclassing contract).

A superclass method may not behave as expected if it calls down to a non-refining method. For
example, suppose S is a subclass of C. If S::P is a non-refining method, then S::P’s allowed behavior
is not a subset of the allowed behavior of C::P, when C::P’s precondition holds. Therefore, superclass
methods that call down to S::P may not behave as specified, since they were verified using the
superclass specification of C::P. For example, Figure 2.26 gives an example of a subclass of IntCell
with a non-refining method. Method setValue is non-refining because it does not change value
when the parameter newVal is less than zero, contrary to its superclass specification. The
implementation of IntCell shown in Figure 2.27 illustrates the problem; that is, method setFrom
will no longer satisfy its specification because of its downcall to setValue, which also does not
behave as expected (i.e., setValue does not satisfy the superclass specification). 

A downcall to a non-refining method can happen either as a self-call or via a subclass object-call.
A subclass object-call is an object-call in which the dynamic type of the receiver could be a subtype of
the current class. For example, the object-call o.setValue(v) calls a non-refining subclass method
when o has type NonRefiningCell. This expression will not satisfy the superclass specification.
Therefore, any method containing a self-call or a subclass object-call to a non-refining method (like
setValue) may not behave as expected and must be overridden. The following rule ensures that this
is done. 

Non-Refining Method Overriding Rule. A superclass method must be overridden if it makes a direct
self-call or a subclass object-call to a method that has been overridden by a non-refining method. 

This rule prevents unexpected and incorrect behavior for a particular subclass. However, in
general it is unsound to allow non-refining public methods in subtypes, since this breaks behavioral
subtyping. Therefore, if a subclass has a non-refining method, then subclass object-calls to that method
must be prevented everywhere in the system; our rules and assumptions prevent them within the
subclass, but not elsewhere in the system. For example, methods must not be allowed to pass such
subclass objects directly or indirectly (inside a data structure such as an array or object) to a method
that expects an object that satisfies the superclass’s specification. This is why JML enforces method
refinement (and behavioral subtyping) through specification inheritance [DL96]. 

The above rule requires an override because a superclass method that calls down to a non-refining
method may no longer behave correctly with respect to its specification. However, in addition, such
methods must not be super-called by subclass methods. The following rule invalidates such methods
and disallows implementations that make such super-calls. 

Non-Refining Method Invalidation Rule. A superclass method must not be super-called if it makes a
direct self-call or a subclass object-call to a method that has been overridden by a non-refining
method. 
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JML avoids the problems illustrated in this section by enforcing method refinement through
specification inheritance. However, in languages like C++ one can create a subclass that is not a
subtype by using protected or private inheritance. Since the new subclass is not a subtype, the type
system does not allow these incorrect subclass object-calls. Therefore, in such cases, one will
sometimes override a method in a way that makes it non-refining. Thus, these rules are also useful in
such languages because they prevent unexpected behavior within these (non-subtype) subclasses. 

Our tool, however, will not enforce these rules because they require reasoning about and
comparing the superclass and subclass method specifications to determine whether or not a method is a

_________________________________________________________________________

public class NonRefiningCell extends IntCell {

  ...

  /*@  public normal_behavior
    @    requires newVal >= 0;
    @    assignable value;
    @    ensures value == newVal
    @   also
    @    requires newVal < 0;
    @    ensures \not_modified(newVal);  @*/ 
   public void setValue(int newVal);
}

Figure 2.26:  Part of the public specification of NonRefiningCell. 
_________________________________________________________________________

_________________________________________________________________________

public class IntCell {

  protected int _val;

  public void setValue(int newVal) {
      _val = newVal;
  }
  public void setFrom(IntCell c) {
      setValue(c.getValue());
  }
  ...
}

Figure 2.27:  A fragment of IntCell's implementation from the file IntCell.java.
_________________________________________________________________________
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refining method. That is, refining methods are only allowed to strengthen the specifications of the
methods being overridden, which would require a proof. Furthermore, JML requires and our tool
assumes that all overriding methods are refining methods. 

2.9.2  Unoverrideable Methods
From the point of view of a new subclass, an unoverrideable method is a method that it cannot

override. For example, final methods of a superclass may not be overridden in Java, and non-virtual
methods may not be overridden in C++. Methods of a superclass may also be unoverrideable because
of visibility control; for example, private methods are unoverrideable in Java and C++; static methods
and constructors are also unoverrideable. Further, from the point of view of a new subclass, S,
methods in classes that are unrelated to S are also unoverrideable. The following rule deals with
invalidated, non-public methods that are unoverrideable; its purpose is to prevent such methods from
being invoked. 

Unoverrideable Method Rule. Let M be a non-public superclass method that is not (object-) called by
methods of an unrelated class. If M cannot be overridden and is invalidated by the new subclass,
then all methods that directly call M must be overridden and M cannot be super-called by subclass
methods. 

Notice that the above rule is both an overriding rule and an invalidation rule, that is, it mandates a
method override of and invalidates method M. Furthermore, it only applies to non-public methods. If
the rule allowed M to be public, then behavioral subtyping would fail for the subclass. This is because
when a subclass inherits an unoverrideable, public method, there is no way to prevent clients from
calling it, and when the inherited method has been invalidated there is no way to guarantee that such a
method meets its specification (without superclass code). However, in a language like C++, one can
use protected inheritance without worrying about behavioral subtyping (since such subclasses are not
subtypes and superclass methods are not visible to clients unless the subclass allows it); in such cases,
this rule is useful in preventing invalidated, inherited methods from being called. 

In addition, a protected method M, in Java, can be (object-) called by unrelated classes within the
same package. However, if M is called by a method of an unrelated class, then a subclass S must be
considered unimplementable if M is unoverrideable and has been invalidated by S. This is why our
technique does not allow this situation; that is, our assumptions (see subsection 1.6.6) do not allow
object-calls to methods that might be invalidated by a new subclass, i.e., our assumptions do not allow
object-calls that introduce mutual recursion between methods of unrelated classes or object-calls to
unoverrideable methods with side-effects38. 

38.Our assumptions do not disallow all callbacks between objects of unrelated classes, only those that 
introduce mutual recursion. Further, requiring that methods with side-effects be overrideable is not 
overly restrictive since this is the case for all methods in Smalltalk.
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2.9.3  Unimplementable Subclasses
An interesting result of our study is that in some situations it is not possible to write a verifiably

correct implementation of a subclass specification without changing or at least seeing the superclass's
code. One such situation occurs when a public method is invalidated but that method is
unoverrideable. For example, if method setFrom of IntCell were final, then the subclass
CellPlusPrevious would not be implementable without changing the superclass code (e.g.,
removing the final modifier). This is why it is our belief that methods with side-effects should always
be overrideable.

Subclasses can also be unimplementable in situations like the following. Suppose some part of the
superclass object state is private and a subclass method needs to update private superclass variables to
satisfy the subclass specification. If there is no superclass method that modifies the required variables
or if all such methods have been invalidated by the new subclass, then a provably correct
implementation satisfying the subclass specification may not be possible without superclass code
(although there may be some cases where the reasoning technique given in Section 2.8 may allow it).
Consider for example, Figure 2.28. The subclass ReversibleCell would be unimplementable if
superclass variable _totalChg had private rather than protected visibility. Specifically, method
reverse would not be implementable since there is no superclass method that sets _totalChg to a
specific value. 

A new subclass S can also be unimplementable when a method M of an unrelated class is
invalidated by S. For example, S would be unimplementable if it adds a new subclass invariant when
M makes direct assignments to a field of an object that has static type T but could have dynamic type S
(see the example in subsection 2.4.3). Such a subclass S would be unimplementable without the code
for M or the code for superclass T. A similar situation also occurs when the code for M is unavailable
and M is mutually recursive with overridden methods in S (see also the examples in Section 2.5). 

One way to avoid most of these problems is to make all methods of an extensible class
overrideable, and to allow subclasses to directly access all superclass instance variables. For example,
in Java, methods are overrideable unless they are declared to be final; in C++, methods are
overrideable when they are declared as virtual. Also, subclasses can access instance variables when
they are declared with protected rather than private visibility in Java or C++. Furthermore, in
Smalltalk, all methods can be overridden and superclass instance variables of the current receiver are
visible to subclass methods. 

However, if an extensible superclass does have private variables, then methods that assign to these
variables should not make calls to non-private methods; this restriction prevents such superclass
methods from being invalidated. For example, superclass methods can be invalidated by calls to non-
private methods because non-private methods can be overridden which would introduce downcalls;
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these downcalls may require that a new subclass invariant hold and they could introduce additional
side-effects. 

_________________________________________________________________________

public class ReversibleCell extends CellPlusTotal {

  /*@ public model int oldValue;
    @                      in value;
    @*/
  /*@ public model int oldTotal;
    @                      in totalChg;
    @*/

  /*@  public normal_behavior
    @    assignable value, totalChg, oldValue, oldTotal;
    @    ensures value == initVal && oldValue == initVal
    @         && totalChg == 0 && oldTotal == 0;
    @*/
  public ReversibleCell(int initVal);

  /*@ also
    @  public normal_behavior
    @    assignable oldValue, oldTotal;
    @    ensures oldValue == \old(value) && oldTotal == \old(totalChg);
    @*/
  public void setValue(int newVal);

  /*@ also
    @  public normal_behavior
    @    requires c != null;
    @    assignable oldValue, oldTotal;
    @    ensures oldValue == \old(value) && oldTotal == \old(totalChg);
    @*/
  public void setFrom(IntCell c);

  /*@  public normal_behavior
    @     assignable value, totalChg;
    @     ensures value == \old(oldValue) && totalChg == \old(oldTotal)
    @          && oldValue == \old(value) && oldTotal == \old(totalChg);
    @*/
  public void reverse();
}

Figure 2.28:   ReversibleCell's public specification, from ReversibleCell.jml-refined.
_________________________________________________________________________
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2.9.4  Invalidation Rules Revisited
In this subsection, we show that, for some specific cases, our invalidation rules are more

conservative than necessary. In particular, we give examples that show that the correctness of a
subclass method can sometimes be proven even though the subclass makes a super-call that is not
allowed by one of our rules. We first revisit the Additional Side-Effects Invalidation Rule, followed by
the constructor invalidation rules. 

2.9.4.1 The Additional Side-Effects Invalidation Rule revisited
In this subsection, we analyze the Additional Side-Effects Invalidation Rule, given in subsection

2.2.3, to determine when a subclass is not required to follow this rule, i.e., when a correctness proof is
possible even though the rule has been violated. We also explain why we use our rule rather than a
more liberal one. 

The Additional Side-Effects Invalidation Rule says that a superclass method C::M must not be
super-called if it makes a downcall that may have additional side-effects on field W. However, C::M
might still satisfy its superclass specification since its effects on W are not and cannot be specified in
the superclass. Therefore, from a practical standpoint, one may still be able to reason about a super-call
to C::M using the superclass specification. Nonetheless, without the superclass code (or more
information), when C::M has been invalidated by this rule, it is not generally possible to know what
effect calling C::M has on W. 

For example, Figure 2.29 shows a different implementation of setFrom than the one originally
given in Figure 1.7 (the superclass implementation is given in Figure 1.8). This new implementation is
correct even though the super-call to setFrom would not be allowed by the Additional Side-Effects
Invalidation Rule of subsection 2.2.3. The superclass implementation of setFrom satisfies its
specification because the downcall to method setValue satisfies the superclass specification for all
values of _totalChg, the variable that may have been changed during the downcall. However,
_totalChg cannot be used after the super-call because, without the superclass code, one does not
know under which conditions or how many times the superclass method setFrom will make a
downcall to setValue (and hence, what the value of _totalChg will be after the super-call).
Furthermore, there is no subclass invariant involving _totalChg so changes to that variable do not
affect the precondition of any of the downcalls made. Therefore, the subclass implementation of
setFrom (Figure 2.29) can satisfy its postcondition by not directly or indirectly using _totalChg
after the super-call to setFrom. 

Therefore, one can reason about super-calls in subclass methods as follows. Suppose C::M has
additional side-effects on W and makes downcalls. If all subclass methods downcalled by C::M satisfy
the superclass specification for all possible values of W, then C::M will also satisfy its specification
(since C::M was verified using the superclass specification). Notice also that all values of W have to
satisfy the subclass invariant, otherwise the preconditions of the downcalled methods may not be
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satisfied. Therefore, if C::M has not been invalidated by any of the other rules, it may still satisfy its
superclass specification and its behavior can be reasoned about using this specification. However, after

_________________________________________________________________________

public class CellPlusTotal extends IntCell {

  protected int _totalChg;

  // ... 

  public void setValue(int newVal) {
      _totalChg += Math.abs(newVal - _val);
      super.setValue(newVal)
  }
  public void setFrom(IntCell c) {
      int newTotal = _totalChg + Math.abs(c.getValue() - _val);
      super.setFrom(c);
      _totalChg = newTotal;
  }
}

Figure 2.29:  A correct implementation of CellPlusTotal, based on the additional side-effects authorization 
rule, from the file CellPlusTotal.java.
_________________________________________________________________________

_________________________________________________________________________

public class CellPlusPrevious extends IntCell {

  protected int _prevValue;

  // ... 

  public void setValue(int newVal) {
      _prevValue = _val;
      super.setValue(newVal)
  }
  public void setFrom(IntCell c) {
      int previous = _val;
      super.setFrom(c);
      _prevValue = previous;
  }
}

Figure 2.30:  A correct implementation of class CellPlusPrevious, based on the additional side-effects autho-
rization rule, from file CellPlusPrevious.java.
_________________________________________________________________________
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making a super-call to C::M, a subclass method must not directly or indirectly use the value of any
subclass variable (such as W) that may have been modified by C::M (since its specification does not
mention subclass variables). 

Another example where this reasoning technique can be applied is given in Figure 2.30; it shows
how the subclass method setFrom of CellPlusPrevious can be correctly implemented using a
super-call when the above restrictions are followed. That is, setValue of the subclass satisfies its
superclass specification for all possible values of _prevValue, and the value of _prevValue (and
oldVal) is not used in setFrom after the super-call; the value of _prevValue must be treated as if it
were unknown since it might have been changed during the super-call. 

To summarize, one can reason, using the superclass specification, about the behavior of a method
C::M that makes downcalls that can have additional side-effects on W if: 

1. all methods downcalled by C::M satisfy their superclass specifications for all values of W,

2. the subclass invariant holds for all values of W, and 

3. the value of W is not used after a super-call of C::M or until W has been updated in the sub-
class.

The reason the Additional Side-Effects Invalidation Rule is not based on the above reasoning is
because violation of such a rule would be difficult to detect statically, that is, it requires a proof that
downcalled methods satisfy the superclass specification. However, the Additional Side-Effects
Invalidation Rule of subsection 2.2.3 is easy to enforce using the subclassing contract; therefore, our
tool will enforce this more restrictive rule. 

2.9.4.2 The constructor invalidation rules revisited
Customizers can also work around and sometimes avoid the problems related to the constructor

invalidation rules given in subsection 2.4.5. For example, if a superclass constructor makes downcalls
to methods that reference uninitialized subclass fields, the customizer can create and call a private
subclass helper method as one of the constructor’s actual parameters, e.g., super(helper()); this
helper method would be invoked before the superclass constructor call, and would initialize those
subclass fields and establish any required subclass invariants. 

Nonetheless, without superclass code, the invalidation rules for methods would still apply to
superclass constructors, i.e., the above coding trick only initializes subclass fields and establishes the
subclass invariant which does not prevent the other problems related to super-calls. The invalidation
rules for constructors have to be more restrictive than the rules for methods because the class invariant
is not established prior to constructor calls. 

Furthermore, if the superclass invariant implies the subclass invariant, then the Invariant
Invalidation Rule (subsection 2.4.1) and the constructor Invariant Invalidation Rule (subsection 2.4.5)
would no longer apply since the subclass invariant would automatically be established by the
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superclass invariant. Thus our rules assume that subclass invariant clauses are not redundant and
specify additional constraints on fields.

Also, the above coding trick points out another potential problem with superclass constructor calls,
i.e., a method super-call could be made during the evaluation of an actual parameter being passed to a
superclass constructor, e.g., super(super.m()); thus such super-calls are unsafe since they would
occur before the superclass has been properly initialized. However, this should be rare in practice, so
we make the assumption that no super-calls are not made prior to execution of a superclass constructor
(see assumptions in subsection 1.6.6). 

2.9.4.3 Summary
These examples illustrate that our rules are conservative. Therefore, it may be possible for

customizers to find other ways of reasoning about superclass methods that have been invalidated by
one of our rules. That is, if the customizer can prove correctness without the superclass code, then the
rules may not have to be followed in all cases. Nonetheless, our rules are such that, if followed, the
customizer will be guaranteed that a correctness proof of the subclass can be obtained without
superclass code. Also, our tool will warn customizers when there are potential problems so they can be
avoided when possible. 

2.9.5  Package Visible Fields and Methods
For simplicity, we do not consider package visible instance fields and methods in this dissertation.

However, these members could be handled by our technique. That is, they could be handled like a
special category of private and protected members. They have to be handled like private members
because they are not visible to all subclasses, i.e., when the superclass and subclass are in different
packages. Furthermore, package visible members also have to be treated like protected members, in
some cases, because they are visible to subclasses when the superclass and subclass are in the same
package. Also, if a superclass has package visibility, then all of its subclasses have to be in the same
package; thus all package visible members of a package visible superclass have to be handled like
protected members by its subclasses. 

For example, package visible members cannot appear in the protected subclassing contract of
subclasses when the superclass and subclass are in different packages; however, subclasses need to
know when they exist. That is, all subclasses need to know about package visible fields so subclasses
know when a method can safely be super-called and when a super-call is required (see subsection
2.6.1). Therefore, package visible concrete fields would have to be handled like private concrete fields
when they are not visible to the subclass (i.e., when the superclass and subclass are in different
packages). That is, like our requirement for private concrete fields, package visible fields would have
to be declared with the spec_protected modifier so they are visible to all subclasses. 

Similarly, package visible methods would have to be treated as if they were inlined in the
protected callable clause when the superclass and subclass are in different packages, since these
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methods would not be visible or overrideable in those subclasses. However, subclasses in the same
package would need a package visible subclassing contract where package visible members could be
listed in the callable and accessible clauses; this is necessary for reasoning about overriding and
invalidation of package visible superclass methods. Therefore, package visible methods would have to
be handled like protected members when the subclass is in the same package (since the subclass can
override them), but like private members when the subclass is in a different package. 

To avoid the added complexity of having two different specifications when a class declares
package visible methods and fields, we assume, in this dissertation, that classes do not declare package
visible members (see assumptions in subsection 1.6.6). Furthermore, in extensible classes, we believe
that all such fields and methods should be declared with protected visibility so they are visible to all
subclasses (see Chapter 4); thus if the designer does not want a method to be visible to subclasses in a
different package, then it should probably be private. We leave additional details as future work. 

2.9.6  The Subclassing Contract as a Specification
Specifications are meant to be abstract and can usually be implemented in many different ways. In

our study of the problem caused by downcalls, we found that more information was needed than is
provided in a “standard” specification. However, our goal was not to overspecify or to be overly
restrictive in the implementations permitted by this additional information. Therefore, in this section,
we first consider the properties of specifications and then whether the clauses in the subclassing
contract are abstract enough to be considered a specification, and whether they disallow too many
possible implementations. 

2.9.6.1 Properties of specifications
Programming is a process that starts with a specification and ends with an implementation, i.e., a

program that satisfies the specification. A specification describes the requirements of a system in terms
of its behavioral attributes and is more abstract than the implementation. The implementation defines a
sequence of steps, an algorithm, that can be executed on a computer system to accomplish a specific
result or task. However, the specification “abstracts out” the details that are unnecessary for describing
and understanding the behavioral attributes required by users and clients of the system. For example,
the implementation may use some arcane, but efficient, data structure and algorithm; however, the
specification and user need not be concerned with such details. 

The specification describes “what” the implementation is supposed to do, whereas the
implementation describes “how” that specified behavior is to be accomplished. So a specification is
nonprocedural in contrast to the procedural, algorithmic, executable nature of the implementation. 

Nonetheless, the specification is closely related to the implementation in that the implementation
must satisfy the specification. However, a specification, because it is more abstract, can be satisfied by
many different implementations. 
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A specification may include not only the functional behavior of the system, but also other
properties. For example, a specification may include performance requirements such as the minimum
response time to certain events, or the minimum number of transactions that need to be processed
during a given time frame; it could also specify reliability requirements such as the maximum
allowable data loss due to system failures (either hardware or software). A specification may also
include security requirements such as who is allowed and how one gains access to the system. 

A specification also serves as a contract between the user and implementer; it specifies the
obligations required of both the user and implementer, and the results that both sides can expect. For
example, the precondition of a method specifies the obligations of the user, i.e., what the caller must
guarantee before making the call; the precondition also specifies what the implementer can expect
when the call is made. On the other hand, the postcondition specifies the obligation of the
implementer, i.e., what the implementer guarantees when the precondition is satisfied; the
postcondition also specifies what the user can expect after the call. In JML, the assignable clause
specifies the only variables that can be changed during the execution of a method; it specifies the
obligation of the implementer and what the user can expect. 

In summary, a specification has the following characteristics. A specification 

1. is abstract and nonprocedural,

2. allows multiple implementations,

3. can specify properties other than functional behavior,

4. serves as a contract between the user and the implementer.

2.9.6.2 The subclassing contract
The subclassing contract is for use by customizers extending the behavior of classes in a reusable

framework or class library; it specifies the methods that may be called and the fields that may be
accessed. Customizers use this information to determine when there may be downcalls that could
cause the subclass to behave incorrectly, for example, when a superclass method may no longer satisfy
its specification; in such situations, the superclass method cannot be super-called and must be
overridden by the subclass. 

Another purpose of the subclassing contract is to impose these restrictions on method calls and
field accesses when a superclass method is reimplemented or modified. That is, when the code of a
superclass method is changed, even if it satisfies its behavioral specification, this method may still
cause subclasses to behave incorrectly unless it also satisfies its subclassing contract. For example, if it
calls methods not listed in the callable clause, this may result in downcalls that were not considered
when a subclass was originally implemented. Therefore, the subclassing contract must guarantee that
these methods and fields are the only ones called and accessed so new downcall problems are not
created by changes in the superclass implementation. 
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Another way to view this would be that if a superclass method is reimplemented or modified and
the new implementation does not satisfy its current subclassing contract, then, using our rules, all
subclasses would have to be re-evaluated using the new subclassing contract. If this new subclassing
contract includes any new calls or field accesses, then additional superclass methods may need to be
overridden and some super-calls may no longer be allowed. Furthermore, the framework or class
library providers would have to notify all their clients that a change was made in the library
implementation that could affect the correctness of subclasses (or they could change the
implementation so it does not violate its current subclassing contract). 

However, it is also important to note that the subclassing contracts of the superclass also limit the
callable methods or accessible fields of an overriding subclass method. That is, an overriding subclass
method is not permitted to make calls that are not permitted by the method it overrides. For
convenience, the subclassing contract can be derived from the code of the superclass method, but an
overriding subclass method must also satisfy this generated specification39. 

To summarize, the subclassing contract is used by customizers when creating subclasses. Our rules
together with the subclassing contract alert customizers when there may be problems due to downcalls
whether the superclass code is available or not; they can also be used to alert framework providers
when changes in the implementation of library classes may cause subclasses to behave incorrectly so
they can notify clients and be specific about where the potential problems may occur. For these
reasons, we believe that the subclassing contract serves as an important part of the specification of
extensible classes in a reusable framework or class library. 

Finally, the subclassing contract has the four characteristics of a specification as described in the
previous subsection. It is abstract and nonprocedural in that it specifies the methods that may be called
and the variables that may be accessed; it does not specify how many times or when a method or
variable is referenced. Therefore, many different implementations will satisfy a given subclassing
contract. In fact, a new implementation is not required to make the method calls or variable accesses
specified in the subclassing contract. The subclassing contract specifies the behavioral properties, in
addition to the functional behavior, needed by customizers particularly when the superclass code is
unavailable. The subclassing contract also guarantees that the methods and fields listed in the callable
and accessible clauses are the only ones called or accessed by the specified method; it is a contract
between the implementer and customizer of library superclasses. 

2.9.7  Summary
If superclass code is unavailable when creating subclasses, our experience has demonstrated that

(public and protected) behavioral specifications are not sufficient to avoid downcall problems. In the
previous sections, we have provided examples to illustrate when and why downcalls can lead to

39.Chapter 4 provides more details about how best to generate and specify a subclassing contract that 
would not invalidate more methods than necessary. 
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unexpected behavior or nontermination. We have also shown that the calling structure, as specified in
the callable clause of the subclassing contract, is needed so programmers know when a method
override introduces a downcall. With this information, our rules can then be used to prevent downcalls
from causing problems. 

Unexpected behavior and nontermination can occur when superclass and subclass methods
interact in certain ways. A superclass method interacts with subclass methods through downcalls; our
examples show that problems can arise when an overriding subclass method modifies and, in some
cases, accesses subclass instance variables. Thus the first downcall problem we investigated involved
data group dependencies between superclass and subclass variables. The in and maps clauses declare
a data group relationship and allow overriding subclass methods to modify subclass instance variables.
Our technique avoids most of these problems through the application of the additional side-effects
overriding and invalidation rules. However, some problems can only be avoided through a
programming discipline as given in the assumptions of subsection 1.6.6, e.g., only fields of the current
receiver object may be assigned to. Also, the JML semantics permits our technique to detect some
potential problems because it does not allow temporary side-effects without listing those variables in
the assignable clause. 

The second problem we investigated involved possible nontermination due to mutual recursion
between superclass and subclass methods, i.e., involving a callback cycle. To avoid such callback
cycles, we introduced an overriding and an invalidation rule to ensure that any mutual recursion
involves only superclass methods or only subclass methods. We also had to introduce an assumption to
prevent callback cycles between methods of unrelated classes. 

Finally, for completeness, we investigated method refinement and (concrete) data refinement.
JML and our technique do not allow non-refining subclass methods. However since C++ allows
protected and private inheritance, we gave rules for handling inherited methods that make downcalls to
non-refining methods; these methods are not visible to clients of a new subclass and must not be called
by those methods that are visible to clients. We also gave rules that could be used to allow concrete
data refinement when the superclass representation is hidden, left unspecified, or contains private
fields that cannot be modified through super-calls (they have been invalidated). 

In Chapter 5 we present some guidelines and general design advice for implementers of
frameworks and class libraries. These guidelines build on the ideas given in this chapter and Chapter 3,
and they simplify reuse of extensible classes; they also help prevent subclasses from being
unimplementable. Furthermore, when these guidelines are followed, most of the rules presented in this
chapter become unnecessary. This greatly simplifies the reasoning required by customizers of
frameworks and class libraries. 

We also claim that if our rules can be followed, then the new subclass is implementable and
verifiable without superclass code. For example, an overriding rule cannot be followed if a method
override is required but that method is unoverrideable. Similarly, an invalidation rule cannot be
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followed if the implementation of the subclass requires a super-call but that superclass method has
been invalidated. In Chapter 4, we prove the soundness of our technique and that this claim is true. 

However, conversely, if our rules cannot be followed, then the new subclass is usually (but not
always) unimplementable and unverifiable without superclass code (or more information than is
provided in the subclassing contract). Nonetheless, since our rules are conservative, not following
them does not necessarily mean that the subclass will not behave correctly, but only that this cannot, in
general, be verified without the superclass code (the counter examples given together with the rules
show why the superclass code would be needed). 

2.9.7.1 Comparison with our previously published work
This chapter refines and gives a more detailed explanation of the overriding rules we presented in

a previous paper [RL00]. Also, in the previous paper, a superclass method was invalidated if it had to
be overridden based on one of the overriding rules. In this chapter, we instead give an invalidation rule
corresponding to each of the overriding rules; this allowed us to more precisely define when a
superclass method should not be super-called, and thus, in some cases, our criteria for invalidating a
superclass method became slightly less conservative. We have also combined the additional side-
effects rule with what was previously called the invariant rule, since the problems, in both cases, are
related to and caused by additional side-effects. The other overriding rules have not been changed
much, if at all, although the explanation of them has been expanded. However, the explanation of how
we prevent the invalidation of subclass invariants in objects other than the receiver, e.g., explicit
parameter objects, is mostly new in this chapter (subsection 2.4.3). Recall that we prevent invalidation
of subclass invariants by requiring that assignment to fields of objects, other than the receiver, be done
through object-calls to non-private (overrideable) methods. We have also expanded and refined our
explanation of how our technique handles private method calls and private variables. 

We also added several assumptions, in subsection 1.6.6, that were not mentioned in our previous
paper. Some were added to better reflect the core Java constructs that we will be using in our
soundness proof in Chapter 4. For example, for simplicity, we are not going to consider inner types,
exceptions, array variables, static fields and methods, or package visible fields and methods. We
require that the superclass variables and the superclass invariant be visible to subclasses to simplify the
application of our rules. Also, we eliminated some assumptions that we thought would be better
handled in the rules given in Chapter 3 for preventing unexpected side-effects. 

Finally, we need to be able to reason about superclass behavior from method specifications and
without the code. However, we found that the modularity of our reasoning technique requires some
way of controlling aliasing and preventing unexpected side-effects. The next chapter describes how we
prevent the aliasing that could make our technique unsound or non-modular. 
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CHAPTER 3: PREVENTING UNEXPECTED SIDE-EFFECTS

3.1  Introduction
In our technique, clients reason about the behavior of methods and fields of an object using its

public specification, i.e., using the specifications of public methods with respect to the public model
fields of the type. The value of the abstract data structure composed only of model fields, as declared
in an object’s type specification, is the abstract value of that object. Therefore, to reason modularly
and soundly about the behavior of methods and fields, the abstract value of an object must not change
unless the specification allows it to change. 

In Section 1.5, we gave examples of some of the kinds of reasoning problems that can arise due to
aliasing. In particular, when an internal object is aliased, it can be accessed and modified through other
perhaps unrelated objects or variables. Thus unexpected changes to the perceived state of the enclosing
object can occur when different objects are making conflicting or unexpected changes to the same
aliased object. For example, we showed that modification of an aliased object can inadvertently
change the abstract value of other objects in the system which can sometimes cause a type invariant to
become invalid. 

Furthermore, modular reasoning may not be possible because proofs may require knowing about
all the potential and actual aliases in the system, and thus proofs may also require reasoning about the
states of objects in unrelated classes in different modules. Also, determining all potential aliases may
not be possible, in general, because the aliases created will depend on the run-time execution of the
program, and thus the checking of side-effects on all possible aliased objects may not be computable
precisely and statically. 

Therefore, modular reasoning requires that the abstract value of an object change only if the
specification of a called method allows it to change. That is, no mutable concrete field that determines
the abstract value of any object in the system can be allowed to change unexpectedly. Thus these
mutable concrete fields need to be protected. We say that a concrete field is mutable if there are
methods (and hence types containing such methods) that can assign to that field. 

Concrete fields of the receiver are protected via the assignable clause and our assumption that
methods are only allowed to directly assign to fields of the receiver (see subsection 1.6.6). However, if
mutable fields of internal concrete objects are related to the value of a model field, then our technique
must also prevent these internal objects from being modified unexpectedly. For example, the value of a
model field must not be derived from mutable fields of internal objects if, because of aliasing, those
fields can be changed by unrelated classes or methods of external objects. 

There are two general approaches to protecting the state of internal objects, either disallow the
sharing of these objects or allow sharing using read-only references [BNR01]. An object o is shared if
more than one object contains a reference to o. Also, by definition the state of an object cannot be
modified through a read-only reference. 
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In the first approach, unrelated objects are not allowed to contain references to the unshared
object; thus the state of an object is encapsulated by encapsulating references to that object [Hog91,
Alm97, VB01]. One way this can be accomplished is through unique variables; a unique variable is
the only variable allowed to contain the reference to an unshared object. Techniques that use unique
variables also incorporate a type system and sometimes other mechanisms (such as destructive reads)
that are used to guarantee this uniqueness property [Bak95, Min96, Boy01, AKC02, LPHZ02]. Other
variations of this approach use ownership rather than uniqueness to increase flexibility [CPN98,
NVP98, CNP01, CD02, CW03] but all are based on the same principle of reference encapsulation. 

In contrast, the second approach allows the sharing and aliasing of internal objects through read-
only references [HLR+99, Mül01, MPH01, KT01, Sko02, LP06]. However, modular reasoning is not
possible unless modification of an internal object is not allowed except via fields of the encapsulating
object. Thus this second approach must encapsulate side-effects rather than object references. 

Our technique uses this second approach since it seems to be less restrictive in the programs
allowed. However, unlike the others, our technique only uses type specifications and requires no
additional annotations. The specification is used to determine which internal objects need to be
protected (Sections 3.3 and 3.4) so our tool can make sure these objects are properly protected through
a simple static, modular check (Section 3.5). Thus our technique uses specifications to prevent
unexpected and unwanted side-effects while allowing sharing and aliasing of internal objects. 

Preventing these unwanted side-effects is important in our technique because we need to be able to
reason about superclass methods from the specifications. That is, we have to be able to prove
correctness of subclass methods without the superclass code, i.e., using only the superclass
specifications, subclass specifications, and subclass code. Thus it is important that client programs and
subclass code not inadvertently cause mysterious or unexpected changes to the abstract value of an
object. 

There are three main goals of our technique for controlling side-effects on internal objects. The
first is that it must prevent the side-effects that could make our reasoning system unsound or non-
modular. The second is that our technique must be statically checkable1. The third goal is that it must
have minimal notational overhead so it is easy to use and practical for specifiers and customizers. 

We also extend in several significant ways the previous techniques for controlling side-effects. In
the current literature, data groups [Lei98, LPHZ02], abstract fields [Lei95, Mül01, Mül02, LN02], and
dependency relationships [Lei95, LN02, Mül01, Mül02] are used to specify and control side-effects.
However, unlike these techniques, we allow the represents clause to map concrete object structures
to abstract object structures; in contrast, the existing techniques require that the mapping be to a value
in the language and not to an abstract object structure. Furthermore, we allow method calls and model
fields to be accessed in the represents clause (with some restrictions). We also have rules that allow

1. A secondary goal is that our rules produce a minimal number of spurious warning messages.
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the type invariant to access of the state of abstract (model) objects, and we provide rules for handling
our layered approach to specification, i.e., public, protected, and private specifications; this includes
some special rules for handling private fields. Finally, unlike these existing techniques, we provide
rules for handling relationships between superclass fields and subclass fields in the invariant and
represents clauses2. 

The concern addressed in this chapter is the aliasing induced by object references (pointers) in
combination with mutable objects. In Section 3.2, we first motivate the need for our technique by
defining our terminology as it relates to the problems caused by aliasing and mutable objects. Then
Sections 3.3 and 3.4 describe our rules for determining the objects that must be protected, and Section
3.5 then provides the rules that protect the state of those objects against unexpected side-effects.
Finally, Section 3.6 discusses the limitations of and what is accomplished by our technique; it also
gives directions for future work. 

3.2  Terminology and Concepts
This section defines the terms and concepts used to describe the problems caused by aliasing of

mutable objects; these terms are also used in the explanations of our rules for preventing unwanted
side-effects. 

3.2.1  Static vs. Dynamic Aliasing
An object is aliased in a given state if there are at least two access paths to it. An access path is a

sequence of variable or field names with each name denoting a context (i.e. an object or class) in which
the succeeding name is evaluated. For example, in Java, a sequence of names separated by a dot (.), i.e.
a qualified name, specifies an access path for an object3. When an object can be referenced by more
than one qualified name, ignoring the language’s visibility restrictions, then each name (or access
path) is an alias for the object. 

When the first name in an access path is either a static field or an instance field, then that path is a
static access path; however, if the first name is a stack-based variable, i.e., a local variable or
parameter, then it is a dynamic access path. Thus there are two types of aliases: static and dynamic. A
static access path to an aliased object is a static alias, whereas a dynamic access path to that object is a
dynamic alias. 

Static and dynamic aliases are handled differently because static aliases can persist beyond method
calls, whereas dynamic aliases do not. For example, when an object (reference) is passed as an

2. In Chapter 7, we give a more complete review and comparison with the other alias control tech-
niques in the current literature. 

3. This notation applies to languages like Java or Eiffel, but not always to C++ where references to 
objects (pointers) are not implicit. In C++, the names in an access path are separated by -> rather 
than a dot when the names denote a reference (pointer) to an object. Smalltalk has no syntax for qual-
ified names, but still has the concept of an access path.
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argument in a method or constructor call, then a dynamic alias is created. Dynamic aliases are
temporary, because the prefix of the dynamic access path is a local variable or parameter that goes out
of scope; that is, dynamic aliases disappear at the end of the execution of the method or block in which
they are declared. A static alias occurs, for example, when two or more different fields reference the
same object; the fields can be from the same or different objects. Thus a static alias persists until one of
the objects containing a field in its access path is no longer accessible (e.g., can be garbage collected)
or until one of the fields is assigned a new value. 

3.2.2  Abstract Data Types and Representation Exposure
In an object-oriented language like Java, the implementation of an abstract data type is given by a

class definition. The benefit of abstract data types is that they can be instantiated and reused in
different contexts. To support abstraction, field declarations have access modifiers, such as protected
and private, that restrict access to internal fields and objects. We say that an object I is internal to
object O if they are different objects and there is an access path from O to I. 

However, restricted access alone is not sufficient to prevent the aliasing and side-effects that could
cause incorrect or unexpected behavior. For example, unwanted aliasing can also occur with
representation exposure. Representation exposure means allowing unrelated objects or unrelated
classes to have knowledge of or direct access to the internal implementation of an abstract data type.
Recall that two classes are unrelated if neither is a subtype of the other. On the other hand, two objects
are unrelated if neither object is internal to the other. Thus two objects can be unrelated even if they
have related types. For example, in most cases, two objects with the same type will be unrelated. For
example in Figures 3.1-3.2, two objects with type CellPair cannot be related since neither object
can be internal to the other, i.e., none of the reachable fields of a CellPair object can reference
another CellPair object (at least with the classes and subclasses of IntCell we have seen so far). 

Preventing representation exposure involves hiding an abstract data type’s representation from
unrelated classes and from unrelated objects. Thus there are two ways to prevent representation
exposure: information hiding and encapsulation of state. Information hiding means that all the internal
algorithms, data structures, and classes, used in the implementation of an abstraction, are hidden from
unrelated classes. Therefore, different algorithms and representations can be used without affecting
clients of the class. 

Encapsulation of state, on the other hand, means that an object does not share mutable state with
unrelated objects. The state of an object includes both the state of its instance variables and the states
of its internal objects. An object is mutable if clients can change its state during execution of a
program. Thus the state of an object is mutable if that object has methods (or calls methods) that assign
to any of its fields. However, an object is also mutable if the state of any of its internal objects can be
modified by methods of unrelated objects, e.g., when an internal object has a static alias from outside
the object. 
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_________________________________________________________________________

public class CellPair {
   //@ public model IntCell firstCell;
   //@ public model IntCell secondCell;
   //@ public model int secondValue;

   //@ public invariant firstCell != null && secondCell != null;
   //@ public invariant secondValue == secondCell.value;

  /*@  public normal_behavior
    @    requires cellOne != null && cellTwo != null;
    @    assignable firstCell, secondCell;
    @    ensures firstCell == cellOne 
    @       &&  secondValue == cellTwo.value;    @*/
    public CellPair(IntCell cellOne, IntCell cellTwo);

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result == firstCell;  @*/
    public /*@ pure @*/ IntCell first();

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.value == secondValue;  @*/
    public /*@ pure @*/ IntCell second();

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result == secondValue;  @*/
    public /*@ pure @*/ int value2();

  /*@  public normal_behavior
    @    requires newCell != null;
    @    assignable firstCell;
    @    ensures firstCell ==  newCell;  @*/
    public void setFirst(IntCell newCell);

  /*@  public normal_behavior
    @    requires newCell != null;
    @    assignable secondCell;
    @    ensures secondValue == newCell.value;  @*/
    public void setSecond(IntCell newCell);
}

Figure 3.1:  Public specification of CellPair from file CellPair.jml-refined.
_________________________________________________________________________
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As we shall see, sharing mutable state does not always cause problems. For example, two objects
always share state if one of them is internal to the other; this is usually necessary when building large
systems. However, problems can arise when two unrelated objects share state, in particular, when the
same mutable object is internal to both. Thus the primary goal of our alias control technique is to
prevent such sharing when it makes our reasoning technique unsound or non-modular. 

3.2.3  Layers of Abstraction
Abstract data types are also used to create layers of abstraction. Modern computing systems are

built in layers of abstraction; this is one of the most important methods for managing the complexity of
large systems. For example, in a large system of Java classes, objects at a higher level of abstraction
are implemented using objects at lower levels. Higher-level objects are typically more abstract,
whereas lower-level objects are more detailed, specific, and concrete. Also, higher-level abstractions
are usually closer to end user needs. 

A similar phenomenon occurs in specifications when higher-level objects are used to specify the
public behavior of an abstract data type, while lower-level objects are used in its concrete
implementation. For example, in JML, a public model field is used to specify the behavior of a group
of one or more concrete fields. The abstract value of that model field is a function of the values of the
concrete fields in this group; in JML, each model field can have a represents clause that specifies this
mapping (or relation). Also, since changes to these concrete fields affect the value of a model field,
they must all be members of that model field’s data group. For example, in Figures 3.1 and 3.2, the
public model field firstCell is implemented using the concrete field _first, and _first is a
member of firstCell’s data group; similarly secondValue is implemented using _second,
which is a member of secondValue’s data group. 

Model fields are also used to hide implementation details, that is, concrete fields are not usually
visible to clients but model fields are4. For example, clients see only the public specification in Figure
3.1. This public specification of CellPair is an example of a higher-level abstraction. Figures 3.2
and 3.3 are examples of lower-level abstractions, i.e., the protected specification and concrete
implementation respectively give the implementation details. 

3.3  Pivot Fields
In this section, we describe how our technique prevents the side-effects and aliasing that could

make reasoning unsound or non-modular. Our technique uses this notion of layers of abstraction to
accomplish information hiding, i.e., hiding the implementation details from client programs. However,
the soundness of our technique also depends on protecting the state of concrete objects used to
represent and determine the abstract value of an object. Thus our technique has to provide rules for
determining which objects need to be protected from unexpected side-effects and rules that ensure that

4. Our technique requires that concrete fields not be public, i.e., not be directly accessible by clients. 
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these objects are not modified by methods of unrelated objects. We call the fields that reference these
protected internal objects pivot fields. Our technique does not encapsulate these objects, but rather it
only allows the owner of these pivot objects to modify them. In particular, each pivot field owns (or is
the owner variable5 of) the pivot object it references and therefore must be the only variable in the
system allowed to initiate changes to the state of that pivot object. 

3.3.1  Background and Definitions
A pivot field [LS99, LN02] is a concrete instance field that references a lower-level mutable object

and some part of the state of this lower-level object is accessed by a model field or a predicate clause
declared in the specification of the type. We will also refer to the object referenced by a pivot field as a
pivot object. Furthermore, an object will be referred to as object x when it is referenced by a field
named x. 

The values of model fields are also constrained by predicate clauses. A predicate clause is a clause
in a type specification that makes a boolean assertion about the state of objects in that type, such as, the
invariant, requires, and ensures clauses. Because clients need to reason about the value of the public

5. Subsection 3.5.1 more specifically defines what we mean by an owner variable. 

_________________________________________________________________________

//@ refines "CellPair.jml-refined";

public class CellPair {

    protected IntCell _first;
    //@                in firstCell;

    protected IntCell _second;
    /*@                in secondCell, secondValue;
      @                maps _second.value \into secondValue;
      @*/

    protected int _val2;
    //@            in secondValue, secondCell;

    //@ protected represents firstCell <- _first;
    //@ protected represents secondCell <- _second;
    //@ protected represents secondValue <- _second.value;

    //@ protected invariant secondValue == _val2;
}

Figure 3.2:  Protected specification of CellPair from file CellPair.jml.
_________________________________________________________________________
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model fields of a type, the mutable concrete fields indirectly accessed by a predicate clause must also
be protected from unexpected change. For example, if a concrete field is related to the type invariant
via a model field and represents clause, then that field must be protected so the invariant is not
inadvertently invalidated. 

In JML, the state of a concrete pivot object is either related to a higher-level abstraction, e.g., a
model field, through a represents clause or to the value of a literal or another model or concrete field
in a predicate clause. For example, in Figure 3.2, concrete field _second is a pivot field because part

_________________________________________________________________________

//@ refines "CellPair.jml";

public class CellPair {

    protected IntCell _first;
    protected IntCell _second;
    protected int _val2;

    public CellPair(IntCell cellOne, IntCell cellTwo) {
        _first = cellOne;
        _second = cellTwo;
        _val2 = _second.getValue();
    }
    public /*@ pure @*/ IntCell first() {
        return _first;
    }
    public /*@ pure @*/ IntCell second() {
        return _second;
    }
    public /*@ pure @*/ int value1() {
        return  _first.getValue();
    }
    public /*@ pure @*/ int value2() {
        return  _val2;
    }
    public void setFirst(IntCell newCell) {
        _first = newCell;
    }
    public void setSecond(IntCell newCell) {
        _second = newCell;
        _val2 = _second.getValue();
    }
}

Figure 3.3:  An incorrect implementation of CellPair from file CellPair.java.
_________________________________________________________________________
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of the state of the object it references, the indirectly declared field6 _second.value, determines the
abstract value of model field secondValue in the higher-level abstraction. The specific mapping (or
relation) between the lower and higher-level abstractions is given in the represents clause. 

The state of a mutable object can also be accessed in a predicate clause. The state of an object x is
accessed when one of x’s concrete fields is (directly or indirectly) accessed; that is, accessing an
indirectly declared field, such as x.V, means accessing the state of object x. 

Unrelated objects must not be allowed to change an internal object whose state is accessed by a
predicate clause. For example, if an invariant clause accesses the state of an internal mutable object,
then that internal object must be a pivot because this invariant must hold prior to and after method
calls. Furthermore, when the pre- and postconditions in the requires and ensures clauses,
respectively, make assertions about the state of a concrete internal object (usually through model
fields), then this object must be a pivot because clients are, in effect, reasoning about the state of that
concrete internal object. 

Similarly, unrelated objects must not be allowed to change concrete fields accessed by a
represents clause because such changes may change the abstract value of a model field. For example,
the second invariant clause in Figure 3.1 specifies a relationship between secondValue and
secondCell.value. In this case, the invariant relationship is specified using model fields but
pivot fields are always concrete fields. Therefore, if the state of a concrete object is accessed in the
represents clause of either of these model fields, then that concrete object must be a pivot. Hence,
_second in Figure 3.2 must be a pivot field since the state of the object _second is accessed by the
represents clause of secondValue. 

However, _first is not a pivot field because the state of the object it references is not accessed
by a predicate clause and it does not determine any part of the abstract value of a CellPair object.
That is, in Figures 3.1 and 3.2, none of the represents, invariant, requires, and ensures clauses in
CellPair access the fields of _first. Such non-pivot objects can be shared because changing their
state cannot invalidate the invariant of a CellPair object nor does it change the abstract value of the
higher-level abstraction. 

Identifying the pivot objects internal to a type is important because the state of these mutable
objects must be protected, i.e., methods of unrelated classes and objects must not be allowed to change
them since such changes could cause unexpected behavior. For example, method second in the
implementation of CellPair shown in Figure 3.3 returns the pivot object referenced by _second.
Thus clients can capture references (create aliases) and later change the state of that pivot object,
which could invalidate CellPair’s invariant. Furthermore, when the state of object _second is
changed unexpectedly, this changes the state of the abstract value of secondValue which could also

6. Recall that instance field x.V is indirectly declared in type C if x is directly declared in C and x ref-
erences an object with a (directly or indirectly declared) field V. 
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cause client programs to go wrong. The client program in Figure 3.4 illustrates how aliasing can cause
unexpected problems; we will use this example later to explain these problems and how our rules
prevent them. 

Thus we need some way of declaring pivot fields so implementers and our tools can recognize
them. Furthermore, for soundness, we have to require that all pivot fields be declared; the rest of this
section describes how our technique accomplishes this. 

3.3.2  Declaring the Pivot Fields of a Type
Our technique uses the maps clauses in field declarations to specify that a field is a pivot. Thus no

additional annotations or specifications are needed because these maps clauses are already required
for specifying and controlling side-effects. That is, the maps clause is already needed in field
declarations to allow side-effects to internal objects. For example, the maps clause in Figure 3.2
declares field _second to be a pivot field and allows side-effects to the indirectly declared concrete

_________________________________________________________________________

public class CellPairClient {

    public static void main( String[] args ) {
        CellPair pair1 = new CellPair(new IntCell(3),
                                           new IntCell(7));
        IntCell c1 = pair1.first();
                   // (1) c1 is an alias of pair1._first

        IntCell c2 = pair1.second();
                   // (2) c2 is an alias for pair1._second

        IntCell c3 = new IntCell(5);
        CellPair pair2 = new CellPair(new IntCell(3), c3);
                   // (3) c3 is an alias for pair2._second

        c1.setValue(4);
                   // (4) invariant of pair1 is OK

        c2.setValue(3);
                   // (5) invariant of pair1 is invalid

        c3.setValue(3);
                   // (6) invariant of pair2 is invalid
    }
}

Figure 3.4:  Client program of CellPair.
_________________________________________________________________________
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fields in data group value of field _second. Our next rule specifies when a field must be declared
as a pivot field, i.e., when a field declaration must also include a maps clause. 

Pivot Declaration Rule. Let x.V be an instance field indirectly declared in type C or one of C’s super-
types. If x is a concrete field and x.V is accessed on the right-hand side of a represents clause or
in a predicate clause in the specification of C, then x.V must be a member of (i.e. mapped into) a
data group visible to C. 

The above rule says that field x must be a pivot field whenever the state of a concrete object x
(which cannot be the receiver) is accessed in a represents or predicate clause since adding an
indirectly declared field like x.V to a data group requires a maps clause. For example, indirectly
declared fields, like _second.value, can only be added to a data group through a maps clause as
shown in Figure 3.2. Furthermore, this maps clause adds the members of data group
_second.value to secondValue; thus _second._val is also added to this data group making
_second a pivot field. 

A maps clause must also be declared to allow any necessary side-effects to these internal objects.
However, enforcement of the assignable clauses does not guarantee that all the necessary maps
clauses have been declared for pivot fields. For example, the implementation of CellWrapper in
Figure 3.5 does not require the maps clause shown in that Figure. That is, the state of object _cell
(i.e., concrete field _cell._val) is indirectly updated by method set by assigning a new object
reference to _cell. Nonetheless, _cell must be a pivot field because its state is accessed in the
represents clause for theValue. Furthermore, pivot objects must be declared even if none of their
fields are changed by methods of the type (see also the example of a pure type given in Section 3.5).
Thus declaring the maps clauses needed to control side-effects is not sufficient to guarantee that all
pivot fields have been declared. 

In summary, there are two reasons that an internal object needs to be a pivot. First, if methods need
to modify the state of an object that is internal to the receiver, then that internal object must be a pivot
in the receiver. Second, an internal object has to be a pivot if a represents or predicate clause accesses
its state. The second is necessary because, when an internal object of the receiver determines any part
of the abstract value of the receiver object, then our technique has to protect the state of that internal
object, i.e., prevent it from being changed by methods of other perhaps unrelated classes and objects. 

3.3.3  Determining the Concrete Fields Accessed in an Expression
We need to know how the fields accessed by the represents and predicate clauses can be

calculated so our tool and technique can ensure that all pivot fields have been declared, i.e., so our tool
can apply the above Pivot Declaration Rule to determine whether a maps clause is needed in a field
declaration. This subsection describes an algorithm and the necessary syntactic restrictions on
represents and predicate clauses so our tool can check that all pivot fields have been declared in a
type. 
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To ensure that the pivot fields have been declared, we have to first calculate the concrete fields
accessed in the expressions occurring in represents and predicate clauses since these are the fields
that determine the abstract value of an object, i.e., the abstract value of its model fields and of the
predicate clauses that constrain the values of these model fields. Thus we need an algorithm for
determining which concrete fields are accessed in an expression; based on this algorithm, our tool can
determine which indirectly declared concrete fields are accessed by the represents and predicate
clauses of a class, and thus which fields have to be pivots. 

In general, we say that a field is accessed in an expression if it is either directly or indirectly
accessed. A visible field, V, is directly accessed in an expression E if V occurs in E. However, V is
indirectly accessed in E if a model field F is directly accessed in E and V is accessed (directly or
indirectly) on the right-hand side of F’s represents clause. V is also indirectly accessed in E if a
method or constructor M is called in E and V is accessed (directly or indirectly) by the call of M. Also,

_________________________________________________________________________

public class CellWrapper {

    //@ public model int theValue;

    /*@ public normal_behavior
      @    requires c != null;
      @    assignable theValue;
      @    ensures theValue == c.value;
      @*/
    public void set(IntCell c) {
        _cell = new IntCell(c.getValue());
    }

    ...

    //  Protected Specification below

    protected IntCell _cell;
    //@               in theValue;
    //@               maps _cell.value \into theValue;

    //@ protected invariant _cell != null;
    //@ protected invariant _cell.value == theValue;

    //@ protected represents theValue <- _cell.value;

}

Figure 3.5:  Public and protected specifications combined with the implementation of part of class CellWrapper.
_________________________________________________________________________
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whenever field V is accessed in expression E, and V references an object, then we say that object V is
accessed in E. 

Figures 3.1 and 3.2 provide a simple example; that is, secondValue’s represents clause, in
Figure 3.2, directly accesses _second.value, and thus indirectly accesses _second._val (since
_val is directly accessed by value’s represents clause in class IntCell of Figure 1.5). Thus, the
expression secondValue indirectly accesses concrete field _second._val. 

Figures 3.6 and 3.7 formalize the function accessed(E); this function computes the set of concrete
fields accessed in expression E. That is, Figure 3.6 defines the function accessed(E) which calls the
auxiliary function, replacePrefix, defined in Figure 3.7. Function, accessed(E), takes an abstract
syntax tree (AST) node as its input argument. However, we assume that the type checker has been run,
and thus this AST node contains the attributes needed by the function7. For example, if type checking
has already been done, then the variable and method names have been resolved. Therefore, whether the
variable, in rules 1-4, is a field of the receiver, a parameter, a local variable, or a model field can be
determined from attributes in this AST; thus, using these attributes, this function can determine which
of rules 1-4 should be applied8. Specifically in JML, an expression that references a variable will have,
as an attribute, a reference to the declaration of that variable. 

Furthermore, as required by rule 3, a model field’s represents clause can be obtained through any
AST node that references that field. Rule 3 says that the concrete fields indirectly accessed through a
model field v are exactly those fields accessed by v’s represents clause. 

Notice also that rule 1 always includes the implicit “this.” in the result set to avoid ambiguities
with parameter names. Also, rules 5 and 7 handle the case where the prefix “this.”9 is explicit in an
expression. 

Our algorithm also handles method calls in expressions. Rules 2 and 6, taken together, define how
the concrete fields indirectly accessed through a method call are determined, and, in particular, how we
handle parameters. Since parameters are not concrete fields, parameter references in the body of a
method must be converted into the concrete fields indirectly accessed during a method call; this is
done, as specified in rule 6, using the actual parameters from the method call expression. That is, for
method calls, the actual parameters are, in effect, substituted for the formal parameters in the method

7. After the type checker has been run, in Iowa State University’s JML tool, the information needed by 
this algorithm is available or can be found via attributes of the AST. 

8. We do not include static fields in the algorithm because, for simplicity, we are assuming that types do 
not declare static fields (see assumptions in subsection 1.6.6). A static field presents a unique set of 
problems because it is shared by all objects of a type, i.e., it acts as if it were aliased. Therefore, we 
consider it an error if a represents or predicate clause accesses such fields (see also the discussion in 
subsection 3.6.3). 

9. In Java, the prefix could also be “super.” for accessing superclass fields of the receiver, but, for 
simplicity, we will not consider that here. Also, in C++, the prefix could be “C::” where C is the 
superclass name where the field was declared. 
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_________________________________________________________________________

1. accessed(v) = { this.v } if v is a concrete field of the receiver
2. accessed(v) = { v } if v is a parameter
3. accessed(v) = accessed(R) if v is a model field and R is the expression on the right-hand side 

of v’s represents clause
4. accessed(v) = { } if v is a local variable other than a parameter
5. accessed(this) = { this }
6. accessed( M(R1, ... , Rn) ) = accessed( R1 ) ∪ ... ∪ accessed( Rn ) ∪               

replacePrefix(R1, p1, ... replacePrefix(Rn, pn, accessedM)...), where accessedM is the set of 
fields accessed by method M (determined from M’s accessible clause)

7. accessed(X.R) = accessed(X) ∪ replacePrefix( this, X, accessed(R) ) if X is a concrete 
access path (i.e., a sequence of concrete variable or parameter names) denoting object X and R 
is a variable access or method call expression (as in rules 1 - 6)

8. accessed(X.R) = { } if X is not a concrete access path or  R is not a variable access or method 
call expression

9. accessed(E1 binop E2) = accessed(E1) ∪ accessed(E2)
10. accessed(unop E1) = accessed( E1 )

Figure 3.6:  Summary of the rules for determining the concrete fields accessed in an expression; binop and unop 
denote the binary and unary operators respectively. Also, E1 and E2 denote expressions. 
_________________________________________________________________________

_________________________________________________________________________

1. replacePrefix(v, R, accessedE) = accessedE if R is not an access path

2. replacePrefix(v, R, accessedE ) = { } if accessedE is empty
3. replacePrefix(v, R, accessedE) = { R } ∪ replacePrefix( v, R,  accessedE - { v } ) if          

v∈accessedE and R is an access path
4. replacePrefix(v, R, accessedE) = { R.Y } ∪ replacePrefix(v, R,  accessedE - {v.Y}) if 

v.Y∈accessedE and R is an access path
5. replacePrefix(v, R, accessedE) = { w } ∪ replacePrefix(v, R,  accessedE - { w }) if          

w∈accessedE and w ≠ v
6. replacePrefix(v, R, accessedE) = { w.Y } ∪ replacePrefix(v, R,  accessedE - { w.Y }) if 

w.Y∈accessedE and w ≠ v

Figure 3.7:  Definition of auxiliary function replacePrefix; it replaces the prefix v in all paths in accessedE with 
the access path R. In this algorithm, v is either the receiver this or a parameter name. 
_________________________________________________________________________
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body. Thus the concrete fields accessed by the call are determined, as described in rule 6, by taking a
method’s accessible clause, i.e., accessedM, and replacing the occurrences of the formal parameters
with the actual parameters using the replacePrefix function. Chapter 6 describes how our tool
calculates the fields accessed in the body of a method (we use this same algorithm for determining the
fields accessed in expressions and assignment statements, and then union together the fields accessed
in each statement in the body). 

In addition, our algorithm needs to handle qualified names. Rule 7 defines how to determine the
access paths referenced by a qualified name10. In rule 7, the set, accessed(R), has to be computed first,
because the subexpression R can (indirectly) access concrete fields through a model field or a method
call. We then have to add the prefix X to the appropriate access paths in accessed(R) using
replacePrefix. That is, we must only replace the prefix of a path in accessed(R) if the prefix is
“this.”, since the prefix of any other access paths must necessarily reference a parameter; that is,
they do not reference the receiver X. Furthermore, rule 7 requires that the prefix, X, be an access path
that only includes concrete field or parameter names. This is because we want access paths in
accessed(X.R) to be static access paths or paths that can be converted into a static path; thus access
path X cannot reference model fields or local variables (other than parameters). Subsection 3.3.4
explains why model fields are not allowed in X. We do, however, allow parameter names to be part
(the prefix) of concrete access paths because they can and must eventually be converted, by application
of rule 5, into paths consisting solely of concrete fields; rule 8 says to ignore the other access paths.
Similarly, if the actual parameters in a method call are not access paths that can be converted into a
concrete path, then the algorithm ignores them (see rule 7 of accessed and rule 1 of replacePrefix). 

Rules 9 and 10 are included to show how subexpressions are handled, i.e., the fields accessed in
subexpressions are unioned together. These two rules do not represent all the possible expressions and
combinations of expressions in Java. Nonetheless, the included rules are meant to illustrate that all
fields accessed in subexpressions are unioned together. 

However, some expressions do not access any concrete fields (e.g., literals). Furthermore, there are
expressions for which the fields accessed cannot, in general, be precisely calculated (e.g., fields of
model objects, as explained in subsection 3.3.4); rules 4 and 8 are also examples. Therefore, primitive
expressions, other than the variable references handled by rules 1-3 and 5-7, do not add concrete fields
to accessed(E). 

Finally, we believe that this algorithm handles most practical situations. However, when an
expression is not handled (e.g., a field of a model object), then the specification can, in most cases, be
changed to something that can be handled (see subsection 3.3.4). 

10.For simplicity, we do not include arrays in the rules given in Chapters 2 and 3. However, we believe 
that our technique can be extended to handle arrays (see assumptions in subsection 1.6.6). 
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3.3.4  Accessing Fields of Model Objects
The algorithm, in Figures 3.6 and 3.7, calculates the concrete fields accessed by an expression;

however, it does not specify how to determine the concrete fields accessed by fields of model objects.
The problem related to model objects is that these objects are abstract, i.e., they do not exist during
program execution. Therefore, all fields of a model object are also abstract in the sense that they also
do not exist during program execution. Thus when a field of an abstract object is accessed, it is not
always obvious which concrete fields are indirectly accessed by such expressions. This subsection and
subsection 3.3.5 explain when and how our technique deals with fields of model objects, and why we
restrict the syntax of the predicate, represents, and assignable clauses to expressions that have a
precise meaning and that our tool can handle. 

The state of a model object is computed from a represents clause. Therefore, a field of a model
object indirectly accesses the concrete fields used to compute its value. For example, suppose a model
field F references an object as shown in Figure 3.8; object F is mapped from the concrete objects
accessed through field v. However, because object F has no concrete state or concrete fields, we have
to consider that an expression like F.x indirectly accesses all fields in accessed(F)11, since they
determine the abstract value of both F and F.x. For example, in Figure 3.9, the model field cell is
determined by _pair._first through its represents clause and the represents clause for

11.The value of accessed(F) is determined from the represents clause for F as shown in Figure 3.6. 

  F 

  v 

  x
  y 

represents F <- f(v)

Figure 3.8:  Concrete objects referenced through field v are mapped to the model objects referenced by F.
_________________________________________________________________________

Model Objects

Concrete Objects accessed by F

Client View

Programmer



100
firstCell in Figure 3.2. However, _pair._first is not a pivot field; this is fine as long as the
type invariant and abstract value of BadInvariant objects do not access fields of cell. However,
the second invariant clause requires that cell.value be greater than or equal to zero. Therefore,
this invariant cannot be allowed because _pair._first can be aliased which could allow clients or
methods of unrelated classes to invalidate this invariant. Our next rule disallows references to fields of
model objects in predicate clauses when that model object depends on non-pivot, concrete fields. 

Predicate Clause Access Rule. Let class S be C or a subtype of C. Let F be a model field with a
reference type that is directly declared in C. If F’s represents clause accesses a non-pivot object
V, then fields of model object F cannot be accessed by predicate clauses in C and S. 

This rule prevents aliasing problems that can arise when a model field accesses a non-pivot field.
For example, it disallows the second invariant clause in Figure 3.9, as required, because it accesses
cell.value and cell indirectly accesses _pair._first which is not a pivot field. 

However, there is another more difficult problem that this rule does not handle. For example, if we
look again at Figure 3.8, the value of field F.x could also be determined by concrete fields that are not
in accessed(F). In particular, F.x may depend on fields of objects referenced by members of
accessed(F). For example, in Figure 3.9, the represents clause for pair specifies that it references
the same object as _pair. Thus _pair._first and _pair._first._val are indirectly
accessed by the first invariant clause in Figure 3.9. However, neither of these concrete fields are
accessed by pair’s represents clause. Therefore, the concrete fields accessed by the represents
clause are not necessarily the fields that determine the value of any particular field of a model object. 

Nonetheless, in Figure 3.9, we were able to easily determine which concrete fields were indirectly
accessed by expression pair.firstCell.value. In general, however, it may not be so simple to
determine from the represents clause which concrete fields are mapped to the value of a particular
field of a model object, i.e., the specified mapping may be complicated or it may not be one-to-one.
Thus, to be safe, we have to assume, in general, that when F references a model object, then F.x could
depend on the value of some fields of every concrete object reachable through accessed(F). Thus,
when F.x is accessed in a represents or predicate clause, then every object reachable through
accessed(F) would have to be a pivot. Class BadInvariant in Figure 3.9 illustrates the problem.
That is, _first is not a pivot in CellPair so our technique allows _pair._first to be aliased;
if it is aliased, then the first two invariant clauses in Figure 3.9 could be invalidated by its owner since
both cell.value and pair.firstCell.value depend on the state of _pair._first. Thus,
unless the fields accessed can be precisely calculated and checked, then all objects reachable through
_pair would have to be pivots. 

However, we do not believe this to be a practical approach, in general, because it would
unnecessarily require declaring internal objects as pivots. For example, one would not be able to
specify a list of sharable objects if the list nodes are accessed by the represents clause of a model
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field F and a field F.x is accessed by the invariant. With such a restrictive rule, it would be much more
difficult to share non-pivot objects and to create reusable types. 

Therefore, in JML, we want to allow predicate clauses that access the state of model objects when
it is sound to do so, i.e., when the predicate does not depend on a reachable non-pivot object. For
example, we would like to allow expressions such as cell2.value in the third invariant clause of
Figure 3.9, but without requiring that all objects reachable through accessed(cell2.value) be
pivots, i.e., without requiring that all objects reachable through _pair be pivots (the right side of
cell2’s represents clause accesses _pair). That is, because cell2.value does not depend on
any non-pivot fields of _pair, i.e., it does not depend on _pair._first, this invariant should be
allowed. 

However, as described above, it may not be possible for a tool to automatically determine the pivot
fields in all situations. That is, the more complicated cases may require a hand crafted proof to ensure

_________________________________________________________________________

public class BadInvariant {

    //@ public model CellPair pair;

    /*@ public model IntCell cell;
      @                      maps cell.value \into cell;  // not allowed
      @*/
    //@ public model IntCell cell2;

    /*@ public invariant pair != null
      @               && pair.firstCell.value >= 0;     // not allowed
      @*/
    //@ public invariant cell != null && cell.value >= 0;  // not allowed
    //@ public invariant cell2 != null && cell2.value >= 0;

// protected specification follows:

    protected CellPair _pair;
    /*@                in pair;
      @                maps _pair.firstCell \into cell;
      @                maps _pair.secondCell \into cell2;
      @*/

    //@ protected represents pair <- _pair;
    //@ protected represents cell <- _pair.firstCell;
    //@ protected represents cell2 <- _pair.secondCell;
}

Figure 3.9:  Combined public and protected specification of BadInvariant from file BadInvariant.jml.
_________________________________________________________________________
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that all pivot fields of internal objects have been declared (and this would not always be a trivial task).
Nonetheless, determining the dependencies is straightforward when a concrete field and a model field
have the same type and reference the same object, as in the represents clause for secondCell in
Figure 3.2. In such cases, there is a one-to-one correspondence between the fields of the model object
and the concrete field. Thus our next rule allows the state of such model objects to be accessed in
predicate clauses. 

Model Field Access Rule. Let class S be C or a subtype of C. Let F be a model field with a reference
type that is directly declared in C. If F’s represents clause maps a concrete field V to F, i.e., if they
both denote the same object, then fields of model object F can be accessed by predicate clauses in
C and S, otherwise fields of F cannot be accessed by predicate clauses. 

The above rule allows fields of a model object F to be referenced, for example, in an invariant
clause when F and a concrete field V denote the same object. However, if V is not a pivot, then, as
required, fields of F cannot be accessed by the invariant based on the above Predicate Clause Access
Rule. 

In any case, it is usually better to avoid accessing the state of model objects in the invariant; that is,
the specifier can always map the concrete field V.x to a model field G and then reference G when
necessary, as was done for secondValue in Figure 3.2. In either case, i.e., whether F.x or G is
accessed in the invariant, concrete field V has to be a pivot. In addition, we allow this exception
because it occurs frequently in specifications12, is easy for a tool to check, and because we want to
make it convenient to express invariants in the public specifications whenever it is possible and sound
to do so. 

However, we do not have to be so restrictive when dealing with the represents clause. That is, if
we require that the syntax of expressions in the represents clause conform to the grammar given in
Figure 3.10, then our tool can precisely calculate the concrete fields indirectly accessed by a model
field, i.e., we can use the algorithm in Figures 3.6 and 3.7. This is possible because, unlike a public
predicate clause, the represents clause is given in the protected or private specification where the
concrete fields are visible and can be accessed. Therefore, this restricted syntax allows our tool to
calculate the pivot fields related to each model field, i.e., the concrete fields indirectly accessed
through a model field, which is necessary for the soundness of our technique (notice that there is a rule
in the definition of accessed in Figure 3.6 that handles each production rule shown in Figure 3.10). Our
next rule specifies our restrictions on the represents clause. 

12.In JML, the spec_public modifier for a concrete field F is a short hand for declaring a public model 
field F and a concrete field V with the same type, and a represents clause mapping V to F; further-
more, the methods of the class are, as if, rewritten so the references to F are replaced by V. The 
spec_protected modifier is similar except the visibility of the model field is protected. 
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Represents Clause Access Rule. Expressions occurring on the right side of a represents clause must
follow the syntax given in Figure 3.10. 

Notice that this rule disallows a field of a model object from being accessed in a represents
clause, i.e., the restricted syntax does not allow this13. Furthermore, our tool considers it an error if the
represents clause accesses fields of a model object. Similarly, it is an error if fields of a non-pivot
object are accessed by a represents clause since this means the Pivot Declaration Rule has been
violated (see subsection 3.3.2). 

3.3.5  Model Fields in the Assignable Clause
Referencing a data field of a model object in an assignable clause has a problem similar to the

problems described earlier related to model objects in represents and predicate clauses (subsection
3.3.4). That is, the purpose of the assignable clause is to specify the set of concrete fields that a

13.We leave any additional weakening of the restrictions on expressions allowed in invariant and 
represents clauses as future work. 

_________________________________________________________________________

represents_expr ::=  concrete_field_access 
         |   model_field_access 
         |   method_call_access 
         |   represents_expr  binop  represents_expr
concrete_field_access ::=  concrete_field_name 
         |   self 
         |   self   .  concrete_field_name 
model_field_access ::=  model_field_name 
         |   concrete_field_access  . model_field_name 
method_call_access ::=  method_call 
         |   concrete_field_access  . method_call 
self ::=  this 
         |  super 
method_call ::= method_name ( argument_list ) 
argument_list ::=  actual_parameter 
         |  actual_parameter  ,  argument_list 
actual_parameter ::=  concrete_field_access 
         |  represents_expr  binop  represents_expr 

Figure 3.10:  The allowable syntax for expressions on the right-hand side of represents clauses (binop denotes 
the binary operators in Java).
_________________________________________________________________________
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method is allowed to assign to; however, the fields of a model object do not specify a set of concrete
fields because a model object is abstract and has no concrete state or concrete fields; thus the fields of
a model object cannot be assigned to during method execution. Furthermore, as described in
subsection 3.3.4, the concrete fields that a field of a model object would denote cannot always be
precisely calculated. Therefore, our technique does not allow fields of model objects to be listed in an
assignable clause. Furthermore, this restriction is in line with the current techniques for specifying
and controlling side-effects through the use of data groups and abstract field dependencies. That is, in
the current literature, data groups [Lei98, LPHZ02] and abstract fields [Lei95, Mül01, Mül02, LN02]
do not have attributes (they are not object structures), so the state of a data group or abstract field has
no meaning; hence, it cannot be directly referenced or changed. 

Furthermore, the purpose of the in and maps clauses is to add concrete fields into a data group.
Therefore, the same problem exists for a maps clause when it appears in the declaration of a model
field. For example, the declaration of model field cell in Figure 3.9 has a maps clause. However,
data group cell.value does not contain any concrete fields because the object referenced by cell
is abstract. Therefore, JML and our alias control technique do not allow the maps clause in model
field declarations. 

We do, however, allow the in clause in the declaration of a model field because a model field has
an associated data group containing concrete fields; these concrete fields are added to the data groups
listed in its in clauses (see Figure 3.17). Our next rule restricts the expressions allowed in an
assignable clause and disallows the maps clause in model field declarations.

Assignable clause rule. A field of a model object cannot be directly accessed in an assignable or
maps clause. 

One might think that we could make an exception to the above rule when the concrete object and
model object are the same (e.g., secondCell and _second in Figures 3.1 and 3.2). However, if
this exception were allowed, then an overriding subclass method might not be able to assign to
additional subclass fields; thus, in effect, the behavior of some subclass methods would not be
specifiable. For example, if secondCell.value were the only group listed in an assignable
clause, then an overriding method could not assign to additional subclass fields since fields of the
receiver cannot be added to groups declared in other objects, e.g., indirectly declared data groups such
as secondCell.value14 (see also subsection 3.4.1). Instead model field secondValue has to be
listed in the assignable clause since that group contains the required concrete field and subclasses can
extend that group with additional subclass fields. 

Examples given in Chapters 1 and 2 show that it is sometimes necessary to override methods and
to assign to subclass fields in order to satisfy subclass method specifications and subclass invariants. In

14.This is needed for soundness [Lei95, Lei98, LPHZ02]; thus the maps clause syntax does not allow a 
field to be added to a data group in another object. 



105
such cases, subclass fields have to be added to superclass data groups to allow those side-effects; this is
the primary purpose and use of data groups (i.e., to allow additional side-effects) and is required by
some of the rules given below. Therefore, to maximize extensibility of methods, only public data
groups and model fields of the receiver should be listed in public assignable clauses, since otherwise
it would not be possible for an overriding subclass method to modify subclass fields when only fields
of objects are listed15. 

The above rule also disallows the maps clause in model field declarations, because all maps
clauses in the declaration of a field F must access a directly declared field or group in object F, such as
F.x; the syntax and semantics of the maps clause require this. Therefore, because the above rule does
not allow a maps clause to access a field of a model object, there can be no valid maps clauses for a
model field F. 

3.4  Specifying and Controlling Side-Effects
The rules given in this section formalize our technique for ensuring that side-effects are properly

controlled and specified. In particular, when the specification allows a method to modify a concrete
field, then related fields must also be allowed to change. These rules also ensure that all pivot fields
accessed by a represents clause have been declared. Stated another way, these rules, if followed,
prevent fields of a non-pivot object from being accessed by a represents clause; this is accomplished
by requiring data group memberships that also make sure that the pivot fields have been declared
through a maps clause. 

3.4.1  The Syntactic Restrictions in Maps and Represents Clauses
The syntactic restrictions in the maps clause are necessary for soundness [Lei95, Lei98, LPHZ02]

and are closely related to our restrictions in the represents clause (Figure 3.10). In particular, the
maps clause syntax does not allow a field like x.y.z to be directly mapped into a data group. This
syntactic restriction is important because it forces data group relationships that are necessary for the
soundness of our technique16. The following example illustrates why this restriction is important for
soundness and modularity. 

3.4.1.1 An example
Suppose x is a concrete field and y is a concrete field directly declared in object x. Suppose also

that expression x.y.z (more precisely this.x.y.z) is accessed in the represents clause of a

15.Note, however, that this restriction only applies to objects referenced by the receiver, that is, fields or 
data groups declared in parameter objects can be listed in the assignable clause since such side-
effects do not change the state of the receiver (recall from subsection 1.6.6 that we assume that 
objects referenced by fields of the receiver are not passed as arguments in self-calls). Thus sub-
classes are only extending the behavior and state of the receiver and not the behavior or state of 
explicit parameter objects. 

16.This is the same syntactic restriction as the one given in Leino et al.’s paper [LPHZ02] for the same 
reasons.
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model field F. Therefore, to satisfy the Model Field Data Group Rule (subsection 3.4.2), x.y.z must
be added to data group F (or some other group in the receiver). However, in the declaration of field x,
a field like x.y.z cannot be mapped into a data group. That is, the syntax of the maps clause only
allows a field or group that has been directly declared in object x, such as x.g, to be mapped into a
data group. 

This restriction in the maps clause ensures soundness and modularity by requiring the following
data group relationships. First, in the type of x, the declaration of y must map y.z into some data
group G; thus y must be a pivot in x and field x.y.z would then be a member of data group x.G.
Next, x.G would be mapped into data group F; thus x must be a pivot field in the receiver this and
x.y.z would be a member of F as required. Also, x.y.z cannot appear in the represents clause for
F (Figure 3.10); instead x.G must be used. Therefore, x.y.z cannot be accessed by F unless x and
x.y are pivots. Our technique can then prevent these pivot objects from having aliases that would
allow unexpected changes to the value of x.y.z; more specifically, only methods of the receiver are
allowed to modify pivot object x, and only methods of x are allowed to modify pivot object x.y
(Section 3.5). Thus, as required for soundness, unrelated methods are not allowed to change the value
of concrete fields in F’s data group and, in particular, field x.y.z. 

3.4.1.2 Additional benefits and a comparison with the Law of Demeter
We also believe that our syntactic restrictions should be followed in general because they have

significant advantages for programmers, designers, and verifiers. That is, they seem to result in a better
class design since the specification and design will have to follow a discipline similar to the Law of
Demeter [LH89]. Obeying the Law of Demeter can result in less coupling between methods, better
information hiding, easier method reuse, easier correctness proofs, and many other related benefits
[LH89]. 

The Law of Demeter is a programming style rule that restricts the method calls allowed.
Specifically, it only allows calls on the objects in a method’s immediate context, such as, static-calls,
self-calls, and object-calls on formal parameters and fields directly declared in the receiver; object-
calls are also allowed on newly created objects (usually referenced by a local variable) since such
objects are not part of a different context. Also, expressions like x.y and x.m1().m2() are not
allowed in program statements and expressions. However, in practice, a few exceptions are allowed
[LH89], for reasons such as improved efficiency, but the main principle is to limit the number of
objects, types, and methods the programmer needs to know about. 

Similarly, our technique limits the specification of method behavior and its implementation to
variables in the immediate context. For example, if a concrete field x is a reference type directly
declared in the receiver, then a represents clause can only directly access model fields in x, e.g. x.G
is allowed if G is a model field; but concrete fields of object x, like x.y, and fields indirectly declared
in x, such as x.y.z, cannot appear in the represents clause (Figure 3.10). Also, as in the Law of
Demeter, a method call like x.m() is allowed, but x.y.m() is not (Figure 3.10). Thus, our technique
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can easily determine from the represents clause when x needs to be a pivot; we then depend on the
protection of pivots by the type of x to make expressions like x.G and x.m() safe (Section 3.5). 

Our technique also restricts program statements, e.g., it does not allow direct assignment to fields
of objects other than the receiver (subsections 1.6.6 and 2.4.3). Also, methods cannot make a call like
x.y.m() that modifies x.y (Section 3.5). However, our technique does not attempt to enforce the
restrictions of the Law of Demeter17. Nonetheless, only a few exceptions to this law would be allowed
if our tool were to enforce the assumptions needed to allow concrete data refinement (subsection 1.6.6
and Section 2.7). In any case, we do not allow those violations that would cause our reasoning
technique to be non-modular or unsound18. 

3.4.2  Determining Data Group Memberships
In this subsection, we formalize our technique for ensuring that a model field is allowed to change

when the concrete fields that determine its abstract value change; this is necessary to correctly specify
and control side-effects. To accomplish this, as required by our next rule, a model field and the
concrete fields it depends on must be members of the same data groups. This rule also ensures that
pivot fields accessed in a represents clause have a maps clause, as required by the Pivot Declaration
Rule. 

Model Field Data Group Rule. Let V be a concrete instance field directly or indirectly declared in C
or in a superclass of C. Let F be an instance model field directly declared in C or in a supertype of
C. If V is accessed on the right-hand side of F’s represents clause, then either (i) V must be a
member of data group F or (ii) V must be a member of at least one data group and F must be a
member of all such data groups containing V. 

A model field, its represents clause, and the fields accessed can be declared in the same or in
different types, i.e., in either a supertype or a subtype. Therefore, this rule does not specify where V, F,
or F’s represents clause has been declared. However, the various combinations are handled by
providing two different ways to satisfy the rule. That is, the alternatives, (i) and (ii), are needed
because, in some situations, only one of them is possible. For example, if V is declared in the
superclass and F in the subclass, as in Figure 3.11, then V cannot be added to data group F (since F is
not in scope in the superclass where V is declared). However, F can be added to superclass data groups
containing V. Thus alternative (ii) is included because we want to allow this situation. That is, F can be

17.Strict enforcement of the Law of Demeter is undecidable, but there is a weaker version that is stati-
cally checkable [LH89].

18.The reasons for these restrictions also point out the value of Smalltalk’s scope rules, i.e., only param-
eters, fields of the receiver, and global variables are in scope; however, like our technique, a specifi-
cation language would have to allow model fields of all objects to be visible so clients can reason 
about method behavior. 
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added to the data groups containing V, so, as required for soundness, the subclass model field F is
allowed to change whenever a related superclass field V can change. 

One of the primary purposes of this rule is make sure that overriding subclass methods have
permission to modify a subclass model field F whenever assignment to a concrete superclass field V
could also cause F to change. For example, in Figure 3.11, superclass methods that have permission to
modify G (and implicitly V) also have permission to modify F. Therefore, overriding methods in
subclass S can modify F (and its members) whenever G or H are assignable. In fact, methods have
additional side-effects if they have permission to modify G or H; thus these methods have to be
overridden and the changes to F must be specified for the overriding methods (see subsection 2.2.2).
These changes to F have to be specified because such methods can assign to V which could change the
value of F (and perhaps require that other of F’s dependees be changed), and clients need to know this
behavior with respect to F. 

The Model Field Data Group Rule also has to handle the case where instance field V is declared in
a subclass. For example, an appropriate represents clause cannot always be declared in interfaces and
abstract classes, e.g., when the representation has not yet been implemented; thus a model field can
sometimes be declared in a supertype while its represents clause and concrete representation have to
be declared in the subtype, as illustrated in Figure 3.12. In such cases, the model field F cannot be
added to the data groups containing V, so V must be added to data group F (i.e., alternative (i) is the
only way to satisfy the rule). 

class C {

//@ public model int G;
//@ public model int H;

    protected int V;

class S extends C {

//@ public model int F;
//@                  in G, H;

//@ protected represents F <- ...V...;

Figure 3.11:  Diagram showing the required relationships between superclass and subclass data groups and fields, 
as required in the Model Field Data Group Rule; this rule requires that F be a member of data groups G and H be-
cause F accesses V and V is a member of both G and H.
_________________________________________________________________________
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Notice, also, that a represents clause declared in the superclass can access subclass fields if it
calls a method that is overridden, i.e., when the overriding method accesses subclass fields (as in
Figure 3.13). However, a superclass model field cannot be added to subclass data groups, so
alternative (ii) is not possible. On the other hand, subclass fields can be added to any data group visible

abstract class C {

//@ public model int F;

class S extends C {

    protected int V;
    //@           in F;

//@ protected represents F <- ...V...;

Figure 3.12:  Diagram showing the required relationships between superclass and subclass data groups and fields, 
as required by the Model Field Data Group Rule, that is, V must be a member of data group F.
_________________________________________________________________________

class C {
//@ public model int F;

//@ protected represents F <- ...m()...;

class S extends C {

    protected int V;
    //@           in F;

   /*@ pure @*/ public int m() {...V...}

Figure 3.13:  Diagram showing the required relationships between superclass and subclass data groups and fields, 
as required in the Model Field Data Group Rule; this rule requires that V be a member of data group F because F 
indirectly accesses V.
_________________________________________________________________________
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to the subclass19, so alternative (i) can and must be followed whenever subclass fields are accessed by
a superclass model field, as shown in Figures 3.12 and 3.13. 

Furthermore, when a model field F is declared in the superclass and its represents clause is
defined in the subclass, then the above rule does not allow the represents clause to access superclass
fields that do not already satisfy the above rule. In such cases, the superclass is required to know or
anticipate F’s and V’s potential data group memberships without knowing the representation for F, as
illustrated in Figure 3.14. However, because our technique assumes that superclasses are correct with
respect to their specifications, this situation should not occur very often in practice. In addition, if V is
not a member of data group F in the superclass, then this could mean that there is a more significant
problem in the relation between the superclass and subclass definitions, such as the need to refactor the
classes involved to make the superclass more reusable by subclasses. 

Figures 3.15 and 3.16 provide more examples of the application of the above rule. That is, in
Figure 3.15, the in clause in the declaration of secondSum is required based on its represents clause
given in Figure 3.16; more specifically, secondSum needs to be added to the superclass data group
secondValue because secondValue contains the superclass fields accessed by secondSum’s
represents clause, i.e., _second.value and _second._val. Furthermore, secondSum has to
be added to a public data group because a more visible public field like secondSum cannot be added
to a less visible protected data group. 

19.Model fields are normally public, so they would typically be visible to subclasses.

class C {

//@ public model int F;

    protected int V;

class S extends C {

//@ protected represents F <- ...V...;

}

Figure 3.14:  Diagram showing the required relationships between superclass and subclass data groups and fields; 
that is, V must already be a member of data group F because F indirectly accesses superclass field V.
_________________________________________________________________________
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_________________________________________________________________________

public class CellTriple extends CellPair {

   /*@ public model IntCell thirdCell;
     @                      in secondValue;     @*/
   /*@ public model int thirdValue;
     @                  in secondValue;         @*/

   /*@ public model int firstSum;
     @                  in firstCell, thirdValue;       @*/
   /*@ public model int secondSum;
     @                  in secondValue, thirdValue;     @*/

   //@ public invariant thirdCell != null;
   //@ public invariant thirdValue == thirdCell.value;
   //@ public invariant firstSum == firstCell.value + thirdCell.value;
   //@ public invariant secondSum == secondValue + thirdValue;
   //@ public invariant secondSum == secondCell.value + thirdCell.value;

  /*@  public normal_behavior
    @    requires cellOne != null && cellTwo != null;
    @    assignable firstCell, secondCell, thirdCell;
    @    ensures firstCell.value == cellOne.value 
    @        && secondCell.value == cellTwo.value
    @        && thirdCell.value == v3;               @*/ 
  public CellTriple(IntCell cellOne, IntCell cellTwo, int v3);

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.value == thirdCell.value;  @*/
    public IntCell third();

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result == thirdCell.value;  @*/
    public int value3();

  /*@  public normal_behavior
    @    requires newCell != null;
    @    assignable thirdCell;
    @    ensures thirdCell.value == newCell.value;  @*/
    public void setThird(IntCell newCell);
}

Figure 3.15:  The public specification of CellTriple from file CellTriple.jml-refined.
_________________________________________________________________________
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However, in most cases, when this rule is applied, the model field, its represents clause, and its
concrete representation are all declared in the same class. Figures 3.1 and 3.2 give examples of the
application of this rule when this is the case. That is, the first in clause, in Figure 3.2, satisfies the rule
by adding _first to data group firstCell as required by the represents clause for
firstCell. Similarly, the maps clause in Figure 3.2 satisfies this rule based on the represents
clause for secondValue, i.e., the concrete fields in data group _second.value (i.e.,
_second._val) have been added to secondValue’s data group. 

Notice, however, that both alternatives are possible when the model field and the fields it accesses
are declared in the same type. Nonetheless, it is simple and usually preferable to add the fields
accessed by a model field into that model field’s data group, as was done in Figures 3.1 and 3.2, unless
the specifier does not want to allow methods to modify all fields that determine the value of F; Figures
3.17 and 3.18 provide an example. That is, based on the public specification in Figure 3.17, it would
probably be surprising to a client if x could also change when method setY is called. However, this
would be the case if x or _x were added to data group sum. Instead, as in the public specification of
Figure 3.17, the above rule can be satisfied for sum’s represents clause by adding sum to groups x
and y. Therefore, data group sum does not contain any concrete variables, so listing sum in an
assignable clause does not allow _x or _y to be modified. On the other hand, sum is allowed to
change whenever either x or y change, as required for soundness. 

3.4.2.1 Summary
Deciding how to satisfy the Model Field Data Group Rule boils down to looking at the location of

the declaration of model field F relative to V’s declaration. That is, model field F can be declared in a

_________________________________________________________________________

//@ refine "CellTriple.jml-refined";

public class CellTriple extends CellPair {

    protected IntCell _third;
    /*@               in thirdCell;
      @               maps _third.value \into thirdValue;
      @*/
    //@ protected represents thirdCell <- _third ;
    //@ protected represents thirdValue <- _third.value;

    //@ protected represents firstSum <- _first.value + thirdValue;
    //@ protected represents secondSum <- _second.value + thirdCell.value;
}

Figure 3.16:  The protected specification of CellTriple from file CellTriple.jml.
_________________________________________________________________________
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supertype, the same type, or a subtype relative to V, and this determines how the rule can be satisfied.
For example, when F is declared in a supertype, then V has to be a member of data group F (as in
Figure 3.12). When F is declared in a subtype, then F has to be a member of all supertype data groups
containing V (as in Figure 3.11). When F is declared in the same type, then both alternatives are
available for each variable accessed by F; however, if the specifier wants to limit the number of
assignable concrete fields when F is allowed to change, then the fields added to data group F must be
limited accordingly (as in Figure 3.17). The location of the represents clause also comes into play,
but only when F and V are declared in a supertype and the represents clause is in a subtype; this
situation is only allowed if the data group relationships, declared in a supertype, already satisfy the rule
(as in Figure 3.14). 

_________________________________________________________________________

public class XYPoint {

    //@ public model int x;
    //@ public model int y;

    //@ public model int sum;
    //@                      in x, y;

    //@ public represents sum <- x + y;

  /*@  public normal_behavior
    @    assignable x, sum;
    @    ensures x == newValue;  @*/
    public void setX(int newValue);

  /*@  public normal_behavior
    @    assignable y, sum;
    @    ensures y == newValue;  @*/
    public void setY(int newValue);

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result == sum;  @*/
    public int getSum();

}

Figure 3.17:  The protected specification for class XYPoint from file XYPoint.jml.
_________________________________________________________________________
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The Model Field Data Group Rule also makes sure that indirectly declared fields referenced in a
represents clause have a maps clause, as required by the Pivot Declaration Rule, since both
alternatives require that V be a member of a data group. However, if the above rule cannot be satisfied,
then unsafe aliasing could result. For example, the Model Field Data Group Rule cannot be satisfied
for all fields accessed in the represents clause of firstSum shown in Figure 3.16 since
_first.value is not a member of a data group in the superclass; this could lead to aliasing related
problems because _first is not a pivot field in the superclass (it would be if _first.value were
a member of a data group). Therefore, it is an error if a field is not a member of a data group and it is
accessed by a subclass model field. 

3.4.3  Data groups in the Assignable Clause
The above Model Field Data Group Rule does not ensure that a model field is always allowed to

change whenever any one of its dependees can change. For example, two different model fields could
depend on the same variable V, but this rule does not require that both model fields be assignable
whenever one of them could change. However, a change in V could change both model fields, so the
specification needs to allow both model fields to change. Therefore, we need to include another rule to
ensure that all data groups containing variable V are assignable whenever any one these groups is
listed in an assignable clause. 

_________________________________________________________________________

//@ refine "XYPoint.jml-refined";

public class XYPoint {

    protected int _x;
    //@                in x;

    protected IntCell _y;
    //@                   in y;
    //@                       maps _y.value \into y;

    //@ protected represents x <- _x;
    //@ protected represents y <- _y.value;

}

Figure 3.18:  The protected specification for class XYPoint from file XYPoint.jml.
_________________________________________________________________________
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Assignable Data Group Rule. Let V be a concrete instance field directly or indirectly declared in C or
in a superclass of C. Let F be an instance model field directly declared in C or in a supertype of C.
If V is a member of data group F and V is assignable in an instance method M, then F must also be
assignable in M. 

This rule specifies how to check assignable clauses so clients will not be surprised by possible
side-effects. That is, this rule makes sure that a method’s assignable clause lists all model fields that
could change due to assignments during method execution. In this rule, V is a concrete field so, in the
context of the receiver, V will have the form x or x.G with x a directly declared concrete instance
field and G a model field (these are the fields allowed by the syntax of the in and maps clauses). 

Therefore, this rule does not apply to model fields. That is, when a model field F is listed in an
assignable clause, then this rule does not require that groups containing F be listed in that
assignable clause, unless F contains a concrete field; this is important to the way we want to specify
side-effects. For example, in Figure 3.17, if the specifier would have inserted _x into data group sum,
then this rule would have required that the specifier also list x in the assignable clause of method
setY. Specifically, concrete field _x would have been a member of both sum and x, so listing sum
would have required that x also be listed. Therefore, this rule would have required a specification that
informs clients that x could be changed whenever setY is called. Instead, sum was added to data
groups x and y and sum did not contain concrete fields; thus setY did not have to list x in its
assignable clause and x cannot be modified. 

This rule also limits the data group memberships that can be declared in subclasses. That is, since
subclasses can add fields to a superclass data group, this rule has to be applied again for each subclass;
thus subclasses cannot add fields that would cause the rule to no longer hold for a superclass method
specification. For example, in Figure 3.19, a new concrete field _sum is added in the subclass
CacheSum, so the value of sum does not have to be recomputed each time getSum is called. Note,
however, that _sum was not added to data group sum because, based on the Assignable Data Group
Rule, this would have required that y be listed in the assignable clause for setX and that x be listed
in the assignable clause for setY. Since this is not the case in the superclass specification, _sum
must be added to data groups x and y (just like sum in superclass XYPoint). That is, sum must not
contain any concrete fields, otherwise all data groups containing sum will have to be listed in an
assignable clause whenever any one of them is listed. 

Also, this rule is applied locally and modularly in the current type. That is, we only have to be
concerned with fields of the receiver in this rule because modification of argument objects must be
done through object-calls (see subsection 2.4.3), so methods in the type of an argument object will
have to obey this rule; thus the assignable data groups of parameters listed in the assignable clause
can and will be derived from the assignable clauses of called methods. Therefore, the Assignable
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Data Group Rule will be satisfied for data groups of parameters based on the specification of the called
method. 

Also, this rule uses the data group relationships that were required by the Model Field Data Group
Rule, i.e., these data group relationships between fields are used in the enforcement of the Assignable
Data Group Rule. Therefore, the syntax of the in and maps clauses20 aids in the enforcement of this
rule since these clauses must be part of the declaration of the field being added to a data group (see
syntax of the in and maps clauses in Chapter 4 and in our examples); that is, the JML checker can
retrieve the associated data group memberships as properties of each field declaration. 

3.4.4  Summary
The two rules given in this section provide a principled approach to specifying data group and

dependency relationships so side-effects will be properly specified. Thus a primary goal of the rules is
to provide a technique for statically checking that side-effects have been properly specified, and
thereby prevent some common specification errors. 

The Model Field Data Group Rule makes sure that the specification allows a model field to change
whenever any of the concrete fields it depends on change. This rule also ensures that pivot fields will
have a maps clause, as required by the Pivot Declaration Rule, because any indirectly declared fields
accessed in a represents clause must be mapped into a data group, i.e., these assignable concrete
fields must be members of a data group. 

The Assignable Data Group Rule extends this beyond a single model field by requiring that an
assignable clause list all model fields that could change, i.e., model fields with overlapping
dependees must all be listed when any one of these model fields is allowed to change. Therefore, these
two rules taken together require that the specification inform clients whenever a public model field
could change; a side benefit is that specifiers will also know that the specification needs to say how
these model fields will change. 

20.This syntax is adapted from Leino et al.’s paper [LPHZ02]. 

_________________________________________________________________________

public class CacheSum extends XYPoint {

    protected int _sum;
    //@                in x, y;

    //@ protected invariant sum == _sum;

}

Figure 3.19:  The protected specification for class CacheSum from file CacheSum.jml.
_________________________________________________________________________
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Notice also that the invariant in CacheSum of Figure 3.19 requires that _sum be assignable any
time sum is allowed to change, i.e., the invariant says they must have the same value. As in the Model
Field Data Group Rule, there are two ways this can be accomplished, either add _sum to sum’s data
group or add _sum to all groups containing sum (as explained above, only the second option is
compatible with the superclass specification). This example also illustrates that there is a strong
similarity in the way fields accessed in the type invariant need to be handled compared with fields
accessed by a represents clause. 

However, there are also a few significant differences. For example, if our rule, when applied to an
invariant, were to require that most fields in the type be members of one large data group, then fine
grained control of side-effects may be difficult or impossible. Therefore, the rule needs to focus on
grouping the fields that are related. For example, x+y>0 relates x and y, but x>0&&y>0 does not
since the constraints are independent in the second expression (i.e., the value of one does not constrain
the other). Therefore, all fields accessed by the invariant do not need to be members of the same data
group. So to make the rule more practical, each subexpression of the invariant should probably to be
handled separately rather than applying the rule to the invariant as a whole. Furthermore, it may be
better to allow the specifier to indicate which fields need to be assignable rather than imposing any
additional data group membership requirements based on an analysis of expressions in the invariant. 

Also, the invariant will frequently need to be specified in the public specification so clients know
about it, whereas the represents clause is usually specified in the protected or private specification
where concrete fields are visible. Therefore, it would be problematic to require the same syntactic
restrictions for both invariant and represents clauses. We, therefore, leave as future work the task of
providing a rule and restricted syntax, analogous to the Model Field Data Group Rule and represents
clause syntax, needed for statically determining the required data group relationships based on
invariant clauses. Nonetheless, the Pivot Declaration Rule requires that indirectly declared fields
accessed by the invariant be pivots; we did, however, need to prevent the fields of model objects from
being accessed in predicate clauses in general, and invariant clauses in particular (subsection 3.3.4).
We believe these restrictions could be weakened, but also leave that as future work. 

Another alternative would be try to specify a protected or private invariant that is equivalent to the
public invariant; if this is possible, then expressions could be restricted to the syntax of Figure 3.10 and
the accessed and related fields of an invariant would be computable. In addition, the JML checker may
also be able to detect situations where the invariant may not be implementable, such as when the
invariant constrains and relates a set of concrete fields, but there is a method that does not permit all of
these fields to be assigned. 

Finally, we also found that there were a few situations that were prohibited by our rules. For
example, a subclass represents clause for a superclass model field is not allowed to access superclass
fields unless the superclass already satisfies the Model Field Data Group Rule for that represents
clause. Similarly, a subclass is not allowed to add subclass fields to data groups that would cause a
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violation of the Assignable Data Group Rule for superclass specifications. As explained above, these
cases cannot be allowed because they could cause our technique to be unsound. 

3.5  Protecting Pivot Objects
As illustrated in Section 1.5 and similarly in Figure 3.4, clients cannot reason soundly about

programs using public specifications unless the value of the lower-level abstraction (which is hidden
from clients) remains synchronized with its higher-level value (which is visible to clients). Therefore,
our technique must prevent unexpected changes to the abstract value of model fields through the
methods of unrelated objects or classes. Furthermore, clients must not be allowed to inadvertently
invalidate the invariant of a type. Therefore, our primary goal is to prevent unexpected changes to the
state of a concrete (pivot) object that determines the value of a model field. 

The previous section described why the concept of a pivot field is needed and how they are
declared in JML. In this section we explain the rules used by our technique to prevent unsound aliasing
of pivot objects and how our technique protects the state of these pivot objects when they are aliased. 

3.5.1  Owner Variables and Side-effects
The concept of owner variables is used by our technique to restrict method calls that change the

state of an existing object. In particular, only an owner variable is allowed to initiate changes to the
state of the object it references. 

An owner variable of an object is the first (in time) variable to contain a reference to that object.
Therefore, a variable becomes the owner of an object when it occurs on the left-hand side of an
assignment and the right-hand side is a new object constructor call. For example, _myCell is an
owner variable during the execution of method increment in Figure 3.22 because of the assignment
statement in that method. Similarly, _myCell is an owner variable during the execution of the
constructor in Figure 3.21 because the initializer in the declaration of _myCell makes it the first
variable to contain the reference to a newly created object. 

The main principle in our technique is that we want to make sure that all changes to the state of an
object are known in the context of its owner variable so clients and verifiers can reason about the state
of that object. Also, clients often need to modify the abstract value of an object and this abstract value
may depend on the state of a pivot object. Therefore, our technique must also ensure that every pivot
field is always an owner variable so any needed changes to a pivot object will be allowed (see also
subsection 3.5.2). 

Recall that modifying the state of an object, other than the receiver, requires an object-call because
direct assignment to fields of other objects is not allowed (see assumptions in subsection 3.5.7).
Therefore, when an object-call modifies the state of its receiver and the receiver is a variable, then this
receiver parameter must be an owner variable; this restriction ensures that an owner variable initiates
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all changes to the object it references. For example, the side-effects in the second statement of the
constructor shown in Figure 3.21 are allowed because _myCell is an owner variable in this context. 

However, in addition to the receiver, we also want to allow methods to modify objects passed as
explicit arguments. To do this, we have to allow formal parameters to become temporary owner
variables during a method call. Therefore, to make sure such calls do not modify an object owned by a
variable in a different context, we have to restrict method calls that modify the state of all argument
objects. Our next rule ensures that, during a method call, all changes to an object are initiated by an
owner so clients and verifiers can reason about the state of that object in the context of its owner
variable (this also assumes there are specifications of the behavior and side-effects of the called
method). 

_________________________________________________________________________

public class CellHolder {

   //@ public model IntCell theCell;

  /*@  public normal_behavior
    @    requires cell != null;
    @    assignable theCell;
    @    ensures theCell.value == cell.value;   @*/
    public CellHolder( IntCell cell );

  /*@  public normal_behavior
    @    assignable theCell;
    @    ensures theCell.value == \old(theCell.value) + 1;   @*/
    public void increment();

  /*@  public normal_behavior
    @    requires cell != null;
    @    assignable cell.value;
    @    ensures cell.value == \old(cell.value) + 1;   @*/
    public void add1( IntCell cell );

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.value == theCell.value;  @*/
    public IntCell getCell();
}

Figure 3.20:  Public specification of CellHolder from file CellHolder.jml-refined.
_________________________________________________________________________
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Owner Variable Rule. When a method is allowed to assign to fields of the receiver or formal parameter
object, then the corresponding actual parameter must be an owner variable, null, or a new object
constructor call. 

This rule says that when an object-call is allowed to change the state of the receiver object, then
the receiver in that object-call must be an owner variable or a new object constructor call (null is not
a valid receiver in Java). Therefore, the receiver cannot be a method call expression since the owner
would not be known in this context and thus cannot know about or initiate these changes. For example,
getCell().setValue(1) is not allowed by this rule because the receiver is not an owner
variable or new object constructor call. 

This rule also disallows the call of add1 in method increment of Figure 3.21 when _myCell
is not a pivot field. However, to allow that call of add1, increment could be implemented as in
Figure 3.22. Notice that, unless a field is a pivot, ownership does not continue after execution of the
method where the field was first assigned a reference to a new object; this allows the checking to be
done statically and modularly as described in subsection 3.5.5. Furthermore, if _myCell is not a

_________________________________________________________________________

public class CellHolder {
    protected IntCell _myCell = new IntCell(0);
   //@                in theCell;
   //@                maps _myCell.value \into theCell;
                   // (0) _myCell is a pivot field

    public CellHolder( IntCell cell ) {
        _myCell.setValue(cell.getValue());
                   // (1) OK because _myCell is a pivot field
    }
    public void increment() {
        add1(_myCell);
                   // (2) allowed because _myCell is a pivot field
    }
    public void add1( IntCell cell ) {
        cell.setValue(cell.getValue()+1);
                   // (3) OK because cell is an owner variable
    }
    public IntCell getCell() {
        return _myCell;
    }
}

Figure 3.21:  Implementation of CellHolder when _myCell is a pivot field.
_________________________________________________________________________
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pivot, then CellHolder cannot care about or reference the state of object _myCell in its
specification since that object may be owned by and thus modified through some other variable.

The above rule ensures that an owner variable has initiated and knows about any side-effects to the
object it references. The rule given in the next subsection explains how we make sure that pivot fields
and formal parameters are always able to initiate changes to the objects they reference. 

3.5.2  Owner Variables and Pivot Fields
The purpose of our next rule is to make sure that a pivot field is always the owner of the object it

references and that no two pivot fields are static aliases for the same object. In other words, a pivot
field must always contain the reference to a newly created object and different pivot fields must not
reference the same pivot object. 

However, pivot objects can safely be aliased temporarily during method calls made by the owner.
Such temporary aliasing is safe unless the call could result in unexpected side-effects or certain kinds
of static aliasing of a pivot object. Nonetheless, in most cases, pivot objects can safely have dynamic
aliases via parameters, because these aliases are temporary with a specific lifetime that is known to and
can be controlled by an owner variable. 

_________________________________________________________________________

public class CellHolder {
    protected IntCell _myCell;
   //@                in theCell;
                   //  (0) _myCell is not a pivot field

    public CellHolder( IntCell cell ) {
        _myCell = cell;
                   // (1) not allowed if _myCell is a pivot field
    }
    public void increment() {
        _myCell = new IntCell(_myCell.getValue());
        add1(_myCell);
                   // (2) OK because _myCell is a temporary owner
    }
    public void add1( IntCell cell ) {
        cell.setValue(cell.getValue()+1);
                   // (3) OK because cell is an owner variable
    }
    public IntCell getCell() {
        return _myCell;
    }
}

Figure 3.22:  Implementation of CellHolder when _myCell is not a pivot field.
_________________________________________________________________________
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Since no two pivot fields can be allowed to reference the same object at run-time, we need to look
at assignment statements because, as described at the beginning of this chapter, static aliases are
created through assignment to fields. For example, in Figure 3.3, the assignments to pivot field
_second in the constructor for CellPair as well as in method setSecond could result in a static
alias to _second. This is illustrated in Figure 3.4 where the constructor that initializes local variable
pair2 creates a static alias to pivot field _second because external object c3, one of its actual
parameters, is assigned to pivot field _second. To avoid this situation, our first rule restricts what can
be assigned to a pivot field to ensure that the reference will be assigned to at most one pivot field or
formal parameter in the system; this rule also ensures that pivot fields and formal parameters are owner
variables when the pivot object is mutable. 

Pivot Assignment Rule. When a pivot field or formal parameter is the left operand (target) of an
assignment statement, then the right operand must be null or a new object constructor call, unless
the type of the target variable is immutable or a primitive type.

This rule ensures that, after an assignment, a pivot field is the first variable to contain a reference
to a pivot object whenever that object is mutable; therefore, a pivot field is always an owner variable.
Furthermore, this restriction prevents any two pivot fields from being statically aliased since only one
pivot field can be the first to contain the reference. However, this rule does not prevent any other
aliasing in the system, but rather our technique protects the state of pivot objects by disallowing all
other aliases (i.e., non-owner variables) from modifying the state of pivot objects (the Owner Variable
Rule in subsection 3.5.1 accomplishes this restriction on side-effects). 

A correct implementation of CellPair is shown in Figure 3.23. This implementation does not
have the aliasing problems shown in the constructor and setSecond of Figure 3.3. That is, both
assignment statements to _second now create a new internal pivot object rather than creating a static
alias to the parameter objects cellTwo and newCell; to be safe, our assumption is that an argument
object may already be owned by another variable in the system. 

Furthermore, in class CellPairClient of Figure 3.4, local variables c1 and c2 are not owner
variables, so the object-calls (to setValue) that modify these objects would not be allowed.
However, c3 is an owner variable so the object-call that modifies the state of c3 would be allowed;
also, object c3 cannot and will not be referenced by any pivot field in the system. 

Figure 3.21 provides a valid implementation of class CellHolder when _myCell is a pivot
field. However, when _myCell is not a pivot field, that same class would have to be implemented
differently, as shown in Figure 3.22. For example, the assignment in the constructor in Figure 3.22
would not be allowed if _myCell is a pivot because this could create a static alias with another pivot
field or owner variable in the system. Also, as explained earlier, if _myCell is not a pivot, then the
implementation of method increment in Figure 3.21 would not be allowed because the call to add1
could modify the state of an object referenced by a non-pivot field; conversely, increment could be
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implemented as shown in Figure 3.22 because the assignment statement makes _myCell a temporary
owner variable. 

The above rule is similar to one of the restrictions given in Leino et al.’s paper [LPHZ02], except
that we do not restrict the aliasing of objects in immutable types. This exception is allowed because the
abstract value of objects in such types cannot be changed. Subsection 3.5.4 more fully describes our

_________________________________________________________________________

//@ refines "CellPair.jml";

public class CellPair {

    protected IntCell _first;
    protected IntCell _second;
    protected int _val2;

    public CellPair(IntCell cellOne, IntCell cellTwo) {
        _first = cellOne;
        _val2 = cellTwo.getValue();
        _second = new IntCell(_val2);
    }
    public /*@ pure @*/ IntCell first() {
        return _first;
    }
    public /*@ pure @*/ IntCell second() {
        return _second;
    }
    public /*@ pure @*/ int value1() {
        return  _first.getValue();
    }
    public /*@ pure @*/ int value2() {
        return  _val2;
    }
    public void setFirst(IntCell newCell) {
        _first = newCell;
    }
    public void setSecond(IntCell newCell) {
        _val2 = newCell.getValue();
        _second = new IntCell(_val2);
    }
}

Figure 3.23:  A correct implementation of CellPair in file CellPair.java.
_________________________________________________________________________
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definition of an immutable type and why objects in an immutable type can safely be aliased among
pivot fields. 

3.5.3  Aliasing of Actual Parameters
The above two rules ensure that a pivot object can only be changed through its owner variable (a

single pivot field) and that pivot fields always own the object they reference. However, there is still
another aliasing problem that our technique needs to handle. Consider for example, the specification
and implementation of method setFrom given in Figures 3.24-3.26. In this example, there is clearly
the possibility of an unexpected side-effect that changes the behavior of method setFrom. That is, in
the implementation of setFrom in Figure 3.26, if the receiver and the formal parameter are aliases,

_________________________________________________________________________

public class IntCell {
   //@ public model int value;      // model variable

   ...

  /*@  public normal_behavior
    @    requires c != null;
    @    assignable value;
    @    ensures value == c.value;  @*/ 
   public void setFrom(IntCell c);
}

Figure 3.24:  A fragment of the public specification of IntCell from file IntCell.jml-refined. 
_________________________________________________________________________
_________________________________________________________________________

//@ refines "IntCell.jml-refined";

public class IntCell {

  protected int _val;
  //@              in value;

  //@ protected represents value <- _val;

   ...
}

Figure 3.25:  A fragment of IntCell’s protected specification from file IntCell.jml.
_________________________________________________________________________
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then the value of this._val will always be 0. The implementation satisfies the specification, but it
is unlikely that this is the behavior intended by the specifier or the implementer. 

Furthermore, such aliasing means that there could be assignments to fields of a formal parameter
(or the receiver) even though the assignable clause says that that argument object is not changed. This
makes reasoning difficult because the verifier always has to consider the special case(s) when formal
parameters or the receiver could be aliased. We might have left the problem for the verifier except that
this is also a problem for the soundness of our technique. For example, the code of each method of a
class is statically analyzed using method specifications and our technique needs to know which fields
are assignable. In particular, our technique depends on the assignable clause, so soundness requires
that the assignable clause specify all side-effects allowed to fields of the receiver and formal
parameters. Furthermore, we do not want changes to the state of a formal parameter object to possibly
invalidate the invariant of the receiver. Therefore, unless we prevent such aliasing, assignments to
fields of a formal parameter could change the state of the receiver and vice versa. So our next rule
prevents objects from being aliased through formal parameters or the receiver when there are side-
effects to the same fields of these aliased objects. 

Actual Parameter Aliasing Rule. An argument object of a method call cannot have assignable fields
if the called method directly or indirectly accesses those assignable fields through a different access
path. 

This rule only disallows aliasing when the fields that can be changed are also accessed (read) in the
called method through an alias. For example, the call of method add1 in method increment of
Figure 3.21 does not cause a problem and is allowed by the Actual Parameter Aliasing Rule because

_________________________________________________________________________

//@ refines "IntCell.jml";

public class IntCell {

  protected int _val;

   ...

  public void setFrom(IntCell c) {
      _val = 0;
      _val = c.getValue();
  }
}

Figure 3.26:  A fragment of IntCell's implementation from file IntCell.java.
_________________________________________________________________________
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fields of the aliased pivot object are not accessed through the receiver of add1. However, the
accessible clause would be needed to enforce the above rule modularly. That is, without the
accessible clause, the checker would have to analyze the code of all directly and indirectly called
methods to determine whether or not an assignable field may be accessed. Since we are leaving the use
of the accessible clause as future work21, we have formalized, in subsection 5.1.2.4, a more
conservative rule, i.e., we do not allow aliasing between the receiver (or its pivot fields) and the formal
parameter when there are side-effects. For example, the call of method add1 in method increment
of Figure 3.21 would not be allowed by the formalization in Chapter 4, but this call could be allowed if
we were to enforce the above rule using the accessible clause. Note that this less flexible rule is
similar to the owner exclusion restriction in Leino et al.’s paper [LPHZ02]. 

3.5.4  Immutable Types
Our technique must protect the state of pivot objects because, as described previously, pivot

objects contain the data values related to the higher-level abstraction or to the type invariant; to
accomplish this we have to prevent any representation exposure that would allow a mutable pivot
object to have more than one pivot field owner, i.e., static aliasing via more than one pivot field. 

However, static aliasing of pivot objects is not unsafe when the abstract value of the pivot object is
immutable. Therefore, we would like to allow static aliasing of immutable pivot objects. We say that a
type is immutable if there are no methods in the system that can modify the abstract value of objects in
that type. Also, an object is immutable if it is in an immutable type. 

In JML, the modifier pure in the type header says that all of the methods declared in this type are
pure, i.e., do not have side-effects. We refer to such types as pure types. However, the pure modifier
only specifies that the current type has no methods with side-effects, i.e., it does not guarantee that its
supertypes and subtypes are pure. Therefore, pure types are not necessarily immutable. Therefore, to
be immutable, a type must be pure and all of its supertypes, except the root class Object, must also
be pure22. In addition, an immutable type must not have any non-pure subtypes; thus, to guarantee this,
we require that an immutable type be final. However, final is not a valid modifier for interfaces in Java,
so only classes can be immutable types. 

21.The accessible clause would have to be modularly enforced with rules similar to those given in sub-
section 5.1.7 for enforcing the assignable clause; enforcement of the accessible clause would also 
have to deal with all possible aliases. 

22.The root class (java.lang.Object) in the Java class hierarchy is not pure, i.e., it has methods with 
side-effects that are used for thread synchronization and garbage collection. However, in most appli-
cations, a specification rarely, if ever, accesses the state of this root class in a represents clause. 
Since we are only concerned about unexpected changes to the abstract state of an object, we, there-
fore, do not have to be concerned about the root class when determining whether a type is immuta-
ble. Nonetheless, if, for some unusual reason, the mutable state declared in java.lang.Object is 
accessed in a represents clause of a subclass, then such objects would not be considered immutable.
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In addition, it is not sufficient that a class be final and pure and that all of its superclasses be pure.
That is, our technique must also make sure that the abstract value of an object in an immutable type
cannot be changed by methods of unrelated types; that is, we have to deal with the same kinds of
aliasing problems even when the enclosing class has no methods with side-effects. Thus the same rules
needed for mutable types have to be applied to immutable types. For example, Figures 3.27 and 3.28
show the public and protected specifications of PureCellPair. Figure 3.29 gives its
implementation. This class is the same as the CellPair class shown in Figures 3.1-3.3 except that it
is final and pure, and the two methods with side-effects have been removed. However, this new class
has some of the same problems as CellPair because the constructor assigns parameter cellTwo to

_________________________________________________________________________

public final /*@ pure @*/ class PureCellPair {

   //@ public model IntCell firstCell;
   //@ public model IntCell secondCell;
   //@ public model int secondValue;

   //@ public invariant firstCell != null && secondCell != null;
   //@ public invariant secondValue == secondCell.value;

  /*@  public normal_behavior
    @    requires cellOne != null && cellTwo != null;
    @    assignable firstCell, secondCell;
    @    ensures firstCell.value == cellOne.value 
    @       &&  secondValue == cellTwo.value;
    @*/
    public PureCellPair(IntCell cellOne, IntCell cellTwo);

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.equals(firstCell);
    @*/
    public /*@ pure @*/ IntCell first();

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.value == secondValue;
    @*/
    public /*@ pure @*/ IntCell second();
}

Figure 3.27:  Public specification of PureCellPair from file PureCellPair.jml-refined.
_________________________________________________________________________
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pivot field _second, but the constructor has no way of knowing whether or not there is another static
alias to this object elsewhere in the system. Thus other owner variables may be able to change the state
of object _second which could change the abstract value of the type which could also invalidate the
invariant shown in Figure 3.28. Consequently, even when a class is pure and final, the specifier must
declare the pivot fields with a maps clause (i.e., follow the Pivot Declaration Rule) so mutable pivot
objects will not be aliased between what should have been a pivot field and other owner variables.
Thus the same rules have to be applied to pivot fields in an immutable type so its abstract value cannot
be changed by unrelated methods. 

3.5.5  Enforcement of these Rules
Our tool will enforce the above two rules by associating a boolean owner attribute with each

variable. Prior to method execution (i.e., analysis of the method body), this attribute is true for all pivot
fields and formal parameters and false for all non-pivot fields and local variables. Each assignment
statement in the method body changes this attribute, i.e., either makes the attribute of the variable on
its left-hand side true or false depending on the expression on the right-hand side. However, if the

_________________________________________________________________________

//@ refines "PureCellPair.jml-refined";

public final /*@ pure @*/ class PureCellPair {

    protected IntCell _first;
    //@               in firstCell;

    //@ protected represents firstCell <- _first;

    protected IntCell _second;
    /*@               in secondCell;
      @               maps _second.value \into secondValue;
      @*/

    //@ protected represents secondCell <- _second;

    //@ protected represents secondValue <- _second.value;

    protected int _val2;
    //@           in secondValue, secondCell;

    //@ protected invariant secondValue == _val2;
}

Figure 3.28:  Protected specification of PureCellPair from file PureCellPair.jml.
_________________________________________________________________________



129
assignment would make the owner attribute of a pivot field false, then it is an error (i.e., a violation of
the Pivot Assignment Rule). Self-calls that are permitted to assign to a non-pivot field of the receiver
make the owner attribute of that field false. The program analysis for determining the value of this
owner attribute would be similar to what Java and JML do when checking whether a variable has been
initialized prior to first use. 

Also, during the analysis of the method body, we need to check method calls, i.e., enforce the
Owner Variable Rule. Therefore, if the called method has permission to modify the state of an
argument object, then the corresponding actual parameter must be a new object constructor call or a
variable reference with a true owner attribute (or null when allowed). 

3.5.6  Side-effects to Objects Referenced by a Local Variable
Local variables can also be temporary owners of an object; they just have to be the first variable

containing the reference to a newly created object. Note, however, that when a local owner variable
goes out of scope, then the object it referenced no longer has an owner and that object cannot be
modified later. That is, we do not allow ownership to be transferred to a different variable. However,
as future work, we would like to be able to transfer ownership from a local variable to a pivot field or
from one pivot field to another when it is safe to do so23. 

_________________________________________________________________________

//@ refines "PureCellPair.jml";

public final /*@ pure @*/ class PureCellPair {

    protected IntCell _first;
    protected IntCell _second;
    protected int _val2;

    public PureCellPair(IntCell cellOne, IntCell cellTwo) {
        _first = cellOne;
        _second = cellTwo;
        _val2 = _second.getValue();
    }
    public /*@ pure @*/ IntCell first() {
        return _first;
    }
    public /*@ pure @*/ IntCell second() {
        return _second;
    }
}

Figure 3.29:  An incorrect implementation of PureCellPair from file PureCellPair.java.
_________________________________________________________________________
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Therefore, in our technique, it is possible for an object to have no owner, one owner, or several
owner variables. For example, an object may not have an owner variable if its original owner is a local
variable or non-pivot field, since an object can only be owned during the lifetime of its owner variable
or until another assignment makes that variable a non-owner. In contrast, during a method call, an
object may have more than one owner. For example, during the call of add1 in method increment
of Figures 3.21 and 3.22, the argument object cell will have at least two owners since the call is not
allowed unless the actual parameter _myCell is an owner variable (in addition to the formal
parameter cell). 

Note that formal parameters always start out as owner variables prior to method execution because
the corresponding actual parameters are owner variables or new object constructor calls. However, the
Pivot Assignment Rule does not require that a formal parameter remain an owner. That is, an
assignment to a formal parameter (although rare in most programs) could change this ownership
property just like it does for any other local variable or non-pivot field. Nonetheless, pivot fields must
always be owner variables so checking of expressions and statements involving pivots can be done
statically and modularly (see subsection 3.5.5). 

3.5.7  Assumptions
In addition to the two rules given in this section, we restrict changes to internal objects in several

other important ways, including visibility restrictions. That is, as described in Chapters 1 and 2, we
make a few additional assumptions (restrictions) that are necessary for the soundness of our technique.
For example, we do not allow concrete fields to have public visibility; we also require that changes to
the state of an object, other than the receiver, be done through object-calls. That is, we only allow
direct assignment to fields of the receiver this (see subsection 1.6.6 and 2.4.3); thus our technique
does not allow a method to make direct assignments to fields of other objects, such as
_second._val in Figure 3.2, or to a field of a parameter object. 

3.6  Discussion
In this section, we first investigate some of the ways that our rules could be made less

conservative, i.e., in the first three subsections we show that more expressions could be allowed in
represents and predicate clauses. However, the rules given in these subsections have to be applied by
hand because they are not handled automatically by our tool. Next, in subsection 3.6.4, we give an
overview of why we believe that our technique is sound. Finally, in subsection 3.6.5, we discuss the

23.This would require adding a feature like a \not_owned(E) expression or a linear type system with a 
destructive read operation that specifies that the object returned from expression E is guaranteed to 
never be referenced in the future by the original owner variable (or pivot field) in the system. This 
would allow a new variable to acquire ownership of that object and be the only variable allowed to 
initiate changes to that object. However, we leave this extension as future work. 
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contributions and limitations of our alias control technique; we also describe some additional future
work. 

3.6.1  Fields of Model Objects Revisited
As mentioned in subsection 3.3.4, for soundness, a proof may sometimes be required to ensure that

every concrete object O is a pivot whenever fields of O determine the value of a model field F.x and
F.x is accessed in a predicate clause. Furthermore, if the concrete fields that determine the value of F.x
cannot be precisely determined (by hand or automatically), then all objects reachable through
accessed(F) must be pivots. Thus if all objects reachable through a model object F are pivots, then the
state of F can safely be accessed in a represents or predicate clause, because all internal objects
would be encapsulated. Our next rule allows this. 

Reachable object rule. Let F be a model field with a reference type. If every object reachable through
a field in accessed(F) is a pivot object, then the state of F can be accessed in represents and
predicate clauses. 

This rule says that the state of a model object F can be accessed by the invariant if no object
reachable through fields in accessed(F) can be aliased. Thus this rule allows the second invariant
clause in Figure 3.1 because all objects reachable through fields accessed by secondCell are pivot
objects, i.e., _second is a pivot and IntCell does not have any internal objects. On the other hand,
this rule would not allow cell.value in the second invariant clause of Figure 3.9 because cell
accesses _pair._first, a non-pivot object. Similarly, the first invariant clause would not be
allowed because pair.firstCell.value indirectly accesses _pair and a non-pivot,
_pair._first, is reachable through _pair. 

 However, it is important to note in the rule that if model instance field F is declared in an
interface, then the above rule cannot be applied because there is no concrete implementation and no
represents clause. Therefore, accessed(F) cannot be calculated until the concrete class that
implements that interface is defined and F’s represents clause has been declared. 

Furthermore, this rule may not be applicable in many situations, e.g., when the type of an internal
object is in a different package. That is, only the public specification of types in a different package are
visible so it is usually not possible to determine whether all reachable objects are pivots. Therefore,
this rule is not usually going to be useful for customizers extending classes from a framework or class
library; however, it is presented here for those situations when all the classes referenced in a type are in
the same package. Furthermore, our tool will not check for these situations. 

3.6.2  Accessing Private Fields
When extensible types are specified in layers of abstraction, as can be done in JML, a model field

will normally be public and it will access protected concrete fields. However, as described in
subsection 2.6.1.1, class libraries may not want to expose concrete fields declared in a superclass to its
subclasses. Thus if the accessed fields are private (and they are not declared spec_protected), then it
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may not be possible for a customizer creating a subclass to determine whether or not the required
objects are pivots since the private specification of the superclass would not be available. 

For example, suppose that Figure 3.2 is the private specification of CellPair and that the access
modifiers shown there are private rather than protected. In this situation, the customizer would only
have the public specification shown in Figure 3.1 from which to work. However, the public
specification says nothing about the pivot fields of CellPair24. Therefore, because model field
firstCell may have accessed a private object, we cannot allow an expression like
firstCell.value in subclass predicate clauses, e.g., invariant clauses. However, we can allow
such expressions in a subclass predicate clause if that expression has already been used in a superclass
predicate clause. For example, based on Figure 3.1, any subclass of CellPair can assume that all the
required pivots have been declared for expression secondCell.value since that would have been
required in superclass CellPair. Thus secondCell.value can be used in a subclass invariant.
Our next rule formalizes these requirements and this exception. 

Private object access rule. Let C be a concrete class. Let F be a model field with a reference type
directly declared in C. If the represents clause for F is not visible to a type T, then a field of model
object F cannot be accessed in any of T’s predicate clauses unless that field is accessed in one of
C’s predicate clauses visible to T. 

In our technique, to allow more possibilities in subclass predicate clauses, the represents and
maps clauses will be visible to customizers of a concrete class even though a model field accesses
private fields25. That is, we assume (and require) that the represents and maps clauses for each field
be visible to customizers whenever possible, i.e., appear in the protected specification. However, if the
represents clause of model field F is not visible in a subclass S of C, then the verifier of the subclass
will have no idea whether the concrete fields accessed by fields of F are pivots (since the related maps
clauses will also not be visible). In such situations, only expressions involving F that already occur in
C’s predicate clauses can appear in T’s predicate clauses. 

Notice also that this rule is intentionally worded so it also applies when C and T are unrelated
classes, e.g., when T declares an internal object with type C. Thus if the represents and maps clauses
related to model field F are not visible in type T (usually the case when C and T are in different
packages), then only fields of F that occur in C’s predicate clauses can be accessed by T’s predicate
clauses. 

24.The protected specification would include accessible and callable clauses for public and protected 
fields and methods, but this information does not say anything about private pivot fields. 

25.Note that abstract classes are not required to have a represents clause. Therefore, to keep things sim-
ple, when an abstract class does not have a represents clause for a model field, we assume that it is to 
be declared by a subclass in the protected specification (otherwise we would have to assume that the 
represents clause is private, which is more restrictive in the subclasses allowed). 
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Even though this rule is not enforced by our tool or technique, it is provided here so customizers
can use it to permit expressions that would not otherwise be allowed when the superclass has private
concrete fields. However, this rule is also useful because it can be applied when the represents clause
is visible; that is, references to fields of F that occur in C’s predicate clauses can always be accessed by
T’s predicate clauses because the required pivots will have been declared in C. 

3.6.3  Static Fields
Static fields present an interesting and unique set of problems. This is because static fields are

global variables that introduce problems similar to those caused by aliasing (even when they reference
an unaliased object). That is, static fields can be accessed and modified by unrelated objects because
they are visible to all the unrelated objects of a particular type. Therefore, for soundness, we cannot
allow a represents or predicate clause to access static fields unless they are, in effect, constants, i.e.,
immutable. 

A field is immutable if, after initialization, there are no methods or types that can assign to that
field. For example, a field is immutable, in Java, if it is declared with the final modifier. Similarly, in
JML, a constraint clause, such as \old(x)==x, prevents assigning a different value (e.g. reference)
to x after initialization. However, disallowing the modification of a static field is not sufficient for
soundness when that field is a pivot; that is, a pivot references an object, and, therefore, that object
must also be immutable since its abstract value determines the abstract value of all objects in the type. 

In the rules given in Section 3.5, our technique allowed pivot objects in immutable types to be
aliased. Similarly, an immutable (e.g. final) static field that references an object in an immutable type
could be a pivot without affecting the soundness of our technique. Nonetheless, in this dissertation, we
assume that types do not declare static fields (see assumptions in subsection 1.6.6); we leave as future
work the rules necessary for handling static fields. 

3.6.4  Soundness of Our Technique
Our technique is sound if the abstract value of every object in the system cannot change unless the

specification of a called method allows it to change. That is, our technique must not allow the abstract
value of any object in the system to change unexpectedly. We accomplish this in two ways. First, our
technique hides concrete fields from unrelated classes and objects through visibility control and layers
of abstraction. For example, public model fields must be used to hide the underlying implementation,
and the behavior of public methods must be specified in terms of these public model fields.
Furthermore, concrete fields are not allowed to have public visibility and methods can only assign to
fields of the receiver (see assumptions in subsection 1.6.6). 

However, when the state of an internal object determines the abstract value of a model field, then
such objects must be pivots so they cannot be changed by methods in unrelated types or objects.
Therefore, the second way our technique prevents unexpected behavior is by ensuring that all pivot
fields in every object are declared and that the pivot objects referenced are not exposed to methods that
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could create an alias with another owner variable. The rules given in Sections 3.3 and 3.4 make sure
that all pivot fields, accessed by model fields and predicate clauses, have been declared. The rules in
Section 3.5 ensure that all changes to pivot objects are initiated by pivot fields so verifiers can reason
soundly about the state of pivot objects and thereby ensure that clients can reason soundly from
specifications. Chapter 4 provides a proof that these rules are sufficient to guarantee that the abstract
value of the objects in the system cannot change unexpectedly. 

3.6.5  Contributions
Our rules require that a field have a maps clause whenever it references a mutable object and the

state of that object is accessed in an represents or predicate clause. Our technique also uses these
maps clauses to specify the pivot fields of a type. An important advantage of using the maps clauses
is that implementers can determine the pivot fields at a glance without having to look at all the
represents and predicate clauses, since syntactically the maps clause must be part of a field
declaration. Furthermore, no additional annotations have to be added to our language (or in most cases
to the specification) because, when a field is a pivot, the maps clause is usually required to properly
control side-effects. The maps clause is also the easiest way for tools to determine the pivot fields of a
type; our tool can also statically check that the pivot fields have been properly declared based on the
represents and predicate clauses. That is, our tool can use the accessible and callable clauses (also
generated by our tool) for all methods directly or indirectly called to determine which fields of a pivot
object are indirectly accessed; this would then be used to ensure these fields have a maps clause. 

On the other hand, the specifier could add an indirectly declared field to a data group even though
that field is not accessed in a represents or predicate clause and thus may not need to be treated as a
pivot. Nonetheless, this does not affect the soundness of our technique and we believe this should be
an unusual situation in practice. 

The Model Field Data Group Rule and the Assignable Data Group Rule of subsection 3.4.2
provide a principled technique for specifying the dependencies among concrete instance fields when
they are related to a model field through its represents clause; also, as explained in that subsection,
these dependency relationships are necessary to specify and control side-effects. Other related
techniques [LPHZ02, LN02, Mül01, Mül02] require a rule similar to the Model Field Data Group Rule
but none of those that we know about allow represents or invariant clauses to relate superclass and
subclass fields; this is handled by the subclass model field rule given in subsection 3.4. Furthermore,
because these rules require that an object be a pivot whenever its state is accessed in a represents
clause, the Pivot Declaration Rule does not have to be applied for represents clauses; it only has to be
applied to predicate clauses. These rules also make sure that the rules given in Chapter 2 can be applied
and checked. 

The enforcement of the assignable clauses may also require that additional fields be declared as
pivots. So most, if not all, pivot fields have to be declared to allow the required side-effects. However,
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to be sure that all situations requiring a pivot field are properly specified, the Pivot Declaration Rule
and the algorithm for calculating the fields accessed in an expression were given; the Pivot Declaration
Rule also provides one simple, comprehensive criteria for static checking, namely, that all pivot fields
have been declared. 

We are not aware of any existing, sound technique [Lei95, LN02, Mül01, Mül02] that allows
accesses of model fields or method calls in what would be equivalent to our represents clause; thus
our technique is an extension. Furthermore, the existing techniques do not allow mappings from
concrete object structures to abstract object structures or the access of the state of abstract objects in
the type invariant. Finally, our technique allows relationships between superclass fields and subclass
fields in the represents and predicate clauses (e.g., invariants) which we also believe to be new.
However, our technique, as described here, is only a partial solution to some of the problems related to
model objects in type specifications; we leave as future work a complete (or more complete) solution,
and in particular, the relaxing of some of the assumptions and syntactic restrictions of our technique. 

An important advantage of our technique for protecting pivot objects is that it only needs the
annotations in the maps and assignable clauses that are already required in JML specifications (see
subsection 3.5.5). Even though the rest of the JML specification is not used in the enforcement of the
rules for protecting internal objects, a more complete specification is needed if one needs to reason
about the state of an object without the code. The specification of method behavior is needed by
clients, customizers, and verifiers and the represents clauses are needed by customizers and verifiers.
Our tool also uses the represents clauses to determine which internal objects need to be protected,
i.e., need to be pivots (see Sections 3.3 and 3.4). Examples of other systems that prevent unsound
aliasing and side-effects are given in Chapter 7; all of them require additional annotations in the
specification language. A major advantage of our technique is that our rules are very simple and easy
to enforce compared to many of the other techniques, particularly those that need to enforce the
encapsulation of references. 
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CHAPTER 4: THE PROGRAMMING AND SPECIFICATION LANGUAGES

In this chapter we define the syntax and semantics of the programming and specification languages
that will be used in our soundness proof. In Section 4.1, we briefly review the Java Modeling
Language (JML) and the additional specification information needed by our technique and provided in
the subclassing contract. We next define, in Section 4.2, the syntax of the programming language
which, for simplicity, only includes the important features of Java, i.e., the features needed to show
that our technique works for a single dispatch object-oriented language. In Section 4.3, we define the
syntax of the core specification language; similarly, we only include the features of JML needed to
demonstrate the soundness of our technique. The core programming and specification languages will
be referred to as Java-C and JML-C respectively. In Section 4.4, we describe the type environment that
will be used in our semantic model of dynamic binding. Since our goal is to show the soundness of our
technique, we first need an operational semantics; in Section 4.5, we define an operational semantics
for Java-C, including a model of dynamic binding, objects, and the program state (with structures
representing the run-time heap and stack). In Section 4.6, we define our verification logic and the
axiomatic semantics of JML-C specifications. To illustrate how our verification logic would be used to
prove the correctness of subclass code using only superclass and subclass specifications, we give some
examples of correctness proofs in Section 4.7. In Section 4.8, we conclude with a brief summary and
discussion of related work. 

4.1  Subclassing Contracts in JML Specifications
In this first section, we review and give an overall description of JML. We start, in subsection

4.1.1, with a brief review of the structure of JML specifications. Then, in subsection 4.1.2, we describe
the subclassing contract and the additional information needed by our technique and provided in the
callable and accessible clauses. In subsection 4.1.3, we describe the code contract in JML
specifications and how it would be used in reasoning. 

4.1.1  JML Specifications

In JML, there are two main kinds of specification constructs: those that specify the behavior of
methods and those that specify data representations. As described in previous chapters, the behavior of
methods is specified through requires, ensures, and assignable clauses; these clauses specify the
pre- and postconditions and the side-effects allowed in the implementation of a method. The data
representations are specified through the declaration of public model fields together with represents
clauses, data group clauses (in and maps clauses), and invariant clauses. 

Recall that the modifiers qualifying the keywords that introduce specifications indicate whether
the specification that follows is part of the public, protected, or private specification. For example,
protected normal_behavior means that the requires, assignable, and ensures clauses, etc. that



137
follow are part of the protected specification for that method and visibility type; this is because of the
protected modifier. Public specifications are intended for clients of the class (e.g., Figure 4.1),
whereas the public and protected specifications (e.g., Figures 4.1 and 4.2) are intended for
customizers, i.e., programmers creating subclasses; the public, protected, and private specifications
taken together can be used by programmers implementing or verifying the implementation of the class

__________________________________________________________________________

public class CellContainer {
  //@  public model int cellVal;
  //@  public model int oldVal;
  //@                   in cellVal;

  /*@  public normal_behavior
    @    requires cell != null;
    @    assignable cellVal, oldVal;
    @    ensures cellVal == cell.value && oldVal == cell.value;   @*/
  public CellContainer(IntCell cell);

  /*@  public normal_behavior
    @    requires c != null;
    @    assignable cellVal, oldVal;
    @    ensures cellVal == c.cellVal && oldVal == \old(cellVal)
    @        && \result == Math.abs(cellVal - oldVal);              @*/
   public int set(CellContainer c);

  /*@  public normal_behavior
    @    requires newCell != null;
    @    assignable cellVal, oldVal;
    @    ensures cellVal == newCell.value && oldVal == \old(cellVal)
    @        && \result == Math.abs(cellVal - oldVal);            @*/
   public int set(IntCell newCell);

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result == Math.abs(cellVal - oldVal);    @*/
  public /*@ pure @*/ int difference();

  /*@  public normal_behavior
    @    assignable \nothing;
    @    ensures \result.value == cellVal;                 @*/
   public IntCell getCell();
}

Figure 4.1:  Public specification of CellContainer in file CellContainer.jml-refined. 
__________________________________________________________________________
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itself (class CellContainer does not have a private specification because there are no private fields
or methods). 

Also, recall that the modifiers qualifying the keywords that introduce specifications also restrict
the scope of variables. For example, protected normal_behavior means that both public and
protected variables and methods are in scope in the specification that follows it. Note that, the
specification of a protected method or constructor can use public model variables even though
protected variables are in scope; this makes its specification independent of the implementation (see
Figure 4.2). However, if the public specifications of Figure 4.1 were to access any fields or methods
with protected or private visibility, then the JML checker would emit an error. 

In the examples in this dissertation, the public, protected, and private specifications have been
given in separate files, as in Figures 4.1 and 4.2. However, when a field is declared in more than one
file, it must have the same type in each file. For example, the protected field _x is declared in the
protected specification of Figure 4.2 as well as in the Java file of Figure 4.3 and is the same field. 

Similarly, method interfaces must be the same when the same method is declared in more than one
file, i.e., when the method name and parameter types are the same, the parameter names1 and return

__________________________________________________________________________

//@ refines "CellContainer.jml-refined";

public class CellContainer {

  protected IntCell _cell;
  //@                   in cellVal;
  //@                   maps _cell.value \into cellVal;

  protected IntCell _oldCell;
  //@                   in oldVal;
  //@                   maps _oldCell.value \into oldVal;

  //@ protected represents cellVal <- _cell.value;
  //@ protected represents oldVal <- _oldCell.value;

  /*@ protected normal_behavior
    @   requires c != null;
    @   assignable cellVal;
    @   ensures cellVal == c.cellVal && oldVal == c.oldVal;    @*/
  protected CellContainer(CellContainer c);
}

Figure 4.2:  CellContainer’s protected specification in file CellContainer.jml.
__________________________________________________________________________
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type must also be the same. Furthermore, JML specifications specify the method interface as well as its
behavior. Therefore, to be correct, each method must implement its specified interface as well as the
specified behavior given in the combined public, protected, and private specifications. 

As described in subsection 1.4.3, JML allows specifications to be divided into specification cases
that make them easier to read and understand. Also, protected specifications may provide some
specification cases in addition to those given in the public specification. However, these separate
specification cases can be combined into a single specification case with the same meaning [RL03]
(see subsection 4.4.3 for more details). Therefore, for simplicity, we will combine specification cases
into a single case for use in our proofs and explanations in the sections that follow. 

The requires, ensures, assignable, and callable clauses can be omitted from method
specifications but when they are, there is an implicit default. For example, when the requires clause is
omitted, a method may be called without any restrictions on the pre-state, i.e., the default precondition
is true in JML. When the assignable (or accessible) clause is omitted, the method can assign to (or
access) any location allowed by the Java scope rules, i.e., the default is \everything. When the
ensures clause is omitted, then nothing is promised about the post-state after method execution, i.e.,
the default postcondition is true. When the callable clause is omitted, then the method can make any
call allowed by the Java scope rules, i.e., \everything in JML. Similarly, the default invariant
clause is true which would be conjoined with any inherited invariants (see function inv of Figure
4.11). 

When the entire method specification is omitted, then overriding methods use the inherited
specification; however, when there is no inherited specification, then nothing is promised, i.e., the
above defaults are in effect. 

Specifiers, customizers, and verifiers are expected to be aware of these defaults. Therefore, a
clause must not be omitted if the default has a different meaning than intended. Also, specifiers need to
be aware of the consequences of omitting clauses. For example, omitting the callable clause allows all
calls; however, this means that such a method, as well as the methods that call it, are likely to be
invalidated by new subclasses, e.g., a method m cannot super-call a method with no callable clause if
methods declared in m’s class have additional side-effects or m’s class invariant constrains superclass
fields (see subsection 5.1.3). This is another reason why we propose tool support to automatically
generate the needed callable clauses. 

1. This requirement makes it easier to combine the separate files into one common specification since 
no parameter renaming is necessary. The JML tools combine these files when the combined specifi-
cation is needed, for example, in the run time assertion checker and the JML docs tool. We keep the 
specifications separate here to emphasize their differing uses by the different kinds of users and to 
illustrate that not all information would be provided to clients and customizers creating subclasses of 
library classes. 
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4.1.2  The Subclassing Contract

As described briefly in Chapter 1, the subclassing contract is composed of the callable and
accessible clauses. The purpose of the subclassing contract, in our technique, is to give programmers
additional information about method behavior so they can avoid downcall and aliasing problems. That
is, the information specified in the callable and assignable clauses2 is needed so the rules given in
Chapters 2 and 3 can be enforced modularly; these rules can then be used to prevent the downcall and

2. The accessible clause from the subclassing contract can also be used to allow calls of pure methods 
in the represents clause, but we leave that as future work. 

__________________________________________________________________________

//@ refines "CellContainer.jml";

public class CellContainer {
    protected IntCell _cell;
    protected IntCell _oldCell;

    public CellContainer(IntCell cell) {
        _cell = cell;
        _oldCell = new IntCell(cell.getValue());
    }
    public int set(CellContainer c) {
        return set(c.getCell());
    }
    public int set(IntCell newCell) {
        _oldCell.setValue(_cell.getValue());
        _cell = newCell;
        return difference();
    }
    public /*@ pure @*/ int difference() {
        return Math.abs(_cell.getValue() - _oldCell.getValue());
    }
    public IntCell getCell() {
        return _cell;
    }
    protected CellContainer(CellContainer c) {
        _cell = c._cell;
        _oldCell = new IntCell(c._oldCell.getValue());
    }
}

Figure 4.3:  CellContainer’s implementation in file CellContainer.java.
__________________________________________________________________________
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aliasing problems described in those chapters. Figure 4.4 shows the subclassing contract for class
CellContainer. 

The callable (and accessible) clause in the subclassing contract can be automatically derived
from implementation code by the tool described in Chapter 6 (or they can be specified by hand) for all
methods and constructors involved in reasoning about downcalls and aliasing. However, the
subclassing contract has to be provided for some methods and constructors for which it might not seem
obviously needed at first, such as non-public methods and constructors. 

In the subclassing contract of Figure 4.4, the \same predicate in the requires clause specifies that
this specification case has, effectively, the same precondition as the combined precondition for the
given method, i.e., the precondition formed by combining all the specification cases that do not have
\same as their precondition. Therefore, \same denotes the disjunction of the non-\same
preconditions of all specification cases, for a specific method, in the current class and those inherited
from supertypes. For example, in Figure 4.4, \same denotes true for method difference() and
cell!=null for the public constructor. Thus when the precondition is \same, all the clauses that
follow apply to all of the other specification cases given for that method. For example, the callable
clauses in Figure 4.4 must be satisfied whenever the associated method is executed because their
precondition is \same. 

A primary reason for the \same precondition is to make it easier to automatically generate the
subclassing contract, and in particular, to make it easier to generate the precondition. That is, if the
precondition of every specification case in the subclassing contract is \same, then the tool does not
have to locate all the specification cases for a method and then create the disjunction of these
expressions to form the precondition3. 

4.1.2.1 The Callable Clause
The callable clause lists the methods (and constructors) that the method being specified is allowed

to call. Because constructor calls can also cause downcall problems, the term “method” will also
include constructors. A method M directly calls a method N if the code for M contains an expression
that calls N, such as N(). If N also directly calls method P, then M indirectly calls P. 

Our technique must also handle static overloading, as is permitted in Java. That is, the callable
clause must be able to distinguish precisely among a set of overloaded methods (or constructors).
Therefore, as is done in Java, this ambiguity is eliminated based on method signatures, i.e., when a
method name is overloaded, we require that both the name and formal parameter types be included in
the callable clause (see Figure 4.4). 

3. However, \same can also be used as a convenience in handcrafted specification cases when the spec-
ifier does not want to determine the complete precondition for a method. For example, this can be 
convenient when writing specification cases for overriding methods when the precondition is the 
same as was specified in the superclass.
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__________________________________________________________________________

//@ refines "CellContainer.java";

public class CellContainer {
  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable new IntCell(int), cell.getValue();    @*/
  public CellContainer(IntCell cell);

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable c.getCell(), this.set(IntCell);    @*/
  public int set(CellContainer c);

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable IntCell.setValue(int), IntCell.getValue(), 
    @         this.difference(); @*/
  public int set(IntCell newCell);

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable Math.abs(int), IntCell.getValue(), 
    @         IntCell.getValue();  @*/
  public /*@ pure @*/ int difference();

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable \nothing;    @*/
  public IntCell getCell();

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable new IntCell(int), IntCell.getValue();    @*/
  protected CellContainer(CellContainer c);
}

Figure 4.4:   Code contract for class CellContainer from CellContainer.refines-jml.
__________________________________________________________________________
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Also, the specifier should not include unnecessary methods in the callable clause of a method.
That is, in general, it is not a good idea for the callable clause to list methods that do not actually need
to be called because, for some subclasses, this could unnecessarily invalidate the calling method based
on the rules given in Chapter 2. This should not, however, be a problem if the subclassing contract is
automatically generated by our tool. 

Various kinds of calls must also be distinguished in the callable clause, because the effects on
downcall problems can sometimes be subtly different, due to the different semantics of each kind of
call. For example, we distinguish two kinds of calls in which the receiver this is passed implicitly,
i.e., self-calls and super-calls (also described in subsection 1.6.5). In addition, we distinguish three
kinds of calls in which this in not passed implicitly as the receiver of the call, i.e., static-calls, object-
calls, and new object constructor calls.

A self-call is a call in which the current receiver object (this) is also the receiver of the called
method. That is, a call to an instance method of the current receiver, such as set(u) which is sugar
for this.set(u), is a self-call. So, assuming that the type of u is IntCell, such self-calls would
be allowed if either this.set(IntCell) or set(IntCell) is listed in the callable clause.

A super-call is a call in which the receiver is the built-in pseudovariable super, as in
super.set(u) in Java; to allow this super-call, the callable clause would need to list a signature
such as super.set(IntCell), again assuming IntCell is the type of u. However, a superclass
constructor call, such as super(u) in Java, is also a super-call. Superclass method calls and
superclass constructor calls are both included in this definition of super-call because both can be
involved in the same kinds of downcall problems for the same reasons and must be reasoned about in
the same way. The above superclass constructor call would be allowed if the callable clause lists a
super-call such as super(IntCell)4. Notice also that a downcall during a super-call is a callback
because it calls back to a method in the subclass. 

The three other kinds of calls that we need to distinguish in the callable clause either do not have
a receiver or they have a different receiver than the calling method. As mentioned earlier, these three
kinds of calls are object-calls, static-calls, and new object constructor calls. 

Our technique needs to know when there are object-calls, static-calls, and new object constructor
calls because the calling method's receiver can be passed as an explicit argument in these calls. These
kinds of calls can, therefore, indirectly access the calling method's receiver and use it to make
downcalls. However, by “explicit” we do not mean that this must literally be passed as an actual
argument; calls in which this is passed inside a data structure, such as an array or object, are also
considered to be this-argument calls. Thus a this-argument call is one that passes the caller’s receiver
as an actual parameter or inside an argument object. Therefore, the caller’s receiver is aliased and

4. In languages with multiple-inheritance, like C++, one could also refer to a specific superclass in a 
super-call. For example, if the super-call CellContainer::set(u) is to be allowed, then one 
would list CellContainer::set(IntCell) in the callable clause of a C++ program.
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reachable directly through a formal parameter or indirectly through a field of an argument object. Note
that the argument object in a this-argument call could be the receiver of an object-call; thus the caller’s
receiver could be aliased through a field of the object-call’s receiver. Therefore, our technique must
handle the possibility of such aliasing when there are side-effects (see also subsection 5.1.3.1).

We also need to know whether a method makes object-calls because, in the presence of aliasing,
an object-call could be a self-call or a this-argument call. Recall that an object-call is a call in which
the receiver is an object other than super or this, e.g., p.set(u) is an object-call. In a method
with p as a formal parameter, such an object-call would be allowed if
CellContainer.set(IntCell) were listed in the callable clause (assuming p has static type
CellContainer and u has type IntCell). 

Another kind of call that we need to distinguish is the static-call. A static-call is a call to a static
method, i.e., a method declared with the static modifier. Static methods have no implicit receiver and,
therefore, cannot make self-calls. For example, the call Math.abs(x) is a static-call because Math
is a built-in class in Java and not a receiver object. Notice, however, that the specification of such
static-calls will look the same as an object-call on a field or local variable (as described above).
However, we can distinguish object-calls from static-calls using the static attribute of the called
method, i.e., through the presence or absence of the static modifier in the method declaration. If the
called method is not static, then we know it is an object-call. However, for simplicity, we will not
consider static-calls in this dissertation (see assumptions in subsection 1.6.6). Nonetheless, because
static methods cannot be overridden, they could be handled as described in subsection 2.6.4 for private
methods. That is, static-calls could be handled by not requiring that they be listed in the callable
clause; however, the indirect, non-static calls made during a static-call would have to be listed.
Furthermore, modular checking would require that a static method’s callable clause list all of its direct
and indirect object-calls (there would be no self-calls or super-calls). 

We also need to know when there are new object constructor calls. A new object constructor call
is an expression that creates a new object by invoking a constructor; in Java and C++, new
CellContainer(c) invokes a constructor. If the callable clause has a signature such as new
CellContainer(IntCell), then a method is allowed to invoke that new object constructor
(assuming c has type IntCell). The keyword new is required because a method can be declared
with the same name as its enclosing type. For example, inside class CellContainer, if a callable
clause lists CellContainer(IntCell), without the new, then a call to a method named
CellContainer would be allowed but calls to a constructor with that signature would not be
allowed. 

Precisely identifying self-calls assumes perfect knowledge of aliasing; that is, one may only be
able to decide at run-time when a self-call is being made by a specific piece of program text. However,
when the tool is checking or statically generating the callable clause, it only has approximate
knowledge of aliasing. To compensate, an object-call T.set that appears in a callable clause will be
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considered a self-call whenever T is the type (or supertype) of the calling method’s receiver (see
subsection 5.1.3.1). Similarly, when the type of the formal parameter of the object-called method is the
type (or supertype) of the calling method’s receiver, then that object-call will be considered a this-
argument call. 

We also need to know about these different kinds of calls so we can detect possible callback cycles
(see Section 2.5). However, for simplicity as explained in subsection 5.1.5, we will not formalize the
callback cycle rules. We leave that as future work. 

4.1.2.2 The Accessible Clause
The accessible clause of a method M specifies the fields that M is allowed to directly or indirectly

access (read). Accesses to instance variables of the receiver (this) are called self-accesses and
accesses to fields of objects other than the receiver are called object-accesses (these are analogous to
self-calls and object-calls). The different kinds of field accesses need to be distinguished in the
accessible clause for the same reasons that we need to distinguish between the different kinds of call
in the callable clause. 

An important purpose of the accessible clause is to prevent constructors from making downcalls
to methods that access subclass fields that have not yet been initialized (see subsection 2.4.5). The
other use is when determining the fields accessed when a method is called in the represents clause
(see subsection 3.3.3). However, the need to use the accessible clause can be eliminated by using a
more restrictive invalidation rule (subsection 5.1.3) and a more restricted syntax for the represents
clause (subsection 4.3). Therefore, to simplify the formal system presented in this chapter, we leave as
future work the formalization of the weaker (and more flexible) versions of the rules as given in
subsections 2.4.5 and 3.3.3; they will need to be formalized through the use of the accessible clause
(similar to our rules that use the callable and assignable clauses in the formal system presented in
Chapter 5). 

4.1.3  Code Contracts

The code contract is composed of the specification cases modified by the keyword code (see
Figure 4.4). The code contract specifies properties of the method’s implementation and is inherited in
the same way as the superclass code, that is, it is inherited without change unless the superclass
method is overridden. Whenever a superclass method is overridden, its code contract is not inherited
by the subclass. Therefore, unlike other specification cases, the code contract can be replaced to reflect
the properties of the overriding subclass method. In summary, clauses in the code contract are specific
to an implementation and are not inherited by subclasses whereas clauses that occur in other
specification cases are inherited and must be satisfied by subtypes (see subsection 1.4.1). Also,
abstract methods (including methods of interface types) cannot have a code contract because they have
no implementation code. 
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Recall also (subsection 1.4.1) that an overriding method must satisfy the inherited supertype
specification as well as any additional specification cases given in the subtype. However, the inherited
specification does not include the specification cases in the code contract. That is, supertype
specification cases in the code contract are not inherited by overriding subtype methods, because the
code contract specifies the behavior of the implementation code in the type where that specification is
given. Therefore, an abstract method cannot have a code contract since abstract methods do not have
implementation code. Furthermore, the specification cases in the code contract have a different
inheritance semantics than those occurring in the rest of the specification, i.e., the code contract is not
inherited by overriding methods whereas specification cases in the rest of the specification are always
inherited by overriding subtype methods. 

In summary, when a superclass method is not overridden, then that method’s code and its code
contract are inherited without change from the superclass. However, when a method is overridden,
then its code contract must be specified in the subclass, and this new code contract supersedes the one
given in the superclass. Therefore, a correct implementation of a subclass method or constructor must
satisfy the code contract given in the subclass and not necessarily the code contract provided in the
superclass. For example, the code contract in Figure 4.4 only applies to methods in
CellContainer, not to overriding methods in any new subclasses of CellContainer. If no
code contract is specified for a subclass method, then the default specification (subsection 4.1.1)
becomes the code contract. 

It may not be possible to specify all calls allowed in the public callable clause because not all
methods are visible in the public specification, e.g., self-calls and super-calls to protected methods will
not be in scope in a public specification. Therefore, our technique provides a way to specify the
callable methods that are not be visible in the public specification. For example, specifying this.* in
a public callable clause allows all self-calls; similarly, super.* allows all super-calls. Also, as in
our examples, the callable clause can be omitted to allow all possible calls, i.e., the default is
\everything. However, the specifier (or tool) should also provide a callable clause in the code
contract to reduce the allowable calls to only those methods actually called in the implementation; the
code contract (which is usually part of the protected specification so it is visible to customizers) would
be combined with the public callable clause. 

Thus the public callable clause and protected code contract are combined and used in our
reasoning technique. For example, the public callable clauses are omitted in Figure 4.1; thus they, by
default, allow all self-calls and super-calls. However, this is reduced in the code contracts given in
Figure 4.4, i.e., only the calls actually made in the method implementations are listed. Note also that
the callable methods in the code contract must be a subset of those allowed by the public specification
(see also subsection 5.1.7). 

Our technique is only concerned with locating self-calls and super-calls that may make downcalls.
Therefore, specifying object-calls in the callable clause is only necessary because of aliasing, i.e., if an
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object-call could be a self-call (based on the types of the receivers), then we assume that it is and apply
our rules accordingly; this is a conservative approach because when an object-call is not a self-call, our
rules would not apply (see subsection 5.1.3). The advantage of allowing all self-calls and super-calls in
the public specification is that it can be replaced by the code contract. Therefore, based on the callable
clause in the code contract, customizers and verifiers can reason about possible self-calls and super-
calls that reflect the implementation code. However, if the code contract changes in a superclass, then
all subclasses have to be re-checked and reverified. 

4.2  The Java-C Syntax
In this subsection, we introduce a core subset of the Java programming language; we will refer to

this subset as Java-C. The language includes features common to most OO programming languages,
such as Java, but, for simplicity, we have eliminated certain language specific features and features
that can be simulated by other constructs. 

A Java-C program is a set of class declarations (the syntax does not include interfaces). A class
declaration gives the class name its superclass name and member declarations. A member declaration
is either a declaration of an instance field or instance method; static fields and static methods are not
allowed. Fields can either be public model fields or protected concrete fields; private fields are not
allowed. Also, for simplicity, we do not allow field initializers; fields have to be initialized through an
assignment in a constructor. 

Java-C includes built-in Java types int and boolean and user-defined class types; the singleton
null type is a subset of all user-defined types. The superclass-subclass relationship is declared, as in
Java, with the superclass name following the extends keyword. 

For simplicity, the syntax of method signatures and method calls is restricted to one parameter;
nonetheless, if our technique can handle one parameter, then it can be extended to handle more than
one argument in the same way. 

Also, to simplify our definition of the axiomatic semantics of Java-C (subsection 4.6), expressions
in Java-C do not have side-effects. For example, method calls are not allowed in expressions5;
nonetheless, method calls in expressions can be simulated. That is, the syntax allows the result of a
method call (that may also have other side-effects) to be assigned to a variable, and that variable can
then be accessed in expressions. 

There are three production rules for method calls since the semantics and handling of self-calls,
super-calls, and object-calls need to be slightly different. Thus each of these kinds of call has a
separate production rule to make incorporating the rules from Chapters 2 and 3 easier. 

5. Calls of pure methods could be allowed since such expressions are referentially transparent, but we 
leave them out to help keep our language and its semantics more concise, i.e., with fewer special 
cases that are unrelated to the problems our technique needs to handle. 
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Expressions are boolean or integer literals, the null literal, the receiver this, or a variable
reference; they also include cast expressions like (T)ref and most of the standard binary (bin_op)
and unary (un_op) operators. Note, however, that model fields are accessible in specifications, but they
are not visible in method statements.

In accordance with our assumptions, the syntax of Java-C does not include arrays, exceptions,
interfaces, nested types, anonymous types, and static and package visible variables and methods.
However, we have included the features involved in the problems that need to be handled by our

__________________________________________________________________________

program ::=  class_decl*
class_decl ::=   modifier*  class  id  extends   id   {  member_decl*  }
modifier ::=  public  |  protected  |  abstract  |  model  |  pure
member_decl ::=   field_decl  |  method_decl  |  jml_data_rep_spec
field_decl ::=   f_mods   type   id  ;  jml_data_group_clause*
f_mods ::=   public   model   |   protected
type ::=  boolean  |  int  |  id  
method_decl ::=  jml_method_spec  modifier*  method_signature  body
method_signature ::=   type  id  ( formal )  |  void  id  ( formal )
formal ::=  type  id
body ::=   ;  |  block
block ::=   {  stmt  }
stmt ::=   ;  |   assign_stmt   |  method_call  ;   |  block
         |  while ( expr ) stmt  |  if  ( expr )  stmt  else  stmt
         |  local_decl  |  return  expr ;   |  super  ( expr ) ;  |  stmt  stmt
assign_stmt ::=   var_ref  =  expr  ;   |  var_ref  = method_call  ;
                     |   var_ref  = new  id ( expr )
local_decl ::=   type  id  ; 
expr ::=   this  |  var_ref  |  literal  | ( type ) expr  | ( expr )  |  expr  bop  expr  |  uop  expr
bop ::=  +  |  -  |  *  |  /  |  %  |  ||  |  &&  |  <  |  >  |  <=  |  >=  |  ==  |  != 
uop ::=   !  |  - 
var_ref  ::=   id  |   this . id  
method_call ::=   this . id ( expr )  |  super . id ( expr )  |   var_ref . id ( expr )
literal ::=  true  |  false  |  int_literal  |  null

Figure 4.5:  The syntax of the Java-C subset of Java used in this chapter. The tokens id and int_literal are the usual 
Java identifier and integer literals and are not defined here. Also, jml_data_rep_spec, jml_data_group_clause, and 
jml_method_spec are defined in Figure 4.6. 
__________________________________________________________________________
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technique, i.e., the problems related to aliasing, code inheritance, and subclassing in single-dispatch
OO programming languages. For example, in Java-C, all fields can be modified (if the specification
allows it) and all methods can be overridden since, in accordance with our assumptions, we do not
allow static, final, or private fields and methods. Such fields and methods are not allowed in Java-C for
simplicity and because they can be considered special cases of the aliasing and downcall problems that
are handled by the rules described in Chapters 2 and 3; we also make this assumption because private
fields and unoverrideable methods can result in additional unimplementable subclasses (see subsection
2.9.3). 

The Java-C syntax in Figure 4.5 also specifies where the JML specifications are located in a class
declaration, e.g., where the invariant and represents clauses (jml_data_rep_decl), the in and maps
clauses (jml_data_group_clause), and the normal_behavior clauses (jml_method_spec) are located.
The syntax of these constructs is given in Figure 4.6 and is described in Section 4.3 below. Note,
however, that JML specifications, including keywords and modifiers, such as model and pure, have to
be in annotation comments as shown in our examples. 

4.3  The JML-C Syntax
We now introduce a core subset of the Java Modeling Language (JML); we will refer to this subset

as JML-C. JML-C is a notation for specifying the interface and behavior of Java-C classes and
methods (see also Section 1.3). For simplicity, we have eliminated those features of JML related to
constructs omitted from Java-C, such as, exceptions and arrays. However, JML-C includes the core
features (of JML) needed to demonstrate how our technique works. 

The syntax of JML-C is specified in Figure 4.6. Included is the syntax of the invariant and
represents clauses; these clauses specify the properties of the data fields of a class. Recall from
Chapter 1 that these clauses are prefixed by modifiers that specify their visibility, e.g., public or
protected. The syntax of the right hand side of the represents clause, rep_expr, is a subset of the
expressions allowed in Figure 3.106; thus the right side will obey the Represents Clause Access Rule
given in subsection 3.3.3. The maps and in clauses specify the data group memberships of newly
declared fields. 

The requires clause specifies the precondition that must hold on entry to a method; the ensures
clause specifies the postcondition that must hold on exit. A predicate is a boolean expression, i.e., a
subset of the Java expressions. The assignable clause specifies the frame axiom, that is, the fields
assignable during the method’s execution. Similarly, the callable clause specifies the methods that
may be called during the method’s execution. More of the specific details and semantics are given in
Chapter 1 and in JML’s axiomatic semantics defined in Section 4.6. 

6. Method calls are not allowed since that would require the use of the accessible clause. 
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4.4  Type Environments
Our additional static checking rules (Section 5.1), as well as the operational and axiomatic

semantics (Sections 4.5 and 4.6), use information gathered during the standard Java type checking.
Therefore, we assume that each program has been checked and does not violate any of the rules of the
Java type system. We further assume that the type checker has created a type environment, i.e. TEnv,
containing all bindings for type, field, and method names referenced or declared in a program. For
simplicity (and because it does not affect the soundness of our technique), we also assume that type
names do not conflict, e.g., we do not have packages or qualified type names. Similarly, for simplicity,
we assume that method names are not overloaded and that fields are not declared in a subclass with the
same name as a field inherited from a superclass. 

The type environment (TEnv) is specific to a particular program and contains the information
shown in Figure 4.7. The domain of type environments (TypeEnv) describes mappings from a type

__________________________________________________________________________

jml_data_rep_decl ::=  modifier  invariant_clause  |  modifier  represents_clause
jml_data_group_clause ::=  in_clause  |  maps_into_clause
jml_method_spec ::=  modifier  normal_behavior  requires_clause  spec_body
invariant_clause ::= invariant  predicate  ;
represents_clause ::= represents  id  <-  rep_expr ;
rep_expr ::=  this . id  |  this . id . id  |  literal  |  rep_expr  bin_op  rep_expr  |  un_op  rep_expr
in_clause ::=  in  id_list  ;
maps_into_clause ::=  maps  id . id  \into  id_list  ;
id_list ::=  id  |  id  ,  id_list
spec_body ::=  assignable_clause  ensures_clause  callable_clause
requires_clause ::=  requires   predicate  ;
assignable_clause ::=  assignable  store_ref_list  ;
ensures_clause ::=  ensures   predicate  ;
callable_clause ::=  callable  method_name_list ;
store_ref_list ::=  store_ref  |  store_ref  ,  store_ref_list
store_ref ::=  this . id  |  id . id 
method_name_list ::=  method_name  |  method_name  ,  method_name_list
method_name ::=   this . call_signature  |  super . call_signature  
                         |  id . call_signature  |  type . call_signature
call_signature ::=  id ( type )  |  id 

Figure 4.6:  Syntax of the JML-C subset used in this chapter.
__________________________________________________________________________



151
name (TypeId) to a type declaration (TypeDecl), i.e., the map will contain a binding for every class
declared or referenced in a program. 

4.4.1  Type Declarations

A TypeDecl contains the information from a class declaration, i.e., the superclass declared in the
extends clause, lookup tables for the fields and methods declared in this class, and the data

__________________________________________________________________________

Identifiers:
VarId = the set of valid variable names
MethId = the set of valid method names
TypeId = the set of declared type names
ObjId = the set of allocated object id’s

Types:
Type = {BoolT, IntT, NullT} ∪ TypeId
typeOf:  Value  →  Type
typeOf:  expr  →  Type
_  ≤  _: TypeId  ×  TypeId  →  BVal
_  <  _: TypeId  ×  TypeId  →  BVal
superOf:  TypeId  →  TypeId

Type Environments:
TypeEnv = TypeId  → TypeDecl ∪ {undef}
TEnv: TypeEnv

Type Declarations:
TypeDecl: TypeId  ×  fieldTable  ×  methodTable  ×  expr  ×  RepDecls
superclassOf: TypeDecl  →  TypeId
fieldsOf: TypeDecl  → fieldTable
methodsOf: TypeDecl  → methodTable
invOf: TypeDecl  →  expr
repOf: TypeDecl  →  RepDecls
fieldTable: VarId  →  VarDecl ∪ {undef}
methodTable:  MethId  →  MethDecl ∪ {undef}
RepDecls:  VarId  →  expr
lookupField: TypeId  ×  VarId  →  VarDecl ∪ {undef}
lookupMethod: TypeId  ×  MethId  →  MethDecl ∪ {undef} 
whereMethodDecl: TypeId  ×  MethId  →  TypeId

Figure 4.7:  Types and the type environment created during type checking of a specific program.
__________________________________________________________________________
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specifications from the invariant (expr) and represents clauses (RepDecl) (see JmlDataSpecs in
Figure 4.6). The function superclassOf extracts the superclass name from a type declaration. Similarly,
functions invOf and repOf project the data specifications from the invariant and the represents
clauses declared in that class. Each type declaration (TypeDecl) has a fieldTable and methodTable
containing the bindings for the fields and methods declared in that specific class; they map the field or
method name to the associated field or method declaration. These lookup tables for fields and methods
are obtained from a TypeDecl by the fieldsOf and methodsOf functions. The functions lookupField and

__________________________________________________________________________

Field and Variable Declarations:
VarDecl: Modifiers  ×  Type  ×  VarId  ×  MapsDecl  ×  InDecl
typeOf:  VarDecl  →  Type
mapsOf:  VarDecl  →  MapsDecl
isModelField: VarDecl  →  BVal
inOf:  VarDecl  →  InDecl
MapsDecl = { (f.x, g) |  g ∈ VarId, x ∈ VarId, g ∈ VarId }
InDecl = { g |  g ∈ VarId }

Method Declarations:
MethDecl: Type  ×  VarDecl  ×  stmt  ×  AssignSet  ×  CallSet
parmOf: MethDecl  → VarDecl
bodyOf: MethDecl  →  stmt
reqOf: MethDecl  →  expr
ensOf: MethDecl  →  expr
assignsOf: MethDecl  →  AssignSet
codeAssignsOf: MethDecl  →  AssignSet
callsOf: MethDecl  →  CallSet
codeCallsOf: MethDecl  →  CallSet
AssignSet = { this.g |  g ∈ VarId }  ∪  { p.g |  g ∈ VarId } 
                 ∪  { e.g |   e ∈ expr  ∧  g ∈ VarId }
CallSet = { this.m |  m ∈ MethId } ∪ { T::m | T ∈ TypeId,  m ∈ MethId } 

                                          ∪ { T.m | T ∈ TypeId,  m ∈ MethId }
_ [ _ ← _ ]:  AssignSet  ×  Parm  ×  expr  →  AssignSet 
Parm = { this,  p }
getParmType: TypeId  ×  MethId  →  Type 
getBody: TypeId  ×  MethId  →  stmt 

Figure 4.8:  Field and method declarations allowed in classes.
__________________________________________________________________________
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lookupMethod search for specific field and method declarations in the class hierarchy. That is,
lookupField and lookupMethod are necessary for looking up the inherited fields and methods visible in
a particular context; these and other auxiliary functions that use the type environment are defined in
Figure 4.9. 

4.4.2  Field Declarations

Field and variable declarations are represented by the VarDecl data structure containing the
modifiers, type and data group declarations (MapsDecl and InDecl). The projection functions are
typeOf, mapsOf, and inOf. The predicate isModelField determines, from the modifiers, whether or not
a field is a model field. 

__________________________________________________________________________

superOf(T) =  if T = Object 
                        then undef 
                        else superclassOf(TEnv(T))

lookupField(T, f) = if fieldsOf(TEnv(T)) (f) = undef 
                                then if superOf(T) = undef 
                                         then undef 
                                         else lookupField(superOf(T), f)
                                else fieldsOf(TEnv(T)) (f)

lookupMethod(T, m) = if methodsOf(TEnv(T)) (m) = undef 
                                     then if superOf(T) = undef 
                                              then undef
                                              else lookupMethod(superOf(T), m)
                                     else methodsOf(TEnv(T)) (m)

whereMethodDecl(T, m) = if methodsOf(TEnv(T)) (m) ≠ undef 
                                           then T
                                           else whereMethodDecl(superOf(T), m)

getBody(T, m) = bodyOf(lookupMethod(T, m)) 

getParmType(T, m) = typeOf( parmOf(lookupMethod(T, m)) )

Figure 4.9:  Auxiliary functions used in the type checking and semantics of Java-C and JML-C.
__________________________________________________________________________
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As described in subsection 2.2.1, data group declarations (in and maps clauses) specify
dependency relationships between model fields and concrete fields; they also specify the concrete
fields that can be assigned when a model field is allowed to change. Note also that fields can have data
group declarations but parameters and local variables cannot (see syntax in Figure 4.5). InDecl is the
set of model fields (data groups) that depend on the declared field; it is derived from the in clause(s) of
a field declaration. MapsDecl is a set of pairs that specifies the dynamic dependencies between the
fields (f.x) of an internal object (f) and the model fields (g) that depend on them; it is derived from the
maps clauses of the declared field (f). 

4.4.3  Method Declarations

Method declarations are represented by the MethDecl data structure containing the return type,
method name, parameter declaration, method body, and JML method specification (requires,
ensures, assignable, and callable clauses). The projection functions are parmOf, bodyOf, reqOf,
ensOf, assignsOf, callsOf, and codeCallsOf for retrieving the parameter, body, precondition,
postcondition, assignable fields, and callable methods from a specific method declaration. The callsOf
function extracts the set of callable methods from the public and protected specifications for a method
as declared in a specific type. The codeCallsOf function extracts this set from the code contract
described in subsection 4.1.3. 

We assume that multiple specification cases have been combined into a single case with one
requires clause (precondition), one ensures clause (postcondition), and one assignable clause
(frame axiom). Therefore, the projection functions reqOf, ensOf, and assignsOf retrieve these
combined components from a method specification. However, the functions req, ens, and assigns
(Figure 4.11) are also needed to combine the superclass and subclass specification cases into a single
case (see subsection 4.4.4). 

__________________________________________________________________________

S  ≤  T =  if S = T 
                then true 
                else if superOf(S) = undef 
                       then false 
                       else  superOf(S)  ≤  T

S <  T =   if  S = T  then  false  else  S ≤ T 

Figure 4.10:  Auxiliary functions used in the type checking and semantics of Java-C and JML-C.
__________________________________________________________________________
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For simplicity, we assume that only one formal parameter, named p, is declared in each method.
However, our technique can be extended to multiple parameters by handling them in the same way as
a single parameter. That is, if our technique is sound for one pair of parameters (the formal parameter
and receiver), then the soundness proof can be extended in the same way to each pair of parameters in
a method call. 

__________________________________________________________________________

inv(T) = if superOf(T) = undef 
             then invOf(TEnv(T))
             else invOf(TEnv(T)) &&  inv(superOf(T))

req(T, m) =
             if superOf(T) = undef  ∨  lookupMethod(superOf(T), m) = undef 
             then reqOf(lookupMethod(T, m)) 
             else if methodsOf(TEnv(T)) (m) = undef 
                    then req(superOf(T), m))
                    else reqOf(lookupMethod(T, m))  ||  req(superOf(T), m))

ens(T, m) =
             if superOf(T) = undef  ∨  lookupMethod(superOf(T), m) = undef 
             then postCond(lookupMethod(T, m)) 
             else if methodsOf(TEnv(T)) (m) = undef 
                    then ens(superOf(T), m)
                    else postCond(lookupMethod(T, m))  &&  ens(superOf(T), m)) 

postCond(M) =  (! \old(reqOf(M)) || ensOf(M) )

assigns(T, m) =
         if superOf(T) = undef  ∨  lookupMethod(superOf(T), m) = undef 
         then assignsOf(lookupMethod(T, m)) 
         else if methodsOf(TEnv(T)) (m) = undef 
                then assigns(superOf(T), m)
                else assignsOf(lookupMethod(T, m)) ∩ assigns(superOf(T), m)

calls(T, m) =  codeCallsOf( lookupMethod(T, m) )

Figure 4.11:  Auxiliary functions for combining superclass and subclass specification cases.
__________________________________________________________________________
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4.4.4  Extracting Specifications from Class and Method Declarations

Functions for extracting the type invariant from class declarations, and the pre- and postconditions
from method declarations are given in Figure 4.11. The function inv(T) extracts and combines the type
invariant from each of the class declarations in the class hierarchy; this function transforms the syntax
tree into a combined expression tree; it does not evaluate the invariant expression or determine the
validity of that invariant property. Similarly, the functions req(T, m) and ens(T, m) of Figure 4.11
extract and combine the pre- and postconditions, respectively, from method declarations in the class
hierarchy; these functions do not evaluate these assertions (see also subsection 5.1.7). 

The functions assigns and calls of Figure 4.11 extract the assignable fields and callable methods
for a specific method. The function assigns(T, m) calculates the set of assignable fields from the class
hierarchy of T for the given method m. Notice that it combines the superclass and subclass assignable
clauses through set intersection; thus subclasses are only allowed to assign to fields in groups
permitted by the superclass specification7. Similarly, the function calls(T, m) extracts the callable
methods from the current code contract using codeCallsOf. 

4.4.5  Logical Expressions

We assume that logical expressions in our function definitions and semantic rules are evaluated (as
in Java) using the short circuit (or minimal) evaluation strategy. That is, subexpressions of a logical
expression are evaluated from left to right until the value of the entire expression is known. For
example, if the first disjunct (conjunct) evaluates to true (false), then the rest of the disjuncts
(conjuncts) do not have to be evaluated. This strategy eliminates the need to define a special function
to accomplish a short circuit evaluation. For example, “e1 || e2” would have to be rewritten as “if e1
then true else e2”. 

4.5  Operational Semantics of Java-C
Our operational semantics has two components, the model of the program state (Figures 4.12 to

4.15) and the execution rules defined inductively over the syntax constructs of Java-C (Figures 4.16 to
4.19). The program state is modeled, in Figure 4.13, as a pair of object stores (ObjStore). The first
object store represents stack storage and the second heap storage. As usual, the stack contains storage
for local variables and parameters and the heap for objects created with a new object constructor call.
An ObjStore maps variable locations to the value stored at that location (Location → Value). 

7. This is not true in general because a subclass could have a specification case that does not overlap 
with the precondition of the superclass specification; that is, a behavioral subtype would be allowed 
to assign to additional fields in non-overlapping specification cases. However, for simplicity we will 
not consider such possibilities in our formalization here since determining whether or not a specifica-
tion case overlaps requires a proof rather than being checkable statically using assignable clauses. 
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Locations contain the value of a field (Figure 4.12). However, locations need to distinguish the
values of fields in one object from the values of those same fields in a different object. Thus a location
is modeled as a variable name and an object reference. An object reference (ObjectRef) contains the
type of the object (needed for dynamic binding) and the object-id. The object-id uniquely identifies a
specific object and is allocated by a new object constructor call. The run-time type of an object is
extracted using the function refType and the object-id is retrieved by function objId of Figure 4.14. The
type of the value stored in a field location is obtained through the locType function (Figure 4.14). 

__________________________________________________________________________

Value Domains:
BVal = { boolV(b) |  b ∈ {true, false} }
IVal = { intV(v) |  v ∈ {MinInt, ... -1, 0, 1, ... MaxInt} }
Null = { voidV(null) }
Value = BVal ∪ IVal  ∪ Null ∪ ObjectRef

Values:
default: Type  →  Value
val: literal  →  Value
apply: bop  ×  Value  ×  Value  →  Value
apply: uop  ×  Value  →  Value

Object References:
ObjectRef = { ref(T, OI) |  T ∈ TypeId,  OI ∈ ObjId }
refType: ObjectRef  →  TypeId
objId: ObjectRef  → ObjectId
global: ObjectRef
local: ObjectRef

Locations:
Location = { loc(x, r) |  x ∈ VarId, r ∈ ObjectRef }
varId: Location  →  VarId
objRef: Location  → ObjectRef
refType: Location  →  TypeId
objId: Location  → ObjectId
locType: Location  →  Type ∪ {undef}
objIdLoc: Location
thisLoc: Location
resultLoc: Location

Figure 4.12:  Value domains and locations used in the operational semantics of Java-C.
__________________________________________________________________________
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These object-id’s have to be unique for each allocated object. To ensure this, the value of the next
object-id is stored in a field (\next) of a special global object in the heap (the object reference of this
unique global object named global is defined in Figure 4.14). Every time a new object is allocated
by the new operator, the value of the next object-id is increased. The functions getObjId and nextObjId,
defined in Figure 4.15, are used in the operational semantics to maintain the value of this field (its
unique location named objIdLoc is defined in Figure 4.14). We also store the return value of a
method in field \result of this global object (see resultLoc defined in Figure 4.14). The value of
this field has the proper type because of standard type checking done prior to execution. 

Stack based variables are modeled as fields of a single object in an object store separate from heap
storage. This single stack object is referenced using a unique object reference named local defined
in Figure 4.14; it represents the stack frame. For example, the location of a local variable or parameter
x is represented by loc(x,local). Even though this local object reference is the same for every
frame (i.e., local), these local variables do not conflict with other stack variables because a new,
empty object store is always allocated for the stack at the beginning of each call (see Figure 4.18 and
function emptyS of Figure 4.15). An empty object store is modeled by the function emptyS defined
in Figure 4.15. 

__________________________________________________________________________

Object Storage:
ObjStore = Location → Value ∪ {undef}
_ [ _ := _ ]: ObjStore  ×  Location  ×  Value  → ObjStore  ∪ {undef}
emptyS: ObjStore

The Program State:
State = { state(s, h) |  s ∈ ObjStore,  h ∈ ObjStore }
stackOf: State → ObjStore
heapOf: State → ObjStore
getValue:  State  ×  Location → Value ∪ {undef}
_ [ _ := _ ]:  State  ×  Location  ×  Value  → State ∪ {undef}
new: TypeId  ×  State  → (ObjectRef  ×  State) ∪ {undef}
getObjId: State → ObjectId
nextObjId: State → ObjStore
successor: IVal → IVal
initialState: State

Figure 4.13:  The model of a program state and the related function signatures used in the operational semantics 
of Java-C.
__________________________________________________________________________
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Our model does not simulate some implementation features of Java or hardware limitations, such
as garbage collection, stack overflow, or memory capacity overflow. We also include a limited set of
values. That is, the set of data values is modeled as the disjoint union of the boolean and integer values,
null, and the set of object references (ObjectRef). 

In addition, we assume that the program has been type checked and that the required information
specific to that program is contained in the type environment TEnv. A type environment, shown in

__________________________________________________________________________

Values:
default(BoolT) = false
default(IntT) = 0
default(TypeId) = null 
mkVal(lit) =  if lit = null then  voidV(null)
                      else if lit ∈ {true, false} then  boolV(lit)
                                else intV(lit)

Object References:
refType( ref(T, OI) ) = T
objId( ref(T, OI) ) = OI
global = ref(\Global, intV(0))
local = ref(\Stack, intV(1))

Locations:
varId( loc(x, r) ) = x
objRef( loc(x, r) ) = r
refType( loc(x, r) ) = refType(r)
objId( loc(x, r) ) = objId(r)
locType(L) =
       if TEnv(refType(L)) = undef 
       then undef
       else if lookupField(refType(L), varId(L)) = undef
              then undef
              else typeOf( lookupField(refType(L), varId(L)) )
objIdLoc = loc(\next, global)
thisLoc = loc(this, local)
resultLoc = loc(\result, global)

Figure 4.14:  The definition of the domain functions used in the operational and axiomatic semantics of Java-C.
__________________________________________________________________________



160
Figure 4.7, maps a TypeId to its type declaration information (TypeId → TypeDecl). In our
computational model, TEnv is the only component specific to a particular program. 

To simplify our semantic rules, we also assume that expr and stmt are parse trees decorated with
information from type checking and name resolution. For example, typeOf(super) yields the
superclass of the current type declaration; this information is taken from the annotated parse tree. We
also assume that the TypeId of the enclosing class is always available through the expression
typeOf(this). 

4.5.1  Operational Semantic Rules of Java-C

Figures 4.16 through 4.19 give the operational semantics of Java-C. Figure 4.16 gives the
semantics of expression evaluation and Figure 4.17 gives the semantics of the usual programming
language statements; these are standard and require no further explanation except for the return
statement. The return statement does not exit the method (it only sets the return value), so we assume

__________________________________________________________________________

Object Storage:
OS[L := V] = λ loc .  if loc=L then V else OS(loc)
emptyS  = λ loc .  if locType(loc) = undef 
                                 then undef 
                                 else default(locType(loc))

The Program State:
stackOf(state(s, h)) = s
heapOf(state(s, h)) = h
getValue(S, L) = if objRef(L)=local 
                           then stackOf(S)(L)
                           else heapOf(S)(L)
S[L := V] = if objRef(L)=local 
                     then state(stackOf(S)[L := V], heapOf(S))
                     else state(stackOf(S), heapOf(S)[L := V])
new(T, S) = ( ref(T,  getObjId(S)),  state(stackOf(S), nextObjId(S)) )
getObjId(S) = heapOf(S)( objIdLoc )
nextObjId(S) = heapOf(S)[objIdLoc := successor(getObjId(S))]
successor(intV(i)) = intV(i+1)
initialState = state(emptyS, emptyS[objIdLoc, intV(2)] )

Figure 4.15:  The definition of the abstract machine functions used in the operational and axiomatic semantics of 
Java-C.
__________________________________________________________________________
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__________________________________________________________________________

(L-Self) [this, S] ⇒lv  thisLoc 

(L-VarId) [x, S] ⇒lv  loc(x, local)

[vr, S] ⇒e  r 
(L-Field) 

[vr.x, S] ⇒lv  loc(x,  r) 

(L-Result) [\result, S] ⇒lv  resultLoc 

[vr, S] ⇒lv  vLoc 
(E-VarRef) 

[vr, S] ⇒e getValue(S, vLoc)

(E-Literal) [lit, S] ⇒e  mkVal(lit)

[e1, S] ⇒e v1,  [e2, S] ⇒e v2
(E-BinOp) 

[e1 bop e2, S] ⇒e  apply(bop, v1, v2)

[e, S] ⇒e v
(E-UnOp) 

[uop e, S] ⇒e  apply(uop, v)

[e, S] ⇒e v
(E-Paren) 

[(e), S] ⇒e  v

(E-CastNull) [(T)null, S] ⇒e  voidV(null)

[e, S] ⇒e r,  r ∈ ObjectRef,  refType(r) ≤ T
(E-Cast)  if !(e ≡ null) 

[(T)e, S] ⇒e  r

Figure 4.16:  Operational semantics of L-expressions and R-expressions in Java-C.
__________________________________________________________________________
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that the type checker ensures that the return statement can only occur as the last statement of a method
and that every method that returns a value must have such a return statement. 

Figure 4.18 provides the semantics of method calls. We provide rules to handle each kind of call,
i.e., self-call (S-Call), super-call (S-SupCall and S-SupConstr), and object-call (S-Call). New object
constructor calls are handled by the S-NewAssign rules of Figure 4.19. Since expressions do not have
side-effects, the result returned from a method call has to be assigned to a local variable when the
result needs to be used in a later expression; Figure 4.19 gives the rules for assignment statements. 

The semantics of method calls must also handle dynamic binding. Dynamic binding is the run-time
process of binding a method invocation to the code of a specific implementation, i.e., the code that is
executed is determined based on the run-time type of the receiver object, not its static type. Dynamic
binding presents a challenge because the code that is executed is determined at run-time, not statically. 

__________________________________________________________________________

(S-Skip) { ;, S} ⇒s S

[e, S] ⇒e boolV(true),  {C1, S} ⇒s S’ 
(S-IfThen) 

{if (e) C1 else C2, S} ⇒s S’ 

[e, S] ⇒e boolV(false),  {C2, S} ⇒s S’ 
(S-IfElse) 

{if (e) C1 else C2, S} ⇒s S’ 

[e, S] ⇒e boolV(true),  {C  while (e) C, S} ⇒s S’ 
(S-While) 

{while (e) C, S} ⇒s S’ 

[e, S] ⇒e boolV(false)
(S-EndWhile) 

{while (e) C, S} ⇒s S

{C1, S} ⇒s S’,  {C2, S’} ⇒s S’’ 
(S-Seq)   

{C1 C2, S} ⇒s S’’ 

Figure 4.17:  Operational semantics of statements that do not directly involve method calls or assignments.
__________________________________________________________________________
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Dynamic binding only applies to self-calls and object-calls since the method executed in super-
calls and new object constructor calls is determined statically. Therefore, only the S-Call rule has to
model dynamic binding. Dynamic binding is modeled in the S-Call rule by first evaluating the receiver
expression e0 and then extracting the run-time type from the resulting object reference; then the
method is looked up in the type environment using the method name and receiver e0’s run-time type.
The body of the method declaration obtained from this lookup is then executed (see function getBody
of Figure 4.9). Note that, in our language subset, the receiver expression e0 has to be this or a field
or local variable name. 

4.6  Axiomatic Semantics of JML-C
In this section we present a Hoare-style verification logic for Java-C; the axioms and inference

rules are given in Figures 4.20 through 4.23. The inference rules have one or more assertions above the
line and one below it. The assertions above the line are the antecedents or premises of the rule and the
assertion below the line is its consequent or conclusion; the A-If rule of Figure 4.20 is an example.
Axioms do not have antecedents, e.g., the A-LocalDecl, A-Return, A-ExpAssign rules of Figure 4.22.

__________________________________________________________________________

[e0, S] ⇒e r, [e, S] ⇒e v,  T = whereMethodDecl( refType(r),  m ),
 S’ = state(emptyS, heapOf(S))[thisLoc := r][loc(p, local) := v],
{getBody(T, m), S’} ⇒s S’’  

(S-Call) 
{e0.m(e), S} ⇒s state(stackOf(S), heapOf(S’’))

T = whereMethodDecl( superOf(typeOf(this)),  m ), 
[this, S] ⇒e r, [e, S] ⇒e v, 
 S’ = state(emptyS, heapOf(S))[thisLoc := r][loc(p, local) := v],
{getBody(T, m), S’} ⇒s S’’

(S-SupCall) 
{super.m(e), S} ⇒s state(stackOf(S), heapOf(S’’))

[e, S] ⇒e v, [this, S] ⇒e r,  T = typeOf(super),
 S’ = state(emptyS, heapOf(S))[thisLoc := r][loc(p, local) := v],
{getBody(T, T), S’} ⇒s S’’

(S-SupConstr) 
{super(e), S} ⇒s state(stackOf(S), heapOf(S’’))

Figure 4.18:  Operational semantics of method calls in Java-C.
__________________________________________________________________________
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Axioms assert a property that is assumed to always be true. The inference rules are used to prove new
properties from the antecedents. 

The purpose of our formal system is so verifiers can prove the correctness of a Java-C
implementation with respect to its JML-C specification. The verification logic, together with our rules
from Chapters 2 and 3 (as formalized in Section 5.1), must be sound for proving the correctness of
subclass methods without superclass code, i.e., verifiers must be able to prove correctness of subclass
methods using only the superclass and subclass specifications and our verification logic. If the rules
from Chapters 2 and 3 have been checked statically by our tool (or some other similar tool), then the

__________________________________________________________________________

[e, S] ⇒e v,  [vr, S] ⇒lv  vLoc
(S-ExpAssign) 

{vr=e;, S} ⇒s S[vLoc := v]

vLoc = loc(x, local),  v=mkVal(default(T))
(S-LocalDecl) 

{T x;, S} ⇒s S[vLoc := v]

[e, S] ⇒e v
(S-Return) 

{return e;, S} ⇒s S[resultLoc := v]

{e0.m(e), S} ⇒s S’,  [vr, S] ⇒lv vLoc,  [\result, S] ⇒e v
(S-CallAssign) 

{vr=e0.m(e);, S} ⇒s S’[vLoc := v]

{super.m(e), S} ⇒s S’,  [vr, S] ⇒lv vLoc,  [\result, S] ⇒e v
(S-SupCallAssign) 

{vr=super.m(e);, S} ⇒s S’[vLoc := v]

[vr, S] ⇒lv varLoc,  [e, S] ⇒e v,  new(S, T) = (r, S’),  
 S’’ = state(emptyS, heapOf(S’))[thisLoc := r][loc(p, local) := v],
{getBody(T, T), S’’} ⇒s S’’’ 

(S-NewAssign) 
[vr=new T(e);, S] ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r]

Figure 4.19:  Operational semantics of assignment statements in Java-C.
__________________________________________________________________________
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verifier can use our programming logic without the need to be concerned about downcalls or aliasing.
In other words, the soundness of our verification logic depends on the enforcement of the rules given
in Chapters 2 and 3 and formalized in Section 5.1. 

4.6.1  Hoare Triples

Our verification logic builds on known techniques for specifying the axiomatic semantics of
programming languages; in particular, the main formulae of the logic are Hoare triples [Hoa69]. A
Hoare triple has the form {P} S-Unit {Q} where S-Unit denotes a syntactic unit. A syntactic unit (or s-

__________________________________________________________________________

(A-Skip) {P}  ;  {P}

{P && e} C1 {Q},  {P && !e} C2 {Q}
(A-If) 

{P} if (e) C1  else C2  {Q}

{P && e}  C  {P}
(A-While) 

{P}  while (e) C  {P && !e}

{P} C1 {Q},  {Q} C2 {R}
(A-Seq) 

{P} C1 C2 {R}

P ⇒ P’,  {P’} C {Q’},  Q’ ⇒ Q
(A-Conseq) 

{P} C {Q}

{P},  represents this.F <- e; 
(A-ModelRep) 

{P} [this.F ← e]  

{P},  represents this.F <- e; 
(A-ExpRep) 

{P} [e ← this.F]  

Figure 4.20:  Axioms and rules for Java-C statements that do not directly involve assignment or method calls.
__________________________________________________________________________
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unit) is a program statement or sequence of statements. P and Q are assertions about the program state
before and after execution of the given s-unit. In our deductive system, P and Q are JML-C predicates8

that specify properties of the pre- and post-states of the given s-unit. 
The triple {P} S-Unit {Q} asserts a partial correctness property of the given s-unit and has the

following meaning: if P holds in the pre-state, then the execution of S-Unit either (1) terminates
normally with assertion Q holding in the post-state, (2) abnormally terminates, or (3) runs forever. An
s-unit may abnormally terminate because of program bugs or execution errors that are beyond the
semantics of Java-C, e.g., stack overflow, running out of memory, null object references, etc. An s-
unit, for example, runs forever if it executes in an infinite loop. However, our primary concern is with

8. These predicates are a subset of the Java-C expressions. JML also provides syntax for other logical 
constructs, such as quantifiers, but for simplicity we will not consider them here. 

__________________________________________________________________________

U = typeOf(this),  T = whereMethodDecl(U, m), 
(∀ T1 ∈ TypeId : 

                                  {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)} )
(A-SelfCall) 

{inv(U) && req(T, m)[p←e]}  this.m(e)  {inv(U) && ens(T, m)}

U = typeOf(this),  T = whereMethodDecl(typeOf(vr), m), 
(!(e ≡ this)  ∨  inv(U)),  !(vr ≡ this),
{inv(T) && req(T, m)}  getBody(T, m) {inv(T) && ens(T, m)} 

(A-ObjCall) 
{req(T, m)[p←e, this←vr]}  vr.m(e);  {ens(T, m)[this←vr]}

U = typeOf(this),  T = whereMethodDecl(superOf(U), m), 
{inv(T) && req(T, m)}  getBody(T, m) {inv(T) && ens(T, m)} 

(A-SupCall) 
{inv(U) && req(T, m)[p←e]}  super.m(e)  {inv(U) && ens(T, m)}

T = typeOf(super), 
{reqOf(T, m)}  getBody(T, T)  {inv(T) && ensOf(T, m)} 

(A-SupConstr) 
{reqOf(T, m)[p←e]}  super(e);  {inv(T) && ensOf(T, m)}

Figure 4.21:  Inference rules for method and constructor calls.
__________________________________________________________________________
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the properties of s-units when they terminate normally. The standard Hoare inference rules for
procedural programming language statements are given in Figure 4.20 [Hoa69]. 

4.6.2  Method Verification

As described earlier, method behavior is specified in JML-C through requires, ensures, and
assignable clauses9. However, to hide the concrete implementation, these clauses usually reference
public model fields. To handle model fields in public pre- and post conditions and public invariants,
references to a model field are replaced by the right hand side of that model field’s represents clause.
A represents clause specifies an abstraction function that maps the concrete state of the receiver
object to the abstract value of the model field, i.e., it defines the concrete representation of that model
field. For simplicity, we assume that all represents clauses specify an abstraction function with a
consistent, well defined meaning [LM06], e.g., there are no cyclic or mutually recursive constraints
among multiple model fields (see assumptions in subsection 1.6.6). The Java-C implementation of a
method must be correct with respect to these JML-C specifications. 

The A-SelfCall, A-SupCall, A-ObjCall, and A-SupConstr rules of Figure 4.21 specify how to
reason about method and constructor invocations; these rules depend on the correctness proofs of their
method or constructor implementations. That is, an antecedent in each of these rules specifies that the
body of the method or constructor must satisfy its specification, e.g., {P} getBody(T, m) {Q} when
method T.m is being called. 

These antecedents involving function getBody in the rules given in Figure 4.21 define what is
meant for a method or constructor to be correct, i.e., how to verify the correctness of a method or
constructor implementation with respect to its JML-C specification. Notice that the invariant of the
enclosing class is a conjunct in both the precondition and postcondition of method calls, e.g., inv(T)
must hold in the pre-state and it must also be satisfied upon exit from a method declared in class T. The
precondition is extracted from the specification in the current class and combined with the inherited
specifications from its superclasses; this ensures that implementations of subclass methods satisfy the
combined superclass and subclass specifications. 

Verifying the correctness of a constructor is similar; however, the class invariant is not a
precondition for constructors because the object has not yet been initialized. Also, constructors cannot
inherit specifications from superclasses, i.e., a subclass constructor cannot override a superclass
constructor; also, reqOf(T, T) = req(T, T) and ensOf(T, T) = ens(T, T) for any class T. 

4.6.3  Dynamic Binding

To handle dynamic binding, our verification logic requires that overriding methods inherit and
satisfy the superclass specification as well as the subclass specification, i.e., a subclass must be a

9. The callable clause is not allowed to reference model fields; the receiver must be this, super, a 
formal parameter, or the static type of the receiver of an object-call (see subsection 5.1.3.1). 
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behavioral subtype of its superclasses. The functions req, ens, and assigns defined in Figure 4.11 make
sure the superclass specification is inherited. Method correctness requires that a method
implementation satisfy its inherited requires and ensures clauses since it uses the functions req and
ens when determining the pre- and postconditions for a method. The function req forms the
precondition by disjoining (or-ing) the precondition from a method declaration with the preconditions
of each of the superclass methods it overrides. Similarly, function ens forms the postcondition by
conjoining the postcondition from a method declaration with the postconditions of the methods it
overrides. However, to achieve the intended meaning, the postcondition of each specification case has
to be changed slightly, i.e., the postcondition in each specification case must be implied by the
corresponding precondition when evaluated in the pre-state, e.g., (!\old(P) || Q) must be the
postcondition for each case; this is what the function ens does as it traverses the class hierarchy (see
function postCond of Figure 4.11). 

The clauses occurring in separate specification cases of the same method declaration are also
desugared in the same way, i.e., by disjoining the preconditions and conjoining the postconditions as

__________________________________________________________________________

(A-LocalDecl) {P[x ← default(T)]} T x; {P}

(A-Return) {P[\result ← e]} return e; {P}

(A-ExpAssign) {P[vr ← e]}  vr = e; {P}

{P}  e0.m(e) {Q} 
(A-CallAssign)   

{P}  vr=e0.m(e); {Q[\result←vr]}

{P} super.m(e); {Q}
(A-SupCallAssign) 

{P}  vr=super.m(e); {Q[\result←vr]}

{reqOf(T, m)} T.T {inv(T) && ensOf(T, m)},  
(!(e ≡ this)  ∨  inv(typeOf(this)))

(A-NewAssign) 
{reqOf(T, m)[p←e]}  vr=new T(e); {(inv(T) && ensOf(T, m))[this←vr]}

Figure 4.22:  Axioms and inference rules for statements that modify the program state. 
__________________________________________________________________________
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described above; we also assume that the specification cases for a specific method declaration have
already been desugared during type checking as the type environment is being created. Therefore,
ensOf and reqOf return the combined, desugared specification cases for a specific method declaration,
whereas ens and req combine the inherited specification cases with the subclass specification. 

4.6.4  Object and Class Invariants

We say that an object is in a consistent state if its run-time type invariant holds. The A-SelfCall,
A-SupCall, and A-ObjCall rules of Figure 4.21 require that the receiver this be in a consistent state

__________________________________________________________________________

 {P && Z==e}  C  {Q[\old(e)←Z]}  
(A-OldVerify)  if Z ∈ LogicId 

 {P}   C   {Q}  

 {P}   C   {Q}  
(A-OldCall)  if Z ∈ LogicId and 

{P && Z==e}  C  {Q[\old(e)←Z]}    C is a method call

{P} C {Q},  {P’ } C {Q’ }
(A-SpecCase)  if Z, Z’ ∈ LogicId

{ (P || P’ ) && Z==P && Z’ ==P’ }
   C  
 {(!Z || Q)  &&  (!Z’  || Q’ )}  

T = typeOf(e0),  w ∉a selfAssigns(e0, T, m),
w ∉a parmAssigns(e, T, m),  {P}  e0.m(e) {Q} 

(A-Assignable)  if Z ∈ LogicId
{P && Z==w}  e0.m(e) {Q && Z==w}  

U = typeOf(this),  T = whereMethodDecl(superOf(U), m), 
U ≤ T1 < T,  f ∈ setOfFieldsIn(T1), 
(w ≡ this.f  ∨  w ≡ this.f.g), 
{P}  super.m(e) {Q} 

(A-SupAssignable)  if Z ∈ LogicId
{P && Z==w}  super.m(e) {Q && Z==w}  

Figure 4.23:  Inference rules involving logical variables.
__________________________________________________________________________
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whenever it is passed as an argument. For example, inv(U) is a conjunct in the pre- and postconditions
of the A-SelfCall and A-SupCall rules. Similarly, inv(U) must hold in the pre-state whenever this is
the non-receiver parameter in an object-call, i.e., one the antecedents of the A-ObjCall rule requires
that inv(U) hold prior to the call when e ≡ this. Note also that the same antecedent appears in the A-
NewAssign rule of Figure 4.22 for the same reason, i.e., to ensure that the current receiver is in a
consistent state before it can be passed as an argument in a new object constructor call. In summary,
the invariant of the current receiver can temporarily be invalid as long as it holds prior to being passed
as an argument in a call or prior to exiting the method or constructor. 

Furthermore, in the pre-state, method calls expect all of their argument objects to be in a consistent
state [MPHL05]. Therefore, the receiver of an object-call must also be in a consistent state. Hence, the
A-ObjCall rule implicitly assumes that the run-time type invariant of the receiver vr holds in the pre-
state (note that this will have to be proved in Chapter 5). 

4.6.5  Assignment Statements

The rules given in Figure 4.22 are for statements that directly change the program state. These
rules extend the standard assignment axiom (i.e., A-ExpAssign). These rules handle local declarations,
return statements, and method or constructor calls that assign their return value to a variable. In a
postcondition, the JML keyword \result denotes the value returned from the method call (see the A-
CallAssign and A-SupCallAssign rules of Figure 4.22).

4.6.6  Logical Variables

The only free variables allowed in pre- and postconditions are logical variables (LogicId). Free
variables are those not bound in the type environment TEnv (see Figure 4.23). Therefore, the domains
LogicId and VarId are disjoint; this also prevents name conflicts. These logical variables are implicitly
quantified at the outermost logical level. 

The rules given in Figure 4.23 present rules for handling special situations and properties of our
verification logic. For example, the A-OldVerify rule specifies how a verifier can remove expression
\old(e) from a method’s postcondition before proving its correctness. The semantics of expression
\old(e) requires that e be evaluated in the pre-state; thus, to handle such situations, the semantics
would have required two states, the pre- and post-states, when determining whether or not a given
postcondition holds. The purpose of this rule is to eliminate the need for the pre-state when evaluating
postconditions, i.e., only the post-state is needed. 

The A-OldCall rule is for use when removing \old(e) from the postcondition of a called method;
the precondition fixes the value of logical variable Z to the value of e evaluated in the pre-state; then
\old(e) is replaced by Z in the postcondition; thus Z denotes the same pre-state value in the pre- and
postconditions. The soundness of the A-OldCall and A-OldVerify rules will demonstrate the
soundness of our handling of \old-expressions in postconditions.
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Similarly, the soundness of the A-SpecCase rule will demonstrate the soundness of our desugaring
of specification cases and, in particular, the way the functions req and ens of Figure 4.11 combine and
desugar specification cases that are inherited from superclasses. This rule also demonstrates that our
desugaring of specification cases satisfies the intended meaning of specification cases. Specifically, if
the method body satisfies each specification case separately, then the consequent of this rule should be
a single Hoare triple with the combined, desugared pre- and postconditions that are derived from the
two specification cases. Note that the consequent of the A-SpecCase rule is derived from the
desugaring of the two specification cases (Hoare triples) above the line, followed by two applications
of the A-OldCall rule (i.e., the A-OldCall rule introduces the two logical variables, Z and Z’ and
removes the two \old-expressions from the postcondition that were introduced by the desugaring,
e.g., by function ens). In summary, the soundness of the A-SpecCase rule demonstrates the soundness
of our desugaring of specification cases and it allows the verifier to prove correctness of each
specification case separately (see the examples in Section 4.7). 

We have also included the two rules A-Assignable and A-SupAssignable because they verify that
no unexpected changes in the state of objects is possible. Therefore, only those concrete and model
fields permitted by the assignable clauses can change during a method call. That is, the A-Assignable
and A-SupAssignable rules specify that only members of the set of assignable model and concrete
fields are allowed to change; thus, variables that are not assignable during a method call will be the
same before and after that call. In addition, the A-SupAssignable rule says that no subclass field
changes during a super-call. The soundness of these rules demonstrate the soundness of the Additional
Side-Effects Invalidation Rule from Chapter 2 (no subclass fields change) and the soundness of our
alias control technique from Chapter 3 (only fields permitted by the assignable clause can change). 

4.7  Example Correctness Proofs
In this section, we give an example of a correctness proof for several methods and classes in a

class hierarchy. We prove that these methods are correct with respect to their specifications to illustrate
how our verification logic would be used by verifiers. 

For simplicity, the Java-C grammar requires that each method have exactly one parameter. Thus to
handle this situation, we consider a method with no parameters to be syntactic sugar for a method with
one formal parameter with type int; furthermore, the method body and its specification cannot and do
not reference that formal parameter. Similarly, the call of a method with no parameters implicitly
passes 0 as the corresponding actual parameter. 

Also, in JML, when the formal parameter is referenced in the post condition it is implicitly
enclosed in a \old-expression since the formal parameter may have been assigned to during the
execution of that method, i.e., we do not allow the postcondition to reference stack variables or formal
parameters in the post-state. However, to avoid any ambiguity in the examples below, we have
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explicitly included the \old() in these postconditions (see methods set and setFrom of Figure
4.24). 

Consider first the combined public and protected specification of class IntValue given in Figure
4.24. We now prove the correctness of method setFrom of Figure 4.25; the correctness proofs of the
other methods in class IntValue are trivial and are left to the reader. In the proof, the A-Seq and A-
Conseq rules of Figure 4.20 will be used implicitly at each step; the other rules will be explicitly cited
when they are used. The proofs will be presented with intermittent assertions in the annotation style of
Hesselink [Hes92]; this is equivalent to a natural deduction style proof. 

_________________________________________________________________________

public class IntValue {
   //@ public model int value;      // model variable

  /*@  public normal_behavior
    @    assignable this.value;
    @    ensures this.value == \old(initVal);   @*/ 
  public IntValue(int initVal);

  /*@  public normal_behavior
    @    ensures \result == this.value;   @*/
  public /*@ pure @*/ int get();

  /*@  public normal_behavior
    @    assignable this.value;
    @    ensures this.value == \old(newVal);  @*/
   public void set(int newVal);

  /*@  public normal_behavior
    @    requires v != null;
    @    assignable this.value;
    @    ensures this.value == \old(v.value)
    @        && \result == this.value - \old(this.value);  @*/ 
   public int setFrom(IntValue v);

  protected int _val;
  //@              in value;

  //@ protected represents value <- _val;
}

Figure 4.24:  IntValue’s combined public and protected specification from file IntValue.jml-refined. 
_________________________________________________________________________
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Since the postcondition of setFrom has two \old-expressions, we will introduce two logical
variables Z1 and Z2 and will use the A-OldVerify rule of Figure 4.23 to verify correctness of the
implementation. The first conjunct is the class invariant, i.e., true is the default invariant. 

      {true && v != null && Z1 == v.value && Z2 == this.value}
         ⇔ <  logic and the semantics of &&  >
      {v != null && Z1 == v.value && Z2 == this.value}
int vVal;  
             <  by the A-LocalDecl axiom of Figure 4.22  >
      {v != null && Z1 == v.value && Z2 == this.value}
int res;  
             <  by the A-LocalDecl axiom of Figure 4.22  >
      {v != null && Z1 == v.value && Z2 == this.value}
vVal = v.get();  
             <   v, v.value, and this.value do not change (by the A-Assignable rule of Figure 4.23);
                  thus by the A-ObjCall rule of Figure 4.21 and the A-CallAssign rule of Figure 4.22  >
      {v != null && Z1 == v.value && Z2 == this.value}
      ∧  {\result == this.value}[this←v, \result←vVal]
         ⇒ <  meaning of substitution  > 
      {v != null && Z1 == v.value && Z2 == this.value}  ∧  {vVal == v.value}
         ⇒ <  substitution since vVal = v.value  > 
      {v != null && Z1 == vVal && Z2 == this.value}
        ⇒ <  logic and the semantics of &&  >
      {Z1 == vVal && Z2 == this.value}
        ⇒ <  logic and the semantics of == and &&  >
      {vVal - this.value == Z1 - Z2  &&  Z1 == vVal}
        ⇒ <  by the represents clause of this.value and the A-ModelRep rule of Figure 4.20  >
      {vVal - this._val == Z1 - Z2  &&  Z1 == vVal}
res = vVal - this._val;  
             <  by the A-ExpAssign rule of Figure 4.22  >
      {res == Z1 - Z2  &&  Z1 == vVal}
if (this._val != vVal) { 
      {this._val != vVal  &&  res == Z1 - Z2  &&  Z1 == vVal}
        ⇒ <  logic and the semantics of &&  >
      {res == Z1 - Z2  &&  Z1 == vVal}
this.set(vVal);  
             <  res and vVal do not change (by the A-Assignable rule of Figure 4.23); 
                 thus by the A-SelfCall rule of Figure 4.21 and the A-OldCall rule of Figure 4.23  >
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      {res == Z1 - Z2  &&  Z1 == vVal}  ∧  {this.value == Z1}
        ⇒ <  logic and the semantics of == and && (substituting this.value for Z1 in the first 
                 conjunct) >
      {this.value == Z1 && res == this.value - Z2}
} else {  
      {!(this._val != vVal)  &&  res == Z1 - Z2  &&  vVal == Z1}
        ⇒ <  logic and the semantics of ! and !=  >
      {this._val == vVal  &&  res == Z1 - Z2  &&  vVal == Z1}
        ⇒ <  logic and the semantics of == and && (substituting Z1 for vVal in the first 
                 conjunct and this._val for Z1 in the second conjunct)  >
      {this._val == Z1  &&  res == this._val - Z2}
        ⇒ <  by the represents clause of this.value and the A-ExpRep rule of Figure 4.20  >
      {this.value == Z1 && res == this.value - Z2}
; 
             <  by the A-Skip rule of Figure 4.20  >
      {this.value == Z1 && res == this.value - Z2}
}
             <  by the A-If rule of Figure 4.20  >
      {this.value == Z1 && res == this.value - Z2}
return res;  
             <  by the A-Return axiom of Figure 4.22  >
      {this.value == Z1 && \result == this.value - Z2}
         ⇔ <  logic and the semantics of && (to establish the invariant) >
      {true  &&  this.value == Z1 && \result == this.value - Z2}

By the A-OldVerify rule, method setFrom satisfies its specification. 

Now consider the public and protected specification of method set in subclass IntValuePlus
given in Figure 4.26. This subclass keeps track of the previous value; it also has an invariant that
constrains this._diff through the current and previous values. The subclass implementation of
set is given in Figure 4.27 and its corresponding subclassing contract (to be used in another example
below) is given in Figure 4.28. We now prove the correctness of the set method as implemented in
Figure 4.27. 

In the subclass IntValuePlus, method set has two specification cases, one inherited from the
superclass and the other declared in the subclass IntValuePlus. Since the meaning of the
combined specification cases is the conclusion of the A-SpecCase rule of Figure 4.23, it suffices to
prove each specification case separately. 
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Case 1: (from the superclass)
The postcondition of the superclass specification case has one \old-expression, so we will

introduce one logical variable Z and will use the A-OldVerify rule of Figure 4.23 to verify correctness.
The first conjunct in the first assertion is the subclass invariant and the second conjunct is the
precondition from the superclass specification. (Note that we cannot use the superclass invariant in this
proof even though the specification case comes from the superclass because the method has to
establish the subclass invariant in the post-state; also, we are allowed to assume that the subclass
invariant holds in the pre-state since the proof is for a method declared in the subclass.)

      {this._diff == this.value - this.oldVal  &&  true  &&  Z == newVal}
         ⇔ <  logic and the semantics of &&  >
      {Z == newVal}

_________________________________________________________________________

//@ refines "IntValue.jml-refined";

public class IntValue {
  protected int _val;

  public IntValue(int initVal) {
      _val = initVal;
  }
  public void get() {
      return _val;
  }
  public void set(int newVal) {
      _val = newVal;
  }
  public int setFrom(IntValue v) {
      int vVal;
      int res;
      vVal = v.get();
      res = vVal - this._val;
      if (this._val != vVal) {
          this.set(vVal);           // possible downcall here
      } else {
          ;
      }
      return res;
  }
}

Figure 4.25:  IntValue's implementation from the file IntValue.java.
_________________________________________________________________________
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_________________________________________________________________________

public class IntValuePlus extends IntValue {

  //@ public model int oldVal;
  //@                     in value;

    //  ...

  /*@ also
    @  public normal_behavior
    @    assignable value, oldVal;
    @    ensures oldVal == \old(value);   @*/
  public int set(int newVal);

    protected int _prevValue;
    //@                  in oldVal;
    //@ protected represents oldVal <- _prevValue;

    protected int _diff;
    //@            in value, oldVal;
    //@ protected invariant _diff == (value - oldVal);
}

Figure 4.26:  Fragment of the specification of IntValuePlus from file IntValuePlus.jml-refined.
_________________________________________________________________________
_________________________________________________________________________

public class IntValuePlus extends IntValue {

  protected int _prevValue;
  protected int _diff;

  // ... 

  public void set(int newVal) {
      this._prevValue = this._val;
      this._val = newVal;
      this._diff = this._val - this._prevValue;
  }
}

Figure 4.27:  An implementation of method set in class IntValuePlus from file IntValuePlus.java.
_________________________________________________________________________
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this._prevValue = this._val;  
             <  by the A-ExpAssign axiom of Figure 4.22  >
      {Z == newVal}
this._val = newVal;  
             <  by the A-ExpAssign axiom of Figure 4.22  >
      {Z == this._val}
        ⇒ <  logic and the semantics of == and &&  >
      {Z == this._val  
        &&  (this._val - this._prevValue == this._val - this._prevValue)}
this._diff = this._val - this._prevValue;  
             <  by the A-ExpAssign axiom of Figure 4.22  >
      {Z == this._val  &&  this._diff == this._val - this._prevValue}
        ⇒ <  logic and the represents clauses of this.value and this.oldVal 
                 and the A-ExpRep rule of Figure 4.20  >
      {this._diff == this.value - this.oldVal  &&  Z == this.value}
Case 2: (from the subclass)
The postcondition of the subclass specification case has one \old-expression, so we will

introduce one logical variable Z and will use the A-OldVerify rule of Figure 4.23 to verify correctness.
As in Case 1, the first conjunct is the class invariant and the second conjunct is the precondition. 

      {this._diff == this.value - this.oldVal  &&  true  &&  Z == this.value}
        ⇒ <  logic and the semantics of == and &&  >
      {Z == this.value}
        ⇒ <  by the represents clause of this.value and the A-ModelRep rule of Figure 4.20  >
      {Z == this._val}
this._prevValue = this._val;  
             <  by the A-ExpAssign axiom of Figure 4.22  >
      {Z == this._prevValue}
this._val = newVal;  
             <  by the A-ExpAssign axiom of Figure 4.22  >
      {Z == this._prevValue}
        ⇒ <  logic and the semantics of == and &&  >
      {Z == this._prevValue 
        &&  (this._val - this._prevValue == this._val - this._prevValue)}
this._diff = this._val - this._prevValue;  
      {Z == this._prevValue  &&  this._diff == this._val - this._prevValue}
        ⇒ <  logic and the represents clauses of this.value and this.oldVal 
                 and the A-ExpRep rule of Figure 4.20  >
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      {this._diff == this.value - this.oldVal  &&  Z == this.oldVal}

By the above two cases and the A-OldVerify and A-SpecCase rules of Figure 4.23, method set
satisfies its specification. 

We now give another example proof to illustrate the use of the A-SupCall rule of Figure 4.21 and
the A-SupAssignable rule of Figure 4.23. Consider the specification of method set in the subclass
ValueTotal given in Figure 4.29; set’s implementation is given in Figure 4.30. The super-call of
super.set is allowed in this implementation because the superclass method does not make
downcalls to methods with additional side-effects and it does not invalidate the subclass invariant
(which, in this subclass, is true by default, and thus cannot be invalidated). 

By the A-Conseq rule of Figure 4.20, when the preconditions of several specification cases are the
same, we can prove that these specification cases are all satisfied in one proof, i.e., by starting from
their common precondition and proving that the method’s post-state must satisfy the conjunction of the
postconditions from these specification cases (this conjunction implies the postcondition of each
individual specification case). For example, the precondition of the two inherited specification cases
and the new specification case is the same for method set, i.e., the precondition is true for all three
cases. Therefore, we can prove that this method satisfies its specification by proving that if the
common precondition holds in the pre-state, then the conjunction of the three postconditions must hold
in the post-state; this is the approach we will take in our next proof. 

Since each of the three postconditions of the specification cases of method set has one \old-
expression, we will introduce three logical variables Z1, Z2, and Z3 and will use the A-OldVerify rule

_________________________________________________________________________

//@ refines "IntValuePlus.java";

public class IntValuePlus extends IntValue {

  // ... 

  /*@ also
    @ protected code normal_behavior
    @   requires \same;
    @   callable \nothing;        @*/
  public int set(int newVal);

}

Figure 4.28:  Part of IntValuePlus’s subclassing contract from file IntValuePlus.refines-java.
_________________________________________________________________________
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_________________________________________________________________________

public class ValueTotal extends IntValuePlus {

  //@ public model int totalChg;
  //@                      in value;

  // ... 

  /*@ also
    @  public normal_behavior
    @    assignable this.value, this.totalChg;
    @    ensures this.totalChg 
    @           == \old(this.totalChg) + (this.value - this.oldVal);   @*/
  public void set(int newVal);

  protected int _total;
  //@                in totalChg;

  //@ protected represents totalChg <- _total;

}

Figure 4.29:  A fragment of ValueTotal's specification from the file ValueTotal.jml-refined.
_________________________________________________________________________

_________________________________________________________________________

//@ refines "ValueTotal.jml-refined";

public class ValueTotal extends IntValuePlus {
  protected int _total;

  // ... 

  public int set(int newVal) {
      super.set(newVal);
      this._total = this._total + this._diff;
  }
}

Figure 4.30:  A fragment of ValueTotal's implementation from the file ValueTotal.java.
_________________________________________________________________________
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of Figure 4.23 to verify correctness. As in previous examples, the proof must include the type
invariant. 

      {this._diff == this.value - this.oldVal  &&  true
        &&  Z1 == newVal  &&  Z2 == this.value  &&  Z3 == this.totalChg}
super.set(newVal);  
             <  newVal is unchanged (by the A-Assignable rule of Figure 4.23), and 
                 this.totalChg is unchanged (by the A-SupAssignable rule of Figure 4.23) 
                 even though super.set has permission to assign to this.totalChg since 
                 super.set does not make downcalls to methods with addition side-effects; 
                 by the A-SupCall rule of Figure 4.21 and the A-OldCall rule of Figure 4.23  >
      {this._diff == this.value - this.oldVal  &&  true
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  Z1 == newVal  &&  Z3 == this.totalChg}
        ⇒ <  logic and the semantics of == and && and Z3 == this.totalChg  >
      {this._diff == this.value - this.oldVal
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  (this.totalChg + this._diff == Z3 + this._diff)}
        ⇒ <  by the represents clause of this.totalChg and the A-ModelRep rule of Figure 4.20  >
      {this._diff == this.value - this.oldVal
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  (this._total + this._diff == Z3 + this._diff)}
this._total = this._total + this._diff;  
      {this._diff == this.value - this.oldVal
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  this._total == Z3 + this._diff}
        ⇒ <  the semantics of == and substitution for this._diff in the last conjunct  >
      {this._diff == this.value - this.oldVal
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  this._total == Z3 + (this.value - this.oldVal)}
        ⇒ <  by the represents clause of this.totalChg and the A-ExpRep rule of Figure 4.20  >
      {this._diff == this.value - this.oldVal
        &&  Z1 == this.value  &&  Z2 == this.oldVal
        &&  this.totalChg == Z3 + (this.value - this.oldVal)}

The first conjunct of the last assertion above means the type invariant holds, the second conjunct
says that the postcondition of method set of superclass IntValue holds, the third conjunct says that
the postcondition in superclass IntValuePlus holds, and the fourth conjunct says that the
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postcondition in subclass ValueTotal holds. Therefore, by the A-Conseq rule of Figure 4.20, the A-
SpecCase rule of Figure 4.23, and the A-OldVerify rule of Figure 4.23, method set of class
ValueTotal satisfies its specification. 

4.8  Discussion
In this chapter, we specified the syntax and operational semantics of Java-C. We also specified the

syntax and axiomatic semantics of JML-C. The operational semantics in Section 4.5 includes
mechanisms that allow aliasing, code inheritance, and dynamic binding; this is necessary and
important because the purpose of our technique is to prevent the problems caused by these features
when creating subclasses. Therefore, the verification logic in Section 4.6 (together with the static
enforcement of the rules from Chapters 2 and 3) must also handle aliasing, inheritance, and dynamic
binding while preventing the associated problems. 

The operational semantics of Java-C is an extension of the work of Arnd Poetzsch-Heffter and
Peter Mueller. Our model of object storage is similar to the object environment in Poetzsch-Heffter’s
Habilitation Thesis [PH97] and the object store in Poetzsch-Heffter and Mueller’s “A Programming
Logic for Sequential Java” [PHM99]. However, our program state is represented as a pair of object
stores (one for stack variables and the other for heap objects) whereas, in their work, the program state
is a single object environment/object store containing both heap objects and local stack variables. The
rest of the operational semantics of Java-C, although similar to theirs in some ways, was conceptually
patterned after an interpreter for an object-oriented programming language that I created for a compiler
class. 

The syntax of Java-C is a slightly larger subset of Java than the one given in Poetzsch-Heffter and
Mueller’s paper. Like them, methods have only one formal parameter and expressions are not allowed
to have side-effects, i.e., the result of a method call must be assigned to a variable and expressions with
side-effects are not in the language. However, our language is different in that it more closely matches
Java, including the syntax of super-calls, superclass constructor calls, and new object constructor calls
since we are interested in the behavior of these kinds of calls. The languages are also different in that
we have methods that do not return a value, i.e., methods with a void return type. 

Our verification logic is an axiomatic semantics for the JML-C specification language. An
important feature of JML-C is specification inheritance which forces subclasses to be behavioral
subtypes [DL96]. In Poetzsch-Heffter and Mueller’s paper subclasses also have to be behavioral
subtypes, i.e., overriding subclass methods have to satisfy the specifications of overridden superclass
methods. However, the rules in our verification logic are quite different because we use a type
environment containing JML-C specifications and use functions like inv, req, ens, and assigns to
extract and combine specification cases from superclasses. We also include rules, given in Figure 4.23,
that are specific to JML-C such as the rules for eliminating \old-expressions, handling specification
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cases, and reasoning about side-effects during method calls. We also have a rule, unique to our work,
for reasoning about side-effects during super-calls, i.e., the A-SupAssignable rule in Figure 4.23. 

In Chapter 5, we prove the soundness of our verification logic with respect to the operational
semantics of Java-C. This soundness proof will verify whether or not our technique prevents the
problems caused by downcalls and aliasing because our verification logic uses only superclass
specifications, subclass specifications, and subclass code. 



183
CHAPTER 5: SOUNDNESS OF OUR TECHNIQUE

In Chapter 4, we formally specified the syntax and semantics of a core subset of the Java
programming language called Java-C. We also defined a verification logic for proving the correctness
of Java-C programs with respect to their JML-C specifications. The verification logic is an axiomatic
semantics for a core subset of the JML specification language. 

In this chapter we prove that our technique successfully prevents the problems caused by
downcalls and aliasing. That is, we prove that our verification logic is sound for proving the
correctness of subclass methods without superclass code. For soundness, we need to prove that our
verification logic is sound with respect to the operational semantics. However, our verification logic is
unsound without an enforcement of the rules given in Chapters 2 and 3; thus these rules need to be
formalized so they can be used in the soundness proof. These rules are formalized in Section 5.1
through a set of type rules; this formalization also demonstrates that the informal rules from Chapters 2
and 3 can be statically checked and enforced. Furthermore, when needed in our soundness proof, we
can assume that programs satisfy the formal rules. 

The main results of this chapter are presented in Section 5.2 where we prove that our verification
logic is sound. Since we assume that superclass code is unavailable, we have to show that a superclass
method can establish the run time type invariant prior to a call and specifically prior to a downcall.
That is, we have to prove that a call of a superclass method (allowed by our technique) does not at any
time during execution invalidate any of the subclass portions of the run-time type invariant; if a
superclass method has this property, then the invariant of the run-time type of the receiver can be
established by simply establishing the invariant of the static type of the receiver. The Valid Invariant
Theorem 5.30 proves that during the execution of superclass methods (allowed by our checking rules),
the run-time type invariant is established whenever the invariant of the static type of the receiver is
established. 

Our verification logic also requires that superclass methods make no assignments to subclass fields
(through downcalls) since such side-effects are unverifiable without superclass code (as explained in
subsection 2.2.3). The Additional Side-Effects Theorem 5.48 proves that during the call of a superclass
method, allowed by our rules, subclass fields are not changed. 

We also have to prove the soundness of our alias control technique since the soundness of our use
of the assignable clause depends on preventing unexpected side-effects and unsafe aliasing. That is,
we have to prove that the only fields that can change during the execution of a method are those
permitted by its assignable clause. In the Assignable Clause Theorem 5.43, we prove that
assignments to fields of the receiver and formal parameter are not permitted during method execution
unless specified in its assignable clause. We also prove, in the Owner Aliasing Theorem 5.35, that
when classes and methods satisfy our rules, verifiers can reason locally about aliasing and side-effects
using owner variable names. 
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Finally, in Section 5.3, we conclude with a discussion of our formal rules and how some of them
can be made less conservative and match more exactly with the informal rules given in Chapters 2 and
3. We used more restrictive rules in our formalization to help keep the soundness proof a little simpler
and more manageable. Nonetheless, the soundness proof demonstrates that our technique works and
can be used to avoid the problems caused by downcalls and aliasing. 

5.1  Additional JML Type Checking

5.1.1  Overview

Our technique extends the type system of Java to include the rules given in Chapters 2 and 3; these
rules simplify program verification, i.e., we extend Java’s static type system so these additional rules
do not have to be included in the operational semantics of Java-C or in the axiomatic semantics of
JML-C specifications. 

The additional type rules are called “T-rules” (short for type rules). In this subsection we give an
overview of the purpose of these rules; in later subsections we explain more of the details and how
they formalize the rules given in Chapters 2 and 3.

As explained in Chapter 2, one main goal of our technique is to eliminate the potential problems
caused by downcalls. Downcalls can occur when a subclass method makes a super-call or when a
subclass method makes a self-call to an unoverridden superclass method. In either case, a downcall
occurs when the superclass method calls down to an overridden subclass method (see Figure 1.3).
Since our technique assumes that the superclass code is not available, we have to prevent the execution
of those superclass methods that have unverifiable side-effects or may no longer satisfy their
specification. Therefore, our technique must disallow any such super-calls and it must make sure that
the required methods have been overridden. Our technique uses the information in the assignable and
callable clauses to determine when there are downcalls that invalidate a super-call, i.e., cause the
super-call to be unsafe without superclass code. The T-rules given in Figures 5.1 - 5.3 formalize the
Additional Side-Effects and Invariant Invalidation Rules given in Chapter 2.

The T-rules also formalize the alias control rules from Chapter 3 so customizers and verifiers can
reason about the state of objects locally, i.e. modularly. Thus another main goal of our technique is to
prevent objects in the current context from being changed unexpectedly through aliases visible in a
different context. To accomplish this, our technique makes sure that all changes to the state of an
object are initiated through an owner variable visible in the current context. Our technique must also
make sure that changes to the state of an object cannot be initiated through a non-owner variable. 

In summary, the T-rules (Figures 5.1 - 5.3) formalize the way most of the rules given in Chapters 2
and 3 can be statically enforced. Other rules are formalized by the functions defined in Figure 5.7 as
explained in subsection 5.1.8, i.e., these functions specify how a static checker can ensure that the
specification is well formed. For example, these functions formalize the checking of the data
representation (i.e., represents, in, and maps clauses) to make sure fields have the proper data group
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relationships (e.g. that the Pivot Declaration Rule of subsection 3.3.2 has been satisfied). These
functions also check that the required methods have been overridden, i.e. that the overriding rules of
Chapter 2 have been satisfied. Our technique checks the represents, in, maps, and assignable
clauses to make sure that the specifications are well formed and that the required methods have been
overridden. 

Finally, the T-rules (Figures 5.1 - 5.3) also define how the assignable and callable clauses can be
statically checked to ensure that the method implementation satisfies this part of the specification;
subsection 5.1.7 describes how this checking would be done. Although the purpose of the T-rules is to
ensure that methods satisfy the assignable and callable clauses, these rules also demonstrate how
these clauses can be automatically generated by our tool; that is, instead of checking that each
assignment and call is allowed as shown in the T-rules, the tool would add the variable or method
names to the assignable and callable clauses of the generated specification. 

The subsections that follow explain how the T-rules, in Figures 5.1 - 5.3, enforce the super-call
invalidation and alias control rules from Chapters 2 and 3. Also, the definition of the T-rules
demonstrate that our technique and the rules given in Chapters 2 and 3 can be checked and enforced
statically. These typing rules are also necessary for the soundness of our technique for reasoning about
and verifying the behavior of subclass methods without superclass code (i.e., the soundness of the
programming logic defined in Section 4.6). 

5.1.2  Formalizing the Alias Control Rules 

In this subsection, we first review the definition of owner variable and describe how they are
represented in the T-rules. We then explain how the T-rules formalize the Pivot Assignment, Owner
Variable, and Actual Parameter Aliasing Rules. These three rules from Chapter 3 protect pivot objects
and prevent unwanted aliasing and side-effects. 

5.1.2.1 Owner variables
As explained in Chapter 3, the main principle in our alias control technique is that changes to the

state of objects other than the receiver must be initiated through an owner variable visible in the
current context. In our technique, non-pivot fields and local variables can only be temporary owners
within a local context; a static analysis handles this by keeping track of temporary owner variables.
The set O in the T-rules of Figures 5.1 - 5.3 is this set of temporary owner variables. 

Recall (as defined in subsection 3.5.1) that a variable is an owner if it is the first (in time) to hold a
reference to a newly created object. Therefore, a variable can only be an owner after it occurs on the
left side of an assignment and the right side is a new object constructor call. This is formalized in the
T-NewAssign rule of Figure 5.2, i.e., the variable reference (vr) from the left side of the assignment is
added to the set of owner variables (O) because vr will be the first to hold a reference to the newly
created object. Also, the T-NewAssign rule is the only rule that adds variable references to O. In
contrast, the T-ExpAssign, T-CallAssign, and T-SupCallAssign rules of Figure 5.2 remove the
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variable reference on the left side of the assignment from O because such variables may not be the first
to hold the object referenced1. Therefore, when non-pivot fields and local variables are owners, they
are allowed to modify the object they reference, but only during the current execution of a method or
until they are the left side of an assignment statement with a right side that is not a new object
constructor call. 

The T-If rule of Figure 5.3 is also interesting because it requires that a variable be an owner at the
end of both branches of an if-statement in order to continue as a temporary owner. Similarly, the T-

1. In Java, this would be all assignments in which the right-hand side is not a new object constructor 
call.

__________________________________________________________________________

T = whereMethodDecl( typeOf(e0),  m ),  
subst(rcvr, T).m ∈ calls(U, n), 
( e0 ∈ O ∨  (selfAssigns(e0, T, m) ⊆a assigns(U, n)) ), 
( e ∈ O ∨  (parmAssigns(e, T, m) ⊆a assigns(U, n)) ), 
invariantOK(e0, e, O, U, n),  aliasingOK(e0, e, U, T, m),  

(T-Call) 
(O, U, n) |−t  e0.m(e);  −− o O

T = whereMethodDecl( superOf(U),  m ),  T::m ∈ calls(U, n), 
selfAssigns(this, T, m) ⊆a assigns(U, n), 
( e ∈ O ∨  (parmAssigns(e, T, m) ⊆a assigns(U, n)) ), 
invariantOK(this, e, O, U, n),  aliasingOK(this, e, U, T, m),  
okToSuperCall(U, T, m)  

(T-SupCall) 
(O, U, n) |−t  super.m(e);  −− o O

T = superOf(U),  T::T ∈ calls(U, U) ), 
selfAssigns(this, T, T) ⊆a assigns(U, U), 
( e ∈ O ∨  (parmAssigns(e, T, T) ⊆a assigns(U, U)) ), 
invariantOK(this, e, O, U, U),  aliasingOK(this, e, U, T, T),  
noDownCalls(U, T, T),  !(e ≡ this) 

(T-SupConstr) 
(O, U, U) |−t  super(e);  −− o O

Figure 5.1:  T-rules for method calls.
__________________________________________________________________________
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While rule requires that a variable be an owner whether or not the while-loop is executed. This
handling of if- and while-statements is similar to the way Java checks that a field has been initialized
prior to first use. 

5.1.2.2 Formalizing the Pivot Assignment Rule 
The five T-rules shown in Figure 5.2 formalize the Pivot Assignment Rule described in Chapter 3

(subsection 3.5.2). The purpose of this rule is to make sure that pivot fields and parameters always own
the objects they reference. Pivot fields must always be owner variables because we want pivot objects
of the receiver to be modifiable by all methods declared in a class. Similarly, when the object
referenced by a formal parameter needs to be modified, that parameter must also be an owner variable

__________________________________________________________________________

(O, U, n) |−t  e0.m(e);  −− o O, 
(!isField( vr ) ∨ vr ∈a assigns(U, n)),  okToAssign(vr) 

(T-CallAssign) 
(O, U, n) |−t  vr=e0.m(e);  −− o O − {vr}

(O, U, n) |−t  super.m(e);  −− o O,  
(!isField( vr ) ∨ vr ∈a assigns(U, n)),  okToAssign(vr)  

(T-SupCallAssign) 
(O, U, n) |−t  vr=super.m(e);  −− o O − {vr}

(!isField( vr ) ∨ vr ∈a assigns(U, n)),  okToAssign(vr)
(T-ExpAssign)  if !(e ≡ null) 

(O, U, n) |−t  vr=e;  −− o O − {vr}

(!isField( vr )  ∨  vr ∈a assigns(U, n))
(T-NullAssign)  if e ≡ null 

(O, U, n) |−t  vr=null;  −− o O − {vr}

T.T ∈ callsOf(U, n), 
( e ∈ O ∨  (parmAssigns(e, T, T) ⊆a assigns(U, n)) ), 
invariantOK(this, e, O, U, n), 
(!isField( vr )  ∨  vr ∈a assigns(U, n)),  

(T-NewAssign) 
(O, U, n) |−t vr=new T(e);  −− o O ∪ {vr}

Figure 5.2:  T-rules for assignment statements.
__________________________________________________________________________
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because, otherwise, those side-effects would not be allowed by our technique. Therefore, pivot fields
and parameters must be handled differently from other program variables, that is, our technique must
make sure they can never reference objects they do not own. The predicate okToAssign(vr) (Figure
5.4) appears as an antecedent in the T-ExpAssign, T-CallAssign, and T-SupCallAssign rules of Figure
5.2; this predicate disallows the assignment when the target variable is a pivot field or parameter unless
the target has a primitive type; primitive types cannot be aliased so such assignments can be allowed.
Therefore, these rules do not allow assignments when the left side is a pivot field or parameter and the
right side is an object reference2. 

However, an assignment is allowed when the target is a pivot field or parameter and the right side
is either null (T-NullAssign rule) or a new object constructor call (T-NewAssign rule), i.e.,

2. The Pivot Assignment Rule of Chapter 3 allows references with an immutable type to be assigned to 
parameters and pivot fields (subsection 3.5.2); however, for simplicity, we do not consider immuta-
ble types in our formalization in this chapter.

__________________________________________________________________________

(T-Skip) (O, U, n) |−t  ; −− o O

(T-LocalDecl) (O, U, n) |−t  T x; −− o O

(T-Return) (O, U, n) |−t  return e;  −− o O

(O, U, n) |−t C1 −− o O’,  (O, U, n) |−t C2 −− o O’’ 
(T-If) 

(O, U, n) |−t  if (e) C1 else C2  −− o O’ ∩ O’’ 

(O, U, n) |−t  C  −− o O’ 
(T-While) 

(O, U, n) |−t  while (e) C  −− o O ∩ O’ 

(O, U, n) |−t  C1 −− o O’,  
(O’, U, n) |−t  C2  −− o O’’ 

(T-Seq) 
(O, U, n) |−t  C1 C2  −− o O’’ 

Figure 5.3:  T-rules that do not involve method calls or assignments.
__________________________________________________________________________
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okToAssign(vr) is not a premise in either of these rules. Since no other assignments to pivots or
parameters are allowed, these variables will always own the object they reference. 

The Pivot Assignment Rule, through the rules of Figure 5.2, also ensure that each pivot object is
referenced by no more than one pivot field (since only one field can be the first to contain a specific
object reference). However, it is safe to allow pivot objects to be aliased by non-owner variables since
changes to pivot objects cannot be initiated through a non-owner variable. Thus, as required for
soundness, modifications of any particular pivot object are only allowed through a single pivot field. 

__________________________________________________________________________

invariantOK(rcvr, arg, O, U, n) = 
         isOwner(rcvr, O, U)  ∧  ( typeOf(arg) ∉ TypeId  ∨  isOwner(arg, O, U) ) 

aliasingOK(rcvr, arg, U, T, m) =  assigns(T, m) = { }
       ∨  ( !(rcvr ≡ arg)  ∧  (!isPivot(arg, U)  ∨  !(rcvr ≡ this))
                                    ∧  (!isPivot(rcvr, U)  ∨  !(arg ≡ this)) ) 

okToSuperCall(S, T, m) = 
         validInvariant(S, T, m)  ∧  validCalls(S, T, m) 

noDownCalls(S, T, m) = 
           (∀ n ∈ setOfMethodsIn(T) :  
                      this.n ∉ calls(T, m)  ∨  noOverriddenMethods(S, T) )
       ∧  (∀ U.n ∈ calls(T, m) :  noParmDowncalls(S, T, U, n) )

isPivot(e, T) =  ( isField( e )  ∧  e ∈ pivotFieldsIn(T) )

okToAssign(vr, T) = 
         typeOf(vr) ∉ TypeId  ∨   ( !isPivot(vr, T)  ∧  !(vr ≡ p) ) 

selfAssigns(rcvr, T, m) =  { this.g |  this.g ∈ assigns(T, m) }[this←rcvr]
        ∪  { this.g.x |  this.g.x ∈ assigns(T, m) }[this←rcvr]

parmAssigns(arg, T, m) =  { p.g  | p.g ∈ assigns(T, m) }[p←arg]

subst(rcvr, T) =  if  rcvr ≡ this  then  this   else  T

Figure 5.4:  Top level functions used in the T-Rules; the related helper functions are in Figures 5.5 and 5.6.
__________________________________________________________________________
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5.1.2.3 Formalizing the Owner Variable Rule 
Another important part of our technique for controlling side-effects and aliasing is our restrictions

on the left side of assignment statements. As explained in subsections 1.6.6, 2.4.3, and 3.5.7, direct

__________________________________________________________________________

isOwner(vr, O, U) =  ( vr ∈ O  ∨  vr ≡ this  ∨  vr ≡ p  ∨  isPivot(vr, U) ) 

validInvariant(S, T, m) =  
          (∀ this.f ∈a assigns(T, m) : this.f ∉ accessed(invOf(TEnv(S))) )
      ∧  (∀ this.f.g ∈a assigns(T, m) : this.f.g ∉ accessed(invOf(TEnv(S))) )

validCalls(S, T, m) =  validSelfCalls(S, T, m)  ∧  validObjectCalls(S, T, m)
      ∧  (∀ U::n ∈ calls(T, m) : validCalls(S, U, n) )

validSelfCalls(S, T, m) = 
          (∀ this.n ∈ calls(T, m) :  noAddSideEffects(S, T, n) )

validObjectCalls(S, T, m) =  
          (∀ U.n ∈ calls(T, m) :  noParmAddSideEffects(S, T, m, U, n) )

noAddSideEffects(S, T, m) = 
          (∀ f ∈ setOfFieldsIn(S), g ∈ VarId : 
               this.f ∉a assigns(T, m)   ∧  this.f.g ∉a assigns(T, m) )

noParmDowncalls(S, T, U, n) =  
          getParmType(U, n) ∉ TypeId  ∨  !(T ≤ getParmType(U, n)) 
      ∨  noOverriddenMethods(S, T)

noParmAddSideEffects(S, T, m, U, n) =  
          getParmType(U, n) ∉ TypeId  ∨  !(T ≤ getParmType(U, n)) 
      ∨  !( parmAssigns(this, U, n) ⊆a assigns(T, m) ) 
      ∨  (∀ g ∈ setOfFieldsIn(S) :  p.g ∉a assigns(T, m) )

noOverriddenMethods(S, T) =  
       (∀ m ∈ setOfMethodsIn(T) :  ! isOverridden(S, m) )

Figure 5.5:  Helper functions used indirectly in the T-Rules by functions in Figure 5.4.
__________________________________________________________________________
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assignment to fields of objects other than the receiver is not allowed. That is, our technique does not
allow the state of an object, other than the receiver, to be changed except through an object-call; this is
enforced by the restricted syntax of the assignment statement in Java-C3. 

However, based on the Owner Variable Rule from Chapter 3 (subsection 3.5.1), our technique
must also restrict object-calls. That is, an object-call that assigns to fields of its receiver must not be
allowed unless the receiver expression is an owner variable. For example, if x.m() modifies the state
of object x, then x must be an owner variable. Similarly, if a method modifies the state of the object
referenced by a formal parameter, then the corresponding actual parameter must be an owner4. For

3. JML does not have this syntactic restriction so violations would be flagged by the JML type checker.

__________________________________________________________________________

isField( e ) =  (∃ f ∈ VarId :  e ≡ this.f )

vr ∈a A  =  ( vr ∈ A
                    ∨  (∃ pre.g ∈ A :  vr ∈a datagroupOf(pre, typeOf(pre), g)) ) 

datagroupOf(pre, T, g) = 
           { pre.f  |  f ∈ allFieldsIn(T)  ∧  g ∈ inOf(lookupField(T, f)) } 
      ∪  { pre.f.x |  f ∈ allFieldsIn(T)  ∧  (f.x, g) ∈ mapsOf(lookupField(T, f)) } 

A ⊆a B =  (∀ vr ∈a A :  vr ∈a B )

allFieldsIn(T) =  { f  |  T ≤ U  ∧  f ∈ setOfFieldsIn(U) }

setOfFieldsIn(T) =  { f  |  fieldsOf(TEnv(T)) (f) ≠ undef  } 

pivotFieldsIn(T) =  { this.f  |  f ∈ allFieldsIn(T)
                                               ∧  mapsOf( fieldsOf(TEnv(U)) (f) ) ≠ { } } 

allMethodsIn(T) =  { U.m  |  m ∈ MethId  ∧  lookupMethod(T, m) ≠ undef  
                                            ∧  U = whereMethodDecl(T, m) } 

setOfMethodsIn(T) =  { m  |  methodsOf(TEnv(T)) (m) ≠ undef  } 

Figure 5.6:  Additional helper functions used in the T-Rules.
__________________________________________________________________________
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example, if this.m(y) modifies the state of object y, then y must be an owner variable. These
restrictions on method calls enforce the Owner Variable Rule given in Chapter 3. 

The Owner Variable Rule of subsection 3.5.1 is formalized by the T-Call, T-SupCall, and T-
SupConstr rules of Figure 5.1 and the T-NewAssign rule of Figure 5.2. All of these rules make sure
that the actual parameter is an owner variable whenever the method modifies the corresponding
argument object; this is formalized through the predicate invariantOK (Figure 5.4) that appears in the
antecedents of these rules. This predicate requires that each actual parameter (e.g., e0 and e) be an
owner variable (isOwner) unless it is not a reference type. 

Furthermore, assignments to fields of a formal parameter object p must be done through an object-
call, and p must be the receiver in that call. Therefore, a formal parameter p must be an owner
whenever the method specification allows the object referenced by p to be modified; this is necessary
because, otherwise, the specified side-effects would not be allowed by our technique. Furthermore, in
our technique, this ownership property of variables is not transferable except to a parameter in a
method call. For example, if x is an owner variable, then assigning x to v will not make v an owner
variable; in fact v would not be an owner based on the T-ExpAssign rule (Figure 5.2). 

In our technique, ownership is transferred temporarily from the actual parameters to the formal
parameters during a method call. As described above, when a formal parameter needs to be an owner,
the corresponding actual parameter must also be an owner variable. Therefore, the formal parameter
becomes an owner during execution of a method and, as required for soundness, the changes made to
the corresponding argument object are initiated indirectly through an owner variable. Ensuring that the
actual parameters are owners when necessary is formalized in these rules through the predicate
invariantOK of Figure 5.4 and indirectly through predicate isOwner of Figure 5.4. 

Note, however, that the T-rules, with predicate invariantOK as an antecedent, are more restrictive
than the Owner Variable Rule given in Chapter 3. That is, these T-rules require that all actual
parameters be owner variables when they are a reference type, whereas in Chapter 3, this was only
required when the called method had permission to change the state of the corresponding argument
object. The reason for the more restrictive T-rules is because the only objects that are guaranteed not to
have a invalidated type invariant are those referenced by owner variables. On the other hand, if the
verifier can prove that the type invariant holds for an object referenced by a non-owner variable
(variables containing a read-only reference), then it is safe to pass that object as a parameter as long as
the called method does not change the state of that argument object. 

4. In Java, a new object constructor call would also be a valid actual parameter; this case is not included 
in our formalization here even though it is part of the Owner Variable Rule of Chapter 3 because the 
Java-C syntax of expressions and assignment statements (Figure 4.5) requires that all objects be ref-
erenced by a variable, i.e., new object constructor calls can only occur in an assignment statement. 
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5.1.2.4 Formalizing the Actual Parameter Aliasing Rule
Only assignments to fields of the receiver, pivot objects, and objects referenced by a formal

parameter have to be specified in the assignable clause since the other owners will be temporary
owners that reference a newly created object (see subsections 5.1.2.1 and 5.1.7). However, in general,
a formal parameter can be an alias of a pivot field (or the receiver this) during a self-call; this is a
potential concern when the state of the aliased object is changed through one of these owner variables
and accessed through the other. Therefore, when there are side-effects, our technique, through the
Actual Parameter Aliasing Rule of subsection 3.5.3, does not allow more than one variable, visible in
the same context, to own the same object during a method call. This rule is formalized through the
aliasingOk predicate that appears as an antecedent in the T-Call, T-SupCall, and T-SupConstr rules of
Figure 5.1. The aliasingOk predicate prevents a formal parameter from being an alias of the receiver or
of a pivot field of the receiver when there are side-effects. 

Also, an internal object can only be a non-pivot if none of the methods of the enclosing object
access the state of that object. Thus aliasing of non-pivot objects does not cause problems since the
state is not accessed. Furthermore, two pivot fields cannot be aliases of the same object. Thus
assignments can be specified and checked precisely and modularly since the only side-effects allowed
by our technique (other than to newly created objects) are assignments to fields of the receiver, fields
of a pivot object, or fields of a formal parameter; also, these are the only assignments that have to be
specified in the assignable clause. 

5.1.3  Formalizing the Invalidation Rules

As mentioned previously, our technique has to invalidate super-calls that have unverifiable side-
effects or may no longer satisfy their specification. This is done through the predicate okToSuperCall
of Figure 5.4; this predicate is an antecedent in the T-SupCall rule of Figure 5.1 to ensure that the
Additional Side-Effects and Invariant Invalidation Rules are not violated. If the superclass method has
not been invalidated, then the call is allowed. 

In the predicate okToSuperCall, parameter S denotes the subtype and T denotes the supertype. The
predicate okToSuperCall makes sure that a super-call is to a method that has not been invalidated by
the new subclass. The predicate validInvariant of Figure 5.5 specifies that a method can only be super-
called if the superclass method has not been invalidated by the Invariant Invalidation Rule of Chapter
2. Similarly, the predicate validCalls of Figure 5.5 allows the super-call if the method has not been
invalidated by the Additional Side-Effects Invalidation Rule of Chapter 2. 

Specifically, predicate validInvariant of Figure 5.5 says that a super-call is invalid if it is allowed
to modify a field that is constrained by a subclass invariant. This predicate formalizes the Invariant
Invalidation Rule by making sure the super-call does not invalidate any of the subclass parts of the
type invariant (as explained in subsection 2.4.1). 
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Predicate validCalls of Figure 5.5 says that a super-call is invalid in the context of a new subclass
if it makes a downcall to a method that assigns to subclass fields. This predicate formalizes the
Additional Side-Effects Invalidation Rule by making sure the super-call does not have unverifiable
side-effects (as explained in subsection 2.2.3). 

The T-SupConstr rule is similar except that a superclass constructor is not allowed to make
downcalls, i.e., the predicate noDownCalls appears in the antecedent of this rule. Disallowing all
downcalls is more conservative than the rule given in Chapter 2, i.e., the Constructor Initialization
Invalidation Rule (subsection 2.4.5) only invalidates the superclass constructor if it makes a downcall
that accesses a subclass field (or a superclass field that is not accessed by the overridden method).
However, the Constructor Initialization Invalidation Rule would need to use the accessible clause,
and we are leaving the semantics and use of the accessible clause as future work (see subsection
4.1.2.2). 

In summary, the okToSuperCall and noDownCalls predicates are used in the T-SupCall and T-
SupConstr rules to ensure that the invalidation rules from Chapter 2 are not violated. Predicate
okToSuperCall uses validInvariant and validCalls to ensure that the Invariant and Additional Side-
Effects Invalidation Rules are not violated. Predicate noDownCalls ensures that these invalidation
rules and the Constructor Initialization Invalidation Rule are not violated by superclass constructor
calls. 

5.1.3.1 Handling aliasing of the receiver in this-argument calls
The predicate validCalls (Figure 5.5) has to identify all downcalls with additional side-effects in

order to prevent them. The second conjunct of validCalls invokes predicate validObjectCalls and is
necessary because our technique allows dynamic aliasing through formal parameters. For example, in
a this-argument call, a formal parameter of the called method could be an alias of the current receiver.
Therefore, an object-call on that formal parameter in the called method would be a call on the current
receiver (and would have the same effect as a self-call, i.e., could be a downcall). However, since we
are only interested in downcalls that assign to subclass fields, it is only necessary that side-effects to
fields of that formal parameter be checked; this is formalized in the predicate noParmAddSideEffects.
Predicate noParmAddSideEffects does not allow the super-call if a subclass field could be changed by
an object-call with a formal parameter that could be an alias of the current receiver. 

The receiver is nonspecific when we list object-calls in the callable clause, i.e., the actual
parameters are not specified to keep the specification more abstract; thus we have to assume that the
formal parameter is an alias of the receiver whenever that is a possibility. However, the formal
parameter will not always be an alias of the current receiver; nonetheless, this check is necessary in
case the object-call is a this-argument call and so the check can be done modularly (i.e., without
checking the whole program). However, if the verifier can prove that the receiver is not aliased in the
context of the called method, then these possible downcalls can be disregarded5. Nonetheless, without
superclass code, we have to assume that the receiver could be aliased and that there could be downcalls
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that assign to subclass fields when that is a possibility. For the same reason, a similar conjunct to check
object-calls is also needed in predicate noDownCalls of Figure 5.4, i.e., the second conjunct. 

It is unclear, in practice, how often object-calls will be mistakenly considered this-argument calls
by our checking rules. However, noParmAddSideEffects of Figure 5.5 also checks, in the third
disjunct, whether the assignments to fields of the formal parameter would be permitted if the object-
call were a this-argument call. That is, the object-call is only considered if the side-effects to the
formal parameter are allowed when this is the corresponding actual parameter (as would be checked
in the T-Call rule of Figure 5.1, i.e., the last disjunct of function noParmAddSideEffects). 

5.1.4  Formalizing the Predicate Clause Access Rule

If a field this.f is the receiver in an object-call, then the specification for the method making that
object-call may have to access the state of object this.f. However, since concrete fields are not in
scope in public specifications, the method’s behavior would have to be specified in predicate clauses
(e.g., requires or ensures clauses) that indirectly access, through a model field, the state of object
this.f. The Predicate Clause Access Rule says that such objects have to be pivots because the
method’s behavior depends on the state of that object. 

We assume, in our formalization, that the state of an object is accessed anytime this.f is an
actual parameter in a method call, i.e., this.f must be a pivot field if it is an actual parameter in a
method call. Therefore, the Predicate Clause Access Rule is formalized by the invariantOk predicate
(see also subsection 5.1.8.2) by requiring that all actual parameters be owner variables; thus, in this
case, fields that are actual parameters must be pivot fields. 

5.1.5  Callback Cycles

Our type system will not consider or formalize the rules involving callback cycles, i.e., the
Callback Cycle Overriding and Callback Cycle Invalidation Rules of Section 2.5; this is because our
verification logic is a partial correctness rather than the total correctness logic. The purpose of these
two rules is to make sure that the code for all methods involved in a correctness proof are available,
i.e., all methods involved in a callback cycle have to be available and thus no callback cycle can
involve both superclass and subclass methods. 

In addition, checking these two callback cycle rules requires that all methods directly or indirectly
called be listed in the callable clause, i.e., the transitive closure of the calling relation between
methods would have to be computed and considered in a checking rule. In contrast, the rest of our rules
only need to know the methods directly called and only those that could result in a call on the current
receiver. Furthermore, unlike the rest of the rules, the checking of the callback cycle rules cannot be

5. Since object-calls on newly created objects cannot be self-calls, they can be ignored by our formal 
system. Therefore, the semantics of the callable clause only requires that calls on objects existing in 
the pre-state be listed or checked (see subsection 5.1.7). 
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done using only the protected code contract because of visibility restrictions. We leave the checking of
these rules and a total correctness verification logic as future work. 

5.1.6  Unoverrideable Methods

For simplicity, we also leave the handling of unoverrideable methods as future work. In particular,
the Java-C syntax (Figure 4.5) and our assumptions (subsection 1.6.6) do not allow static, private, or
final methods. However, we believe that our technique can be extended to include these
unoverrideable methods.

For example, our technique is primarily concerned with self-calls and super-calls that (may) make
downcalls. Since static and private methods are unoverrideable, calls to these methods do not have to
be specified in the callable clause as long as the calls made indirectly through these methods are listed
in the callable clause (as described in subsection 2.6.4). 

We are also concerned with object-calls on fields because such fields have to be pivots based on
the Predicate Clause Access Rule (subsection 5.1.4). However, our technique does not allow
unoverrideable methods with side-effects to be invoked in object-calls (see subsection 2.4.3) and static
methods do not have a receiver; thus calls of static methods, private methods, and final methods with
side-effects would not have to be considered when checking the Predicate Clause Access Rule. Only
object-calls on final methods without side-effects would be allowed or have to be considered (i.e.,
specified in the callable clause). 

In summary, our technique would not require that static or private methods be listed in the
callable clause, as long as the non-private instance methods indirectly called are listed. Also, final
methods without side-effects would have to be listed in the callable clause for use when checking the
Predicate Clause Access Rule. 

5.1.7  Checking Assignable and Callable Clauses

The T-rules given in Figures 5.1 - 5.3 also specify how the method body is checked to make sure it
satisfies its assignable and callable clauses. Figure 5.1 defines the T-rules for checking method calls,
Figure 5.2 contains the T-rules for checking assignment statements, and Figure 5.3 defines the T-rules
that do not involve assignments or method calls. 

In all of the T-rules, the U denotes the static type of the receiver and n denotes the method name
where the statement being checked occurs. The functions assigns and calls of Figure 4.11 are used to
extract the sets of assignable fields and callable methods from the assignable and callable clauses.
For example, when checking method n declared in type U, the set of assignable fields is retrieved using
the function assigns(U, n); similarly, the set of callable methods is retrieved using function calls(U, n).
Also, when checking method call statements, the assigns function is used in the T-rules for extracting
the assignable field sets from the specification of the called method; the T-Call rule of Figure 5.1 is an
example. 
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The checking specified in the T-rules does not consider the preconditions of specification cases;
thus, to be sound, these rules only allow assignments that are common to all specification cases, e.g.,
the assigns function of Figure 4.11 takes the intersection of the assignable sets from each method
declaration in the inheritance hierarchy. 

The main idea of our checking rules is that the fields assigned and methods called must be
permitted by the assignable and callable clauses of the method specification, i.e., they must be
allowed by sets assigns(U, n) and calls(U, n). The checking of the assignable clauses is done using
the auxiliary functions selfAssigns and parmAssigns of Figure 5.4. The functions selfAssigns and
parmAssigns of Figure 5.4 create specific subsets of the set of all assignable fields; that is, selfAssigns
creates the subset containing the assignable fields of the receiver and parmAssigns creates the subset of
assignable fields for the formal parameter p; these functions also substitute the actual parameter for the
formal parameter in these sets of fields, i.e., rcvr is substituted for this and arg for p. The T-rules of
Figures 5.1 and 5.2 use selfAssigns and parmAssigns when checking whether the calling method is
allowed to make the assignments made by the called method or constructor. 

The assignable clause specifies the assignments allowed to variables that existed in the pre-state.
That is, assignments to variables that did not exist in the pre-state are allowed and do not have to be
checked. For example, the semantics of the assignable clause does not restrict assignments to local
variables because local variables did not exist in the pre-state. Therefore, assignments to fields of an
object that did not exist in the pre-state are also allowed and do not have to be included in the
specification; this is formalized by the conditions e0∈O and e∈O in the T-Call, T-SupCall, T-
SupConstr, and T-New rules of Figures 5.1 and 5.2. For example, in the T-Call rule, if the receiver is a
newly created object, then all assignments to fields of that object are not checked (recall that O is the
set of temporary owner variables that reference newly created objects). Similarly, assignments to fields
of a formal parameter are not restricted if the corresponding actual parameter is a newly created object;
this is formalized by the condition e∈O in the antecedents of these rules. Therefore, assignments to
fields of new objects are not included in the assignable field sets; hence, these subsets do not have to
be checked when the corresponding actual parameter is a newly created object, i.e., when e is a
member of O.

Figure 5.2 defines the T-rules for checking assignment statements. These rules must make sure the
target variable is assignable when it is a field of the receiver (e.g., this.f). As described above,
assignments to local variables or parameters can be ignored since they did not exist in the pre-state;
this is formalized in the disjunct involving expressions isField(vr) and vr∈aassigns(U, n), i.e., if the
target is a field, then that field must be assignable. Notice that this disjunct appears as an antecedent in
each of the rules of Figure 5.2. Also, the self-assignments are not included in the rule for new object
constructor calls (T-NewAssign) because these assignments would be to fields of a newly created
object. 
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The T-Call rule of Figure 5.1 determines whether or not a call is allowed; this rule uses the
function subst of Figure 5.4 in the textual substitution of the receiver parameter when checking
whether the call is a member of the callable methods. In particular, subst substitutes the actual
parameter when it is this, otherwise it substitutes the type of the actual parameter. Thus when the
actual parameter is a field or local variable, the receiver is replaced by the type; as described above,
this indicates an object-call on some variable other than the receiver. Notice that we require all direct
method calls be listed in the callable clause but we do not check indirect calls. 

5.1.8  Checking the Consistency of Class Specifications 

In this subsection, we formalize a few of the rules that do not involve the checking of method
statements. For example, we formalize the rules used for checking that the class definition and
specification are well-formed. The functions defined in Figure 5.7 are applied to each class declaration
in the hierarchy. 

5.1.8.1 Formalizing the overriding rules
The predicate requiredOverrides of Figure 5.7 requires that a method declared in the superclass be

overridden if it is allowed to modify a subclass field, i.e., if it could have additional side-effects. This
predicate formalizes the Additional Side-Effects Overriding Rule (subsection 2.2.2). 

Predicate requiredOverrides is also used to formalize the Invariant Overriding Rule (subsection
2.4.2), i.e., it requires an override to prevent unoverridden superclass methods from being invoked
when they could invalidate a subclass invariant. Note that this predicate is necessary because a self-call
to an unoverridden superclass method can have the same kinds of downcall problems as super-calls;
thus our technique has to use overrides to prevent these methods from being invoked. 

5.1.8.2 Formalizing the Pivot Declaration Rule
The Pivot Declaration Rule requires that an object be a pivot if its state is accessed by the right

hand side of a represents clause. This rule is satisfied when the dependency relationships between
concrete fields and model fields are properly specified in data group clauses. Predicate validRepresents
requires that every model field of a type have an admissible representation, i.e., have data group
clauses that reflect the relationships specified in the represents clause. An admissible representation
is one in which every field accessed by the right side of a model field’s represents clause is a member
of that model field’s data group; predicate admissibleRep enforces this requirement. The function
accessed was defined in Chapter 3, Figure 3.6. 

5.1.8.3 Formalizing the Assignable Data Group Rule
The predicate validAssignable checks that all model fields are listed in an assignable clause

whenever any of the concrete members of its data group are assignable. This is necessary because data
groups may overlap, i.e., two model fields may depend on the same concrete field. Therefore, the
specifier could, in error, list only one of the model fields even though both model fields could change.
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This predicate ensures that whenever a concrete field is assignable, all model fields that depend on that
concrete field are listed in an assignable clause, i.e., predicate validAssignable ensures that the
Assignable Data Group Rule (subsection 3.4.3) is satisfied. 

__________________________________________________________________________

requiredOverrides(T) = 
           (∀ U.n ∈ allMethodsIn(superOf(T)) : 
                isOverridden(T, n) 
                ∨   ( noAddSideEffects(T, U, n)  ∧  validInvariant(T, U, n) ) )

validRepresents(T) =  
           (∀ g ∈ setOfFieldsIn(T) : 
                !isModelField(lookupField(T, g))  ∨  admissibleRep(T, g) )

validAssignable(T) =  
      (∀ m ∈ setOfMethodsIn(T), g ∈ allFieldsIn(T) : 
           (∀ vr ∈a assigns(T, m) : 
                vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) ) 

validMethodSpecs(T) = 
     (∀ m ∈ setOfMethodsIn(T) : 
          (∀  pre.id ∈ assigns(T, m) :  validStoreRef( pre.id ) ))

validStoreRef( pre.id ) =  
    ( pre ≡ this  ∨  pre ≡ p )  ∧  isModelField(lookupField(typeOf(pre), id) 

isOverridden(T, m) =  methodsOf(TEnv(T)) (m) ≠ undef  

admissibleRep(T, g) =  
       (∀ this.f ∈ accessed(repOf(lookupField(T, g)) : 
             g ∈ inOf(lookupField(T, f)) )
   ∧  (∀ this.f.x ∈ accessed(repOf(lookupField(T, g)) : 
             (f.x, g) ∈ mapsOf(lookupField(T, f)) )

Figure 5.7:  Functions used to check that the specifications are well-formed and consistent. Function accessed 
was defined in Figure 3.6.
__________________________________________________________________________
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5.1.8.4 Formalizing the Assignable Clause Rule
Note also that the JML-C syntax (Figure 4.6) only allows store references if they have a specific

form, e.g., this.g or p.g. Furthermore, in a public assignable clause, the prefix variable has to be
a parameter (i.e., this or p) since fields and other local variables are not in scope in a public
specification. Also, the suffix has to be a model field since the concrete fields of an object are not in
scope in the public specification. The predicate validStoreRef formalizes this property of public
assignable clauses and ensures that the Assignable Clause Rule (subsection 3.3.5) is not violated, i.e.,
fields of model fields cannot be listed in the assignable clause. 

5.2  Soundness
A deductive system is sound if its axioms are always true and every derivable assertion is true.

Thus, to be of any practical value, a deductive system must be sound and the soundness must be
determined in relation to the intended semantics. For example, a deductive system for proving
properties of programs must be sound with respect to the semantics of the programming language. This
section presents a proof of the soundness of our programming logic, given in Figures 4.20 through
4.23, with respect to the operational semantics of Figures 4.16 through 4.19. The soundness of our
programming logic also proves that our technique for controlling aliasing and verifying subclass
methods without superclass code is also sound since our verification logic depends on the rules given
in Chapters 2 and 3 and it uses only the superclass and subclass specifications to verify the correctness
of subclass code. 

We begin in subsection 5.2.1 by proving some properties needed for behavioral subtyping, i.e.,
relationships between superclass and subclass specifications. Subsection 5.2.2 proves some properties
of our model of the program state and the relationship between variable assignment and expression
substitution. In subsection 5.2.3, we prove the Valid Invariant Theorem; this theorem proves that, in
our technique, a superclass method can establish the run-time type invariant of the receiver by
establishing the invariant of the static type of the receiver. Subsection 5.2.4 proves the soundness of
our alias control technique, i.e., that no pair of owner variables can reference (be aliases of) the same
object. In subsection 5.2.5, we prove that super-calls, in our technique, do not have additional side-
effects, i.e., do not modify subclass fields. Subsection 5.2.6 proves that our axioms are valid and that
our inference rules preserve validity. 

5.2.1  Relationships Between Superclass and Subclass Specifications

In this subsection, we show that the relationships between superclass and subclass specifications
have been formalized so that subclasses have to be behavioral subtypes of their superclasses. In
particular, subclasses inherit and therefore must satisfy the combined superclass and subclass
specifications. These lemmas will be used in the proof that our verification logic is sound, i.e., they
will be used in various parts of the proofs given in the subsections that follow. 

Lemma 5.1 (Invariant Clause): Let T1, T ∈ TypeId. 
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If T1 ≤ T,  then  inv(T1) ⇒ inv(T) 
Proof:
The proof is by induction on the number of superclasses of T1 in the class hierarchy between T1

and T. 
Basis: k = 0, i.e., T1 = T. 
      inv(T1)
⇒ <  T1 = T  >
      inv(T) 
Induction Step: Let k = N and T1, T2, ..., Tk, T ∈ TypeId. 
The induction hypothesis asserts that 

If  k < N  ∧ T1 < T2 ... < Tk < T, 
then  inv(T1) ⇒ inv(T). 

      inv(T1)
⇒ <  by the induction hypothesis,  inv(T1) ⇒ inv(Tk)  >
      inv(Tk)
⇒ <  definition of inv of Figure 4.11  >
      invOf(Tk)  &&  inv(superOf(Tk))
⇒ <  superOf(Tk) = T from the definition of superOf in Figure 4.9  >
      invOf(T1)  &&  inv(T)
⇒ <  logic  >
      inv(T) 

Lemma 5.2 (Requires Clause): Let T1, T ∈ TypeId. 

If T1 ≤ T ∧  methodsOf(TEnv(T1)) (m) ≠ undef ∧ methodsOf(TEnv(T)) (m) ≠ undef, 
then  req(T, m) ⇒ req(T1, m) 
Proof:
The proof is by induction on the number of superclasses of T1 in the class hierarchy between T1

and T that also contain a declaration of m. 
Basis: k = 0, i.e., T = T1. 
      req(T, m)
⇒ <  T1 = T  >
      req(T1, m) 
Induction Step: Let k = N and T1, T2, ..., Tk, T ∈ TypeId. 
The induction hypothesis asserts that 

If  k < N  ∧ T1 < T2 ... < Tk < T 
    ∧ methodsOf(TEnv(tid)) (m) ≠ undef for  tid=T1, T2, ..., Tk, T, 
then  req(T, m) ⇒ req(T1). 
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      req(T1, m)
⇐ <  by the induction hypothesis  >
      req(Tk, m) 
⇔ <  definition of req of Figure 4.11  >
      reqOf(lookupMethod(Tk, m))  ||  req(superOf(Tk), m)
⇔ <   superOf(... superOf(Tk)...) = T from the definition of superOf in Figure 4.9 and 
          req in Figure 4.11 and from the premise of the lemma, i.e., that m is declared in T  >
      reqOf(Tk, m)  ||  req(T, m)
⇐ <  logic  >
      req(T, m) 

Lemma 5.3 (Ensures Clause): Let T1, T ∈ TypeId. 

If T1 ≤ T ∧  methodsOf(TEnv(T1)) (m) ≠ undef ∧ methodsOf(TEnv(T)) (m) ≠ undef, 
then  ens(T1, m) ⇒ ens(T, m) 
Proof:
The proof is by induction on the number of superclasses of T1 in the class hierarchy between T1

and T that also contain a declaration of m. 
Basis: k = 0, i.e., T1 = T. 
      ens(T1, m)
⇒ <  T1 = T  >
      ens(T, m) 
Induction Step: Let k = N and T1, T2, ..., Tk, T ∈ TypeId. 
The induction hypothesis asserts that 

If  k < N  ∧ T1 < T2 ... < Tk < T 
    ∧ methodsOf(TEnv(tid)) (m) ≠ undef for  tid=T1, T2, ..., Tk, T, 
then  ens(T1, m) ⇒ ens(T, m). 

      ens(T1, m)
⇒ <  by the induction hypothesis,  ens(T1, m) ⇒ ens(Tk, m)  >
      ens(Tk, m)
⇒ <  definition of ens of Figure 4.11  >
      postCond(lookupMethod(Tk, m))  &&  ens(superOf(Tk), m)
⇒ <  logic  >
      ens(superOf(Tk), m)
⇒ <   superOf(... superOf(Tk)...) = T from the definition of superOf in Figure 4.9 and 
          ens in Figure 4.11 and from the premise of this lemma, i.e., that m is declared in T  >
      ens(T, m) 
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Lemma 5.4 (Assignable Clause): Let T1, T ∈ TypeId. 

If  T1 ≤ T ∧  methodsOf(TEnv(T1)) (m) ≠ undef ∧ methodsOf(TEnv(T)) (m) ≠ undef, 
then  assigns(T1, m) ⊆ assigns(T, m) 
Proof:
The proof is by induction on the number of superclasses of T1 in the class hierarchy between T1

and T that also contain a declaration of m. 
Basis: k = 0, i.e., T1 = T. 
      assigns(T, m) ⊆ assigns(T, m)
⇒ <  T1 = T  >
      assigns(T1, m) ⊆ assigns(T, m)
Induction Step: Let k = N. 
The induction hypothesis asserts that 

if  k < N  ∧  T1 < T2 ... < Tk < T 
    ∧ methodsOf(TEnv(tid)) (m) ≠ undef for  tid=T1, T2, ..., Tk, T, 
then  assigns(T1, m)) ⊆ assigns(T, m)). 

We start calculating from the induction hypothesis.
      assigns(T1, m) ⊆ assigns(Tk, m)
⇒ <  definition of assigns(Tk, m) of Figure 5.4  >
      assigns(T1, m) ⊆ assigns(Tk, m)
      ∧  assigns(Tk, m) = assignsOf(lookupMethod(Tk, m)) ∩ assigns(superOf(Tk), m)
⇒ <  definition of set containment and intersection  >
      assigns(T1, m) ⊆ assigns(Tk, m) ∧  assigns(Tk, m) ⊆ assigns(superOf(Tk), m)
⇔ <   superOf(... superOf(Tk)...) = T from the definition of superOf in Figure 4.9 and 
          assigns in Figure 4.11 and from the premise of the lemma, i.e., that m is declared in T  >
      assigns(T1, m) ⊆ assigns(Tk, m) ∧  assigns(Tk, m) ⊆ assigns(T, m)
⇒ <  transitivity of set containment  >
      assigns(T1, m) ⊆ assigns(T, m)

Lemma 5.5 (Method Overriding):  Let T1, T ∈ TypeId be classes allowed by our technique. 

If  T1 < T  ∧  T.m ∈ allMethodsIn(superOf(T1))  ∧  ! isOverridden(T1, m) 
then   noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m)  
Proof:
      T1 < T  ∧  T.m ∈ allMethodsIn(superOf(T1))  ∧  ! isOverridden(T1, m) 
⇒ <  since class T1 is allowed by our rules, T1 must satisfy requiredOverrides of Figure 5.7  >
      requiredOverrides(T1)  ∧  T.m ∈ allMethodsIn(superOf(T1))  ∧  ! isOverridden(T1, m) 
⇒ <  definition of requiredOverrides in Figure 5.7  >
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      (∀ U.n ∈ allMethodsIn(superOf(T1)) :  isOverridden(T1, n) 
            ∨  ( noAddSideEffects(T1, U, n)  ∧  validInvariant(T1, U, n) ) )
      ∧  T.m ∈ allMethodsIn(superOf(T1))  ∧  ! isOverridden(T1, m) 
⇒ <  since T.m ∈ allMethodsIn(superOf(T1))  >
      ( isOverridden(T1, m) 
         ∨  ( noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) ) )
      ∧  ! isOverridden(T1, m) 
⇒ <  logic  >
      noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) 

5.2.2  Properties of the Program State

The lemmas in this subsection prove properties relating to expression evaluation, locations, and
updating the program state; these lemmas will be used to simplify the validity proofs, given in
subsection 5.2.6, for the axioms and inference rules of our verification logic. We also need to define
the operator ≡ that will be used in the proofs given in this and later sections. The notation rcvr ≡ e
means that rcvr and e are textually the same expressions; thus !(rcvr ≡ e) means rcvr and e are
textually distinct expressions. 

5.2.2.1 State Update Lemma
Our first lemma proves two properties about the program state after a location has been updated

with a new value. 

Lemma 5.6 (State Update): Let loc1, loc2 ∈ Locations, v ∈ Value, and S ∈ State. 

If loc1 ≠ loc2, then 
1.  getValue(S[loc1 := v], loc1) = v
2.  getValue(S[loc1 := v], loc2) = getValue(S, loc2)

Proof:
Part 1:
Case 1: Suppose loc1 is a local variable, i.e., loc1 = loc(x, local)
      getValue(S[loc(x, local) := v], loc(x, local))
⇔  < update the stack by defn. of S[L := V] Figure 4.15 since objRef(loc(x, local)) = local >
     getValue(state(stackOf(S)[loc(x, local) := v], heapOf(S)), loc(x, local))
⇔  < lookup in the stack by defn. of getValue Figure 4.15 since 
         objRef(loc(x, local)) = local >
     stackOf(state(stackOf(S)[loc(x, local) := v], heapOf(S))) (loc(x, local))
⇔  < definition of stackOf in Figure 4.15 >
     stackOf(S)[loc(x, local) := v] (loc(x, local))
⇔  < definition of OS[L := V] in Figure 4.15 >
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     ( λ loc .  if loc=loc(x, local) then v else stackOf(S)(loc) ) (loc(x, local))
⇔ < function application >
     v
Case 2: Suppose loc1 is a heap variable, i.e., loc1 = loc(x, r) with r ≠ local
      getValue(S[loc(x, r) := v], loc(x, r))
⇔  < update the heap by defn. of S[L := V] Figure 4.15 since objRef(loc(x, r)) = r ≠ local >
      getValue(state(stackOf(S), heapOf(S)[loc(x, r) := v]), loc(x, r))
⇔  < lookup in the heap by defn. of getValue Figure 4.15 since objRef(loc(x, r)) = r ≠ local >
      heapOf(state(stackOf(S), heapOf(S)[loc(x, r) := v])) (loc(x, r)
⇔  < definition of heapOf in Figure 4.15 >
      heapOf(S)[loc(x, r) := v] (loc(x, r))
⇔  < definition of OS[L := V] in Figure 4.15 >
      ( λ loc .  if loc=loc(x, r) then v else heapOf(S)(loc) ) (loc(x, r))
⇔ < function application >
      v

Part 2:
Case 1: loc1 = loc(x, local) ∧ loc2 = loc(y, local), x ≠ y 
      getValue(S[loc(x, local) := v], loc(y, local))
⇔  < update the stack by defn. of S[L := V] Figure 4.15 since objRef(loc(x, local)) = local >
      getValue(state(stackOf(S)[loc(x, local) := v], heapOf(S)), loc(y, local))
⇔  < lookup in the stack by defn. of getValue Figure 4.15 since 
         objRef(loc(y, local)) = local >
      stackOf(state(stackOf(S)[loc(x, local) := v], heapOf(S))) (loc(y, local))
⇔  < definition of stackOf in Figure 4.15 >
      stackOf(S)[loc(x, local) := v] (loc(y, local))
⇔  < definition of OS[L := V] in Figure 4.15 >
      ( λ loc .  if loc=loc(x, local) then v else stackOf(S)(loc) ) (loc(y, local))
⇔ < function application and x ≠ y ⇒ loc1 ≠ loc2 >
      stackOf(S) (loc(y, local))
⇔  < definition of getValue in Figure 4.15 and objRef(loc(y, local)) = local >
      getValue(S, loc(y, local))
Case 2: loc1 = loc(x, local), loc2 = loc(y, r), r ≠ local 
       getValue(S[loc(x, local) := v], loc(y, r))
⇔  < update the stack by defn. of S[L := V] Figure 4.15 since objRef(loc(x, local)) = local >
       getValue(state(stackOf(S)[loc(x, local) := v], heapOf(S)), loc(y, r))
⇔  < lookup in the heap by defn. of getValue Figure 4.15 since objRef(loc(y, r)) = r ≠ local >
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       heapOf(state(stackOf(S)[loc(x, local) := v], heapOf(S))) (loc(y, r))
⇔  < definition of heapOf in Figure 4.15 >
       heapOf(S) (loc(y, r))
⇔  < definition of getValue in Figure 4.15 and objRef(loc(y, r)) = r ≠ local >
       getValue(S, loc(y, r))
Case 3: loc1 = loc(x, r), loc2 = loc(y, local), r ≠ local 
      getValue(S[loc(x, r) := v], loc(y, local))
⇔  < update the heap by defn. of S[L := V] Figure 4.15 since objRef(loc(x, r)) = r ≠ local >
      getValue(state(stackOf(S), heapOf(S)[loc(x, r) := v]), loc(y, local))
⇔  < lookup in the stack by defn. of getValue Figure 4.15 since 
         objRef(loc(y, local)) = local >
      stackOf(state(stackOf(S), heapOf(S)[loc(x, r) := v])) (loc(y, local)
⇔  < definition of stackOf in Figure 4.15 >
      stackOf(S) (loc(y, local))
⇔  < definition of getValue in Figure 4.15 and objRef(loc(y, local)) = local >
      getValue(S, loc(y, local))
Case 4: loc1 = loc(x, r1), loc2 = loc(y, r2), (r1 ≠ r2  ∨  x ≠ y)  ∧  r1 ≠ local  ∧  r2 ≠ local 
      getValue(S[loc(x, r1) := v], loc(y, r2))
⇔  < update the heap by defn. of S[L := V] Figure 4.15 since objRef(loc(x, r1)) = r1 ≠ local >
      getValue(state(stackOf(S), heapOf(S)[loc(x, r1) := v]), loc(y, r2))
⇔  < lookup in the heap by defn. of getValue Figure 4.15 since objRef(loc(y, r2)) = r2 ≠ local >
      heapOf(state(stackOf(S), heapOf(S)[loc(x, r1) := v])) (loc(y, r2)
⇔  < definition of heapOf in Figure 4.15 >
      heapOf(S)[loc(x, r1) := v] (loc(y, r2))
⇔  < definition of OS[L := V] in Figure 4.15 >
      ( λ loc .  if loc=loc(x, r1) then v else heapOf(S)(loc) ) (loc(y, r2))
⇔ < function application and (r1 ≠ r2  ∨  x ≠ y) ⇔ loc1 ≠ loc2 >
      heapOf(S) (loc(y, r2))
⇔  < definition of getValue in Figure 4.15 and objRef(loc(y, r2)) = r2 ≠ local >
      getValue(S, loc(y, r2))

5.2.2.2 Variable references and locations
The next lemma says that if two variable references are textually different, then they denote

different locations in the program state. Note, however, that this would not necessarily be true if our
technique allowed direct assignment or access to fields of objects other than the receiver (see
assumptions subsection 1.6.6). To ensure this property, the grammar of Java-C only allows assignment
to local (stack) variables or fields of the receiver. Furthermore, for simplicity, we also assume that
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variable names are not redefined in subclasses, i.e., super.x is not needed or in the grammar of Java-
C. 

Lemma 5.7 (Variable Reference): 

If  !(vr ≡ vr2)  ∧  ([vr, S] ⇒lv vLoc)  ∧  ([vr2, S] ⇒lv v2Loc), 
then  vLoc ≠ v2Loc.

Proof:
Case 1:  vr ≡ this ∧ ( vr2 ≡ x  ∨  vr2 ≡ this.x  ∨  vr2 ≡ \result) 
      ([this, S] ⇒lv vLoc)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < L-Self rule of Figure 4.16 and definition of thisLoc of Figure 4.14 >
      vLoc = loc(this, local)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < assumptions about vr2 and L-VarId, L-Field, and L-Result rules of Figure 4.16 >
      vLoc = loc(this, local)  ∧  ( v2Loc = loc(x, r)  ∨  v2Loc = loc(\result, global) )
⇒  < this is a reserved word so !(this ≡ x)  ∧ !(this ≡ \result) >
     vLoc ≠ v2Loc
Case 2:  vr ≡ \result ∧ ( vr2 ≡ x  ∨  vr2 ≡ this.x ) 
      ([\result, S] ⇒lv vLoc)   ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < L-Result rule of Figure 4.16 and definition of resultLoc of Figure 4.14 >
     vLoc = loc(\result, global)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < assumptions about vr2 and the L-VarId and L-Field rules of Figure 4.14 >
     vLoc = loc(\result, global)  ∧  v2Loc = loc(x, r) 
⇒  < \result ∉ VarId ⇒ !(\result ≡ x)  >
     vLoc ≠ v2Loc
Case 3:  vr ≡ x ∧ !(x ≡ y) ∧ ( vr2 ≡ y  ∨  vr2 ≡ this.y ) 
      ([x, S] ⇒lv vLoc)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < L-VarId rule of Figure 4.14 >
     vLoc = loc(x, local)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < assumption about vr2 and the L-VarId and L-Field rules of Figure 4.14 >
     vLoc = loc(x, local)  ∧  v2Loc = loc(y, r) 
⇒  < assumption that !(x ≡ y)  >
     vLoc ≠ v2Loc
Case 4:  vr ≡ x ∧ vr2 ≡ this.x  
      ([x, S] ⇒lv vLoc)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < L-VarId rule of Figure 4.14 >
     vLoc = loc(x, local)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < assumption that vr2 ≡ this.x and the L-Field rule of Figure 4.14 >
     vLoc = loc(x, local)  ∧  r = getValue(S, thisLoc)  ∧  v2Loc = loc(x, r)
⇒  < definition of local of Figure 4.14 >
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     vLoc = loc(x, ref(\Stack, intV(1)))  ∧  r = getValue(S, thisLoc)  ∧  v2Loc = loc(x, r)
⇒  < r references a heap object created by the new operator >
     vLoc = loc(x, ref(\Stack, intV(1)))  ∧  r = getValue(S, thisLoc)  ∧  v2Loc = loc(x, r)
      ∧  T = refType(r)  ∧  T ∈ TypeId  ∧  \Stack = refType(vLoc)  ∧  T = refType(v2Loc)
⇒  < \Stack ∉ TypeId ⇒ !(T ≡ \Stack)  >
     vLoc ≠ v2Loc
Case 5:  vr ≡ this.x ∧ !(x ≡ y) ∧ vr2 ≡ this.y  
      ([this.x, S] ⇒lv vLoc)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < L-Field rule of Figure 4.14 >
     vLoc = loc(x, r1)  ∧  ([vr2, S] ⇒lv v2Loc)
⇒  < assumption about vr2 and the L-Field rule of Figure 4.14 >
     vLoc = loc(x, r1)  ∧  v2Loc = loc(y, r2)
⇒  < by our assumption that !(x ≡ y) >
     vLoc ≠ v2Loc

5.2.2.3 The Substitution Theorem
The Substitution Theorem proves an important property about expressions and the substitution of

expressions for occurrences of variable references (including Java and JML pseudo variables such as
this and \result). More specifically, it proves the relationship between substituting an expression
for a variable and updating that variable’s location with the value of the expression. 

Theorem 5.8 (Substitution): Let S ∈ State, P and e be expressions, and vr be a variable or
pseudovariable reference. 

If  ([vr, S] ⇒lv vLoc)  ∧  ([e, S] ⇒e v),
then  ([P[vr←e], S] ⇒e u)  ∧  ([P, S[vLoc := v]] ⇒e u).

Proof:
The proof will be by induction on the structure of expression P. 
Basis:
Case 1: Let P be a variable reference such that P = vr 
      ( [vr, S] ⇒lv vLoc)  ∧  ( [e, S] ⇒e v)
⇒ < E-VarRef rule of Figure 4.14 > 
     ( [vr, S[vLoc := v]] ⇒e getValue(S[vLoc := v], vLoc) )
     ∧  ([vr, S] ⇒lv vLoc)  ∧  ([e, S] ⇒e v)
⇒ < by the State Update Lemma (1) > 
     ( [vr, S[vLoc := v]] ⇒e v)  ∧  ( [e, S] ⇒e v)
⇒ < by definition of substitution, vr[vr←e] = e > 
     ( [vr, S[vLoc := v]] ⇒e v)  ∧  ( [vr[vr←e], S] ⇒e v)
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Case 2: Let P be a variable reference such that P = vr2, vr2 ≠ vr, and [vr2, S] ⇒lv v2Loc   
      ( [vr, S] ⇒lv vLoc)  ∧  ( [vr2, S] ⇒lv v2Loc)  ∧  ( [e, S] ⇒e v)
⇒ < by the Variable Reference Lemma above and our assumption vr ≠ vr2 > 
      vLoc ≠ v2Loc  ∧  ([vr2, S] ⇒lv v2Loc)  ∧  ([e, S] ⇒e v)
⇒ < E-VarRef rule of Figure 4.14 > 
      ( [vr2, S[vLoc := v]] ⇒e getValue(S[vLoc := v], v2Loc) )
      ∧  vLoc ≠ v2Loc  ∧  ( [vr2, S] ⇒lv v2Loc)
⇒ < State Update Lemma (2) and vLoc ≠ v2Loc > 
      ( [vr2, S[vLoc := v]] ⇒e getValue(S, v2Loc) )  ∧  ( [vr2, S] ⇒lv v2Loc) 
⇒ < definition of substitution and vr2 ≠ vr ⇒ vr2[vr←e] = vr2 > 
      ( [vr2, S[vLoc := v]] ⇒e getValue(S, v2Loc) )  ∧  ( [vr2[vr←e], S] ⇒lv v2Loc) 
⇒ < E-VarRef rule of Figure 4.14 > 
      ( [vr2, S[vLoc := v]] ⇒e getValue(S, v2Loc) )  ∧  ( [vr2[vr←e], S] ⇒e getValue(S, v2Loc) )
Case 3: P = lit   
      ( [lit, S] ⇒e v1)  ∧  ( [lit, S[vLoc := v]] ⇒e v2)
⇒ < E-Literal axiom of Figure 4.14 > 
      ( [lit, S] ⇒e mkVal(lit) )  ∧  ( [lit, S[vLoc := v]] ⇒e mkVal(lit) )
⇒ < definition of substitution ⇒ lit[vr←e] = lit > 
      ( [lit[vr←e], S] ⇒e mkVal(lit) )  ∧  ( [lit, S[vLoc := v]] ⇒e mkVal(lit) )
Case 4: P = this  
Follows from Cases 1 and 2 above, i.e., depending on whether or not vr = this. 
Case 5: P = ( T ) null 
      ( [(T)null, S] ⇒e v1)  ∧  ( [(T)null, S[vLoc := v]] ⇒e v2)
⇒ < E-CastNull axiom of Figure 4.14 > 
      ( [(T)null, S] ⇒e voidV(null) )  ∧  ( [(T)null, S[vLoc := v]] ⇒e voidV(null) )
⇒ < definition of substitution ⇒ ((T)null)[vr←e] = (T)null > 
      ( [((T)null)[vr←e], S] ⇒e voidV(null) )  ∧  ( [(T)null, S[vLoc := v]] ⇒e voidV(null) )

Induction Step:
The induction hypothesis assumes that the Substitution Lemma holds for all subexpressions of a

larger expression. We will start our calculations from this hypothesis. 
Case 1: P = ( e1 ) 
     ( [e1, S[vLoc := v]] ⇒e u)  ∧  ( [e1[vr←e], S] ⇒e u) 
⇒ < the E-Paren rule of Figure 4.14 >
     ( [( e1 ), S[vLoc := v]] ⇒e u)  ∧  ( [( e1[vr←e] ), S] ⇒e u)
⇒ < definition of substitution ⇒ ( e1 )[vr←e] =  ( e1[vr←e] ) >
     ( [( e1 ), S[vLoc := v]] ⇒e u)  ∧  ( [( e1 )[vr←e], S] ⇒e u)
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Case 2: P = e1 bop e2 
      ( [e1, S[vLoc := v]] ⇒e u1)  ∧  ( [e2, S[vLoc := v]] ⇒e u2)
       ∧  ( [e1[vr←e], S] ⇒e u1)  ∧  ( [e2[vr←e], S] ⇒e u2)
⇒ < E-BinOp rule of Figure 4.14 >
      ( [e1 bop e2, S[vLoc := v]] ⇒e apply(bop, u1, u2) )
      ∧  ( [(e1[vr←e] bop e2[vr←e]), S] ⇒e apply(bop, u1, u2) )
⇒ < definition of substitution ⇒ (e1 bop e2)[vr←e] = e1[vr←e] bop e2[vr←e] >
      ( [e1 bop e2, S[vLoc := v]] ⇒e apply(bop, u1, u2) )
      ∧  ( [(e1 bop e2) [vr←e], S] ⇒e apply(bop, u1, u2) )
Case 3: P =  uop e1 
      ( [e1, S[vLoc := v]] ⇒e u)  ∧  ( [e1[vr←e], S] ⇒e u) 
⇒ < the E-UnOp rule of Figure 4.14 >
      ( [uop e1, S[vLoc := v]] ⇒e apply(uop, u) )  ∧  ( [uop e1[vr←e], S] ⇒e  apply(uop, u) )
⇒ < definition of substitution ⇒ (uop e1)[vr←e] =  uop e1[vr←e] >
      ( [uop e1, S[vLoc := v]] ⇒e apply(uop, u) )  ∧  ( [(uop e1)[vr←e], S] ⇒e  apply(uop, u) )
Case 4: P = ( T ) e1 
      ( [e1, S[vLoc := v]] ⇒e u)  ∧  ( [e1[vr←e], S] ⇒e u)
⇒ < (the E-Cast rule of Figure 4.14 >
      ( [(T)e1, S[vLoc := v]] ⇒e u)  ∧  ( [(T)e1[vr←e], S] ⇒e u)
⇒ < definition of substitution ⇒ ((T)e1) [vr←e] = (T)e1[vr←e] >
      ( [(T)e1, S[vLoc := v]] ⇒e u)  ∧  ( [((T)e1)[vr←e], S] ⇒e u)

To simplify the notation in some of our proofs we define the shorthand S<e> for evaluating
expression e in a program state S. 

Definition: if [e,S] ⇒e v, then S<e> = v. 

Using this definition, we can rewrite the Substitution Theorem 5.8 as follows:

Theorem 5.9 (Substitution): Let S ∈ State, P and e be expressions, and vr be a variable or
pseudovariable. 

If  ([vr, S] ⇒lv vLoc)  ∧  S<e> = v, 
then   S<P[vr←e]> = S[vLoc := v]<P>.

5.2.3  The Valid Invariant Theorem

In this subsection, we prove that, in our technique, super-calls can establish the invariant of the
run-time type of the receiver just by establishing the invariant of the static type of the receiver. We first
define some terminology to simplify the explanation of the approach used in our proofs. We define a
call chain to be a sequence (nesting) of method calls in which each method in the chain directly calls
the next method in the chain. We will represent such chains as sequences such as <C1,C2,C3,...,Ck>.
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Thus C1 directly calls C2 and C2 directly calls C3, etc. An object-call segment is an object-call
followed by a sequence of 0 or more self-calls and super-calls. When it is clear, we will refer to these
sequences of calls as simply chains or segments. A valid object-call segment is a segment that is
allowed by our rules. Similarly, a valid call chain is a chain allowed by our rules. 

Lemma 5.10 (Call Chain): Let T ∈ TypeId be a valid class allowed by the rules of our technique and
let m be a method declared in T. 

If  method T.m can be executed by a program allowed by our technique,  
then  there is a valid call chain ending in T.m and 
         there must be a valid object-call segment that is a suffix of that chain.
Proof:
If a method T.m can be executed by a program allowed by our technique, then there must be a

valid call chain ending in T.m since each call would have been checked by the T-rules given in
Figures 5.1-5.3. So by definition, the call chain is valid. 

Let < ... U1.n1, ... , Uk.nk, T.m> (where 0 ≤ k) be a valid call chain allowed by the current
program execution. Starting at the end of the chain, move backward until the first object-call is located,
say U1.n1; from that object-call to end of the chain is a valid object-call segment that ends with the
call of T.m.   

The next lemma says that, in our technique, a pivot field declared in the receiver cannot refer back
to the receiver object containing that pivot field. 

Lemma 5.11 (Self Pivot Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our technique
and let n be a method declared in U. Let vr be a variable accessible in method U.n. Let S ∈ State
be an intermediate state at any point during the execution of U.n. 

If  isPivot(vr, T),  then  S<vr != this>. 
Proof:
The only pivot fields accessible in a method are those declared in the receiver because the syntax

of Java-C (Figure 4.5) only allows variables to reference fields of the receiver, local variables, and
parameters; this is also one of our assumptions given in subsection 1.6.6. 

Furthermore, it is not possible for an object X to have a field that owns object Y and for a field of
Y to own X since one of the objects must be created first, i.e., it is not possible for an object created
later to have a field that owns an object created earlier since it is not possible to write such code (see
the T-rules in Figure 5.2). In particular, the right side of an assignment to a pivot field must be either a
new object constructor call (T-New rule of Figure 5.2) or null (T-Null rule in Figure 5.2). All other
assignments are not allowed because the predicate okToAssign of Figure 5.4 is an antecedent in the
other rules in Figure 5.2. Therefore, this ownership relationship among objects, if considered as a
directed graph, is non-cyclic. Specifically as required for this lemma, it is not possible for a pivot field
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to reference the object containing that field since a non-null pivot field must reference an object
created later through a new object constructor call (T-New rule of Figure 5.2).   

The next few lemmas 5.12 through 5.24 prove various aliasing properties among owner variables;
these lemmas are then used to prove that no two owner variables in the same context can be aliases
when there are side-effects. 

Lemma 5.12 (Owner Variable Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr1 and vr2 be variable references accessible
at that same point. Let S ∈ State be an intermediate state also at the same point during the execution
of U.n. 

If  (isPivot(vr1, U) ∨  vr1 ∈ O)  ∧  vr2 ∈ O  ∧  !(vr1 ≡ vr2),
then  S<vr1 != vr2>. 
Proof:
Suppose vr2 ∈ O and !(vr1 ≡ vr2), then there are two cases.
Case 1:  isPivot(vr1, T) 
In our technique, since vr1 is a pivot field, vr1 must be the first variable to contain a reference to a

newly created object or it must be null; this is enforced by requiring that the right side of
assignments to pivot fields be a new object constructor call or null (the T-New and T-Null rules
allow these assignments since they are the only rules in Figure 5.2 that do have the okToAssign
predicate of Figure 5.4 as an antecedent). Also, vr2 must be the first variable to reference a newly
created object because the only way a variable can be added to the set O of temporary owner variables
is through an assignment with a new object constructor call as the right hand side (see the T-New rule
of Figure 5.2); also, all other assignments remove vr2 from O, i.e., vr1 cannot have been assigned to
vr2 since vr2 is a member of O. Furthermore, vr2 cannot be assigned to vr1 because the predicate
okToAssign is an the antecedent of the T-ExpAssign rule. Thus vr2 cannot be null and vr1 and vr2
cannot reference the same object when !(vr1 ≡ vr2) since two different variables cannot both be the
first to contain a reference to the same new object. Hence, S<vr1 != vr2>.

Case 2:  vr1 ∈ O
In our technique, both vr1 and vr2 must be the first variable to contain a reference to a newly

created object (because the T-New rule of Figure 5.2 is the only rule that adds variables to O). Also,
the objects referenced by variables in O have been created during the current execution of T.m, so
clearly vr1 cannot reference the same object as vr2 when !(vr1 ≡ vr2), i.e., only one variable can be the
first to contain a reference to a new object. All other assignments remove the target variable from O.
Thus both vr1 and vr2 must reference different newly created objects, so S<vr1 != vr2>.
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Lemma 5.13 (Pivot Fields Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. Let vr1 and vr2 be variable references accessible in
method U.n. Let S ∈ State be an intermediate state at an arbitrary point during the execution of
U.n. 

If  isPivot(vr1, U)  ∧  isPivot(vr2, U)  ∧  !(vr1 ≡ vr2)  ∧  (S<vr1 != null>  ∨  S<vr2 != null>), 
then  S<vr1 != vr2>. 
Proof:
In our technique, both of the pivot fields vr1 and vr2 must be the first variable to contain a

reference to a newly created object or be null; this is enforced by requiring that the right side of an
assignment to a pivot field be a new object constructor call or null (see the T-New and T-Null rules
in Figure 5.2). Furthermore, vr1 cannot be assigned to vr2 (and vice versa) by the predicate
okToAssign in the antecedent of the T-ExpAssign rule; thus vr1 and vr2 cannot reference the same
object during the execution of U.n when !(vr1 ≡ vr2) (two different pivot field names) since only one
field can be the first to contain a reference to a newly created object. Therefore, if either vr1 or vr2
references an object, then S<vr1 != vr2>.   

Lemma 5.14 (Self New Object Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr be a variable accessible at that same point.
Let S ∈ State be an intermediate state also at the same point during the execution of U.n. 

If  vr ∈ O,  then  S<vr != this>. 
Proof:
Since the receiver this cannot be the target of an assignment statement, this must reference an

object that existed in the pre-state. However, the objects referenced by variables in O are created
during the current execution of U.n (see the T-New rule of Figure 5.2, the only rule that adds new
variables to O), so clearly vr cannot reference an object that existed prior to the execution of U.n.
Therefore, S<vr != this>.   

Lemma 5.15 (Parameter New Object Aliasing): Let U ∈ TypeId be a valid class allowed by the rules
of our technique and let n be a method declared in U. Let O be the set of owner variables from the
T-rules of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr be a variable accessible at that same
point. Let S ∈ State be an intermediate state also at the same point during the execution of U.n. 

If  vr ∈ O  ∧  !(vr ≡ p)  ∧  typeOf(p) ∈ TypeId,  
then  S<vr != p>. 
Proof:
Suppose vr ∈ O and !(vr ≡ p), then there are two cases.
Case 1:  p ∉ O 
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Since p ∉ O, either p has not been the target of an assignment statement (see the T-New rule of
Figure 5.2) or null has been assigned to p (see the T-Null rule of Figure 5.2). No other assignments
are allowed to p (see the T-CallAssign, T-SupCallAssign, and T-ExpAssign rules and, in particular,
the predicate okToAssign). Therefore, p must still reference an object that existed in the pre-state or it
contains null. The objects referenced by variables in O are created during the current execution of
U.n, so clearly vr cannot reference an object that existed prior to the execution of U.n and it cannot
be null since that would remove vr from O (see the T-Null rule of Figure 5.2). Therefore, vr and p
cannot reference the same object and S<vr != null> so S<vr != p>. 

Case 2:  p ∈ O 
If p ∈ O, then p has been the target of an assignment statement and the right side was a new object

constructor call (see the T-New rule of Figure 5.2). Therefore, S<vr != p> by the Owner Variable
Aliasing Lemma 5.12 since !(vr ≡ p). 

Lemma 5.16 (New Pivots Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. Let vr1 and vr2 be variable references accessible in
method U.n. Let O be the set of owner variables from the T-rules of Figures 5.1 - 5.3 at an arbitrary
point in U.n. Let S ∈ State be an intermediate state at that same point during the execution of U.n. 

For all  pvt1 ∈ allFieldsIn(typeOf(vr1))  ∧  pvt2 ∈ allFieldsIn(typeOf(vr2)), 
If  vr1 ∈ O  ∧  vr2 ∈ O  ∧  !(vr1 ≡ vr2)
then    (!isPivot(this.pvt1, typeOf(vr1))  ∨  S<vr2 != vr1.pvt1>)
       ∧  (!isPivot(this.pvt2, typeOf(vr2))  ∨  S<vr1 != vr2.pvt2>). 
Proof:
Since vr1 ∈ O and vr2 ∈ O, S<vr1 != this> and S<vr2 != this> by the Self New Object

Aliasing Lemma 5.14. Also, assignments to fields of objects other than the reciever are not allowed
(see the syntax of assignment statements in Figure 4.5 and the T-rules and in particular the T-New rule
of Figure 5.2) so fields of objects other than the receiver cannot be in O, i.e., vr1 and vr2 have to be
fields of the receiver or local variables. Therefore, vr1 and vr2 cannot be pivot fields of each other
since S<vr1 != this> and S<vr2 != this>, i.e., S<vr2 != vr1.pvt1> and S<vr1 != vr2.pvt1>.   

Lemma 5.17 (Parameter New Pivots Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of
our technique and let n be a method declared in U. Let O be the set of owner variables from the T-
rules of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr be a variable accessible at that same
point. Let S ∈ State be an intermediate state also at the same point during the execution of U.n. 

For all  pPvt ∈ allFieldsIn(typeOf(p))  ∧  vPvt ∈ allFieldsIn(typeOf(vr)), 
If  vr ∈ O  ∧  !(vr ≡ p)  ∧  typeOf(p) ∈ TypeId  ∧  S<p != null> 
     ∧  isPivot(this.pPvt, typeOf(p))  ∧  isPivot(this.vPvt, typeOf(vr)),  
then     (!isPivot(this.pPvt, typeOf(p))  ∨  S<vr != p.pPvt>)
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        ∧  (!isPivot(this.vPvt, typeOf(vr))  ∨  S<p != vr.vPvt>). 
Proof:
Suppose vr ∈ O, !(vr1 ≡ p), and typeOf(p) ∈ TypeId, then there are two cases.
Case 1:  p ∉ O  ∧  S<p !=  null> 
      vr ∈ O  ∧  p ∉ O  ∧  S<p != null>  ∧  typeOf(p) ∈ TypeId  
⇒ <  if isPivot(this.vPvt, typeOf(vr)), then S<p != vr.vPvt> since p has not been the 
         target of an assignment during the current execution of U.n, so p must reference 
         an object that existed in the pre-state; therefore, p cannot reference a pivot object 
         of the new object referenced by vr since vr was created after the object referenced 
         by p, i.e., pivot fields must reference objects created after the containing object > 
      vr ∈ O  ∧  p ∉ O  ∧  S<p != null>  ∧  typeOf(p) ∈ TypeId  
      ∧  (!isPivot(this.vPvt, typeOf(vr))  ∨  S<p != vr.vPvt>)
⇒ <  if isPivot(this.pPvt, typeOf(p)), then S<vr != p.pPvt> since vr cannot be an 
        alias of a pivot field of p because fields of objects other than the receiver this 
        cannot be the target of an assignment, so p.pPvt ∉ O, i.e., p.pPvt references an 
        object created by a method of object p in a different context  >
      (!isPivot(this.pPvt, typeOf(p))  ∨  S<vr != p.pPvt>)
      ∧  (!isPivot(this.vPvt, typeOf(vr))  ∨  S<p != vr.vPvt>)
Case 2:  vr ∈ O  ∧  p ∈ O 
      vr ∈ O  ∧  p ∈ O  ∧  typeOf(p) ∈ TypeId 
      ∧  isPivot(this.pPvt, typeOf(p))  ∧  isPivot(this.vPvt, typeOf(vr))
⇒ <  by the New Pivots Aliasing Lemma 5.16 > 
      (!isPivot(this.pPvt, typeOf(p))  ∨  S<vr != p.pPvt>)
      ∧  (!isPivot(this.vPvt, typeOf(vr))  ∨  S<p != vr.vPvt>)

Lemma 5.18 (Self New Pivot Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr be a variable accessible at that same point.
Let S ∈ State be an intermediate state also at the same point during the execution of U.n. 

For all  vPvt ∈ allFieldsIn(typeOf(vr)), 
If  vr ∈ O,  
then  (!isPivot(this.vPvt, typeOf(vr))  ∨  S<this != vr.vPvt>)
Proof:
The receiver this cannot be the target of an assignment, so this must reference an object that

existed in the pre-state; thus this cannot reference a pivot object of the new object referenced by vr
since pivot fields must reference objects created after the containing object. Also, this cannot be
null, so S<this != vr.vPvt> when vr.vPvt is a pivot field.   
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Lemma 5.19 (Pivot New Pivot Aliasing): Let U ∈ TypeId be a valid class allowed by the rules of our
technique and let n be a method declared in U. U.n. Let O be the set of owner variables from the
T-rules of Figures 5.1 - 5.3 at an arbitrary point in U.n. Let vr1 and vr2 be variables accessible at
that same point. Let S ∈ State be an intermediate state also at the same point during the execution
of U.n. 

For all  pvt1 ∈ allFieldsIn(typeOf(vr1))  ∧  pvt2 ∈ allFieldsIn(typeOf(vr2)), 
If  vr1 ∈ O  ∧  isPivot(vr2, U)  ∧  S<vr2 != null>, 
then     (!isPivot(this.pvt1, typeOf(vr1))  ∨  S<vr2 != vr1.pvt1>)
        ∧  (!isPivot(this.pvt2, typeOf(vr2))  ∨  S<vr1 != vr2.pvt2>)
Proof:
      vr1 ∈ O  ∧  isPivot(vr2, U)  ∧  S<vr2 != null>  
⇒ <  S<vr1 != this> by the Self New Object Aliasing Lemma 5.14  >
      S<vr1 != this>  ∧  vr1 ∈ O  ∧  isPivot(vr2, U) 
⇒ <  S<vr2 != this> by the Self Pivot Aliasing Lemma 5.11  >
      S<vr1 != this>  ∧  S<vr2 != this>  ∧  vr1 ∈ O  ∧  isPivot(vr2, U)  ∧  S<vr2 != null> 
⇒ <  if isPivot(this.pvt1, typeOf(vr1)), then S<vr2 != vr1.pvt1> because 
        vr2 must be a pivot field of the receiver this (these are the only pivot fields 
         accessible in the current context) and S<vr1 != this>; furthermore, pivot 
         fields of two different objects cannot reference the same object  >
      S<vr2 != this>  ∧  vr1 ∈ O  ∧  isPivot(vr2, U)  ∧  S<vr2 != null> 
      ∧  (!isPivot(this.pvt1, typeOf(vr1))  ∨  S<vr2 != vr1.pvt1>)
⇒ <  if isPivot(this.pvt2, typeOf(vr2)), then S<vr1 != vr2.pvt2> since vr1 contains 
         a reference to an object created during the current execution of U.n, whereas 
         vr2.pvt2 contains null or a reference to an object created by a method of vr2 in a 
         different context (i.e., S<vr2 != this> so vr2.pvt2 cannot be directly assigned in U.n); 
         thus vr1 and vr2.pvt2 cannot reference the same new object since the assignments 
         to both have to be done in two different contexts and, by the T-New rule of 
         Figure 5.2, both have to have a new object constructor call as the right hand side  >
      (!isPivot(this.pvt1, typeOf(vr1))  ∨  S<vr2 != vr1.pvt1>)
      ∧  (!isPivot(this.pvt2, typeOf(vr2))  ∨  S<vr1 != vr2.pvt2>)
 

Lemma 5.20 (Valid Parameter): Let rcvr.m(e) be a method call allowed by our technique in some
method U.n. Let O be the set of owner variables from the T-rules of Figures 5.1 - 5.3 at the point
of the call in U.n. 

If  typeOf(e) ∈ TypeId,  
then   (rcvr ∈ O ∨  rcvr ≡ p ∨  rcvr ≡ this ∨  isPivot(rcvr, U))
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          ∧  (e ∈ O ∨  e ≡ p ∨  e ≡ this ∨  isPivot(e, U)).
Proof:
Since rcvr.m(e) is allowed by our technique, it must satisfy the predicate invariantOK which is an

antecedent of the T-Call and T-SupCall rules of Figure 5.1 and indirectly an antecedent of the T-
CallAssign and T-SupCallAssign rules of Figure 5.2, so we start our calculation from that predicate. 

      invariantOK(rcvr, e, O, U)  ∧  typeOf(e) ∈ TypeId 
⇒ <  definition of invariantOK of Figure 5.4  >
      isOwner(rcvr, O, U)  ∧  (typeOf(e) ∉ TypeId ∨ isOwner(e, O, U))  ∧  typeOf(e) ∈ TypeId
⇒ <  logic  >
      isOwner(rcvr, O, U)  ∧  isOwner(e, O, U)
⇒ <  by the definition of isOwner of Figure 5.65.5  >
      (rcvr ∈ O ∨  rcvr ≡ p ∨  rcvr ≡ this ∨  isPivot(rcvr, U))
      ∧  (e ∈ O ∨  e ≡ p ∨  e ≡ this ∨  isPivot(e, U))  

Lemma 5.21 (Self Callback): Let rcvr.m(e) be a method call allowed by our technique in some method
U.n. Let O be the set of owner variables from the T-rules of Figures 5.1 - 5.3 at the point of the call
in U.n. Let S ∈ State be an intermediate state at that same point during the execution of U.n. 

If  T = whereMethodDecl(typeOf(rcvr), m)  ∧  S<rcvr != this>  ∧  S<e != this> 
then  rcvr.m(e) cannot callback to a method of the current receiver this.
Proof:
Clearly, a callback to a method of this cannot occur through e when typeOf(e) ∉ TypeId. So we

assume that typeOf(e) ∈ TypeId and thus, by the Valid Parameter Lemma 5.20, the actual parameters
allowed by our technique in the call of rcvr.m(e) must satisfy the following. 

      (rcvr ∈ O ∨  rcvr ≡ p ∨  rcvr ≡ this ∨  isPivot(rcvr, U))
      ∧  (e ∈ O ∨  e ≡ p ∨  e ≡ this ∨  isPivot(e, U))  
As explained in the Self Pivot Aliasing Lemma 5.11, the ownership relationship among pivot

fields of objects, if considered as a directed graph, is non-cyclic. So a pivot object X cannot have a
pivot field that refers back to the object containing the pivot field X. Hence, passing a pivot field as an
argument cannot result in a callback to a method of the receiver, i.e., isPivot(rcvr, U) and isPivot(e, U)
in the above assertion cannot lead to such callbacks. Also, rcvr ∈ O and e ∈ O cannot lead to a
callback to a method of the receiver because rcvr and e cannot have pivot fields that reference the
receiver since the receiver was created earlier (see also the Self New Pivot Aliasing Lemma 5.18).
Thus the only possibilities left that are allowed by our technique are through the receiver and formal
parameter of a call, but the premise of the lemma says that this is neither argument so no such
callback would be allowed.   
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Lemma 5.22 (Self-Call Pivot): Let rcvr.m(e) be a method call allowed by our technique in some
method U.n. Let S ∈ State be an intermediate state at the point just prior to this call during the
execution of U.n. 

For all  pvt ∈ allFieldsIn(typeOf(rcvr)), 
If  typeOf(e) ∈ TypeId ∧ isPivot(this.pvt, typeOf(rcvr)) ∧ S<rcvr != null> ∧ S<e !=

rcvr.pvt>
then  !(S<rcvr == this>  ∧  S<e == this.pvt>)
Proof:
We will prove the contrapositive since that is quite easy. 
     S<rcvr == this>  ∧  S<e == this.pvt>
⇒ <  substituting rcvr for this since they are aliases in state S  >
     S<e == rcvr.pvt>
⇒ <  logic  >
     typeOf(e) ∉ TypeId ∨ !isPivot(this.pvt, typeOf(e)) ∨ S<rcvr == null> ∨ S<e == rcvr.pvt>

Lemma 5.23 (This-Argument Call): Let rcvr.m(e) be a method call allowed by our technique in some
method U.n. Let S ∈ State be an intermediate state at the point just prior to this call during the
execution of U.n. 

For all  pvt ∈ allFieldsIn(typeOf(e)), 
If  typeOf(e) ∈ TypeId  ∧  isPivot(this.pvt, typeOf(e))  ∧  S<e != null>  ∧  S<rcvr != e.pvt> 
then  !(S<e == this>  ∧  S<rcvr == this.pvt>)
Proof:
Again, we prove the contrapositive. 
      S<e == this>  ∧  S<rcvr == this.pvt>
⇒ <  substituting e for this since they are aliases in state S  >
      S<rcvr == e.pvt>
⇒ <  logic  >
      typeOf(e) ∉ TypeId ∨ !isPivot(this.pvt, typeOf(e)) ∨ S<e == null> ∨ S<rcvr == e.pvt>

We do not want side-effects to an object referenced by a formal parameter to also modify the state
of the receiver or vice versa because we do not want side-effects to one argument to possibly invalidate
the other object’s invariant. If the invariant of one of the arguments is invalidated, then subsequent
calls on that object would lead to unverifiable behavior, since the invariant does not hold and, in our
technique, the code may not be available. Therefore, when a method has side-effects, we have to make
sure that argument objects do not share state; for example, we have to make sure that a formal
parameter is not be an alias of one of the receiver’s pivot objects. For the same reason, we have to
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make sure that a formal parameter and the receiver are not aliases. The next lemma proves that the
checking rules of our technique prevent these situations from occurring. 

Lemma 5.24 (Actual Parameter Aliasing): Let rcvr.m(e) be a method call allowed by our technique in
some method U.n. Let O be the set of owner variables from the T-rules of Figures 5.1 - 5.3 at the
point of this call in U.n. Let S ∈ State be an intermediate state at that same point during the
execution of U.n. 

For all  rPvt ∈ allFieldsIn(typeOf(rcvr))  ∧  pPvt ∈ allFieldsIn(typeOf(e)), 
If  T = whereMethodDecl(typeOf(rcvr), m)  
     ∧  typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
then  S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                             ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>) 
Proof:
      T = whereMethodDecl(typeOf(rcvr), m)  
      ∧  typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
⇒ <  since rcvr.m(e) is allowed, this call must satisfy aliasingOK based on 
         the T-Call and T-SupCall rules of Figure 5.1  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  aliasingOK(rcvr, e, U, T, m) 
⇒ <  definition of aliasingOK of Figure 5.4  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  ( assigns(T, m) = { }
             ∨  (!(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) )
⇒ <  logic  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) )

We would be finished at this point were it not for aliasing. However, in our technique, we do not
prevent the receiver or pivot objects from being aliased through local variables or non-pivot fields.
Therefore, we still need to prove that our technique prevents the aliasing (with respect to the program
state) specified in the conclusion of this lemma. We will split the rest of the proof into cases as
explained below; each case will continue from the above assertion. 

By the Call Chain Lemma 5.10, there is a valid call chain ending with T.m since the call of
rcvr.m(e) is allowed by our technique from U.n (i.e., we are executing in U.n when the call is made).
Therefore, the proof will be by induction on the number of calls in a valid call chain prior to the call of
rcvr.m(e). 

Basis: k = 0, i.e., <T.m> so T.m is not called by method U.n. 
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Vacuously true since the lemma and induction hypothesis (and all of our rules) are in the context
of a method U.n that calls method T.m. This is also sensible because, in our technique, the entry point
of a Java program is a static method that would have no receiver or pivot fields that are accessible in
that context. 

Induction Step:  k = N. 
The induction hypothesis asserts that 

For all  rPvt ∈ allFieldsIn(typeOf(rcvr))  ∧  pPvt ∈ allFieldsIn(typeOf(e)), 
If  T = whereMethodDecl(typeOf(rcvr), m) 

           ∧  typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
           ∧  k < N  ∧ <T1.m1, T2.m2, ... , U.n, T.m> is a valid call chain 
               with U.n the kth call in the chain,

then  S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                                   ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>) 
From this hypothesis we can conclude that the following assertion holds at the start of the

execution of U.n when k = N by substituting this for rcvr and p for e. 
     S<this != p>  ∧  (!isPivot(this.rPvt, typeOf(this)) ∨ S<p != this.rPvt>)
                             ∧  (!isPivot(this.pPvt, typeOf(p)) ∨ S<this != p.pPvt>) 

Since typeOf(e) ∈ TypeId and rcvr.m(e) is allowed by our technique, we have, by the Valid
Parameter Lemma 5.20, the following valid combinations of actual parameters.

      (rcvr ∈ O ∨  rcvr ≡ p ∨  rcvr ≡ this ∨  isPivot(rcvr, U))
      ∧  (e ∈ O ∨  e ≡ p ∨  e ≡ this ∨  isPivot(e, U))
Therefore, we continue from where we left off by splitting the proof into the 16 valid combinations

of rcvr and e as given in the above formula. 
Case 1:  rcvr ∈ O  ∧  e ∈ O
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ∈ O  ∧  e ∈ O 
⇒ <  logic  >
      !(rcvr ≡ e)  ∧  rcvr ∈ O  ∧  e ∈ O 
⇒ <  S<rcvr != e> by the Owner Variable Aliasing Lemma 5.12  >
       S<rcvr != e>  ∧  rcvr ∈ O  ∧  e ∈ O 
⇒ <  rcvr and e cannot reference pivot objects of each other by the New Pivots 
        Aliasing Lemma 5.16  >
       S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                           ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 2:  rcvr ∈ O  ∧  e ≡ this 
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      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ∈ O  ∧  e ≡ this  
⇒ <  logic  >
      ( !(e ≡ this) ∨ !isPivot(rcvr, U) )  ∧  rcvr ∈ O  ∧  e ≡ this  
⇒ <  logic  >
      !isPivot(rcvr, U)  ∧  rcvr ∈ O  ∧  e ≡ this  
⇒ <  S<rcvr != this> by the Self New Object Aliasing Lemma 5.14  >
      !isPivot(rcvr, U)  ∧  rcvr ∈ O  ∧  e ≡ this  ∧  S<rcvr != this>  
⇒ <  by the Self New Pivot Aliasing Lemma 5.18  >
      !isPivot(rcvr, U)  ∧  rcvr ∈ O  ∧  e ≡ this  
      ∧  S<rcvr != this>  ∧  (!isPivot(this.rPvt, typeOf(rcvr))  ∨  S<this != rcvr.rPvt>)
⇒ <  substituting e for this in the last two conjuncts >
      !isPivot(rcvr, U)  ∧  rcvr ∈ O  ∧  e ≡ this  
      ∧  S<rcvr != e>  ∧  (!isPivot(this.rPvt, typeOf(rcvr))  ∨  S<e != rcvr.rPvt>)
⇒ <  if isPivot(this.pPvt, typeOf(this)), then !(rcvr ≡ this.pPvt) since !isPivot(rcvr, U);
         so, by the Owner Variable Aliasing Lemma 5.12, S<rcvr != this.pPvt>  > 
      rcvr ∈ O  ∧  e ≡ this 
      ∧  S<rcvr != e>  ∧  (!isPivot(this.rPvt, typeOf(rcvr))  ∨  S<e != rcvr.rPvt>)
                               ∧  (!isPivot(this.pPvt, typeOf(this)) ∨ S<rcvr != this.pPvt>) 
⇒ <  logic and substituting e for this in the last conjunct >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 3:  rcvr ∈ O  ∧  e ≡ p 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ∈ O  ∧  e ≡ p  
⇒ <  logic  >
      !(rcvr ≡ e)  ∧  rcvr ∈ O  ∧  e ≡ p  ∧  typeOf(e) ∈ TypeId  ∧  S<e != null>  
⇒ <  S<rcvr != e> by the Parameter New Object Aliasing Lemma 5.15  >
       S<rcvr != e>  ∧  rcvr ∈ O  ∧  e ≡ p  ∧  typeOf(e) ∈ TypeId  ∧  S<e != null>  
⇒ <  by the Parameter New Pivots Aliasing Lemma 5.17  >
       S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<p != rcvr.rPvt>)
                           ∧  (!isPivot(this.pPvt, typeOf(p)) ∨ S<rcvr != p.pPvt>)  
⇒ <  substituting e for p  >
       S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                           ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
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Case 4:  rcvr ∈ O  ∧  isPivot(e, U)
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ∈ O  ∧  isPivot(e, U)  
⇒ <  logic  >
     !(rcvr ≡ e)  ∧  rcvr ∈ O  ∧  isPivot(e, U)  ∧  S<e != null>  
⇒ <  S<rcvr != e> by the Owner Variable Aliasing Lemma 5.12  > 
      S<rcvr != e>  ∧  rcvr ∈ O  ∧  isPivot(e, U)  ∧  S<e != null>  
⇒ <  by the Pivot New Pivot Aliasing Lemma 5.19  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 5:  rcvr ≡ this  ∧  e ∈ O
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ≡ this  ∧  e ∈ O  
⇒ <  the proof is analogous to Case 2  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 6:  rcvr ≡ this  ∧  e ≡ this 
     !(rcvr ≡ e)  ∧  rcvr ≡ this  ∧  e ≡ this  
⇒ <  definition of ≡  >
       false
So this combination is not allowed by our technique.
Case 7:  rcvr ≡ this  ∧  isPivot(e, U)
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ≡ this  ∧  isPivot(e, U)  
⇒ <  logic  >
      !(rcvr ≡ e)  ∧  ( !(rcvr ≡ this) ∨ !isPivot(e, U) )  ∧  rcvr ≡ this  ∧   isPivot(e, U)  
⇒ <  logic  >
       !(rcvr ≡ e)  ∧  !isPivot(e, U)  ∧  rcvr ≡ this  ∧  isPivot(e, U)  
⇒ <  logic  >
       false
So this combination is not allowed by our technique.
Case 8:  isPivot(rcvr, U)  ∧  e ∈ O 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
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      ∧  isPivot(rcvr, U)  ∧  e ∈ O  ∧  S<rcvr != null>  
⇒ <  the proof is analogous to Case 4  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 9:  isPivot(rcvr, U)  ∧  e ≡ this 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  isPivot(rcvr, U)  ∧  e ≡ this  
⇒ <  logic  >
      !(rcvr ≡ e)  ∧  ( !(e ≡ this) ∨ !isPivot(rcvr, U) )  ∧  isPivot(rcvr, U)  ∧  e ≡ this  
⇒ <  logic  >
      !(rcvr ≡ e)  ∧  !(e ≡ this)  ∧  isPivot(rcvr, U)  ∧  e ≡ this  
⇒ <  logic  >
       false
So this combination is not allowed by our technique.
Case 10:  isPivot(rcvr, U)  ∧  isPivot(e, U)
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  isPivot(rcvr, U)  ∧  isPivot(e, U)  
⇒ <  logic  >
       !(rcvr ≡ e)  ∧  isPivot(rcvr, U)  ∧  isPivot(e, U)  ∧  S<rcvr != null>  ∧  S<e != null>  
⇒ <  S<rcvr != e> by the Pivot Fields Aliasing Lemma 5.13  >
       S<rcvr != e>  ∧  isPivot(rcvr, U)  ∧  isPivot(e, U)  ∧  S<rcvr != null>  ∧  S<e != null>  
⇒ <  S<rcvr != this> and S<e != this> by the Self Pivot Aliasing Lemma 5.11 >
       S<rcvr != e>  ∧ S< rcvr != this>  ∧  S<e != this>
       ∧  isPivot(rcvr, U)  ∧  isPivot(e, U)  ∧  S<rcvr != null>  ∧  S<e != null>  
⇒ <  rcvr and e are pivot fields of this so they cannot also be pivot fields of each other 
        since neither is the current receiver and pivot fields of different objects cannot reference 
        the same object  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 11:  rcvr ≡ p  ∧  e ∈ O 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ≡ p  ∧  e ∈ O  
⇒ <  the proof is analogous to Case 3  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
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                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 12:  rcvr ≡ p  ∧  e ≡ p 
      !(rcvr ≡ e)  ∧  rcvr ≡ p  ∧  e ≡ p  
⇒ <  definition of ≡  >
       false
So this combination is not allowed by our technique.

The last four cases need to use the induction hypothesis because they involve potential aliasing
through the receiver and formal parameter, i.e., we have to consider the execution of U.n in the
context of a valid call chain. 

Case 13:  rcvr ≡ this  ∧  e ≡ p 
If p ∈ O, then this case holds from Case 5 above. Therefore, we assume that p ∉ O and there have

been no assignments to p. 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  isPivot(this.rPvt, typeOf(rcvr))  ∧  isPivot(this.pPvt, typeOf(e))
      ∧  rcvr ≡ this  ∧  e ≡ p  
⇒ <  logic  >
      rcvr ≡ this  ∧  e ≡ p  ∧  S<e!= null>  
      ∧  isPivot(this.rPvt, typeOf(rcvr))  ∧  isPivot(this.pPvt, typeOf(e))
⇒ <  substituting this for rcvr and p for e in the last two conjuncts  >
      rcvr ≡ this  ∧  e ≡ p  ∧  S<e!= null>  
      ∧  isPivot(this.rPvt, typeOf(this))  ∧  isPivot(this.pPvt, typeOf(p))
⇒ <  by the induction hypothesis  >
      rcvr ≡ this  ∧  e ≡ p 
      ∧  S<this != p>  ∧  (!isPivot(this.rPvt, typeOf(this)) ∨ S<p != this.rPvt>)
                                  ∧  (!isPivot(this.pPvt, typeOf(p)) ∨ S<this != p.pPvt>) ) )
⇒ <  substituting rcvr for this and e for p  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
Case 14:  rcvr ≡ p  ∧  e ≡ this 
If p ∈ O, then this case holds from Case 2 above. Therefore, we assume that p ∉ O and there have

been no assignments to p. 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ≡ p  ∧  e ≡ this  
⇒ <  the proof is analogous to Case 13  >
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       S<rcvr != e>  ∧  ( S<e == null>  ∨  (S<e != rcvr.rPvt> ∧ S<rcvr != e.pPvt>) )
Case 15:  isPivot(rcvr, U)  ∧  e ≡ p 
If p ∈ O, then this case holds from Case 8 above. Therefore, we assume that p ∉ O and there have

been no assignments to p. Without loss of generality, we also assume that rcvr ≡ this.f since it is a
pivot field of the receiver. 

      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f   
⇒ <  logic  >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  
⇒ <  by the induction hypothesis  >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  
      ∧  S<this != p> 
⇒ <  by the induction hypothesis and since this.f is a pivot field of the receiver  >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  
      ∧  S<this != p>  ∧  S<p != this.f> 
⇒ <  substituting e for p  >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  
      ∧  S<this != e>  ∧  S<e != this.f> 
⇒ <  if isPivot(this.pPvt, typeOf(e)), then S<this.f != e.pPvt> since 
         S<this != e>, i.e., they are pivot fields of different objects so this.f and 
         e.pPvt cannot reference the same object  >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  ∧  S<this != e>
      ∧  S<e != this.f>  ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<this.f != e.pPvt>)  
⇒ <  substituting rcvr for this.f in the last two conjuncts >
      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  ∧  S<this != e>
      ∧  S<e != rcvr>  ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
⇒ <  if isPivot(this.rPvt, typeOf(this.f)), then S<p != this.f.rPvt> since 
         otherwise, in some previous call in the chain, this.f would have to have been the 
         receiver in order to access the pivot field rPvt and pass this.f.rPvt as an argument; 
         also, the current receiver this would have to be the other argument in that same 
         previous call in order to have the same object as the receiver again in U.n 
         (by the Self Callback Lemma 5.21); 
         however, the induction hypothesis implies (by the Self-Call Pivot Lemma 5.22 and 
         the This-Argument Call Lemma 5.23) that this combination of argument objects is 
         not allowed in any of the previous calls in the chain when there are side-effects to 
         either the receiver or formal parameter.  >
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      isPivot(rcvr, U)  ∧  e ≡ p  ∧  rcvr ≡ this.f  ∧  S<e!= null>  ∧  S<this != e>
      ∧  S<e != rcvr>  ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
      ∧  (!isPivot(this.rPvt, typeOf(this.f)) ∨ S<p != this.f.rPvt>)
⇒ <  logic and substituting rcvr for this.f and e for p in the last conjunct  >
      S<rcvr != e>  ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
                           ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
Case 16:  rcvr ≡ p  ∧  isPivot(e, U) 
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null>  ∧  assigns(T, m) ≠ { } 
      ∧  !(rcvr ≡ e)  ∧  (!isPivot(e, U) ∨ !(rcvr ≡ this))  ∧  (!isPivot(rcvr, U) ∨ !(e ≡ this)) 
      ∧  rcvr ≡ p  ∧  isPivot(e, U)  
⇒ <  analogous to the proof of Case 15  >
      S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                          ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  

The Actual Parameter Aliasing Lemma 5.24 above proves that the receiver and formal parameter
will not share state when either have fields that can be assigned to. The soundness of our technique
requires that all side-effects to the receiver be specified separately from any side-effects to fields of a
formal parameter in the assignable clause of self-calls and super-calls. The next lemma proves the
property needed for the soundness of our technique, and in particular, the soundness of our use of the
assignable clause. The next lemma shows that all allowed assignments to fields of the receiver are
specified in the assignable clause, i.e., our technique does not allow assignments to fields of a formal
parameter to modify the state of the receiver object in a self-call or super-call. Thus assignments to
fields of a formal parameter object cannot modify the state of the receiver. 

Lemma 5.25 (No Overlapping Assignable Fields): Let rcvr.m(e) be a method call allowed by our
technique in some method U.n. Let S ∈ State be an intermediate state at the point of this call during
the execution of U.n. 

If  T = whereMethodDecl(typeOf(rcvr), m)  ∧  S<rcvr != null>  
then  rcvr and e do not share mutable state that is modifiable by rcvr.m(e).
Proof:
The lemma is clearly true if T.m does not have permission to assign to fields of either the receiver

or the formal parameter, so assume assigns(T, m) ≠ { }; similarly, the lemma is also true when
typeOf(e) ∉ TypeId and S<e == null>, so we will assume typeOf(e) ∈ TypeId and S<e != null>. 

      T = whereMethodDecl(typeOf(rcvr), m)  ∧  assigns(T, m) ≠ { }  ∧  typeOf(e) ∈ TypeId 
      ∧  S<rcvr != null>  ∧  S<e != null> 
⇒ <  Let this.rPvt be a pivot field of rcvr and this.pPvt be a pivot field of e  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  assigns(T, m) ≠ { }  ∧  typeOf(e) ∈ TypeId 
      ∧  S<rcvr != null>  ∧  S<e != null> 
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      ∧  isPivot(this.rPvt, typeOf(rcvr))  ∧  isPivot(this.pPvt, typeOf(e))
⇒ <  by the Actual Parameter Aliasing Lemma 5.24 and since rPvt and pPvt are pivot fields 
        of rcvr and e respectively  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null> 
      ∧  S<rcvr != e> ∧  (!isPivot(this.rPvt, typeOf(rcvr)) ∨ S<e != rcvr.rPvt>)
                              ∧  (!isPivot(this.pPvt, typeOf(e)) ∨ S<rcvr != e.pPvt>)  
      ∧  isPivot(this.rPvt, typeOf(rcvr))  ∧  isPivot(this.pPvt, typeOf(e))
⇒ <  logic  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null> 
      ∧  S<rcvr != e> ∧  S<e != rcvr.rPvt>  ∧  S<rcvr != e.pPvt>
⇒ <  Let this.f be a pivot field of this and this.g be a pivot field of p  >
      typeOf(e) ∈ TypeId  ∧  S<rcvr != null>  ∧  S<e != null> 
      ∧  S<rcvr != e> ∧  S<e != rcvr.rPvt>  ∧  S<rcvr != e.pPvt>
      ∧  isPivot(this.f, typeOf(this))  ∧  isPivot(this.g, typeOf(p))
⇒ <  by the Self-Call Pivot Lemma 5.22 and the This-Argument Call Lemma 5.23  >
      S<rcvr != e>  ∧  S<e != rcvr.rPvt>  ∧  S<rcvr != e.pPvt>
      ∧  ! (S<e == this>  ∧  S<rcvr == this.f>)
      ∧  ! (S<rcvr == this>  ∧  S<e == this.g>)
We use this last assertion to show that the actual parameters do not share mutable state that is

assignable during the call of rcvr.m(e). 
During a method call, the state of the receiver can only be changed through direct assignments to

fields of the receiver or by object-calls on pivot fields of the receiver (see the syntax of assignments
and method calls in Figure 4.5 and our assumptions in subsection 1.6.6). Therefore, the only way
changes to the state of object e could change the state of rcvr would be if e and rcvr are aliases or if e
is an alias of a pivot object internal to rcvr. However, S<rcvr != e> and S<e != rcvr.rPvt> disallows
this situation from occurring in a valid call chain. Similarly, S<rcvr != e> and S<rcvr != e.pPvt>
prevents changes to the state of rcvr from changing the state of e. 

We also need to be sure that the objects referenced by the receiver and formal parameter do not
share mutable state that is internal to pivot objects of either argument, i.e., neither argument object can
be a pivot of a pivot object of the other parameter, etc. This situation is not allowed by the last two
conjuncts, e.g., ! (S<e == this> ∧ S<rcvr == this.pvt>). That is, in our technique, only pivot
fields of the receiver can be directly accessed by methods (see the syntax of variable references in
Figure 4.5 and our assumptions in subsection 1.6.6). Therefore, a pivot object of the current receiver
would have to be the receiver in an object-call in order for a method to access a pivot field of a pivot of
the current receiver; also, the formal parameter would have to reference the current receiver
(otherwise, by the Self Callback Lemma 5.21, no callback on the current receiver would be possible).
But this combination of actual parameters is not allowed, by the last two conjuncts, unless there are no
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side-effects in rcvr.m(e), i.e., unless there are no side-effects in a call such as this.pvt.m(this) or
this.m(this.pvt). Therefore, in our technique, assignments that change the state of e in the call
rcvr.m(e) cannot change the state of rcvr and assignments that change the state of rcvr cannot change
the state of e.   

The next two lemmas prove relationships between the functions selfAssigns, parmAssigns and
assigns for use in subsequent lemmas and theorems.

Lemma 5.26 (Self Assignments): Let T ∈ TypeId be a valid class allowed by the rules of our technique
and let m be a method declared in T. 

For all  f, g ∈ VarId:
   (1)  this.f ∈a selfAssigns(this, T, m)  ⇔  this.f ∈a assigns(T, m)
   (2)  this.f.g ∈a selfAssigns(this, T, m)  ⇔  this.f.g ∈a assigns(T, m), 
Proof:
Part 1:
      this.f ∈a selfAssigns(this, T, m)
⇔ <  definition of selfAssigns of Figure 5.4  >
      this.f ∈a { this.g | this.g ∈a assigns(T, m) }[this ← this]
⇔ <  definition of substitution  >
      this.f ∈a { this.g | this.g ∈a assigns(T, m) }
⇔ <  definition of set membership and ∈a  >
      this.f ∈a assigns(T, m)
Part 2:
      this.f.g ∈a selfAssigns(this, T, m)
⇔ <  definition of selfAssigns of Figure 5.4  >
      this.f.g ∈a { this.g.x | this.g.x ∈a assigns(T, m) }[this ← this]
⇔ <  definition of substitution  >
      this.f.g ∈a { this.g.x | this.g.x ∈a assigns(T, m) }
⇔ <  definition of set membership and ∈a  >
      this.f.g ∈a assigns(T, m) 

Lemma 5.27 (Parameter Field Assignments): Let T ∈ TypeId be a valid class allowed by the rules of
our technique and let m be a method declared in T. 

For all  f, g ∈ VarId:
     p.f ∈a parmAssigns(p, T, m) ⇔ p.f ∈a assigns(T, m)
Proof:
      p.f ∈a parmAssigns(p, T, m)
⇔ <  definition of parmAssigns of Figure 5.4  >
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      p.f ∈a { p.g | p.g ∈a assigns(T, m) }[p ← p]
⇔ <  definition of substitution  >
      p.f ∈a { p.g | p.g ∈a assigns(T, m) }
⇔ <  definition of set membership and ∈a  >
      p.f ∈a assigns(T, m) 

The next lemma proves that if a method U.n satisfies the validInvariant predicate, then so will
any super-calls made from U.n. This lemma is used to simplify the proof of Lemma 5.29 which is
used in the proof of the Valid Invariant Theorem 5.30. 

Lemma 5.28 (Super-Call Invariant): Let super.m(e) be a super-call allowed by our technique in some
method U.n. Let T1, T ∈ TypeId be valid classes allowed by the rules of our technique. 

If  T = whereMethodDecl(superOf(U), m)  ∧  T1 < T  ∧  validInvariant(T1, U, n), 
then  validInvariant(T1, T, m). 
Proof:
       T1 < T  ∧  validInvariant(T1, U, n) 
⇒ <  definition of validInvariant of Figure 5.5  >
       (∀ this.f ∈ accessed(invOf(TEnv(T1)) : this.f ∉a assigns(U, n) ) 
       ∧  (∀ this.f.g ∈ accessed(invOf(TEnv(T1)) : this.f.g ∉a assigns(U, n) ) 
⇒ <  from the T-SupCall rule of Figure 5.1 and since the call is made from U.n  >
       selfAssigns(this, T, m) ⊆a assigns(U, n) 
       ∧  (∀ this.f ∈ accessed(invOf(TEnv(T1)) : this.f ∉a assigns(U, n) ) 
       ∧  (∀ this.f.g ∈ accessed(invOf(TEnv(T1)) : this.f.g ∉a assigns(U, n) ) 
⇒ <  from the definition of ∈a and ⊆a  >
       (∀ this.f ∈ accessed(invOf(TEnv(T1)) : this.f ∉a selfAssigns(this, T, m) ) 
       ∧  (∀ this.f.g ∈ accessed(invOf(TEnv(T1)) : this.f.g ∉a selfAssigns(this, T, m) ) 
⇒ <  by the Self Assignments Lemma 5.26  >
       (∀ this.f ∈ accessed(invOf(TEnv(T1)) : this.f ∉a assigns(T, m) ) 
       ∧  (∀ this.f.g ∈ accessed(invOf(TEnv(T1)) : this.f.g ∉a assigns(T, m) ) 
⇒ <  definition of validInvariant in Figure 5.5  >
      validInvariant(T1, T, m) 

Our next lemma proves that if our technique allows a superclass method to be called, then that
method does not at any time during execution invalidate any of the subclass portions of the run-time
type invariant. 

Lemma 5.29 (Valid Subclass Invariant): Let rcvr.m(e) be a method call allowed by our technique in
some method U.n. Let T1, T ∈ TypeId be valid classes allowed by the rules of our technique. 
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If   rcvr.m(e) invokes method T.m  ∧  T1 < T, 
then  validInvariant(T1, T, m). 
Proof:
There are two cases, either method T.m is overridden or T.m is not overridden in any subclass of

T. 
Case 1: method m is not overridden in any subclass of T
This case handles self-calls, super-calls, and object-calls when method m is not overridden. 
      rcvr.m(e) invokes method T.m  ∧  T1 < T  ∧  ! isOverridden(T1, m)
⇒ <  since T.m is not overridden in T1 or in any superclass of T1 and by the definition of 
         allMethodsIn of Figure 5.6  >
      T1 < T  ∧  ! isOverridden(T1, m)  ∧  T.m ∈ allMethodsIn(superOf(T1))
⇒ <  by the Method Overriding Lemma 5.5  >
     noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) 
⇒ <  logic  >
     validInvariant(T1, T, m)
Case 2: T.m is overridden in some subclass of T
Since T.m is overridden, it can only be super-called; so the proof will be by induction on the

number of calls in a valid object-call segment that precedes the super-call of T.m. 
Basis: k = 1, i.e., <U.n, T::m> is a valid object-call segment. 
We split the proof into three cases depending on where T1 is relative to U. 
Basis Case 1:  U ≡ T1 < T 
      super.m(e) invokes method T.m  ∧  T1 ≡ U < T
⇒ <  the super-call of T::m must satisfy the okToSuperCall(U, T, m) predicate since that 
         predicate is an antecedent in the T-SupCall rule of Figure 5.1 and because the 
         super-call was made from method U.n  >
      okToSuperCall(U, T, m)  ∧  T1 ≡ U 
⇒ <  substituting T1 for U  >
      okToSuperCall(T1, T, m) 
⇒ <  definition of okToSuperCall in Figure 5.4  >
     validInvariant(T1, T, m)  ∧  validCalls(T1, T, m) 
⇒ <  logic  >
     validInvariant(T1, T, m) 
Basis Case 2:  U < T1 < T 
      super.m(e) invokes method T.m  ∧  U < T1 < T
⇒ <  the ability to directly super-call T.m from U.n, when U < T, means that T.m was not 
         overridden in any classes in the hierarchy between U and T, e.g., in T1  >
      U < T1 < T  ∧  ! isOverridden(T1, m)
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⇒ <  since T.m is not overridden in any classes between U and T and 
         by the definition of allMethodsIn of Figure 5.6  >
      U < T1 < T  ∧  ! isOverridden(T1, m)  ∧  T.m ∈ allMethodsIn(superOf(T1))
⇒ <  from the Method Overriding Lemma 5.5  >
     noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) 
⇒ <  logic  >
     validInvariant(T1, T, m) 
Basis Case 3:  T1 < U < T 
      super.m(e) invokes method T.m  ∧  T1 < U < T
⇒ <  The ability to directly object-call U.n, means that U.n was not overridden in any 
         subclass of U  >
      T1 < U < T  ∧  ! isOverridden(T1, n)
⇒ <  since U.n is not overridden in any subclass of U and by the definition of 
         allMethodsIn of Figure 5.6  >
      T1 < U < T  ∧  ! isOverridden(T1, n)  ∧  U.n ∈ allMethodsIn(superOf(T1))
⇒ <  from the Method Overriding Lemma 5.5  >
     T1 < U < T  ∧  noAddSideEffects(T1, U, n)  ∧  validInvariant(T1, U, n) 
⇒ <  logic  >
     T1 < U < T  ∧  validInvariant(T1, U, n) 
⇒ <  since, from the premise of the lemma, super.m(e) invokes T::m from U.n  >
     T = whereMethodDecl(superOf(U), m)  ∧  T1 < U < T  ∧  validInvariant(T1, U, n) 
⇒ <  by the Super-Call Invariant Lemma 5.28  >
      validInvariant(T1, T, m) 
Induction Step: Let k = N. 
The induction hypothesis asserts that 

If  super.m(e) invokes method T.m  ∧  T1 < T 
     ∧  k < N  ∧ <U1.n1, U2.n2, ... , U.n, T::m> is a valid object-call segment 
     with U.n the kth call in the chain,
then  validInvariant(T1, T, m). 

There are two cases, either U.n is a self-call or a super-call.
Induction Case 1:  U.n is a self-call 
If U.n is a self-call, then U.n can be object-called. Thus <U.n, T::m> is a valid object-call

segment. Hence, the proof is the same as given above for the Basis. 
Induction Case 2:  U.n is a super-call
Since U.n is a super-call, we start calculating from the induction hypothesis.
     super.m(e) invokes method T.m from U.n  ∧  T1 < T  ∧  validInvariant(T1, U, n) 
⇒ <  since super.m(e) invokes T.m from U.n  >
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     T = whereMethodDecl(superOf(U), m)  ∧  T1 < T  ∧  validInvariant(T1, U, n) 
⇒ <  by the Super-Call Invariant Lemma 5.28  >
      validInvariant(T1, T, m) 

We now prove the main theorem of this subsection; this theorem proves that the superclass
methods (that our technique allows to be executed) do not at any time during execution invalidate any
of the subclass portions of the run-time type invariant. Therefore, when the invariant of the static type
of the receiver is established during a super-call, the invariant of the run-time type of the receiver is
also established. 

Theorem 5.30 (Valid Invariant): Let U.n be the method being executed. Let D be the run-time type of
the current receiver. Let S ∈ State be the pre-state prior to the execution of U.n and let S’ ∈ State
be an intermediate state during the execution of U.n. 

If  D ≤ U  ∧  S<inv(D)>  ∧  S’ <inv(U)>,  
then  S’ <inv(D)>. 
Proof:
From the definition of inv in Figure 4.11, we know that 

(∀ T1, D ∈ TypeId :  D ≤ T1 ∧ S<inv(D)> ⇒ S<invOf(T1)> ). 
Thus the invariant of class D is only invalidated if there is a superclass of D with an invariant that

does not hold. 
From the Invariant Clause Lemma 5.1, we have that

S’ <inv(U)> ⇒ S’ <invOf(T1)> for all T1 such that D ≤ U ≤ T1. 
Therefore, we still need to show that 

S’ <invOf(T1)> = true for all T1 such that D ≤ T1 < U. 

     D ≤ T1 < U  ∧  S<inv(D)>  ∧  S’ <inv(U)>
⇒ <  the execution of U.n has been allowed by our technique, so the conclusion of the 
         Valid Subclass Invariant Lemma 5.29 must hold for U.n   >
     validInvariant(T1, U, n)  ∧  D ≤ T1 < U  ∧  S<inv(D)>  ∧  S’ <inv(U)>
⇒ <  definition of validInvariant in Figure 5.5  >
       (∀ this.f ∈ accessed(invOf(TEnv(T1)) : this.f ∉a assigns(U, n) ) 
       ∧  (∀ this.f.g ∈ accessed(invOf(TEnv(T1)) : this.f.g ∉a assigns(U, n) ) 
      ∧  D ≤ T1 < U  ∧  S<inv(D)>  ∧  S’ <inv(U)>
⇒ <  the fields assignable during U.n are not accessed by T1’s part of the invariant and 
         by the No Overlapping Assignable Fields Lemma 5.25, any side-effects to fields of the 
         object referenced by the formal parameter do not change the state of the receiver  >
      S<invOf(T1)> = S’ <invOf(T1)>  ∧  D ≤ T1 < U  ∧  S<inv(D)>
⇒ <  since S<inv(D) ⇒ S<inv(T1)> by the Invariant Clause Lemma 5.1  >
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      S<invOf(T1)> = S’ <invOf(T1)>  ∧  D ≤ T1 < U  ∧  S<inv(T1)>
⇒ <  since S<inv(T1)> ⇒ S<invOf(T1)> from the definition of inv in Figure 4.11  >
      S<invOf(T1)> = S’ <invOf(T1)>  ∧  D ≤ T1 < U  ∧  S<invOf(T1)>
⇒ <  since S<invOf(T1)> and S<invOf(T1)> = S’ <invOf(T1)> hold  >
      S’ <invOf(T1)> 

5.2.4  The Soundness of Our Alias Control Technique

In this subsection, we first prove the Owner Aliasing Theorem that shows that our alias control
technique prevents any pair of owner variables visible in the same context from being aliases of the
same object. We then prove that our technique does not allow unexpected side-effects, i.e., the only
fields that change during execution of a method are those permitted by its assignable clause. 

5.2.4.1 The Owner Aliasing Theorem

Lemma 5.31 (Self Owner Aliasing): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in T.m. Let vr be a variable accessible at that same point
in T.m. Let S ∈ State be an intermediate state also at the same point during the execution of T.m. 

If  !(this ≡ vr)  ∧  typeOf(vr) ∈ TypeId  ∧  isOwner(vr, T, O)  ∧  assigns(T, m) ≠ { }, 
then  S<this != vr>.
Proof:
      !(this ≡ vr)  ∧  typeOf(vr) ∈ TypeId  ∧  isOwner(vr, T, O)  ∧  assigns(T, m) ≠ { }
⇒ <  definition of isOwner in Figure 5.5  >
      !(this ≡ vr)  ∧  ( vr ∈ O  ∨  vr ≡ this  ∨  vr ≡ p  ∨  isPivot(vr, T) )
       ∧  typeOf(vr)  ∧  assigns(T, m) ≠ { }
⇒ <  logic  >
      !(this ≡ vr)  ∧  ( vr ∈ O  ∨  vr ≡ p  ∨  isPivot(vr, T) )
       ∧  typeOf(vr)  ∧  assigns(T, m) ≠ { }
⇒ <  by the Self New Object Aliasing Lemma 5.14 (when vr ∈ O), 
         by the Actual Parameter Aliasing Lemma 5.24 (when vr ≡ p), and 
         by the Self Pivot Aliasing Lemma 5.11 (when isPivot(vr, T))  >
      S<this != vr>

Lemma 5.32 (Parameter Owner Aliasing): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in T.m. Let vr be a variable accessible at that same point
in T.m. Let S ∈ State be an intermediate state also at the same point during the execution of T.m. 
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If  !(p ≡ vr)  ∧  typeOf(p) ∈ TypeId  ∧  typeOf(vr) ∈ TypeId  ∧  isOwner(vr, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<p != null>  ∨  S<vr != null>), 
then  S<p != vr>.
Proof:
      !(p ≡ vr)  ∧  typeOf(p) ∈ TypeId  ∧  typeOf(vr) ∈ TypeId  ∧  isOwner(vr, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<p != null>  ∨  S<vr != null>), 
⇒ <  definition of isOwner in Figure 5.5  >
      !(p ≡ vr)  ∧  ( vr ∈ O  ∨  vr ≡ this  ∨  vr ≡ p  ∨  isPivot(vr, T) )
      ∧  typeOf(p) ∈ TypeId  ∧  typeOf(vr) ∈ TypeId 
      ∧  assigns(T, m) ≠ { }  ∧  (S<p != null>  ∨  S<vr != null>), 
⇒ <  logic  >
      !(p ≡ vr)  ∧  ( vr ∈ O  ∨  vr ≡ this  ∨  isPivot(vr, T) )
      !∧  typeOf(p) ∈ TypeId  ∧  typeOf(vr) ∈ TypeId 
      ∧  assigns(T, m) ≠ { }  ∧  (S<p != null>  ∨  S<vr != null>), 
⇒ <  by the Parameter New Object Aliasing Lemma 5.15 (when vr ∈ O) and 
         by the Actual Parameter Aliasing Lemma 5.24 (when vr ≡ this or isPivot(vr, T))  >
      S<p != vr>

Lemma 5.33 (Pivot Owner Aliasing): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in T.m. Let vr1 and vr2 be variables accessible at that same
point in T.m. Let S ∈ State be an intermediate state also at the same point during the execution of
T.m. 

If  !(vr1 ≡ vr2)  ∧  isPivot(vr1, T)  ∧  typeOf(vr2) ∈ TypeId  ∧  isOwner(vr2, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>), 
then  S<vr1 != vr2>.
Proof:
      !(vr1 ≡ vr2)  ∧  isPivot(vr1, T)  ∧  typeOf(vr2) ∈ TypeId  ∧  isOwner(vr2, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>), 
⇒ <  definition of isOwner in Figure 5.5  >
      !(vr1 ≡ vr2)  ∧  isPivot(vr1, T)  ∧  ( vr2 ∈ O  ∨  vr2 ≡ this  ∨  vr2 ≡ p  ∨  isPivot(vr2, T) )
      ∧  typeOf(vr2) ∈ TypeId  ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>) 
⇒ <  by the Owner Variable Aliasing Lemma 5.12 (when vr2 ∈ O), 
         by the Actual Parameter Aliasing Lemma 5.24 (when vr2 ≡ this or vr2 ≡ p), and 
         by the Pivot Fields Aliasing Lemma 5.13 (when isPivot(vr2, T))  >
      S<vr1 != vr2>
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Lemma 5.34 (New Owner Aliasing): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. Let O be the set of owner variables from the T-rules
of Figures 5.1 - 5.3 at an arbitrary point in T.m. Let vr1 and vr2 be variables accessible at that same
point in T.m. Let S ∈ State be an intermediate state also at the same point during the execution of
T.m. 

If  !(vr1 ≡ vr2)  ∧  vr1 ∈ O  ∧  typeOf(vr2) ∈ TypeId  ∧  isOwner(vr2, T, O), 
then  S<vr1 != vr2>.
Proof:
      !(vr1 ≡ vr2)  ∧  vr1 ∈ O  ∧  typeOf(vr2) ∈ TypeId  ∧  isOwner(vr2, T, O)
⇒ <  definition of isOwner in Figure 5.5  >
      !(vr1 ≡ vr2)  ∧  vr1 ∈ O  ∧  typeOf(vr2) ∈ TypeId 
      ∧  ( vr2 ∈ O  ∨  vr2 ≡ this  ∨  vr2 ≡ p  ∨  isPivot(vr2, T) )
⇒ <  by the Owner Variable Aliasing Lemma 5.12 (when vr2 ∈ O or  isPivot(vr2, T)), 
         by the Self New Object Aliasing Lemma 5.14 (when vr2 ≡ this), and 
         by the Parameter New Object Aliasing Lemma 5.15 (when vr2 ≡ p)  >
      S<vr1 != vr2>

Theorem 5.35 (Owner Aliasing): Let T ∈ TypeId be a valid class allowed by the rules of our technique
and let m be a method declared in T. Let O be the set of owner variables from the T-rules of Figures
5.1 - 5.3 at an arbitrary point in T.m. Let vr1 and vr2 be variables accessible at that same point in
T.m. Let S ∈ State be an intermediate state also at the same point during the execution of T.m. 

If  !(vr1 ≡ vr2)  ∧  typeOf(vr1) ∈ TypeId  ∧  isOwner(vr1, T, O)
     ∧  typeOf(vr2) ∈ TypeId  ∧  isOwner(vr2, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>), 
then  S<vr1 != vr2>.
Proof:
      !(vr1 ≡ vr2)  ∧  typeOf(vr1) ∈ TypeId  ∧  typeOf(vr2) ∈ TypeId   
      ∧  isOwner(vr1, T, O)  ∧  isOwner(vr2, T, O)
      ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>) 
⇒ <  definition of isOwner in Figure 5.5  >
      !(vr1 ≡ vr2)  ∧  typeOf(vr1) ∈ TypeId  ∧  typeOf(vr2) ∈ TypeId 
       ∧  ( vr1 ∈ O  ∨  vr1 ≡ this  ∨  vr1 ≡ p  ∨  isPivot(vr1, T) )
       ∧  ( vr2 ∈ O  ∨  vr2 ≡ this  ∨  vr2 ≡ p  ∨  isPivot(vr2, T) )
       ∧  assigns(T, m) ≠ { }  ∧  (S<vr1 != null>  ∨  S<vr2 != null>) 
⇒ <  by the New Owner Aliasing Lemma 5.34 (when vr1 ∈ O),
         by the Self Owner Aliasing Lemma 5.31 (when vr1 ≡ this),
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         by the Parameter Owner Aliasing Lemma 5.32 (when vr1 ≡ p),
         and by the Pivot Owner Aliasing Lemma 5.33 (when isPivot(vr1, T))  >
      S<vr1 != vr2>

The above theorem shows that if a method has side-effects, then no pair of owner variables, visible
in the same context, can be aliases for the same object. Since side-effects can only be initiated through
an object-call with an owner variable as the receiver, this theorem also means that, when the classes
and methods satisfy our rules, verifiers can reason locally about aliasing and side-effects using the
owner variable names. 

5.2.4.2 The Assignable Clause Theorem
The first two lemmas in this section prove that calls at the end of a valid call chain have to satisify

the assignable clause of the first call in the chain.

Lemma 5.36 (Self Assignable Chain): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. 

If  <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid object-call segment for 0 ≤ k, 
then  selfAssigns(this, Uk, nk) ⊆a assigns(T, m) 
Proof:
The proof will be by induction on the number of self-calls and super-calls in a valid object-call

segment following the object-call of T.m. 
Basis: k = 0, i.e., T.m makes no super-calls or self-calls. 
      <T.m> is a valid object-call segment
⇒ <  by the Self Assignments Lemma 5.26 and the definition of ⊆a in Figure 5.6  >
      selfAssigns(this, T, m) ⊆a assigns(T, m)
Induction Step: 
The induction hypothesis asserts that 

If  k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid object-call segment, 
then  selfAssigns(this, Uk, nk) ⊆a assigns(T, m). 

We now prove that the conclusion of the lemma holds when there are N self-calls or super-calls
following the object-call of T.m. 

      k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk, U.n> is a valid object-call segment
⇒ <  by the induction hypothesis  > 
      k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk, U.n> is a valid object-call segment
      ∧  selfAssigns(this, Uk, nk) ⊆a assigns(T, m)
⇒ <  by the T-Call and T-SupCall rule of Figure 5.1 since U.n is a super-call or self-call 
         from Uk.nk  >
      selfAssigns(this, U, n) ⊆a assigns(Uk, nk)
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      ∧  selfAssigns(this, Uk, nk) ⊆a assigns(T, m)
⇒ <   by the Self Assignments Lemma 5.26  >
      selfAssigns(this, U, n) ⊆a selfAssigns(this, Uk, nk)
      ∧  selfAssigns(this, Uk, nk) ⊆a assigns(T, m)
⇒ <  from the definition in Figure 5.6, ⊆a is transitive  >
      selfAssigns(this, U, n) ⊆a assigns(T, m)

Lemma 5.37 (Parameter Assignable Chain): Let T ∈ TypeId be a valid class allowed by the rules of our
technique and let m be a method declared in T. 

If  <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain with 0 ≤ k 
       ∧  the formal parameter references the same object in each call, 
then  parmAssigns(p, Uk, nk) ⊆a parmAssigns(p, T, m) 
Proof:
The proof will be by induction on the number of calls in a valid call chain following the call of

T.m. 
Basis: k = 0, i.e., T.m makes no super-calls or self-calls. 
      <T.m> is a valid object-call segment
⇒ <   by the definition of ⊆a in Figure 5.6  >
      parmAssigns(p, T, m) ⊆a parmAssigns(p, T, m)
Induction Step: 
The induction hypothesis asserts that 

If  k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
     ∧  the formal parameter references the same object in each call, 
then  parmAssigns(p, Uk, nk) ⊆a parmAssigns(p, T, m). 

We now prove that the conclusion of the lemma holds when there are N calls following the call of
T.m. 

      k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk, U.n> is a valid object-call segment
⇒ <  by the induction hypothesis  > 
      k < N  ∧  <T.m, U1.n1, U2.n2, ... , Uk.nk, U.n> is a valid object-call segment
      ∧  parmAssigns(p, Uk, nk) ⊆a parmAssigns(p, T, m)
⇒ <  by the T-Call and T-SupCall rule of Figure 5.1 when U.n is called from Uk.nk  >
      parmAssigns(p, U, n) ⊆a assigns(Uk, nk)
      ∧  parmAssigns(p, Uk, nk) ⊆a parmAssigns(p, T, m)
⇒ <   by the Parameter Field Assignments Lemma 5.27  >
      parmAssigns(p, U, n) ⊆a parmAssigns(p, Uk, nk)
      ∧  parmAssigns(p, Uk, nk) ⊆a parmAssigns(p, T, m)
⇒ <  ⊆a is transitive from its definition in Figure 5.6 and because p references the same object  >
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      parmAssigns(p, U, n) ⊆a  parmAssigns(p, T, m)

The lemmas in the rest of this subsection prove that our type checking rules enforce the
assignable clause of the method specification; they culminate in the proof of the Assignable Clause
Theorem 5.43. 

Lemma 5.38: Let T ∈ TypeId be a valid class allowed by the rules of our technique and let m be a
method declared in T. Let S ∈ State be the pre-state prior to the execution of T.m and let S’ ∈ State
be an intermediate state during the execution of T.m. Let D be the run-time type of the receiver of
a call to T.m. 

For all  f ∈ allFieldsIn(D):
If  this.f ∉a assigns(T, m)  ∧  f is a concrete field
     ∧  T.m does not directly or indirectly make an object-call, 
then  S<this.f> = S’ <this.f>.  
Proof:
Since T.m does not directly or indirectly make an object-call, every valid call chain starting with

T.m must be a valid object-call segment. Thus the proof will be by induction on the length of an
arbitrary valid object-call segment starting with the object-call of T.m. 

Basis: k = 0, i.e., T.m makes no calls. 
When there are no self-calls or super-calls, only assignment statements in the body of method T.m

can change the state of this.f, i.e., during the execution of T.m, there are no other places where
assignments to fields of the receiver can occur because, in our technique, assignment to fields of
objects other than the receiver are not allowed. However, an assignment to this.f requires that
this.f ∈a assigns(T, m) when the target is a field since this requirement is an antecedent in all of the
rules for assignment given in Figure 5.2. Therefore, this.f cannot be the target of an assignment in
T.m since this.f ∉a assigns(T, m). Hence, S<this.f> = S’ <this.f>. 

Induction Step: Let k = N. 
The induction hypothesis asserts that 

If  this.f ∉a assigns(T, m)  ∧  T.m does not directly or indirectly make an object-call 
     ∧  f is a concrete field
     ∧  k < N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid object-call segment, 
then  S<this.f> = S’ <this.f>. 

      this.f ∉a assigns(T, m)  ∧  f is a concrete field 
       ∧  k < N  ∧ <T.m, U1.m1, U2.m2, ... , Uk.nk, U.n> is a valid object-call segment
⇒ <  by the Self Assignable Chain Lemma 5.36  >
      selfAssigns(this, U, n) ⊆a assigns(T, m)  ∧  this.f ∉a assigns(T, m)  ∧  f is a concrete field 
       ∧  k < N  ∧ <T.m, U1.m1, U2.m2, ... , Uk.nk, U.n> is a valid object-call segment 
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⇒ <  from the definition of ∈a and ⊆a  >
      this.f ∉a selfAssigns(this, U, n)  ∧  f is a concrete field 
       ∧  k < N  ∧ <T.m, U1.m1, U2.m2, ... , Uk.nk, U.n> is a valid object-call segment, 
⇒ <  by the same reasoning as the basis, there are no assignments to this.f in U.n and by the 
         induction hypothesis, none of the calls up through Uk.nk in the object-call segment 
         can assign to this.f  >
      S<this.f> = S’ <this.f> 

Lemma 5.39 (Assignable Concrete Fields): Let D, T ∈ TypeId be valid classes allowed by the rules of
our technique and let m be a method declared in T. Let S ∈ State be the pre-state prior to the
execution of T.m and let S’ ∈ State be an intermediate state during the execution of T.m. Let D be
the run-time type of the receiver of a call to T.m. 

For all  f ∈ allFieldsIn(D):
If  this.f ∉a assigns(T, m)  ∧  f is a concrete field, 
then  S<this.f> = S’ <this.f>.  
Proof:
We know from Lemma 5.38 that the conclusion holds if T.m does not directly or indirectly make

an object-call. Therefore, what is left to prove is that the conclusion holds when T.m makes object-
calls. However, by the Self Callback Lemma 5.21, the only way an object-call can assign to fields of
the current receiver is through a this-argument call, i.e., an object-call that passes this as the actual
parameter corresponding to a formal parameter of the called method. 

The proof will be by contradiction, i.e., we will prove that no valid call chain can violate this
lemma. We can reason, without loss of generality, about call chains that start with the call of T.m and
contain only one this-argument call since any valid call chain that could possibly violate this lemma
must have such a suffix. Therefore, the call chain will start with a call of T.m followed by a this-
argument call and end with a call that violates the lemma’s conclusion. Also, because our technique
does not allow assignment to fields of objects other than the receiver, this call chain must end with an
object-call segment that assigns to this.f. 

We now prove that the premise of the lemma this.f ∉a assigns(T, m) does not hold when the
conclusion is false. We start calculating from the negation of the lemma’s conclusion. 

      S<this.f> ≠ S’ <this.f> 
⇒ <  since S<this.f> ≠ S’ <this.f>, there must be a call, at the end of the chain, to a 
         method U.n such that U.n has permission to assign to this.f  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U, n)
      ∧  <T.m,  ... , U.n> is a valid call chain
⇒ <  let T1.m1 be a this-argument call from T.m  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U, n)
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      ∧  <T.m, T1.m1,  ... , U.n> is a valid call chain
⇒ <  since T1.m1 is a this-argument call from T.m, it must satisfy parmAssigns of the 
         T-Call rule of Figure 5.1 for actual parameter this  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U, n)
      ∧  <T.m, T1.m1,  ... , U.n> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
⇒ <  some call in the chain between T1.m1 and U.n (say U1.n1) has to make an object-call 
         on its formal parameter since the call chain has to end with a valid object-call segment
         that assigns to this.f  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U, n)  ∧  U1.n1 is an object-call on p 
      ∧  <T.m, T1.m1, ... , Tk.mk, U1.n1, ... , U.n> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
⇒ <  by Lemma 5.38, this.f ∈a assigns(U1, n1)  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1)  ∧  U1.n1 is an object-call on p 
      ∧  <T.m, T1.m1, ... , Tk.mk,  U1.n1> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
⇒ <  since U1.n1 is an object-call on p from Tk.mk, it must satisfy selfAssigns of the 
         T-Call rule of Figure 5.1 for receiver parameter p  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1)  ∧  U1.n1 is an object-call on p 
      ∧  <T.m, T1.m1, ... , Tk.mk,  U1.n1> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
      ∧  selfAssigns(p, U1, n1) ⊆a assigns(Tk, mk)  
⇒ <  by the Parameter Field Assignments Lemma 5.27  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1)  ∧  U1.n1 is an object-call on p 
      ∧  <T.m, T1.m1, ... , Tk.mk, U1.n1> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
      ∧  selfAssigns(p, U1, n1) ⊆a parmAssigns(p, Tk, mk)  
⇒ <  by the Parameter Assignable Chain Lemma 5.37 since each call between 
        T1.m1 and Tk.mk must pass p as the formal parameter 
         so p will be an alias of the receiver object from method T.m >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1)  ∧  U1.n1 is an object-call on p 
      ∧  <T.m, T1.m1, ... , Tk.mk, U1.n1> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
      ∧  selfAssigns(p, U1, n1) ⊆a parmAssigns(p, Tk, mk)  
      ∧  parmAssigns(p, Tk, mk) ⊆a parmAssigns(p, T1, m1)  
⇒ <  substitute this for p, since all of the p’s in the different contexts are aliases of the 
         receiver in T.m with respect to the program state during the call of U1.n1 >
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      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1)
      ∧  <T.m, T1.m1, ... , Tk.mk, U1.n1> is a valid call chain
      ∧  parmAssigns(this, T1, m1) ⊆a assigns(T, m)  
      ∧  selfAssigns(this, U1, n1) ⊆a parmAssigns(this, Tk, mk)  
      ∧  parmAssigns(this, Tk, mk) ⊆a parmAssigns(this, T1, m1)  
⇒ <  from the definition (Figure 5.6), ⊆a is transitive  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(U1, n1) 
      ∧  selfAssigns(this, U1, n1) ⊆a assigns(T, m)  
⇒ <  by the Self Assignments Lemma 5.26  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a selfAssigns(this, U1, n1) 
      ∧  selfAssigns(this, U1, n1) ⊆a assigns(T, m)  
⇒ <  from the definition of ∈a and ⊆a in Figure 5.6  >
      S<this.f> ≠ S’ <this.f>  ∧  this.f ∈a assigns(T, m)
⇒ <  the second conjunct contradicts the assumption that this.f ∉a assigns(T, m) 
         from the premise of the lemma  >
      false
So the conclusion of the lemma must hold. 

Lemma 5.40 (Assignable Pivot Objects): Let D, T ∈ TypeId be valid classes allowed by the rules of our
technique and let m be a method declared in T. Let S ∈ State be the pre-state prior to the execution
of T.m and let S’ ∈ State be an intermediate state during the execution of T.m. Let D be the run-
time type of the receiver of a call to T.m. 

For all  f ∈ allFieldsIn(D)  ∧  g ∈ VarId: 
If  D < T  ∧  this.f.g ∉a assigns(T, m)  ∧  f is a concrete field, 
then  S<this.f.g> = S’ <this.f.g>.  
Proof:
In our technique, to change the value of this.f.g, this.f must be a pivot field in the enclosing

class. Our restrictions on assignment statements (Figure 5.2) require that a pivot field contain a
reference to a newly created object or null so it is guaranteed to own the object it references. Also,
only one variable in the program state can be the first to contain a reference to a newly created pivot
object, so any other variables that reference a pivot object are read-only, i.e., cannot be used to initiate
changes. That is, the pivot object referenced by this.f can only be changed through an object-call
invoked on this.f or indirectly through an object-call if this.f is passed as an argument to a
method with permission to modify p.g. Thus our technique allows a pivot object to be aliased, but
only the owner of that pivot object can be used to initiate changes. 

Our requirement that changes to the state of a pivot object only be done through its owner variable
(pivot field) is analogous to our restriction on direct assignment to fields of the receiver, i.e., only
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methods of the object containing a concrete field can directly assign to that field and, similarly, only
methods of the object containing a pivot field can change the pivot object it references. 

Therefore, this lemma can be proven using reasoning analogous to the proof of the Assignable
Concrete Fields Lemma 5.39. That is, we can consider an object-call that is allowed to change
this.f.g to be analogous to an assignment to this.f.g since such calls can only occur in methods
of the object containing pivot field this.f. Note, however, that the proof has to also handle the
situation where a pivot object is modified through a formal parameter of an object-call, but this part of
the proof is analogous to the proof of the case of a this-argument call given in Lemma 5.39.
Furthermore, we do not have to be concerned about a method initiating changes to one object and
inadvertantly changing the state of a different object (by the Owner Aliasing Theorem 5.35 and by the
No Overlapping Assignable Fields Lemma 5.25). 

In our technique, g in the lemma must be a model field because concrete fields of objects other
than the receiver are not accessible (see the Java-C syntax of variable references in Figure 4.5 and our
assumptions in subsection 1.6.6). Furthermore, this.f.g must be a member of a public data group,
say this.G, so this.f is a pivot field and so this.G can be listed in the assignable clause since
concrete fields have protected visibility and cannot be mentioned in a public assignable clause (they
are not be in scope). This restriction is further ensured by the JML-C syntax of Figure 4.6, i.e., the
syntax does not allow this.f.g to be listed in an assignable clause. 

Because g is a model field, our technique also has to ensure that this lemma holds for model fields.
In particular, a model field must be allowed to change whenever any of the concrete fields that
determine its value change; this requirement is formalized in the validAssignable, validRepresents, and
admissibleRep predicates of Figure 5.7. Predicate validAssignable requires that whenever any concrete
member of a data group is assignable, then that data group (i.e. model field) must also be assignable.
To be sound, our technique also has to ensure that all concrete fields that determine the value of a
model field g are members of g’s data group; this requirement is formalized in the validRepresents
predicate that requires that all model fields satisfy the admissibleRep predicate, i.e., contain all
concrete fields accessed by the right hand side of the model field’s represents clause (the details are
used in the proof of the Assignable Model Fields Lemma 5.41). 

Note also that we assume that the value of a model field is well-defined (see assumptions in
subsection 1.6.6), i.e., the right hand side of a model field’s represents clause must be an expression
that, when evaluated, terminates and yields a value; also, this expression must not have side-effects. 

Lemma 5.41 (Assignable Model Fields): Let D, T ∈ TypeId be valid classes allowed by the rules of our
technique and let m be a method declared in T. Let S ∈ State be the pre-state prior to the execution
of T.m and let S’ ∈ State be an intermediate state during the execution of T.m. Let D be the run-
time type of the receiver of a call to T.m. 

For all  g ∈ allFieldsIn(T): 
If  D < T  ∧  this.g ∉a assigns(T, m)  ∧  g is a model field, 
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then  S<this.g> = S’ <this.g>.  
Proof:
The value of a model field this.g depends on the values of the fields accessed in its represents

clause. What we have to show is that none of the concrete fields that this.g depends on are
assignable in T.m when this.g ∉a assigns(T, m). The variable references allowed in the right side of
the represents clause must have the form this.f or this.x.y (see the syntax of the represents
clause in Figure 4.6). Furthermore, f can be a model field or a concrete field, but x must be a concrete
field and y a model field (see the restrictions in Figure 3.10 and explained in subsections 3.3.3 and
3.3.4). Therefore, suppose this.f and this.x.y are accessed by the represents clause of this.g.
It is suffices to show that these fields are not assignable in T.m. 

      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
⇒ <  all valid classes have to satisfy validAssignable of Figure 5.7  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  validAssignable(T)
⇒ <  definition of validAssignable of Figure 5.7  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ m ∈ setOfMethodsIn(T), g ∈ allFieldsIn(T) : 
               (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) )
⇒ <  since m ∈ setOfMethodsIn(T) and g ∈ allFieldsIn(T)  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
⇒ <  all valid classes have to satisfy validRepresents of Figure 5.7  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
      ∧  validRepresents(T)
⇒ <  definition of validRepresents of Figure 5.7  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
      ∧  (∀ g ∈a setOfFieldsIn(T) :  !isModelField(lookupField(T, g)) ∨  admissibleRep(T, g) ) 
⇒ <  since g ∈a setOfFieldsIn(T) and g is a model field  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
      ∧  admissibleRep(T, g) 
⇒ <  definition of admissibleRep of Figure 5.7  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
      ∧  (∀ this.f ∈ accessed(repOf(lookupField(T, g)) :  g ∈ inOf(lookupField(T, f)) )
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      ∧  (∀ this.f.x ∈ accessed(repOf(lookupField(T, g)) : (f.x, g) ∈ mapsOf(lookupField(T, f)) )
⇒ <  since this.x.y, this.f ∈ accessed(repOf(lookupField(T, g))), by the last two 
         conjuncts and the definition of datagroupOf in Figure 5.6  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  (∀ vr ∈a assigns(T, m) :  vr ∉a datagroupOf(T, g) ∨ this.g ∈a assigns(T, m) ) 
      ∧  this.x.y, this.f ∈a datagroupOf(T, g) 
⇒ <  the second conjunct is false unless this.x.y, this.f ∉a assigns(T, m)  >
      this.g ∉a assigns(T, m)  ∧  this.x.y, this.f ∈ accessed(repOf(lookupField(T, g)))
      ∧  this.x.y, this.f ∉a assigns(T, m) 
      ∧  this.x.y, this.f ∈a datagroupOf(T, g) 
⇒ <  logic  >
      this.x.y, this.f ∉a assigns(T, m) 

Lemma 5.42 (Assignable Parameter Fields): Let D, T ∈ TypeId be valid classes allowed by the rules of
our technique and let m be a method declared in T. Let S ∈ State be the pre-state prior to the
execution of T.m and let S’ ∈ State be the post-state after the execution of T.m. Let D be the run-
time type of the receiver of a call to T.m. 

For all  g ∈ allFieldsIn(T): 
If  D < T  ∧  p.g ∉a assigns(T, m)  ∧  g is a model field, 
then  S<p.g> = S’ <p.g>.  
Proof:
The proof will be by contradiction, i.e., we will prove that no valid call chain can violate this

lemma. We can reason, without loss of generality, about call chains that start with the call of T.m and
contain only one object-call on the formal parameter p since any valid call chain that changes the state
of p must have such a suffix. Therefore, the call chain will start with a call of T.m and end with an
object-call on p to a method that changes g. 

We now prove that the premise of the lemma p.g ∉a assigns(T, m) does not hold when the
conclusion is false. We start calculating from the negation of the lemma’s conclusion. 

      S<p.g> ≠ S’ <p.g> 
⇒ <  since S<p.g> ≠ S’ <p.g>, there must be an object-call on p, at the end of a chain, to a 
         method U.n such that U.n has permission to assign to this.g (from the Assignable 
         Model Fields Lemma 5.41)   >
      S<p.g> ≠ S’ <p.g>  ∧  U.n is an object-call on p  
      ∧  <T.m, T1.m1, ... , Tk.mk, U.n> is a valid call chain
      ∧  this.g ∈a assigns(U, n)  ∧  selfAssigns(p, U, n) ⊆a assigns(Tk, mk)
⇒ <  in order for the parameter in Tk.mk to reference the same object as in T.m, 
        p must be passed to each call between T1.m1 and Tk.mk; therefore, by the 
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        Parameter Assignable Lemma 5.37  >
      S<p.g> ≠ S’ <p.g>  ∧  U.n is an object-call on p  
      ∧  <T.m, T1.m1, ... , Tk.mk, U.n> is a valid call chain
      ∧  this.g ∈a assigns(U, n)  ∧  selfAssigns(p, U, n) ⊆a assigns(Tk, mk)
      ∧  parmAssigns(p, Tk, mk) ⊆a assigns(T, m)  
⇒ <  by Parameter Field Assignments Lemma 5.27  >
      S<p.g> ≠ S’ <p.g>  ∧  U.n is an object-call on p  
      ∧  <T.m, T1.m1, ... , Tk.mk, U.n> is a valid call chain
      ∧  this.g ∈a assigns(U, n)  ∧  selfAssigns(p, U, n) ⊆a parmAssigns(p, Tk, mk)
      ∧  parmAssigns(p, Tk, mk) ⊆a assigns(T, m)  
⇒ <  since all the p’s reference the same object and by the transitivity of ⊆a   >
      S<p.g> ≠ S’ <p.g>  ∧  U.n is an object-call on p  
      ∧  <T.m, T1.m1, ... , Tk.mk, U.n> is a valid call chain
      ∧  this.g ∈a assigns(U, n)  ∧  selfAssigns(p, U, n) ⊆a assigns(T, m)  
⇒ <  by Self Assignments Lemma 5.26  >
      S<p.g> ≠ S’ <p.g>  ∧  U.n is an object-call on p  
      ∧  <T.m, T1.m1, ... , Tk.mk, U.n> is a valid call chain
      ∧  this.g ∈a selfAssigns(this, U, n)  ∧  selfAssigns(p, U, n) ⊆a assigns(T, m)  
⇒ <  since the p in T.m and this in U.n reference the same object  >
      S<p.g> ≠ S’ <p.g>  ∧  p.g ∈a assigns(T, m)  
⇒ <  the second conjunct contradicts the assumption that p.g ∉a assigns(T, m) 
         from the premise of the lemma   >
       false
So the conclusion of the lemma must hold. 

Theorem 5.43 (Assignable Clause): Let D, T ∈ TypeId be valid classes allowed by the rules of our
technique and let m be a method declared in T. Let S ∈ State be the pre-state prior to the execution
of T.m and let S’ ∈ State be the post-state after the execution of T.m. Let D be the run-time type
of the receiver of a call to T.m. Let vr be a directly or indirectly declared field accessible in class
T’s specification or in T.m’s method body. 

If  vr ∉a assigns(T, m), 
then  S<vr> = S’ <vr>.  
Proof:
This theorem follows from the Assignable Concrete Fields Lemma 5.39, the Assignable Pivot

Objects Lemma 5.40, the Assignable Model Fields Lemma 5.41, and the Assignable Parameter Fields
Lemma 5.42 since these lemmas cover the possible accessible fields (vr) that are assignable in T.m. 
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5.2.5  Additional Side-Effects Theorem

In this subsection, we prove that our technique does not allow calls to superclass methods that may
make downcalls to methods with additional side-effects, i.e., methods with permission to change
subclass fields. As explained previously in subsection 2.2.3, without super-class code, it is not possible
to reason about the state of these subclass fields after such super-calls. Furthermore, the super-class
specification cannot say anything about the state of these subclass fields since subclass fields are not in
scope. 

Lemma 5.44 (Subclass Side-Effects): Let rcvr.m(e) be a self-call or super-call allowed by our
technique in some method U.n. Let T1, T, U ∈ TypeId be valid classes allowed by the rules of our
technique. 

If T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 < U  ∧  noAddSideEffects(T1, U, n), 
then  noAddSideEffects(T1, T, m). 
Proof:
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 < U  ∧  noAddSideEffects(T1, U, n)
⇒ <  logic  >
      noAddSideEffects(T1, U, n)
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
           this.f ∉a assigns(U, n)  ∧  this.f.g ∉a assigns(U, n) ) 
⇒ <  from the T-Call and T-SupCall rules of Figure 5.1 and since the call is made from U.n  >
       selfAssigns(this, T, m) ⊆a assigns(U, n) 
       ∧  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
               this.f ∉a assigns(U, n)  ∧  this.f.g ∉a assigns(U, n) ) 
⇒ <  from the definition of ∈a and ⊆a  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
            this.f ∉a selfAssigns(this, T, m)  ∧  this.f.g ∉a selfAssigns(this, T, m) ) 
⇒ <  by the Self Assignments Lemma 5.26  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
           this.f ∉a assigns(T, m)  ∧  this.f.g ∉a assigns(T, m) ) 
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      noAddSideEffects(T1, T, m)

Lemma 5.45 (Self-Call Side-Effects): Let this.m(e) be a self-call allowed by our technique in some
method U.n. Let S ∈ State be the pre-state prior to the execution of this.m(e) and let S’ ∈ State
be the post-state after the execution of this.m(e). Let T, T1 ∈ TypeId be valid classes allowed by
the rules of our technique. 



247
If  T = whereMethodDecl(U, m)  ∧  T1 ≤ U  ∧  noAddSideEffects(T1, T, m), 
then  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
              S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Proof:
      T1 < T  ∧  noAddSideEffects(T1, T, m) 
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
          this.f ∉a assigns(T, m)  ∧  this.f.g ∉a assigns(T, m) ) 
⇒ <   by the Assignable Clause Theorem 5.43  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 

Lemma 5.46 (Object-Call Side-Effects): Let T1, T, U ∈ TypeId be valid classes allowed by the rules of
our technique. Let rcvr.m(e) be an object-call allowed by our technique in some method U.n. Let
S ∈ State be the pre-state prior to the execution of rcvr.m(e) and let S’ ∈ State be the post-state
after the execution of rcvr.m(e). 

If  T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
     ∧  noParmAddSideEffects(T1, U, n, T, m), 
then  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
              S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Proof:
If e is not this, then, by the Self Callback Lemma 5.21, the object-call cannot modify the state of

the receiver this. Therefore, we have to show that the lemma holds when e ≡ this. 
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
      ∧  noParmAddSideEffects(T1, U, n, T, m)  ∧  e ≡ this 
⇒ <  rcvr.m(e) must satisfy predicate parmAssigns for e ≡ this by the T-Call rule 
        of Figure 5.1  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
      ∧  noParmAddSideEffects(T1, U, n, T, m) 
      ∧  parmAssigns(this, T, m) ⊆a assigns(U, n)
⇒ <  definition of noParmAddSideEffects in Figure 5.5  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
       ∧  ( getParmType(T, m) ∉ TypeId  ∨  !(U ≤ getParmType(T, m))
              ∨  !( parmAssigns(this, T, m) ⊆a assigns(U, n) )
              ∨  (∀ f ∈ setOfFieldsIn(T1) :  p.f ∉a assigns(T, m) ) )
       ∧  parmAssigns(this, T, m) ⊆a assigns(U, n)
⇒ <  logic  >
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      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
       ∧  ( getParmType(T, m) ∉ TypeId  ∨  !(U ≤ getParmType(T, m))
              ∨  (∀ f ∈ setOfFieldsIn(T1) :  p.f ∉a assigns(T, m) ) )
       ∧  parmAssigns(this, T, m) ⊆a assigns(U, n)
⇒ <  if this can be passed as the formal parameter in rcvr.m(this), then the two 
         disjuncts about the type of the formal parameter of T.m must be false  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T1 ≤ U
       ∧  (∀ f ∈ setOfFieldsIn(T1) :  p.f ∉a assigns(T, m) ) 
       ∧  parmAssigns(this, T, m) ⊆a assigns(U, n)
⇒ <  by the Parameter Field Assignments Lemma 5.27  >
      (∀ f ∈ setOfFieldsIn(T1) :  p.f ∉a parmAssigns(p, T, m) ) 
       ∧  parmAssigns(this, T, m) ⊆a assigns(U, n)
⇒ <   by the Assignable Parameter Fields Lemma 5.42, p.f does not change during the 
          execution of T.m, and, by the Assignable Model Fields Lemma 5.41, all p.f.g do 
          not change since f.g would have to be a member of an assignable data group of T1 and 
          there are no such data groups by the first conjunct; so, by the second conjunct, 
          p is an alias for this in the pre-state and post-state of the call of T.m  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
          this.f ∉a assigns(U, n)  ∧  this.f.g ∉a assigns(U, n) )
⇒ <   by the Assignable Clause Theorem 5.43  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 

Lemma 5.47 (Valid Calls): Let T, T1 ∈ TypeId be valid classes allowed by the rules of our technique
and let m be a method declared in T. Let S ∈ State be the pre-state prior to the execution of T.m
and let S’ ∈ State be the post-state after the execution of T.m. 

If  T1 ≤ T  ∧  validCalls(T1, T, m), 
then  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
              S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Proof:
The proof will be by induction on the number of calls in a valid call chain following the call of

T.m. 
Basis: k = 0, i.e., T.m makes no method calls. 
Fields declared in T1 are not in scope since T1 < T; thus assignments to these fields and fields of

objects referenced by pivot fields declared in T1 cannot be initiated by T.m. Also, by the Actual
Parameter Aliasing Lemma 5.24, the formal parameter cannot be an alias of the receiver or reference a
pivot object of the receiver. Therefore, the only way T.m can change the state of a subclass field or
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object referenced by a subclass field is through a downcall; however, since T.m makes no calls, T.m
cannot change fields in T1. Therefore, 

      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Induction Step: Let k = N. 
The induction hypothesis asserts that 

If  T1 ≤ T  ∧  validCalls(T1, T, m) 
     ∧  k < N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
then  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
             S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 

      T1 < T  ∧  validCalls(T1, T, m) 
      ∧  k = N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
⇒ <  definition of validCalls in Figure 5.5  >
      T1 < T  ∧  validSelfCalls(T1, T, m)  ∧  validObjectCalls(T1, T, m)
      ∧  (∀ U::n ∈ calls(T, m) :  validCalls(T1, U, n) )
      ∧  k = N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
⇒ <  definition of validSelfCalls of Figure 5.5  >
      T1 < T  ∧  (∀ this.n ∈ calls(T, m) :  noAddSideEffects(T1, T, n) ) 
      ∧  validObjectCalls(T1, T, m)
      ∧  (∀ U::n ∈ calls(T, m) :  validCalls(T1, U, n) )
      ∧  k = N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
⇒ <  definition of validObjectCalls of Figure 5.5  >
      T1 < T  ∧  (∀ this.n ∈ calls(T, m) :  noAddSideEffects(T1, T, n) ) 
      ∧  (∀ U.n ∈ calls(T, m) :  noParmAddSideEffects(T1, T, m, U, n) ) 
      ∧  (∀ U::n ∈ calls(T, m) :  validCalls(T1, U, n) )
      ∧  k = N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain 
⇒ <  none of the self-calls can change fields in T1 (by the Self-Call Side-Effects Lemma 5.45), 
        none of the object-calls can change fields in T1 (by the Object-Call Side-Effects 
        Lemma 5.45), and none of the super-calls can change fields in T1 (by the induction 
        hypothesis)   >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 

Our next theorem proves that if our technique allows a superclass method to be called, then that
method does not at any time during execution modify fields of its run-time subclasses. However, note
that it does not say that the overriding method does not have permission to change subclass fields, but
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rather it says that our technique only allows a superclass method to be called, when that superclass
method does not make downcalls that modify subclass fields. This is important when superclass code
is unavailable as explained in subsection 2.2.3. 

Theorem 5.48 (Additional Side-Effects): Let D, T, T1 ∈ TypeId be valid classes allowed by the rules
of our technique. Let super.m(e) be a super-call allowed by our technique in some method U.n.
Let D be the run-time type of the current receiver. Let S ∈ State be the pre-state prior to the
execution of super.m(e) and let S’ ∈ State be an intermediate state during the execution of
super.m(e). 

If  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ T1 < T, 
then  (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
              S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) ). 
Proof:
The conclusion holds when T.m has no side-effects, so the proof will assume that T.m has side-

effects. Also, since any chain that changes the state of an object must begin with an object-call, we will
assume, without loss of generality, that U.n is an object-call (or can be self-called). 

There are two possibilities, either method T.m is overridden or T.m is not overridden in any
subclass of T. We will divide the proof into four cases, one case for when T.m is not overridden and
three cases for when T.m is overridden depending where T1 is in the hierarchy in relation to U. 

Case 1: method T.m is not overridden in any subclass of T
      T = whereMethodDecl(superOf(U), m)  ∧  D ≤ T1 < T  ∧  ! isOverridden(T1, m)
⇒ <  since T.m is not overridden in any subclass of T  >
      T = whereMethodDecl(superOf(U), m)  ∧  D ≤ T1 < T  ∧  ! isOverridden(T1, m)
      ∧  T.m ∈ allMethodsIn(superOf(T1))
⇒ <  from the Method Overriding Lemma 5.5  >
     noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) 
⇒ <  logic  >
     noAddSideEffects(T1, T, m)
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
           this.f ∉a assigns(T, m)  ∧  this.f.g ∉a assigns(T, m) ) 
⇒ <   by the Assignable Clause Theorem 5.43  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Case 2: T.m is overridden in some subclass of T  ∧  D ≤ T1 < U < T 
      D ≤ T1 < U < T
⇒ <  the ability to directly object-call U.n, when D < U, means that U.n was not 
         overridden in any subclass of U  >
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      D ≤ T1 < U < T  ∧  ! isOverridden(T1, n)
⇒ <  since U.n is not overridden in any subclass of U and by the definition of 
         allMethodsIn of Figure 5.6  >
      D ≤ T1 < U < T  ∧  ! isOverridden(T1, n)  ∧  U.n ∈ allMethodsIn(superOf(T1))
⇒ <  from the Method Overriding Lemma 5.5  >
     D ≤ T1 < U < T  ∧  noAddSideEffects(T1, U, n)  ∧  validInvariant(T1, U, n) 
⇒ <  logic  >
     D ≤ T1 < U < T  ∧  noAddSideEffects(T1, U, n)
⇒ <  since, from the premise of the lemma, super.m(e) invokes T::m from U.n  >
     T = whereMethodDecl(superOf(U), m)
     ∧  D ≤ T1 < U < T  ∧  noAddSideEffects(T1, U, n) 
⇒ <  by the Subclass Side-Effects Lemma 5.44  >
     noAddSideEffects(T1, T, m) 
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
          this.f ∉a assigns(T, m)  ∧  this.f.g ∉a assigns(T, m) ) 
⇒ <   by the Assignable Clause Theorem 5.43  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
Case 3:  T.m is overridden in some subclass of T  ∧  D ≤ U < T1 < T 
      D ≤ U < T1 < T
⇒ <  the ability to directly super-call T.m from U.n, when U < T, means that T.m was not 
         overridden in any classes in the hierarchy between U and T, e.g., in T1   >
      D ≤ U < T1 < T  ∧  ! isOverridden(T1, m)
⇒ <  since T.m is not overridden in any classes between U and T and 
         by the definition of allMethodsIn of Figure 5.6  >
      D ≤ U < T1 < T  ∧  ! isOverridden(T1, m)  ∧  T.m ∈ allMethodsIn(superOf(T1))
⇒ <  from the Method Overriding Lemma 5.5  >
     noAddSideEffects(T1, T, m)  ∧  validInvariant(T1, T, m) 
⇒ <  logic  >
     noAddSideEffects(T1, T, m) 
⇒ <  definition of noAddSideEffects in Figure 5.5  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId : 
          this.f ∉a assigns(T, m)  ∧  this.f.g ∉a assigns(T, m) ) 
⇒ <   by the Assignable Clause Theorem 5.43  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 
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Case 4:  T.m is overridden in some subclass of T  ∧  T1 ≡ U  ∧  D ≤ T1 < T
The super-call of T::m is made from U.n so the call must satisfy the okToSuperCall predicate

since that predicate is an antecedent in the T-SupCall rule of Figure 5.1; so we start calculating from
okToSuperCall(U, T, m) since U is the static type of the receiver in U.n. 

      okToSuperCall(U, T, m)  ∧  T1 ≡ U ∧  D ≤ T1 < T 
⇒ <  substituting T1 for U  >
      okToSuperCall(T1, T, m) ∧  D ≤ T1 < T 
⇒ <  definition of okToSuperCall in Figure 5.4  >
     validInvariant(T1, T, m)  ∧  validCalls(T1, T, m)  ∧  D ≤ T1 < T 
⇒ <  logic  >
     validCalls(T1, T, m)  ∧  D ≤ T1 < T 
⇒ <  by the Valid Calls Lemma 5.47  >
      (∀ f ∈ setOfFieldsIn(T1), g ∈ VarId :  
           S<this.f> = S’ <this.f> ∧ S<this.f.g> = S’ <this.f.g> ) 

5.2.6  Validity of Our Axioms and Inference Rules

In this subsection, we prove that the axioms of our verification logic are valid and that our
inference rules preserve validity. 

5.2.6.1 Validity defined
We say, for a given program, that an assertion A is valid, written |= A, if A is true for all program

states. Similarly, we say that an assertion A is derivable in a deductive system, written |- A, if A is
derivable from the axioms of that deductive system using its axioms and inference rules. An inference
rule preserves validity if assuming the antecedents are valid, then the consequent is also valid. Axioms
must always be valid. 

A Hoare triple {P} C {Q} is valid if and only if 
 (∀ S ∈ State : if  S<P>  ∧  {C, S} ⇒s S’, then  S’<Q> )

5.2.6.2 Validity of our axioms
To prove that our programming logic is sound, we must prove that all axioms are valid and that all

inference rules preserve validity. Lemmas 4.1 - 4.4 prove that our axioms are valid. 

Lemma 5.49 (A-Skip):  |= {P} ; {P}, i.e., the A-Skip axiom is valid

Proof:
Let S ∈ State. If S<P> = false or { ;, S} does not terminate, then the A-Skip axiom is trivially

valid. So assume S<P> = true and that { ;, S} terminates. We start calculating with the application of
the S-Skip rule of Figure 4.17. 

      S<P>  ∧  { ;, S} ⇒s S
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⇒ <  logic  >
      S<P> 

Lemma 5.50 (A-ExpAssign): |= {P[vr←e]} vr=e; {P}, i.e., the A-ExpAssign axiom is valid

Let S ∈ State. If S<P[vr←e]> = false or {vr=e;, S} does not terminate, then the A-ExpAssign
axiom is trivially valid. So assume S<P[vr←e]> = true and that {vr=e;, S} terminates. We start
calculating with the application of the S-ExpAssign rule of Figure 4.19.

      S<P[vr←e]>  ∧  [e, S] ⇒e v  ∧  [vr, S] ⇒lv  vLoc  ∧  {vr=e;, S} ⇒s S[vLoc := v]
⇒ < Substitution Theorem 5.9 >
      S<P[vr←e]> = S[vLoc := v]<P>  ∧  S<P[vr←e]>  ∧  {vr=e;, S} ⇒s S[vLoc := v] 
⇒ < S<P[vr←e]> = true >
      S[vLoc := v]<P> 

Lemma 5.51 (A-LocalDecl): |= {P[x←default(T)]} T x; {P} , i.e., the A-LocalDecl axiom is valid

Proof:
Let S ∈ State. If S<P[x←default(T)]> = false or {T x;, S} does not terminate, then the A-

LocalDecl axiom is trivially valid. So assume S<P[x←default(T)]> = true and that {T x;, S}
terminates. We start calculating with the application of the S-LocalDecl rule of Figure 4.19.

      S<P[x←default(T)]>  ∧  v = mkVal(default(T))  ∧  vLoc = loc(x, local)
      ∧  {T x;, S} ⇒s S[vLoc := v]
⇒ < default(T) is a literal and E-Literal rule of Figure 4.16 >
      [default(T), S] ⇒e v  ∧  S<P[x←default(T)]>  ∧  vLoc = loc(x, local)
      ∧  {T x;, S} ⇒s S[vLoc := v]
⇒ < L-VarId rule of Figure 4.16 >
      [default(T), S] ⇒e v  ∧  S<P[x←default(T)]>  ∧  [x, S] ⇒lv vLoc 
      ∧  {T x;, S} ⇒s S[vLoc := v]
⇒ < Substitution Theorem 5.9 >
      S<P[x←default(T)]> = S[vLoc := v]<P>  ∧  S<P[x←default(T)]>  
      ∧  {T x;, S} ⇒s S[vLoc := v]
⇒ < S<P[x←default(T)]> = true >
      S[vLoc := v]<P> 

Lemma 5.52 (A-Return): |= {P[\result←e]} return e; {P}, i.e., the A-Return axiom is valid

Proof:
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Let S ∈ State. If S<P[\result←e]> = false or {return e;, S} does not terminate, then the
A-Return axiom is trivially valid. So assume S<P[\result←e]> = true and that {return e;, S}
terminates. We start calculating with the application of the S-Return rule of Figure 4.19.

      S<P[\result←e]>  ∧  [e, S] ⇒e v  ∧  {return e;, S} ⇒s S[resultLoc := v]
⇒ < L-Result rule of Figure 4.16 >
       [\result, S] ⇒lv  resultLoc  ∧  S<P[\result←e]>  ∧  [e, S] ⇒e v 
      ∧  {return e;, S} ⇒s S[resultLoc := v]
⇒ < Substitution Theorem 5.9 >
      S<P[\result←e]> = S[resultLoc := v]<P>  ∧  S<P[\result←e]>
      ∧  {return e;, S} ⇒s S[resultLoc := v] 
⇒ < S<P[\result←e]> = true >
      S[resultLoc := v]<P> 

5.2.6.3 The inference rules preserve validity

Lemma 5.53 (A-If): The A-If rule of Figure 4.20 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {if (e) C1 else C2, S} does not terminate, then the A-If rule

is trivially valid. So assume S<P> = true and {if (e) C1 else C2, S} terminates. Since there are two
rules in the operational semantics for the if-statement, the proof requires two cases.

Case 1: suppose the application of the S-IfThen rule of Figure 4.17 terminates, i.e., S<e> = true
      S<P>  ∧  S<e>  ∧  {C1, S} ⇒s S’  ∧  {if (e) C1 else C2, S} ⇒s S’ 
⇒ < S<P> && S<e> = S<P && e> >
      S<P>  ∧  S<P && e>  ∧  {C1, S} ⇒s S’  ∧  {if (e) C1 else C2, S} ⇒s S’ 
⇒ <  |= {P && e} C1 {Q}, since its an antecedent of the A-If rule of Figure 4.20 >
      S’<Q> 

Case 2: suppose the application of the S-IfElse rule of Figure 4.17 terminates, i.e., S<e> = false
      S<P>  ∧  S<!e>  ∧  {C2, S} ⇒s S’  ∧  {if (e) C1 else C2, S} ⇒s S’ 
⇒ < S<P> && S<!e> = S<P && !e> >
      S<P>  ∧  S<P && !e>  ∧  {C2, S} ⇒s S’  ∧  {if (e) C1 else C2, S} ⇒s S’ 
⇒ <  |= {P && !e} C2 {Q}, since its an antecedent of the A-If rule of Figure 4.20 >
      S’<Q> 

Therefore, the A-If rule preserves validity whether the condition S<e> is true or false.
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Lemma 5.54 (A-Seq): The A-Seq rule of Figure 4.20 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {C1 C2, S} does not terminate, then the A-Seq rule is trivially

valid. So assume S<P> = true and {C1 C2, S} terminates. 
      S<P>  ∧  {C1 C2, S} ⇒s S’’ 
⇒ <  by the S-Seq rule of Figure 4.17 >
      S<P>  ∧  {C1, S} ⇒s S’  ∧  {C2, S’} ⇒s S’’  ∧  {C1 C2, S} ⇒s S’’ 
⇒ <  |= {P} C1  {Q}, since its an antecedent of the A-Seq rule of Figure 4.20 >
      S’<Q>  ∧  {C2, S’} ⇒s S’’  ∧  {C1 C2, S} ⇒s S’’ 
⇒ <  |= {Q} C1 {R}, since its an antecedent of the A-Seq rule of Figure 4.20 >
      S’’<R> 

Lemma 5.55 (A-Conseq): The A-Conseq rule of Figure 4.20 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {C, S} does not terminate, then the A-Conseq rule is trivially

valid. So assume S<P> = true and {C, S} terminates. 
      S<P>  ∧  {C, S} ⇒s S’  
⇒ <  |= P ⇒ P’, since its an antecedent of the A-Conseq rule of Figure 4.20 >
      S<P’>  ∧  {C, S} ⇒s S’  
⇒ <  |= {P’} C  {Q’}, since its an antecedent of the A-Conseq rule of Figure 4.20 >
      S’<Q’>  ∧  {C, S} ⇒s S’  
⇒ <  |= Q’ ⇒ Q, since its an antecedent of the A-Conseq rule of Figure 4.20 >
      S’<Q> 

Lemma 5.56 (A-Represents): The A-ModelRep and A-ExpRep rules of Figure 4.20 preserve validity

Proof:
Let S ∈ State. If S<P> = false or S<P> does not terminate, then the A-ModelRep and A-ExpRep

rules are trivially valid. So assume S<P> = true and S<P> terminates. We start calculating from the
antecedents of these rules (which are the same). 

      S<P>  ∧  represents this.F <- e;  
⇒ <  by the semantics of the represents clause  >
      S<P>  ∧  S<this.F> =  S<e>  
⇒ <  meaning of substitution and equality  >
      S<P>  ∧  S<this.F> =  S<e>  ∧  S<P> = S<P[this.F←this.F]> 
⇒ <  since S<this.F> =  S<e> and substitution of equals for equals  >
      S<P>  ∧  S<P> = S<P[this.F←e]>  ∧  S<P> = S<P[e←this.F]> 
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⇒ <  equality  >
      S<P[this.F←e]>  ∧  S<P[e←this.F]> 

Lemma 5.57 (A-While): The A-While rule of Figure 4.20 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {while (e) C, S} does not terminate, then the A-While rule is

trivially valid. So assume S<P> = true and that {while (e) C, S} terminates. The proof will by
induction on the number times the S-While rule of Figure 4.17 was applied before termination. 

Basis: 
Suppose the S-While rule was applied 0 times. Therefore, the S-EndWhile rule of Figure 4.17 had

to be applied and S<e> = false. 
      S<P>  ∧  S<!e>  ∧  {while (e) C, S} ⇒s S  
⇒ <  S<P> && S<!e> = S<P && !e>  >
      S<P && !e> 

Induction Step:
The induction hypothesis says that if S<P> holds and {while (e) C, S} ⇒s S’ terminates in

fewer than N applications of the S-While rule, then S’[P && !e] holds. Let S be a state such that S<P>
= true and {while (e) C, S} ⇒s S’ terminates after at least 1 and less than or equal to N applications
of the S-While rule. 

      S<P>  ∧  S<e>  ∧  {while (e) C, S} ⇒s S’ 
⇒ < at least 1 application of the S-While rule of Figure 4.17 >
      S<P>  ∧  S<e>  ∧  {C  while (e) C, S} ⇒s S’ 
⇒ <  the A-Seq rule of Figure 4.17 >
      S<P>  ∧  S<e>  ∧  {C, S} ⇒s S1  ∧  {while (e) C, S1} ⇒s S’ 
⇒ < S<P> && S<e> = S<P && e> >
      S<P>  ∧  S<P && e>  ∧  {C, S} ⇒s S1  ∧  {while (e) C, S1} ⇒s S’ 
⇒ <  |= {P && e} C  {P}, since its an antecedent of the A-While rule of Figure 4.20 >
      S1<P>  ∧  {while (e) C, S1} ⇒s S’ 
⇒ < {while (e) C, S1} ⇒s S’ finishes in fewer than N applications of S-While rule, so by I.H. >
      S’<P && !e>

5.2.6.4 Eliminating \old-expressions and combining specification cases
In JML, the triple {P} C {Q} means that if {C, S} ⇒s S’  terminates, then S’<Q> must hold.

However, in JML, when Q contains \old-expressions, these \old-expressions must be replaced by
the value of that expression when evaluated in the pre-state, i.e., Q[\old(e)←S<e>] for all \old(e)
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expressions occurring in Q. This meaning of \old-expressions is used in the proof of the next lemma;
the next two lemmas allow verifiers to eliminate \old-expressions from the postcondition of method
specifications when verifying or calling a method. 

Lemma 5.58 (A-OldVerify): The A-OldVerify rule of Figure 4.23 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {C, S} does not terminate, then the A-OldVerify rule is trivially

valid. So assume S<P> = true and {C, S} terminates. 
      S<P>  ∧  {C, S} ⇒s S’  
⇒ <  let Z be a logical variable such that Z==S<e> >
      S<P>  ∧  Z==S<e>  ∧  {C, S} ⇒s S’  
⇒ <  Z is a logical variable and thus is independent of the program state >
      S<P>  ∧  S<Z==e>  ∧  {C, S} ⇒s S’  
⇒ < logic and meaning of S<P && Z==e> >
      S<P && Z==e>  ∧  {C, S} ⇒s S’  
⇒ <  |= {P && Z==e} C {Q[\old(e)←Z]}, since it is an antecedent of the A-OldVerify rule 
         of Figure 4.23  >
      S’<Q[\old(e)←Z]>  ∧  {C, S} ⇒s S’  ∧  Z==S<e> 
⇒ <  \old(e) = S<e>, by the semantics of \old(e), and Z==S<e>  >
      S’<Q[\old(e)←\old(e)]> 
⇒ <  substitution  >
      S’<Q> 

Lemma 5.59 (A-OldCall): The A-OldCall rule of Figure 4.23 preserves validity

Proof:
Let S ∈ State. If for all Z ∈ LogicId, S<P && Z==e> = false or {C, S} does not terminate, then

the A-OldCall rule is trivially valid. So assume S<P && Z==e> = true and {C, S} terminates. 
      S<P && Z==e>  ∧  {C, S} ⇒s S’  
⇒ < logic and meaning of S<P && Z==e> >
      S<P>  ∧  S<Z==e>  ∧  {C, S} ⇒s S’  
⇒ <  Z is a logical variable and thus is independent of the program state >
      S<P>  ∧  Z==S<e>  ∧  {C, S} ⇒s S’  
⇒ <  |= {P} C {Q}, since it is an antecedent of the A-OldCall rule of Figure 4.23 >
      S’<Q>  ∧  {C, S} ⇒s S’  ∧  Z==S<e> 
⇒ <  the meaning of S’<Q> when Q contains \old(e) >
      S’<Q[\old(e)←S<e>]>  ∧  {C, S} ⇒s S’  ∧  Z==S<e> 
⇒ <  substitution and Z==S<e>  >
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      S’<Q[\old(e)←Z]> 

Lemma 5.60 (A-SpecCase): The A-SpecCase rule of Figure 4.23 preserves validity

Proof:
Let S ∈ State. If for all Z, Z’ ∈ LogicId, S<(P || P’ ) && Z==P && Z’ ==P’ > = false or {C, S}

does not terminate, then the A-SpecCase rule is trivially valid. Therefore, assume {C, S} terminates
and S<(P || P’ ) && Z==P && Z’ ==P’ > = true. 

Case 1: suppose S<P> = true and S<P’ > = false
      S<(P || P’ ) && Z==P && Z’ ==P’ >  ∧  S<P>  ∧  S<P’ > = false  ∧  {C, S} ⇒s S’  
⇒ < logic and meaning of S<e> >
      S<(P || P’ )> ∧ S<Z==P> ∧ S<Z’ ==P’ >  ∧  S<P>  ∧  S<P’ > = false  ∧  {C, S} ⇒s S’  
⇒ <  Z is a logical variable and thus is independent of the program state >
      Z==S<P> ∧ Z’ ==S<P’ >  ∧  S<P>  ∧  S<P’ > = false  ∧  {C, S} ⇒s S’  
⇒ < logic and substitution >
      Z==true ∧ Z’ ==false  ∧  S<P>  ∧  {C, S} ⇒s S’  
⇒ <  |= {P} C {Q}, since it is an antecedent of the A-SpecCase rule of Figure 4.23 >
      S’<Q>  ∧  Z==true ∧ Z’ ==false  ∧  {C, S} ⇒s S’  
⇒ <  logic and Z = true, Z’  = false, and S’<true>=true  >
      S’<!Z || Q>  ∧  S’<!Z’  || Q’ >  
⇒ <  logic and meaning of S<e> and &&  >
      S’<(!Z || Q) && (!Z’  || Q’ )>  
Case 2: suppose S<P> = false and S<P’ > = true
      S<(P || P’ ) && Z==P && Z’ ==P’ >  ∧  S<P> = false  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ < logic and meaning of S<e> >
      S<(P || P’ )> ∧ S<Z==P> ∧ S<Z’ ==P’ >  ∧  S<P> = false  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ <  Z is a logical variable and thus is independent of the program state >
      Z==S<P> ∧ Z’ ==S<P’ >  ∧  S<P> = false  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ < logic and substitution >
      Z==false ∧ Z’ ==true  ∧  S<P>  ∧  {C, S} ⇒s S’  
⇒ <  |= {P’ } C {Q’ }, since it is an antecedent of the A-SpecCase rule of Figure 4.23 >
      S’<Q’ >  ∧  Z==false ∧ Z’ ==true  ∧  {C, S} ⇒s S’  
⇒ <  logic and Z = false, Z’  = true, and S’<true>=true >
      S’<!Z || Q>  ∧  S’<!Z’  || Q’ >  
⇒ < logic and meaning of S<e> >
      S’<(!Z || Q) && (!Z’  || Q’ )>  
Case 3: suppose S<P> = true and S<P’ > = true
      S<(P || P’ ) && Z==P && Z’ ==P’ >  ∧  S<P>  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
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⇒ < logic and meaning of S<e> >
      S<(P || P’ )> ∧ S<Z==P> ∧ S<Z’ ==P’ >  ∧  S<P>  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ <  Z is a logical variable and thus is independent of the program state >
      Z==S<P> ∧ Z’ ==S<P’ >  ∧  S<P>  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ < logic and substitution >
      Z==true ∧ Z’ ==true  ∧  S<P>  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ <  |= {P} C {Q}, since it is an antecedent of the A-SpecCase rule of Figure 4.23 >
      S’<Q>  ∧  Z==true ∧ Z’ ==true  ∧  S<P’ >  ∧  {C, S} ⇒s S’  
⇒ <  |= {P’ } C {Q’ }, since its an antecedent of the A-SpecCase rule of Figure 4.23 >
      S’<Q’ >  ∧  S’<Q>  ∧  Z==true ∧ Z’ ==true  ∧  {C, S} ⇒s S’  
⇒ <  logic and Z = true and Z’  = true>
      S’<!Z || Q>  ∧  S’<!Z’  || Q’ >  
⇒ < logic and meaning of S<e> >
      S’<(!Z || Q) && (!Z’  || Q’ )>  

5.2.6.5 Method and constructor correctness
In this subsection, we prove that subclasses are behavioral subtypes of their superclasses, i.e., each

overriding subclass method satisfies the specification of the superclass method it overrides (see also
subsection 1.4.1). We also prove that, on exit, methods establish the run-time type invariant of its
argument objects (i.e., the receiver and formal parameter). 

Lemma 5.61 (Subtype): Let T1, T ∈ TypeId and let m ∈ MethId.

If T1 ≤ T  ∧  methodsOf(EnvT(T1))(m) ≠ undef  ∧  methodsOf(EnvT(T))(m) ≠ undef 
    ∧  |= {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)}, 
then  |= {inv(T1) && req(T, m)} getBody(T1, m) {inv(T1) && ens(T, m)}  
Proof:
      T1 ≤ T  ∧  methodsOf(EnvT(T1))(m) ≠ undef  ∧  methodsOf(EnvT(T))(m) ≠ undef 
      ∧  |= {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)}
⇒ <  by the Requires Clause Lemma 5.2  >
      T1 ≤ T  ∧  methodsOf(EnvT(T1))(m) ≠ undef  ∧  methodsOf(EnvT(T))(m) ≠ undef 
      ∧  |= {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)}
      ∧  ( req(T, m)  ⇒  req(T1, m) )
⇒ <  by the Ensures Clause Lemma 5.3  >
      T1 ≤ T  ∧  methodsOf(EnvT(T1))(m) ≠ undef  ∧  methodsOf(EnvT(T))(m) ≠ undef 
      ∧  |= {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)}
      ∧  ( req(T, m)  ⇒  req(T1, m) )  ∧  ( ens(T1, m)  ⇒  ens(T, m) )
⇒ <  logic  >
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      T1 ≤ T  ∧  methodsOf(EnvT(T1))(m) ≠ undef  ∧  methodsOf(EnvT(T))(m) ≠ undef 
      ∧  |= {inv(T1) && req(T1, m)} getBody(T1, m) {inv(T1) && ens(T1, m)}
      ∧  ( inv(T1) && req(T, m)  ⇒  inv(T1) && req(T1, m) ) 
      ∧  ( inv(T1) && ens(T1, m)  ⇒  inv(T1) && ens(T, m) )
⇒ <  by the A-Conseq rule which preserves validity from Lemma 5.55  >
      |= {inv(T1) && req(T, m)} getBody(T1, m) {inv(T1) && ens(T, m)}

The above Subtype Lemma 5.61 says that verified superclass code will continue to satisfy its
superclass specification, in the context of a new subclass, if the precondition of the superclass method
and the subclass invariant is established prior to a downcall. That is, the expected postcondition, used
in the superclass verification, requires that the subclass invariant be established prior to a downcall.
However, since our technique does not allow superclass methods to invalidate the subclass parts of the
run-time type invariant, establishing the invariant of the static type of the receiver automatically
establishes the run-time type invariant (Valid Invariant Theorem 5.30), i.e., the subclass invariant. The
next few lemmas use this property to prove that the superclass methods our rules allow to be called
will continue to satisfy their superclass specification, i.e., they do not have to be re-verified. 

Lemma 5.62 (Receiver Substitution): Let S1, S2 ∈ State. Let P be an expression that does not access
local, stack variables other than the receiver this. 

If  heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r  ∧  r ∈ ObjectRef  
then   S1<P[this←vr1]> = S2<P[this←vr2]>.  
Proof:
The proof will be by induction on the structure of expression P. 
Basis:
Case 1: P ≡ this 
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
⇒ <  both are equal to the same reference (r) > 
      S1<vr1> = S2<vr2>
⇒ <  definition of substitution and P ≡ this  > 
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 2: P ≡ this.f 
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]>  ∧  S2<P[this←vr2]>
⇔ <  definition of substitution and P ≡ this.f  > 
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]> = S1<vr1.f>  ∧  S2<P[this←vr2]> = S2<vr2.f>
⇔ <  by the L-Field and E-VarRef rules of Figure 4.16  > 
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      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]> = getValue(S1, loc(f, r))
      ∧  S2<P[this←vr2]> = getValue(S2, loc(f, r))
⇔ <  by the definition of getValue of Figure 4.16 and because r ≠ local 
         (i.e., vr1.f and vr2.f are not local/stack variables)  > 
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]> = heapOf(S1) (loc(f, r))
      ∧  S2<P[this←vr2]> = heapOf(S2) (loc(f, r))
⇒ <  since heapOf(S1) = heapOf(S2)  > 
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 3: P ≡ x 
Not allowed since P does not access local variables. 
Case 4: P is a literal  
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]>  ∧  S2<P[this←vr2]>
⇒ <  definition of substitution for P ≡ lit  > 
      S1<P[this←vr1]> = S1<lit>  ∧  S2<P[this←vr2]> = S2<lit>
⇔ <  by the E-Literal rule of Figure 4.16  > 
      S1<P[this←vr1]> = mkVal(lit)  ∧  S2<P[this←vr2]> = mkVal(lit)
⇔ <  since both have the same value  > 
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 5: P ≡ ( T ) null 
      heapOf(S1) = heapOf(S2)  ∧  S1<vr1> = r  ∧  S2<vr2> = r
      ∧  S1<P[this←vr1]>  ∧  S2<P[this←vr2]>
⇒ <  definition of substitution for P ≡ ( T ) null  > 
      S1<P[this←vr1]> = S1<( T ) null>  ∧  S2<P[this←vr2]> = S2<( T ) null>
⇒ < E-CastNull rule of Figure 4.16 > 
      S1<P[this←vr1]> = voidV(null)  ∧  S2<P[this←vr2]> = voidV(null)
⇒ <  since both have the same value  > 
      S1<P[this←vr1]> = S2<P[this←vr2]>

Induction Step:
The induction hypothesis assumes that this Lemma holds for all subexpressions of a larger

expression. We will start our calculations from this hypothesis. 
Case 1: P ≡ ( e1 ) 
      S1<e1[this←vr1]> = S2<e1[this←vr2]>
⇒ < the E-Paren rule of Figure 4.16 >
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      S1<( e1 )[this←vr1]> = S2<( e1 )[this←vr2]>
⇒ <  definition of substitution and P ≡ ( e1 )  >
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 2: P ≡ e1 bop e2 
      S1<e1[this←vr1]> = S2<e1[this←vr2]>
       ∧  S1<e2[this←vr1]> = S2<e2[this←vr2]>
⇒ < E-BinOp rule of Figure 4.16 >
      S1<e1[this←vr1]> = S2<e1[this←vr2]> = v1
      ∧  S1<e2[this←vr1]> = S2<e2[this←vr2]> = v2
      ∧  S1<e1[this←vr1] bop e2[this←vr1]> = apply(bop, v1, v2) )
      ∧  S2<e1[this←vr2] bop e2[this←vr2]> = apply(bop, v1, v2) )
⇒ <  definition of substitution, P ≡ e1 bop e2, and both have the same value  >
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 3: P ≡  uop e1 
      S1<e1[this←vr1]> = S2<e1[this←vr2]>
⇒ < the E-UnOp rule of Figure 4.16 >
      S1<e1[this←vr1]> = S2<e1[this←vr2]> = v
      ∧  S1<uop e1[this←vr1]> = apply(uop, v)  ∧  S2<uop e1[this←vr2]> = apply(uop, v)
⇒ <  definition of substitution, P ≡ uop e1, and both have the same value  >
      S1<P[this←vr1]> = S2<P[this←vr2]>
Case 4: P ≡ ( T ) e1 
      S1<e1[this←vr1]> = S2<e1[this←vr2]>
⇒ < the E-Cast rule of Figure 4.16 >
      S1<e1[this←vr1]> = S2<e1[this←vr2]> = v
      ∧  S1<(T) e1[this←vr1]> = v  ∧  S2<(T) e1[this←vr2]> = v
⇒ <  definition of substitution, P ≡ (T)e1, and both have the same value  >
      S1<P[this←vr1]> = S2<P[this←vr2]>

In the next few Lemmas, 5.63-5.67, there are sometimes five or six lines of assertions because they
include the operational semantics of the method call. Therefore, to make it easier to follow the proof,
we have tried, whenever possible, to place the assertions that will be used in the next step of the
calculation on the last one or two lines. Also, in most cases, we add any new assertions on or near the
last line. 

Lemma 5.63 (Self-Call): Let this.m(e) be a self-call allowed by our technique in some method U.n.
Let S ∈ State be the pre-state prior to the execution of this.m(e) and let S1 ∈ State be the post-
state after the execution of this.m(e). Let D be the run-time type of the receiver this and let
inv(D) hold in the pre-state before the execution of U.n. 
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If  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
     ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)},
then   S1<inv(D) && ens(T, m)>.  
Proof:
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
⇒ <  D is the run-time type of the receiver and U is the static type of the receiver, so D ≤ U; 
         thus, D ≤ T2 ≤ T, since T = whereMethodDecl(U, m) and T2 = whereMethodDecl(D, m)  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
⇒ <  by the Subtype Lemma 5.61  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
⇒ <  the precondition as given in the A-SelfCall rule of Figure 4.21 must hold 
         in the pre-state since the call is not allowed otherwise  > 
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<inv(U) && req(T, m)[p←e]>
⇒ <  semantics of the && operator  > 
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(U)>
⇒ <  by the Valid Invariant Theorem 5.30, the run-time type invariant, inv(D), is established 
         because inv(U), the invariant of the static type of the receiver, is established 
         and inv(D) held in the pre-state prior to the execution of U.n  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)>
⇒ <  by the operational semantics of the S-Call rule of Figure 4.16 and 
         since D is the run-time type of the receiver  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  D = refType(r)  ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v 
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)>
⇒ <  by the Substitution Theorem 5.9 and because req(T, m) is a function of the receiver 
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         and formal parameter and inv(D) is a function of the receiver  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  D = refType(r)  ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v 
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)>
      ∧  S<req(T, m)[p←e]> = S’<req(T, m)>  ∧  S<inv(D)> = S’<inv(D)>
⇒ <  equality and the Invariant Clause Lemma 5.1  >
      U = typeOf(this)  ∧  T = whereMethodDecl(U, m)  ∧  T2 = whereMethDecl(D, m)
      ∧  D ≤ T2 ≤ T  ∧  D = refType(r)  ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v 
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S’<req(T, m)>  ∧  S’<inv(T2)>  ∧  S’<inv(D)>
⇒ <  by the meaning of |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)}  >
      {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(T2) && ens(T, m)>  ∧  S’<inv(D)>
⇒ <  by the Valid Invariant Theorem 5.30, the run-time type invariant, inv(D), is established 
         since a method in T2 established inv(T2) and the run-time invariant held in the 
         pre-state S’  >
      {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s state(stackOf(S), heapOf(S’’))
      ∧  S’’<inv(D) && ens(T, m)> 
⇒ <  since S1 is the post-state after the execution of this.m(e)  >
      {getBody(T2, m), S’} ⇒s S’’  ∧  {this.m(e), S} ⇒s S1 
       ∧  S’’<inv(D) && ens(T, m)>  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
⇒ <  the predicate inv(D) && ens(T, m) is not allowed to access local variables on 
         the post-state stack of S’’, the receiver object is the same in both S1 and S’’, and 
         both S1 and S’’ have the same heap; thus by the Receiver Substitution Lemma 5.62 
         and since P = P[this←this]  >
      S’’<inv(D) && ens(T, m)>  ∧  S’’<inv(D) && ens(T, m)> = S1<inv(D) && ens(T, m)> 
⇒ <  equality  >
      S1<inv(D) && ens(T, m)> 

Lemma 5.64 (Super-Call): Let super.m(e) be a super-call allowed by our technique in some method
U.n. Let S ∈ State be the pre-state prior to the execution of super.m(e) and let S1 ∈ State be the
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post-state after the execution of super.m(e). Let D be the run-time type of this and let inv(D)
hold in the pre-state before the execution of U.n. 

If  T = whereMethodDecl(superOf(U), m)
     ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)},
then   S1<inv(D) && ens(T, m)>.  
Proof:
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
⇒ <  U is the static type of the receiver, so D ≤ U ≤ T  >
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
⇒ <  the precondition as given in the A-SupCall rule of Figure 4.21 must hold 
         in the pre-state since the call is not allowed otherwise  > 
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S<inv(U) && req(T, m)[p←e]>
⇒ <  semantics of the && operator  > 
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(U)> 
⇒ <  by the Valid Invariant Theorem 5.30, the run-time type invariant, inv(D), is established 
         because inv(U), the invariant of the static type of the receiver, is established 
         and inv(D) held in the pre-state prior to the execution of U.n  >
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)> 
⇒ <  by the operational semantics of the S-SupCall rule in Figure 4.18  >
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v  
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)> 
⇒ <  by the Substitution Theorem 5.9 and because req(T, m) is a function of the receiver 
         and formal parameter and inv(D) is a function of the receiver  >
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v  
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      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S<req(T, m)[p←e]>  ∧  S<inv(D)>
      ∧  S<req(T, m)[p←e]> = S’<req(T, m)>  ∧  S<inv(D)> =  S’<inv(D)>
⇒ <  equality and the Invariant Clause Lemma 5.1  >
      U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)  ∧  D ≤ U ≤ T
      ∧  [this, S] ⇒e r  ∧  [e, S] ⇒e v  
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  S’<req(T, m)>  ∧  S’<inv(T)>  ∧  S’<inv(D)>
⇒ <  by the meaning of |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)}  >
      {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S’} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(T) && ens(T, m)>  ∧  S’<inv(D)>
⇒ <  by the Valid Invariant Theorem 5.30, the run-time type invariant is established 
         since a method in T established inv(T) and inv(D) held in the pre-state S’  >
      {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S} ⇒s state(stackOf(S), heapOf(S’’))
      ∧  S’’<inv(D) && ens(T, m)> 
⇒ <  since S1 is the post-state after the execution of super.m(e)  >
      {getBody(T, m), S’} ⇒s S’’  ∧  {super.m(e), S} ⇒s S1  
      ∧  S’’<inv(D) && ens(T, m)>  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
⇒ <  the predicate inv(D) && ens(T, m) is not allowed to access local variables on 
         the post-state stack of S’’, the receiver object is the same in both S1 and S’’, and 
         both S1 and S’’ have the same heap; thus by the Receiver Substitution Lemma 5.62 
         and since [this←this] does not change the assertion  >
      S’’<inv(D) && ens(T, m)>  ∧  S’’<inv(D) && ens(T, m)> = S1<inv(D) && ens(T, m)> 
⇒ <  equality  >
      S1<inv(D) && ens(T, m)> 

Lemma 5.65 (Object-Call): Let rcvr.m(e) be an object-call allowed by our technique in some method
U.n. Let S ∈ State be the pre-state prior to the execution of rcvr.m(e) and let S1 ∈ State be the
post-state after the execution of rcvr.m(e). Let D be the run-time type of rcvr. 

If  T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)
     ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)},
     ∧  S<inv(D)[this←rcvr]>
then   S1<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]>.  
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Proof:
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m) 
      ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  S<inv(D)[this←rcvr]> 
⇒ <  T = whereMethodDecl(typeOf(rcvr), m) and T2 = whereMethodDecl(D, m) 
         and D is the run-time type of rcvr, so D ≤ T2 ≤ T  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)  ∧  D ≤ T2 ≤ T 
      ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  S<inv(D)[this←rcvr]> 
⇒ <  by the Subtype Lemma 5.61  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)  ∧  D ≤ T2 ≤ T 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<inv(D)[this←rcvr]> 
⇒ <  the precondition as given in the A-ObjCall rule of Figure 4.21 must hold 
         in the pre-state since the call is not allowed otherwise  > 
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)  ∧  D ≤ T2 ≤ T 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[this←rcvr, p←e]>  ∧  S<inv(D)[this←rcvr]> 
⇒ <  by the operational semantics of an object-call given in the S-Call rule of Figure 4.18  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m) 
      ∧  D ≤ T2 ≤ T  ∧  [rcvr, S] ⇒e r  ∧  [e, S] ⇒e v  ∧  D = refType(r)
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[this←rcvr, p←e]>  ∧  S<inv(D)[this←rcvr]> 
⇒ <  by the Substitution Theorem 5.9 and because req(T, m) is a function of the receiver 
         and formal parameter and inv(D) is a function of the receiver  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m) 
      ∧  D ≤ T2 ≤ T  ∧  [rcvr, S] ⇒e r  ∧  [e, S] ⇒e v  ∧  D = refType(r)
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
      ∧  S<req(T, m)[this←rcvr, p←e]>  ∧  S’<req(T, m)> = S<req(T, m)[this←rcvr, p←e]> 
      ∧  S<inv(D)[this←rcvr]>  ∧  S’<inv(D)> = S<inv(D)[this←rcvr]> 
⇒ <  by equality and the Invariant Clause Lemma 5.1  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m) 
      ∧  D ≤ T2 ≤ T  ∧  [rcvr, S] ⇒e r  ∧  [e, S] ⇒e v  ∧  D = refType(r)



268
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S’<req(T, m)>  ∧  S’<inv(T2)>  ∧  S’<inv(D)> 
      ∧  |= {inv(T2) && req(T, m)} getBody(T2, m) {inv(T2) && ens(T, m)} 
⇒ <  by the meaning of the last conjunct and the operational semantics of the call  >
      S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T2, m), S’} ⇒s S’’  ∧  {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  [rcvr, S] ⇒e r  ∧  S’’<inv(T2) && ens(T, m)>  ∧  S’<inv(D)>
⇒ <  the same two parameters (this and p) will be on the stack at the end of the execution of 
        T2.m, i.e., in both S’ and S’’  >
      {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  [rcvr, S] ⇒e r  ∧  S’’<inv(T2) && ens(T, m)>  ∧  S’<inv(D)>
      ∧  [this, S’’] ⇒e r
⇒ <  by the Valid Invariant Theorem 5.30, the run-time type invariant is established 
         since a method in T2 established inv(T2) and inv(D) held in the pre-state S’  >
      {rcvr.m(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  [rcvr, S] ⇒e r  ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r
⇒ <  since S1 is the post-state after the execution of rcvr.m(e)  >
      {rcvr.m(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
      ∧  [rcvr, S] ⇒e r  ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r
⇒ <  by the E-VarRef rule of Figure 4.16  >
      {rcvr.m(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r
      ∧  [rcvr, S] ⇒lv vLoc  ∧  [rcvr, S] ⇒e getValue(S, vLoc)  ∧  r = getValue(S, vLoc)
⇒ <  since S1 has the same stack as S, and rcvr has to be a local variable or a pivot field 
         of the receiver this, and heapOf(S’’) is an extension of heapOf(S)  >
      {rcvr.m(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r
      ∧  [rcvr, S1] ⇒lv vLoc  ∧  [rcvr, S] ⇒e getValue(S, vLoc)  ∧  r = getValue(S, vLoc)
⇒ <  location vLoc cannot be assigned during the call of rcvr.m(e) if rcvr is a local 
         variable of the calling method U.n; also, location vLoc cannot be assigned 
         if rcvr is a pivot field because a pivot field cannot be the receiver when the called 
         method has side-effects and its formal parameter references the receiver of the 
         calling method U.n (by the Actual Parameter Aliasing Lemma 5.24)  >
      {rcvr.m(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r
      ∧  [rcvr, S1] ⇒lv vLoc  ∧  [rcvr, S1] ⇒e getValue(S, vLoc)  ∧  r = getValue(S1, vLoc)
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⇒ <  by the E-VarRef rule of Figure 4.16  >
      {rcvr.m(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’)) 
      ∧  S’’<inv(D) && ens(T, m)>  ∧  [this, S’’] ⇒e r  ∧  [rcvr, S1] ⇒e r
⇒ <  the predicate inv(D) && ens(T, m) is not allowed to access local variables on 
         the post-state stack of S’’, rcvr in S1 and this in S’’ reference the same object, and 
         both S1 and S’’ have the same heap; thus by the Receiver Substitution Lemma 5.62 
         and since P = P[this←this]  >
      S’’<inv(D) && ens(T, m)> 
      ∧  S’’<inv(D) && ens(T, m)> = S1<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]> 
⇒ <  equality  >
      S1<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]> 

Lemma 5.66 (Constructor Call): Let vr = new T(e) be a new object constructor call allowed by our
technique in some method U.n. Let S ∈ State be the pre-state prior to the call of vr = new T(e) and
let S1 ∈ State be the post-state after the execution of vr = new T(e). 

If  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)},
then   S1<inv(T)[this←vr] && ens(T, T)[this←vr]>.  
Proof:
      |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
⇒ <  the precondition as given in the A-NewAssign rule of Figure 4.22 must hold 
         in the pre-state since the call is not allowed otherwise  > 
      |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  S<req(T, T)[p←e]> 
⇒ <  by the operational semantics of the S-NewAssign rule in Figure 4.19  >
      |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  [vr, S] ⇒lv varLoc  ∧  [e, S] ⇒e v  ∧  new(S, T) = (r, S’)  
      ∧  S’’ = state(emptyS, heapOf(S’))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’’} ⇒s S’’’ 
      ∧  {vr=new T(e), S} ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S<req(T, T)[p←e]> 
⇒ <  by the Substitution Theorem 5.9 and because the precondition cannot reference 
         the state of the new object (which has not yet been initialized)  >
      |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  [vr, S] ⇒lv varLoc  ∧  [e, S] ⇒e v  ∧  new(S, T) = (r, S’)  
      ∧  S’’ = state(emptyS, heapOf(S’))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’’} ⇒s S’’’ 
      ∧  {vr=new T(e), S} ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r] 
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      ∧  S<req(T, T)[p←e]>  ∧  S<req(T, T)[p←e]> = S’<req(T, T)>
⇒ <  equality  >
      |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  [vr, S] ⇒lv varLoc  ∧  [e, S] ⇒e v  ∧  new(S, T) = (r, S’)  
      ∧  S’’ = state(emptyS, heapOf(S’))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’’} ⇒s S’’’ 
      ∧  {vr=new T(e), S} ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S’<req(T, T)>
⇒ <  by the meaning of |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} on line 1 
         and the operational semantics of the call  >
      S’’ = state(emptyS, heapOf(S’))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’’} ⇒s S’’’ 
      ∧  {vr=new T(e), S} ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S’’’<inv(T) && ens(T, T)>  ∧  [vr, S] ⇒lv varLoc
⇒ <  since this in S’’ and S’’’ reference the same object r (i.e., methods cannot assign to 
         this)  >
      {vr=new T(e), S} ⇒s state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S’’’<inv(T) && ens(T, T)>  ∧  [this, S’’’] ⇒e r  ∧  [vr, S] ⇒lv varLoc
⇒ <  since S1 is the post-state after the execution of vr=new T(e)  >
      {vr=new T(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S’’’<inv(T) && ens(T, T)>  ∧  [this, S’’’] ⇒e r  ∧  [vr, S] ⇒lv varLoc
⇒ <  since S1 has the same stack as S, and vr has to be a local variable or a field of the 
         receiver this (syntax of assignment), and heapOf(S’’’) is an extension of heapOf(S)  >
      {vr=new T(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’’))[varLoc := r] 
      ∧  S’’’<inv(T) && ens(T, T)>  ∧  [this, S’’’] ⇒e r  ∧  [vr, S1] ⇒lv varLoc
⇒ <  by the State Update Lemma 5.6 (since the update is [varLoc := r])  >
      S’’’<inv(T) && ens(T, T)>  ∧  [vr, S1] ⇒e r  ∧  [this, S’’’] ⇒e r
      ∧  {vr=new T(e), S} ⇒s S1  ∧  S1 = state(stackOf(S), heapOf(S’’’))[varLoc := r] 
⇒ <  the predicate inv(T) && ens(T, T) is not allowed to access local variables on 
         the post-state stack of S’’’, vr in S1 and this in S’’’ reference the same object r, and 
         both S1 and S’’’ have the same heap; thus by the Receiver Substitution Lemma 5.62 
         and since P = P[this←this]  >
      S’’’<inv(T) && ens(T, T)> 
      ∧  S’’’<inv(T) && ens(T, T)> = S1<inv(T)[this←vr] && ens(T, T)[this←vr]> 
⇒ <  equality  >
      S1<inv(T)[this←vr] && ens(T, T)[this←vr]> 
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Lemma 5.67 (Superclass Constructor): Let super(e) be a superclass constructor call allowed by our
technique in some constructor U.U. Let S ∈ State be the pre-state prior to the call of super(e) and
let S1 ∈ State be the post-state after the execution of super(e). 

If  T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)},
then   S1<inv(T) && ens(T, T)>.  
Proof:
      T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)}
⇒ <  the precondition as given in the A-SupConstr rule of Figure 4.21 must hold 
         in the pre-state since the call is not allowed otherwise  > 
      T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)}
      ∧  S<req(T, T)[p←e]>
⇒ <  by the operational semantics of the S-NewAssign rule in Figure 4.19  >
      T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)}
      ∧  [e, S] ⇒e v  ∧  [this, S] ⇒e r  
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S<req(T, T)[p←e]>
⇒ <  by the Substitution Theorem 5.9 and because the precondition cannot reference 
         the state of the new object (which has not yet been initialized)  >
      T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)}
      ∧  [e, S] ⇒e v  ∧  [this, S] ⇒e r  
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S<req(T, T)[p←e]>  ∧  S<req(T, T)[p←e]> = S’<req(T, T)>
⇒ <  equality  >
      T = superOf(U)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)}
      ∧  [e, S] ⇒e v  ∧  [this, S] ⇒e r  
      ∧  S’ = state(emptyS, heapOf(S))[thisloc := r][loc(p, local) := v]
      ∧  {getBody(T, m), S’} ⇒s S’’  ∧  {super(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
      ∧  S’<req(T, T)>
⇒ <  by the meaning of |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} on line 1 
         and the operational semantics of the call  >
      S’’<inv(T) && ens(T, T)>  ∧  {super(e), S} ⇒s state(stackOf(S), heapOf(S’’)) 
⇒ <  since S1 is the post-state after the execution of super(e)  >
      S’’<inv(T) && ens(T, T)>  ∧  {super(e), S} ⇒s S1 
       ∧  S1 = state(stackOf(S), heapOf(S’’)) 
⇒ <  the predicate inv(T) && ens(T, T) is not allowed to access local variables on 
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         the post-state stack of S’’, the receiver object is the same in both S1 and S’’, 
         and both S1 and S’’ have the same heap; thus by the Receiver Substitution Lemma 5.62 
         and since [this←this] does not change the assertion  >
      S’’<inv(T) && ens(T, T)>  ∧  S’’<inv(T) && ens(T, T)> = S1<inv(T) && ens(T, T)>
⇒ <  equality  >
      S1<inv(T) && ens(T, T)> 

Recall from subsection 3.2.1 that an access path is a sequence of variable or field names with each
name denoting a context (i.e., an object) in which the succeeding name is resolved. We now define a
pivot field access path to be an access path that starts with an owner variable followed by a sequence of
pivot field names. For example, p.x.y would be a pivot field access path if p is a formal parameter
(an owner), x is a pivot field in p, and y is a pivot field in p.x. 

Theorem 5.68 (Method Call): Let method U.n make a super-call, self-call, object-call, new object
constructor call, or superclass constructor call. Let rcvr be the receiver, m be the method or
constructor called, and e be the actual argument. Let S ∈ State be the pre-state prior to the execution
of m(e) and let S’ ∈ State be the post-state after the execution of m(e). Let D be the run-time type
of rcvr and let D1 be the run-time type of parameter e. Assume that the run-time type invariant
holds, in the pre-state S, for all objects referenced by a pivot field access path that starts with an
owner variable visible in m. 

If  T = whereMethodDecl(typeOf(rcvr), m)
     ∧  (∀ T1 ∈ TypeId, n ∈ MethId  :  
               {inv(T1) && req(T1, n)} getBody(T1, n) {inv(T1) && ens(T1, n)} ),
     ∧  (∀ T1 ∈ TypeId :  
               {req(T1, T1)} getBody(T1, T1) {inv(T1) && ens(T1, T1)} ),
then   S’<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>).
Proof:
Our assumption about objects referenced by a pivot field access path requires that the run-time

type invariant of the receiver and formal parameter (if it references an object) hold in the pre-state
since they are owners (see predicate isOwner of Figure 5.5). It also says that the pivot fields of the
receiver must contain null or a reference to an object whose run-time type invariant holds in the pre-
state. Similarly, all objects reachable through pivot field access paths must have an invariant that holds
in the pre-state. 

If the call m(e) terminates, then there must be a maximum length of the call chains during the
execution of T.m. Therefore, the proof will be by induction on the maximum length of the valid call
chains during the call of m(e). 

Basis: k = 0, i.e., m(e) makes no calls. 
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Case 1:  m(e) is an object-call, e.g., rcvr.m(e)
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
⇒ <  from our assumption, the run-time type invariant of rcvr and e (if it references an object) 
         must hold in the pre-state since they have to be owners (by the T-Call rule of Figure 5.1 
         and predicate invariantOk of Figure 5.4)  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  S<inv(D)[this←rcvr]>  ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of rcvr.m(e), the state of object e cannot 
         be changed, so the invariant of e (if it references an object) must hold in the post-state S’  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  S<inv(D)[this←rcvr]>  ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of rcvr.m(e), the correctness proof of 
         method T2.m must be valid since all of the statements executed preserve validity 
         (Lemmas 5.49 - 5.60)  >
      T = whereMethodDecl(typeOf(rcvr), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  S<inv(D)[this←rcvr]>  ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  by the Object-Call Lemma 5.65  >
      S’<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
Case 2:  m(e) is a self-call, e.g., this.m(e)
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
⇒ <  from our assumption, the run-time type invariant of e (if it references an object) 
         must hold in the pre-state since it has to be an owner (by the T-Call rule of Figure 5.1 
         and predicate invariantOk of Figure 5.4)  >
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of this.m(e), the state of object e cannot 
         be changed, so the invariant of object e must hold in the post-state S’  >
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
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⇒ <  since there are no calls during the execution of this.m(e), the correctness proof of 
         method T2.m must be valid since all of the statements executed preserve validity 
         (Lemmas 5.49 - 5.60)  >
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  |= {inv(T2) && req(T2, m)} getBody(T2, m) {inv(T2) && ens(T2, m)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  by the Self-Call Lemma 5.63  >
      S’<inv(D) && ens(T, m)>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  substitution of this for this does not change the value of the expression  >
      S’<inv(D)[this←this] && ens(T, m)[this←this]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
Case 3:  m(e) is a super-call, e.g., super.m(e) 
      T = whereMethodDecl(typeOf(super), m)  ∧  typeOf(super) = superOf(typeOf(this))
      ∧  {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
⇒ <  from our assumption, the run-time type invariant of e (if it references an object) 
         must hold in the pre-state since it has to be an owner (by the T-Call rule of Figure 5.1 
         and predicate invariantOk of Figure 5.4)  >
      T = whereMethodDecl(typeOf(super), m)  ∧  typeOf(super) = superOf(typeOf(this))
      ∧  {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of super.m(e), the state of object e cannot 
         be changed, so the invariant of object e must hold in the post-state S’  >
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of super.m(e), the correctness proof of 
         method T2.m must be valid since all of the statements executed preserve validity 
         (Lemmas 5.49 - 5.60)  >
      T = whereMethodDecl(typeOf(this), m)  ∧  T2 = whereMethodDecl(D, m)
      ∧  |= {inv(T) && req(T, m)} getBody(T, m) {inv(T) && ens(T, m)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  by the Super-Call Lemma 5.64  >
      S’<inv(D) && ens(T, m)>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  this is the receiver in a super-call so we substitute this for this which does not 
        change the value of the expression  >
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      S’<inv(D)[this←this] && ens(T, m)[this←this]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
Case 4:  m(e) is a new object constructor call, e.g., rcvr=new T(e) 
Note that in this case, the target variable of the assignment becomes the receiver in the post-state

after the call. Therefore, to match the theorem, we consider this target variable to be the receiver object
rcvr. 

      T = typeOf(new T(e))  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
⇒ <  from our assumption, the run-time type invariant of e (if it references an object) 
         must hold in the pre-state since it has to be an owner (by the T-Call rule of Figure 5.1 
         and predicate invariantOk of Figure 5.4)  >
      T = typeOf(new T(e))  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of rcvr=new T(e), the state of object e cannot 
         be changed, so the invariant of object e must hold in the post-state S’  >
      T = typeOf(new T(e))  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of rcvr=new T(e), the correctness proof of 
         method T.T must be valid since all of the statements executed preserve validity 
         (Lemmas 5.49 - 5.60)  >
      T = typeOf(new T(e))  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  by the Constructor Call Lemma 5.66 and since the run-time type D = T  >
      S’<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
Case 5:  m(e) is a superclass constructor call, e.g., super(e) 
      T = typeOf(super)  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
⇒ <  from our assumption, the run-time type invariant of e (if it references an object) 
         must hold in the pre-state (it would also have to be an owner variable)  >
      T = typeOf(super)  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of super(e), the state of object e cannot 
         be changed, so the invariant of object e must hold in the post-state S’  >
      T = typeOf(super)  ∧  {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  since there are no calls during the execution of super(e), the correctness proof of 
         method T.T must be valid since all of the statements executed preserve validity 
         (Lemmas 5.49 - 5.60)  >
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      T = typeOf(super)  ∧  |= {req(T, T)} getBody(T, T) {inv(T) && ens(T, T)} 
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  by the Superclass Constructor Lemma 5.67 and, from the perspective of 
         the constructor, the run-time type D = T; also superclass constructor calls can 
         only occur as the first statement in a subclass constructor and the subclass 
         constructor must establish the run-time type invariant of the object being initialized  >
      S’<inv(D) && ens(T, m)>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 
⇒ <  this is the receiver in a superclass constructor call so we substitute this for this 
         which does not change the value of the expression  >
      S’<inv(D)[this←this] && ens(T, m)[this←this]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>) 

Induction Step: Let k = N. 
The induction hypothesis asserts that 

If  (∀ T1 ∈ TypeId, n ∈ MethId  :  
               {inv(T1) && req(T1, n)} getBody(T1, n) {inv(T1) && ens(T1, n)} )
     ∧  (∀ T1 ∈ TypeId :  
               {req(T1, T1)} getBody(T1, T1) {inv(T1) && ens(T1, T1)} ),
     ∧  k < N  ∧ <T.m, U1.n1, U2.n2, ... , Uk.nk> is a valid call chain,
then   S’<inv(D)[this←rcvr] && ens(T, m)[this←rcvr]>
      ∧  (D1 ∉ TypeId  ∨  S’<e == null>  ∨  S’<inv(D1)[this←e]>).

If each method directly called by T.m preserves the validity of its specification, then T.m will
also preserve the validity of its specification because then every statement in T.m will preserve
validity. That is, it suffices to show that each direct call U1.n1 made from T.m in a valid call chain
preserves validity based on the induction hypothesis. 

Without loss of generality, we only need to consider the first call made by T.m since the post-state
after each call will establish the necessary preconditions for subsequent calls, i.e., that the run-time
type invariant of argument objects hold in the pre- and post-states before and after the execution of
T.m. Furthermore, a method can only invalidate the invariant of its receiver since our technique does
not allow assignment to fields of objects other than the receiver. Therefore, method calls must re-
establish the invariant of the receiver in the post-state. Again, there are five cases. 

Case 1:  U1.n1 is an object-call
Since this is the first call, only the invariant of the current receiver among visible owner variables

can be false since our technique only allows direct assignment to local variables and fields of the
receiver. Also, if the object-call of U1.n1 is a this-argument call, then, by the A-ObjCall rule of Figure
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4.21, the invariant of the current receiver has to be established before the call. Therefore, by the
induction hypothesis, the call of U1.n1 satisfies its specification, i.e., preserves the validity of its
specification; thus, on exit, it re-establishes the run-time type invariant of its argument objects (by the
Object-Call Lemma 5.65). 

Case 2:  U1.n1 is a self-call
Since we are considering the first call made by T.m, only the invariant of the current receiver

among visible owner variables can be false (as explained in Case 1). However, before the self-call of
U1.n1, the invariant of the current receiver must be established in accordance with the A-SelfCall rule
of Figure 4.21. Therefore, by the induction hypothesis, the self-call of U1.n1 satisfies its specification
and, on exit, it re-establishes the run-time type invariant of its argument objects (by the Self-Call
Lemma 5.63). 

Case 3:  U1.n1 is a super-call
Since we are considering the first call made by T.m, only the invariant of the current receiver

among visible owner variables can be false (as explained in Case 1). However, before the super-call of
U1.n1, the invariant of the current receiver must be established in accordance with the A-SupCall rule
of Figure 4.21. Therefore, by the induction hypothesis, the super-call of U1.n1 satisfies its
specification and, on exit, it re-establishes the run-time type invariant of its argument objects (by the
Super-Call Lemma 5.65). 

Case 4:  U1.n1 is a new object constructor call
Since we are considering the first call made by T.m, only the invariant of the current receiver

among visible owner variables can be false (as explained in Case 1). However, if the new object
constructor call of U1.n1 is a this-argument call, then, by the A-NewAssign rule of Figure 4.22, the
invariant of the current receiver has to be established before the call. Therefore, by the induction
hypothesis, the call of U1.n1 satisfies its specification and, on exit, it establishes the run-time type
invariant of its argument objects (by the Constructor Call Lemma 5.66). 

Case 5:  U1.n1 is a superclass constructor call
Since we are considering the first call made by T.m, only the invariant of the current receiver

among visible owner variables can be false (as explained in Case 1). Furthermore, the superclass
constructor call of U1.n1 cannot be a this-argument call as restricted by the T-SupConstr rule of
Figure 5.1. That is, the formal parameter cannot be an alias of its receiver because a constructor will
not have initialized its fields or established its invariant; thus its formal parameter will have to be some
owner variable other than the receiver, i.e., one with a valid invariant. Also, even though the invariant
of the current receiver is not guaranteed to be established before a superclass constructor call, it does
have to be established before that constructor can make a self-call or super-call; however, this does not
establish the subclass invariant, so downcalls cannot be allowed. Therefore, a superclass constructor
call is not allowed by our technique if it makes downcalls as specified in the T-SupConstr rule of
Figure 5.1 and the noDownCalls predicate of Figure 5.4. Therefore, by the induction hypothesis, the
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super-call of U1.n1 satisfies its specification and, on exit, it establishes the run-time type invariant of
its argument objects (by the Superclass Constructor Lemma 5.67). These calls can only occur as the
first statement in a subclass constructor, so the calling subclass constructor establishes the subclass
invariant after this call to ensure that the run-time type invariant of the receiver is established. 

Based on these five cases, T.m satisfies its specification because all of its calls satisfy their
specification; thus, on exit, based on the Self-Call Lemma 5.63, Super-Call Lemma 5.64, Object-Call
Lemma 5.65, Constructor Call Lemma 5.66, and Superclass Constructor Lemma 5.66 (T.m must be
one of these kinds of calls), the run-time type invariant of T.m’s argument objects are re-established
when necessary. 

Theorem 5.69 (Owner Invariant): Let O be the set of owner variables from the T-rules of Figures 5.1-
5.3 at some point in method U.n. Let S ∈ State be an intermediate state at that same point during
the execution of U.n. Let vr be a variable accessible at that same point in U.n. Let D be the run-
time type of vr. 

If  D ∈ TypeId  ∧  ( vr ∈ O  ∨  vr ≡ p  ∨  isPivot(vr, U) )  ∧  S<vr != null>, 
then  S<inv(D)[this←vr]>.
Proof:
Object vr can only be modified through an object-call. Thus the proof will be by induction on the

number of object-calls made on vr. 
Basis: k = 0, i.e., there are no object-calls on vr. 
When object vr was created and initialized by a constructor, the run-time type invariant for vr was

established; thus the invariant will continue to hold in S, i.e., S<inv(D)[this←vr]> holds in methods
and constructors where vr is an owner variable other than the receiver this. 

Induction Step: Let k = N. 
The induction hypothesis asserts that if the number of object-calls on vr is less than N, then its

invariant will hold in S, i.e., S<inv(D)[this←vr]>. So consider the Nth object-call on vr. The
invariant holds prior to the Nth call, so it must also hold after that object-call by the Method Call
Theorem 5.68. 

The Owner Invariant Theorem 5.69 proves that, in our technique, the run-time type invariant of an
object referenced by an owner variable vr, other than the receiver, holds everywhere that vr is visible. 

5.2.6.6 Method invocation rules preserve validity
Using the Method Call Theorem 5.68, we now prove that the method invocation rules preserve

validity. 
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Lemma 5.70 (A-SelfCall): The A-SelfCall rule of Figure 4.21 preserves validity

Proof:
Let S ∈ State. If S<inv(U) && req(T, m)[p←e]> = false or {this.m(e), S} does not terminate,

then the A-SelfCall rule is trivially valid. So assume S<inv(U) && req(T, m)[p←e]> = true and that
{this.m(e), S} terminates. Let D be the run-time type of the receiver. 

      S<inv(U) && req(T, m)[p←e]>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(U, m)
      ∧  {this.m(e), S} ⇒s S’ 
⇒ <  establishing inv(U) in a method declared in U establishes the run-time type 
         invariant of the receiver (by the Valid Invariant Theorem 5.30)  >
      S<inv(D) && req(T, m)[p←e]>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(U, m)
      ∧  {this.m(e), S} ⇒s S’ 
⇒ <  by the Owner Invariant Theorem 5.69, the invariant of the receiver is the only owner 
         variable in the current context that could reference an object with an invalid invariant;
         thus by the Method Call Theorem 5.68  >
      S’<inv(D) && ens(T, m)> 
⇒ <  by the Invariant Clause Lemma 5.1 (in case D < U)  >
      S’<inv(U) && ens(T, m)> 

Lemma 5.71 (A-SupCall): The A-SupCall rule of Figure 4.21 preserves validity

Proof:
Let S ∈ State. If S<inv(U) && req(T, m)[p←e]> = false or {super.m(e), S} does not terminate,

then the A-SupCall rule is trivially valid. So assume S<inv(U) && req(T, m)[p←e]> = true and that
{super.m(e), S} terminates. Let D be the run-time type of the receiver. 

      S<inv(U) && req(T, m)[p←e]>  ∧  U = typeOf(this)
      ∧  T = whereMethodDecl(superOf(U), m)  ∧  {super.m(e), S} ⇒s S’ 
⇒ <  establishing inv(U) in a method declared in U establishes the run-time type 
         invariant of the receiver (by the Valid Invariant Theorem 5.30)  >
      S<inv(D) && req(T, m)[p←e]>  ∧  U = typeOf(this)
      ∧  T = whereMethodDecl(superOf(U), m)  ∧  {super.m(e), S} ⇒s S’ 
⇒ <  by the Owner Invariant Theorem 5.69, the invariant of the receiver is the only owner 
         variable in the current context that could reference an object with an invalid invariant;
         thus by the Method Call Theorem 5.68  >
      S’<inv(D) && ens(T, m)> 
⇒ <  by the Invariant Clause Lemma 5.1 (in case D < U)  >
      S’<inv(U) && ens(T, m)> 
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Lemma 5.72 (A-ObjCall): The A-ObjCall rule of Figure 4.21 preserves validity

Proof:
Let S ∈ State. If S<req(T, m)[this←vr, p←e]> = false or {vr.m(e), S} does not terminate, then

the A-ObjCall rule is trivially valid. So assume S<req(T, m)[this←vr, p←e]> = true and that
{vr.m(e), S} terminates. 

Case 1: (e ≡ this)
Let D1 be the run-time type of object vr and let D be the run-time type of the current receiver

this. 
      S<req(T, m)[this←vr, p←this]>  ∧  U = typeOf(this)
      ∧  T = whereMethodDecl(typeOf(vr), m)  ∧  {vr.m(this), S} ⇒s S’ 
⇒ <  since vr is not this, its run-time type invariant must hold (by the Owner Invariant 
         Theorem 5.69 and since it must be an owner variable)  >
      S<inv(D1)[this←vr]>  ∧  S<req(T, m)[this←vr, p←this]>  ∧  U = typeOf(this)
      ∧  T = whereMethodDecl(typeOf(vr), m)  ∧  {vr.m(this), S} ⇒s S’ 
⇒ <  when e ≡ this, inv(U) must be established (by the A-ObjCall rule of Figure 4.21); 
         since inv(U) is established in a method declared in U, this also establishes the run-time type 
         invariant of the current receiver and e (by the Valid Invariant Theorem 5.30)  >
      S<inv(D1)[this←vr]>  ∧  S<req(T, m)[this←vr, p←this]>  ∧  U = typeOf(this)
      ∧  T = whereMethodDecl(typeOf(vr), m)  ∧  {vr.m(this), S} ⇒s S’ 
      ∧  S<inv(D)> 
⇒ <  thus there can be no owner variable visible in m with an invalid invariant (by the 
         Owner Invariant Theorem 5.69); thus by the Method Call Theorem 5.68  >
      S’<inv(D1)[this←vr] && ens(T, m)[this←vr]> 
⇒ <  semantics of the && operator and logic  >
      S’<ens(T, m)[this←vr]> 
Case 2: !(e ≡ this)
Let S’ ∈ State be the post-state. Since vr and e are not the current receiver this, their run-time

type invariants must hold (by the Owner Invariant Theorem 5.69 and since both must be owner
variables). Thus there can be no owner variable visible in the called method m with an invalid
invariant. Hence, by the Method Call Theorem 5.68, S’<ens(T, m)>. 

Lemma 5.73 (A-NewAssign): The A-NewAssign rule of Figure 4.22 preserves validity

Proof:
Let S ∈ State. If S<req(T, m)[p←e]> = false or {vr=new T(e), S} does not terminate, then the A-

NewAssign rule is trivially valid. So assume S<req(T, m)[p←e]> = true and that {vr=new T(e), S}
terminates. 
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Case 1: (e ≡ this)
Let D be the run-time type of the current receiver this. 
      S<req(T, m)[p←this]>  ∧  U = typeOf(this)  ∧  {vr=new T(this), S} ⇒s S’ 
⇒ <  when e ≡ this, inv(U) must be established (by the A-NewAssign rule of Figure 4.22); 
         since inv(U) is established in a method declared in U, this also establishes the run-time type 
         invariant of the current receiver (by the Valid Invariant Theorem 5.30)  >
      S<req(T, m)[p←this]>  ∧  U = typeOf(this)  ∧  {vr=new T(this), S} ⇒s S’ 
      ∧  S<inv(D)> 
⇒ <  thus there can be no owner variable visible in T.T with an invalid invariant (since 
         no pivot fields have been initialized yet); thus by the Method Call Theorem 5.68  >
      S’<inv(T)[this←vr] && ens(T, m)[this←vr]> 
Case 2: !(e ≡ this)
Let {vr=new T(this), S} ⇒s S’. Since e is not this, its run-time type invariant must hold (by

the Owner Invariant Theorem 5.69 and since it must be an owner variable). Thus there can be no
owner variable visible in m with an invalidated invariant. Hence, by the Method Call Theorem 5.68,
S’<inv(T)[this←vr] && ens(T, m)[this←vr]>. 

Lemma 5.74 (A-SupConstr): The A-SupConstr rule of Figure 4.21 preserves validity

Proof:
Let S ∈ State. If S<req(T, m)[p←e]> = false or {super(e), S} does not terminate, then the A-

SupConstr rule is trivially valid. So assume S<req(T, m)[p←e]> = true and that {super(e), S}
terminates. Let D1 be the run-time type of e. 

      S<req(T, m)[p←e]>  ∧  U = typeOf(this)  ∧  T = superOf(U)  ∧  {super(e), S} ⇒s S’ 
⇒ <  when !(e ≡ this), e’s run-time type invariant must hold if e is an object reference 
         (by the Owner Invariant Theorem 5.69 and since it must be an owner variable)  >
      S<req(T, m)[p←e]>  ∧  U = typeOf(this)  ∧  T = superOf(U)  ∧  {super(e), S} ⇒s S’ 
      ∧  (D1 ∉ TypeId  ∨  S<e == null>  ∨  S<inv(D1)[this←e]>) 
⇒ <  thus there can be no owner variables visible in T.T with an invalid invariant (since 
         no pivot fields have been initialized yet); thus by the Method Call Theorem 5.68  >
      S’<inv(T) && ens(T, m)> 

Our next lemma will be used to simplify the proofs of the two lemmas that follow; it proves that,
when a method call is the right side of an assignment statement, we can substitute the target variable of
the assignment for the JML pseudo variable \result in the postcondition (\result denotes the
return value in the postconditions of JML method specifications).
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Lemma 5.75(Result Substitution): Let S ∈ State. 

If  S<P>  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v  ∧  vr does not occur in P, 
then  S[vLoc := v]<P[\result←vr]>. 
Proof:
      S<P>  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v
⇒ <  by the Substitution Theorem 5.9   >
      S<P>  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v
      ∧  S<P[vr←\result]> = S[vLoc := v]<P>
⇒ <  P ≡ P[vr←\result] because vr does not occur in P  >
      S<P>  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v
      ∧  S<P> = S[vLoc := v]<P>
⇒ <  S<P> and equality  >
      [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v  ∧  S[vLoc := v]<P>
⇒ <  from the E-VarRef rule of Figure 4.16  >
      [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v  ∧  S[vLoc := v]<P>
      ∧  [vr, S[vLoc := v]] ⇒e getValue(S[vLoc := v], vLoc)
⇒ <  by the State Update Lemma 5.6  >
      [vr, S] ⇒lv vLoc  ∧  [\result, S] ⇒e v  ∧  S[vLoc := v]<P>
      ∧  [vr, S[vLoc := v]] ⇒e v
⇒ <  we can substitute equals for equals (when expressions do not have side-effects) 
         without changing the expression’s value, i.e., [\result←vr]  >
      S[vLoc := v]<P[\result←vr]>

Lemma 5.76(A-CallAssign): The A-CallAssign rule of Figure 4.22 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {vr=e0.m(e), S} does not terminate, then the A-CallAssign rule

is trivially valid. So assume S<P> = true and that {vr=e0.m(e), S} terminates. 
We start calculating from our assumptions and the semantics of vr=e0.m(e) given in the S-

CallAssign rule of Figure 4.19. 
      S<P>  ∧  {e0.m(e), S} ⇒s S’  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S’] ⇒e v
      ∧  {vr=e0.m(e), S} ⇒s S’[vLoc := v]  
⇒ <  by the validity of {P} e0.m(e) {Q} in the antecedent of the A-CallAssign rule of 
         Figure 4.22  >
      [vr, S] ⇒lv vLoc  ∧  [\result, S’] ⇒e v  ∧  {vr=e0.m(e), S} ⇒s S’[vLoc := v]  
      ∧  S’<Q> 
⇒ <  by the Result Substitution Lemma 5.75 since vr is not in scope in Q  >
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      S’[vLoc := v]<Q[\result←vr]> 

Lemma 5.77(A-SupCallAssign): The A-SupCallAssign rule of Figure 4.22 preserves validity

Proof:
Let S ∈ State. If S<P> = false or {vr=super.m(e), S} does not terminate, then the A-

SupCallAssign rule is trivially valid. So assume S<P> = true and that {vr=super.m(e), S}
terminates. 

We start calculating from our assumptions and the semantics of vr=super.m(e) given in the S-
SupCallAssign rule of Figure 4.19. 

      S<P>  ∧  {super.m(e), S} ⇒s S’  ∧  [vr, S] ⇒lv vLoc  ∧  [\result, S’] ⇒e v
      ∧  {vr=super.m(e), S} ⇒s S’[vLoc := v]  
⇒ <  by the validity of {P} super.m(e) {Q} in the antecedent of the A-CallAssign rule of 
         Figure 4.22  >
      [vr, S] ⇒lv vLoc  ∧  [\result, S’] ⇒e v  ∧  {vr=super.m(e), S} ⇒s S’[vLoc := v]  
      ∧  S’<Q> 
⇒ <  by the Result Substitution Lemma 5.75 since vr is not in scope in Q  >
      S’[vLoc := v]<Q[\result←vr]> 

5.2.6.7 The assignable rules preserve validity
Our last two lemmas show that the A-Assignable and A-SupAssignable rules preserve validity.

These rules can be used by verifiers when reasoning about side-effects, particularly when variables are
not mentioned in the postcondition of the called method, i.e., these inference rules allow the verifier to
prove that variables did not change during a method call. The A-SupAssignable rule can be used in
reasoning about assignments to subclass fields that overriding subclass methods can assign to. That is,
the A-SupAssignable rule can be used to prove that a super-call does not have unverifiable additional
side-effects; of course, this rule assumes that the super-call is allowed by our rules. 

Lemma 5.78 (A-SupAssignable): The A-SupAssignable rule of Figure 4.23 preserves validity

Proof:
Let S ∈ State. If for all Z ∈ LogicId, S<P && Z==w> = false or {super.m(e), S} does not

terminate, then the A-SupAssignable rule is trivially valid. So assume S<P && Z==w> = true and
{super.m(e), S} terminates. 

      S<P && Z==w>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)
      ∧  U ≤ T1 < T  ∧  f ∈ setOfFieldsIn(T1)  ∧  (w ≡ this.f  ∨  w ≡ this.f.g)
      ∧  {super.m(e), S} ⇒s S’ 
⇒ <  logic and meaning of S<P && Z==w>  >
      S<P>  ∧  S<Z==w>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)
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      ∧  U ≤ T1 < T  ∧  f ∈ setOfFieldsIn(T1)  ∧  (w ≡ this.f  ∨  w ≡ this.f.g)
      ∧  {super.m(e), S} ⇒s S’ 
⇒ <  Z is a logical variable and thus is independent of the program state >
      S<P>  ∧  Z==S<w>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)
      ∧  U ≤ T1 < T  ∧  f ∈ setOfFieldsIn(T1)  ∧  (w ≡ this.f  ∨  w ≡ this.f.g)
      ∧  {super.m(e), S} ⇒s S’ 
⇒ <  |= {P} super.m(e) {Q}, since it is an antecedent of the A-SupAssignable rule 
        of Figure 4.23 >
      S’<Q>  ∧  Z==S<w>  ∧  U = typeOf(this)  ∧  T = whereMethodDecl(superOf(U), m)
      ∧  U ≤ T1 < T  ∧  f ∈ setOfFieldsIn(T1)  ∧  (w ≡ this.f  ∨  w ≡ this.f.g)
      ∧  {super.m(e), S} ⇒s S’ 
⇒ <  by the Additional Side-Effects Theorem 5.48, since super.m(e) is allowed by 
         our rules  >
      S’<Q>  ∧  Z==S<w>  ∧  S<w> = S’<w>
⇒ <  equality  >
      S’<Q>  ∧  Z==S’<w>
⇒ <  Z is a logical variable and thus is independent of the program state >
      S’<Q>  ∧  S’<Z==w>
⇒ <  by the meaning of the && operator and logic  >
      S’<Q && Z==w>

Lemma 5.79 (A-Assignable): The A-Assignable rule of Figure 4.23 preserves validity

Proof:
Let S ∈ State. If for all Z ∈ LogicId, S<P && Z==w> = false or {e0.m(e), S} does not terminate,

then the A-Assignable rule is trivially valid. So assume S<P && Z==w> = true and {e0.m(e), S}
terminates. 

      S<P && Z==w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’ 
      ∧  w ∉a selfAssigns(e0, T, m)  ∧  w ∉a parmAssigns(e, T, m)
⇒ <  definition of selfAssigns and parmAssigns of Figure 5.4  >
      S<P && Z==w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’ 
      ∧  w ∉a { this.f | this.f ∈ assigns(T, m) }[this←e0]
      ∧  w ∉a { this.f.g | this.f.g ∈ assigns(T, m) }[this←e0]
      ∧  w ∉a { p.g | p.g ∈ assigns(T, m) }[p←e]
⇒ <  definition of set membership and substitution and since the assignable clause 
         can only reference fields of the receiver or formal parameter (see JML syntax and the 
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         predicate validMethodSpecs of Figure 5.7)  >
      S<P && Z==w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’  ∧  w ∉a assigns(T, m)[this←e0, p←e]
⇒ <  logic and meaning of S<P && Z==w>  >
      S<P>  ∧  S<Z==w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’  ∧  w ∉a assigns(T, m)[this←e0, p←e]
⇒ <  Z is a logical variable and thus is independent of the program state >
      S<P>  ∧  Z==S<w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’  ∧  w ∉a assigns(T, m)[this←e0, p←e]
⇒ <  |= {P} e0.m(e) {Q}, since it is an antecedent of the A-Assignable rule 
        of Figure 4.23 >
      S’<Q>  ∧  Z==S<w>  ∧  U = typeOf(e0)  ∧  T = whereMethodDecl(U, m)  ∧  U ≤ T
      ∧  {e0.m(e), S} ⇒s S’  ∧  w ∉a assigns(T, m)[this←e0, p←e]
⇒ <  by the Assignable Clause Theorem 5.43, since e0.m(e) is allowed by our rules  >
      S’<Q>  ∧  Z==S<w>  ∧  S<w> = S’<w>
⇒ <  equality  >
      S’<Q>  ∧  Z==S’<w>
⇒ <  Z is a logical variable and thus is independent of the program state >
      S’<Q>  ∧  S’<Z==w>
⇒ <  by the meaning of the && operator and logic  >
      S’<Q && Z==w>

5.3  Discussion, Conclusions, and Future Work
In this chapter, we formalized our rules from Chapters 2 and 3 so they could be used in our

soundness proof. However, the T-rules and their associated predicates and functions are sometimes
more conservative than the informal rules from Chapters 2 and 3; in particular, the formalization of
two of our rules is more restrictive than the informal versions. In this section, we examine how the
original less conservative versions of these two rules could be formalized and give an informal
justification of their soundness. Recall that we chose the more conservative versions to simplify the
soundness proof given in Section 5.2. 

In subsection 5.3.1, we reconsider the formalization of the Invariant Invalidation Rule from
Chapter 2. Similarly, in subsection 5.3.2, we revisit the Actual Parameter Aliasing Rule from Chapter
3. In subsection 5.3.3, we examine what would be necessary to eliminate our assumption and
requirement that unoverrideable methods not have side-effects. In subsection 5.3.4, we discuss what
would be involved in extending our formalization to methods with more than one formal parameter. In
subsection 5.3.5, we discuss ways of making our handling of object-calls in the callable clause less
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conservative. Finally, in subsection 5.3.6, we discuss the practicality of our technique and how it
would be used. 

5.3.1  The Invariant Invalidation Rule 

The version of the Invariant Invalidation Rule that we formalized in Section 5.1 via the predicate
validInvariant disallows a super-call or requires an override whenever the superclass method is
allowed to assign to fields that are constrained by a subclass invariant. Therefore, superclass methods
cannot be called if they invalidate any of the subclass parts of the type invariant; thus the run-time type
invariant is established whenever the invariant of the static type of the receiver is established  (see the
Valid Invariant Theorem 5.30). 

However, the informal rule given in Chapter 2 (subsection 2.4.1) is less conservative in that it only
disallows the super-call when the superclass method makes a self-call and has permission to assign to
a superclass field that is constrained by a subclass invariant. Thus the informal rule is different in two

__________________________________________________________________________

validInvariant(S, T, m) =  noSelfCalls(T, m)  ∧  
     (∀ f ∈ allFieldsIn(T), g ∈ VarId : 
          ( this.f ∉a assigns(T, m)  ∨  this.f ∉ accessed(invOf(TEnv(S)) ) 
      ∧  ( this.f.g ∉a assigns(T, m)  ∨  this.f.g ∉ accessed(invOf(TEnv(S))) ) )

noSelfCalls(T, m) = { this.m |  this.m ∈ calls(T, m) } = { }
      ∧  noParmSelfCalls(T, m, U, n)
      ∧  (∀ U::n ∈ calls(T, m) :  noSelfCalls(U, n) )

noParmSelfCalls(T, U, n) =  
          getParmType(U, n) ∉ TypeId  ∨  !(T ≤ getParmType(U, n)) 
      ∨  (∀ U1::n1 ∈ calls(U, n) : !(U1 ≤ getParmType(U, n)) )

aliasingOK(rcvr, arg, U, T, m) =  !(rcvr ≡ arg)
       ∧  (!(rcvr ≡ this)  ∨  !isPivot(arg, U)
              ∨   (∀ g ∈ VarId : arg.g ∉a assigns(T, m)) )
       ∧  (!(arg ≡ this)  ∨  !isPivot(rcvr, U)
              ∨   (∀ g ∈ VarId : rcvr.g ∉a assigns(T, m)) ) 

parmAliasingOK(arg1, arg2) =  !(arg1 ≡ arg2)

Figure 5.8:  Less restrictive predicates that could be used in the T-Rules and by other functions in Figure 5.4.
__________________________________________________________________________
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ways, i.e., the field that is allowed to change must be visible in the superclass and the superclass
method must have permission to make a self-call. The reason this informal rule is sound is because
super-calls cannot assign to subclass fields unless they make a self-call down to a subclass method;
thus the super-call can only invalidate the subclass invariant if it assigns to fields visible in the
superclass. Furthermore, if the super-call does not make a self-call (downcall), then the run-time type
invariant does not have to be established during the super-call; the subclass invariant can be
established by the calling subclass method. Note that we have to prevent self-calls, not just downcalls,
because some other subclass lower in the hierarchy than the current one may override the method
being self-called but the run-time type invariant would not hold. This less restrictive version of the
Invariant Invalidation Rule as given in Chapter 2 is formalized by predicate validInvariant of Figure
5.8. 

5.3.2  The Actual Parameter Aliasing Rule 

The Actual Parameter Aliasing Rule was formalized by the T-rules in Section 5.1 via the
aliasingOk predicate of Figure 5.4. However, this predicate is more conservative than the original
informal rule given in Chapter 3. Recall that the informal rule requires the use of the accessible
clause, that is, when a called method has side-effects, its argument objects are allowed to have shared
state as long as the assignable fields are not assigned through one access path and read through
another. 

However, the use of the accessible clause is only sound if field accesses are only allowed through
a unique access path, e.g., through an owner variable6. Also, since concrete fields are not visible in the
public specification, accesses would have to be specified through data groups as is done when
specifying side-effects. Furthermore, accessing fields of objects other than the receiver would have to
be done through object-calls and the receiver would have to be an owner variable. Requiring that
accesses to fields of objects other than the current receiver be done through object-calls is already a
restriction in our technique for internal objects, i.e., based on the Predicate Clause Access Rule of
subsection 3.3.4, an object-call on a field of the receiver means that that field must be a pivot. Note,
however, that fields of newly created objects would not have to be specified or checked. What is
unclear is whether the benefits of using our less conservative rule outweigh the additional overhead of
specifying and checking the accessible clause. On the other hand, the accessible clause may be
useful for other purposes. 

Another, we believe, better possibility might be to only disallow two argument objects in a method
call when they have overlapping fields (shared state) and the overlapping fields are assignable; this
seems better since it does not require the specification or checking of field accesses. This modified rule
is given below. 

6. The soundness of the assignable clause depends on a similar restriction, i.e., side-effects can only 
be initiated through an owner variable. 
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Actual Parameter Aliasing Rule’. Two argument objects to a method call cannot have aliased fields
if those fields are assignable in the called method. 

The difference between the above rule and the version given in Chapter 3 is that the above rule
does not allow the call even if the overlapping assignable fields are not accessed through a different
access path. The above version (i.e., the Actual Parameter Aliasing Rule’) is formalized by predicate
aliasingOk of Figure 5.8. This rule is sound because it prevents argument objects from having
overlapping assignable fields (as in the No Overlapping Assignable Fields Lemma 5.25). 

All three versions7 of this rule have pros and cons, so a case study would be needed to determine
which version is the most practical (by practical we mean the trade off between how many unnecessary
errors are issued and the difficulty and efficiency of the implementation of each rule); we leave this
case study as future work. 

5.3.3  Unoverrideable Methods

We assumed in subsection 1.6.6 that unoverrideable methods with side-effects would not be
allowed because such methods can cause subclasses to be unimplementable (see subsections 2.9.2 and
2.9.3). For example, if an unoverrideable method invalidates a subclass invariant, then the run-time
type invariant probably would not be reestablished on exit (since it knows nothing about the subclass). 

However, another approach would be to disallow a subclass invariant when that invariant cannot
be established by all of its public and protected methods due to unoverrideable superclass methods.
Thus the next rule could be added to our set of rules, replacing our assumption that disallows final
methods with side-effects. 

Subclass Invariant Rule: Let S be a subclass of C. Let V be a concrete instance variable visible in C.
If superclass method C::M is unoverrideable and can assign to V, then S cannot specify an invariant
that accesses and constrains the value of V. 

This rule seems more practical than our original assumption because it would not require an error
message when the superclass defines a final method with side-effects. Instead, this rule would only
require an error message when a subclass declares an invariant that would be invalidated by an
unoverrideable superclass method; in a sense, this is where the error actually occurs and it gives the
customizer a chance to correct the error, i.e., remove the subclass invariant or remove final from the
declaration of the unoverrideable method (if superclass code is available). 

The above rule is similar to the usual restrictions on invariants found in the literature [PH97,
Mül02, LM04, MPHL05, LM05]; however, the above rule would only restrict subclass invariants
when the superclass has unoverrideable methods. That is, our technique does not impose this
restriction except when there are unoverrideable superclass methods that may invalidate the subclass

7. The version formalized by aliasingOk, the version given in Chapter 3, and the version given in this 
subsection.
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invariant because, in our technique, subclass invariants can be handled through method overrides and
by disallowing super-calls. 

However, the above rule does not eliminate the problems caused by additional side-effects. That
is, even if a subclass does not declare a subclass invariant, the subclass will still be unimplementable if
superclass code is unavailable and the subclass inherits unoverrideable methods with additional side-
effects, i.e., the required assignments to subclass fields will not be possible and/or assignments to
subclass fields through downcalls will be unverifiable without superclass code. Therefore, we need
another rule to avoid such problems. 

Additional Side-Effects Rule: Let S be a subclass of C. Let V be a concrete instance variable declared
in S. If superclass method C::M is unoverrideable, then S cannot allow C::M to assign to V. 

The above Additional Side-Effects Rule says that subclasses cannot add subclass fields to a data
group that is assignable by an unoverrideable superclass method. Therefore, with the two rules given
in this subsection, we would be able to eliminate our assumption (see subsection 1.6.6) that final
methods do not have side-effects. 

5.3.4  More than One Formal Parameter

For simplicity, we restricted the syntax of Java-C to methods with a single formal parameter.
However, our technique can be extended to multiple formal parameters by checking each pair of actual
parameters in a method call, i.e., the restrictions in aliasingOK would be applied to the receiver and
each actual parameter and each pair of actual parameters could not be aliases. Therefore, there would
have to be two functions, one for comparing the current receiver with each formal parameter as is done
in Section 5.1 (using aliasingOK) and another for comparing each pair of non-receiver parameters
(using formalAliasingOK). These predicates are given in Figure 5.8. 

5.3.5  Object Calls in the Callable Clause

In our technique, the primary use of the callable clause is to identify self-calls and possible
downcalls. However, because of visibility restrictions and aliasing, object-calls are specified in the
callable clause with the type of the receiver rather than with the actual receiver expression. Therefore,
our use of the callable clause has to be conservative because of aliasing. For example, we sometimes
have to consider an object-call to be a self-call when the type of the receiver indicates that the object-
call could be a self-call; this occurs primarily when trying to determine whether an object-call is also a
this-argument call (see predicates noParmSelfCalls of Figure 5.8 and noParmAddSideEffects of Figure
5.5). 

Nonetheless, we believe that identifying possible downcalls through the type of the formal
parameters in an object-call will not make our technique impractical since most methods do not make
this-argument calls (this is usually passed as the receiver in a self-call or super-call). Furthermore,
our technique has restrictions that enable most self-calls to be identified, e.g, calls with side-effects
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have to be initiated through the caller’s receiver in a self-call or super-call or through an owner
variable in an object-call; thus variables that initiate side-effects can only be the original owner or a
parameter (also, local variable owners reference new objects and are not considered by our rules). 

A similar approach to our use of the receiver type (rather than the receiver expression) was used in
the enforcement of the Law of Demeter. That is, the Object Form of the Law of Demeter is
undecidable, and thus cannot be statically enforced. However, the Class Form was successfully used
and applied in a large project [LH89]. A case study of our technique for specifying and handling
object-calls is needed but we leave that for future work. 

However, another possible formalization that would make our technique less conservative would
be to only require that self-calls, super-calls, and this-argument calls be listed in the callable clause
since these are the only calls of interest in our technique (except when the Callback Cycle Rules are
enforced). Therefore, object-calls would only be considered in the application of the T-rules when they
are this-argument calls, rather than when they could be this-argument calls. 

All of the rules that we formalized in Figure 5.8 and in Section 5.1 can be enforced when the
callable clause only specifies the methods directly called; also, we are able to use the code contract
that reflects the actual implementation code also making the T-rules more practical. However, the
Callback Cycle Rules require that all directly or indirectly called methods be included in the callable
clause since their purpose is to identify cycles in the call graph of a method; furthermore, to automate
this would require that a tool calculate the transitive closure of the callable relation between methods
as specified in the callable clause to determine the directly and indirectly called methods. We leave
the enforcement of the Callback Cycle Rules as future work; thus our formalization only requires
direct calls in the callable clause. 

5.3.6  Our Technique, Its Limitations and Use

The enforcement of the rules of our technique may disallow some implementations that
customizers may want and that may be safe. However, the soundness of our verification logic requires
that these rules be enforced even though there may be exceptions where violations of our rules do not
cause unexpected behavior or problems. 

For example, the T-rules, with predicate invariantOK as an antecedent, are more restrictive than
the Owner Variable Rule given in Chapter 3. That is, these T-rules require that all actual parameters be
owner variables when they are a reference type, whereas in Chapter 3, this was only required when the
called method had permission to change the state of the corresponding argument object. The reason for
the more restrictive T-rules is because the only objects that are guaranteed not to have an invalidated
type invariant are those referenced by owner variables; thus the more restrictive rule that we
formalized is necessary for the soundness of our verification logic. However, if the verifier can prove
that the type invariant holds for an object referenced by a non-owner variable (variables containing a
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read-only reference), then it is safe to pass that object as a parameter as long as the called method does
not change the state of that argument object. 

Therefore, another way to view the enforcement of our rules is that they warn customizers of
potential problems. In the above example, passing a non-owner variable as an actual parameter means
that the verifier has to be sure that the run-time type invariant of such read-only references holds. This
can only be guaranteed modularly if the owner of the object referenced by the read-only variable is
visible in the local context [MPHL05]. However, one could imagine doing a whole program proof, but
such a proof would be required again every time any of the classes is extended; furthermore, this proof
would also require knowing every possible object (and its run-time type) that could be referenced by
that non-owner variable. 

What is unclear, without a case study, is how often implementers need to violate our rules; this is
also left as future work. 

The proof given in this chapter demonstrates that our technique is sound and can be used to avoid
the problems caused by downcalls and aliasing. Furthermore, in Figure 5.8, we provided some
replacement predicates that are less conservative than those given earlier; they also match the informal
rules given in Chapters 2 and 3 and make our technique more practical than it would have been with
the predicates given earlier. 



292
CHAPTER 6: CLASS LIBRARY GUIDELINES AND TOOL SUPPORT

In this chapter, we present a set of guidelines for class library implementers; these guidelines make
it easier for customizers to extend those library classes even when the superclass code is made
available. We also give a brief description of the kind of tool support that would be needed to support
our technique. The guidelines are presented in Section 6.1 and the description of the tool is given in
Section 6.2. We conclude with a brief discussion in Section 6.3. 

6.1  Class Library Guidelines

6.1.1  Introduction

A major purpose of our study of the problems caused by downcalls and aliasing was to identify the
kinds of problems that can arise when creating a subclass without the superclass code. In particular, we
wanted to see whether we could reason about the behavior of superclass methods using only the
superclass specification. This led to the set of rules given in Chapters 2 and 3. That is, when a potential
problem was identified, then rules or restrictions were given to prevent such problems. The rules are
conservative but we believe that they identify issues that must be considered by OO programmers in
general when creating subclasses; this is based on our experimentation with much more complicated
examples than those given in Chapters 1, 2, and 3. Therefore, even if the superclass code is available,
the calling structure, side-effects, and aliasing must be considered when determining which methods to
override and when super-calls are safe. Furthermore, the pivot fields must be identified and the
corresponding pivot objects must be protected to prevent unexpected side-effects, i.e., to make sure the
abstract value of model fields cannot be changed unexpectedly and to ensure that the specification and
use of the assignable clause is sound. 

However, following these rules places a significant burden on the customizer extending classes in
a framework or class library. Therefore, it seemed reasonable to also investigate whether adding a few
more restrictions could ease this burden on customizers, i.e., make the class library a little more user
friendly for customizers. For example, our study provides some insights for framework and class
library designers and implementers that could eliminate the need to apply some or all of the rules given
in Chapter 2 for dealing with downcalls. Thus the purpose of the guidelines described in subsection
6.1.2 is to make it easier for customizers to create subclasses. 

One way to prevent the reasoning problems related to additional side-effects and subclass
invariants is by requiring that library classes adhere to the calling structure shown in Figure 6.1; this
calling structure greatly simplifies the reasoning required by customizers. The idea, as depicted in
Figure 6.1, is to partition the methods of a class into three levels: overrideable non-pure, overrideable
pure, and unoverrideable. Recall that a pure method is a method that has no side-effects. The direction
of each arrow indicates that methods on one level can self-call the methods on the other level. Figure
6.1 describes the following calling structure: 

1. overrideable methods with side-effects cannot be self-called by any methods of the class, 
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2. overrideable pure methods can only be self-called by other overrideable pure methods, and 

3. unoverrideable methods can be freely called by all other methods of the class. 

The overrideable methods of a class are the non-private methods that can be overridden by
subclasses, i.e., the non-private, non-final methods in Java or the non-private, virtual methods in C++.
However, our assumptions do not allow non-private methods to be unoverrideable if they have side-
effects (see assumptions in subsection 1.6.6 and Guideline L61 below). That is, in our technique,
unoverrideable methods with side-effects must all be private. Therefore, the only unoverrideable
methods visible to clients and customizers must be pure, that is, final pure methods in Java or non-
virtual pure methods in C++. In Smalltalk however, there are no unoverrideable methods; so, for
Smalltalk, there would be no methods on level 3 of Figure 6.1. 

The partitioning of methods into three levels and then restricting the calling structure of the
superclass, as shown in Figure 6.1, prevents superclass methods from being invalidated by a new
subclass if that subclass introduces additional side-effects or subclass invariants2. Therefore, a
superclass method will be safe to super-call unless it calls down to a non-refining method (in JML non-
refining methods are not allowed). 

The reason super-calls will be safe is because this calling structure eliminates the possibility of
downcalls while the type invariant is invalid and it eliminates downcalls to methods with additional
side-effects. Specifically, methods with side-effects cannot make downcalls since they are only
allowed to call unoverrideable methods. Also, pure methods cannot have additional side-effects or
invalidate the invariant, so it is safe for them to call other overrideable, pure methods. Also, it is safe

1. Guideline L6 also eliminates the need to apply the additional rules given in subsection 5.3.3 for deal-
ing with unoverrideable methods. 

2. We could have partitioned the methods into two levels, i.e., overrideable and unoverrideable meth-
ods; thus if self-calls to overrideable methods are disallowed, then downcalls would be completely 
eliminated. However, we wanted to allow downcalls to pure methods since they do not have the rea-
soning problems related to additional side-effects and the invalidation of type invariants. 

Figure 6.1:  The three levels of methods used in the guidelines for library 
providers. Arrows indicate that calls can be made in the arrow’s direction.
______________________________________________________

Overrideable Non-pure Methods

Overrideable Pure Methods

Unoverrideable Methods
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for unoverrideable methods to call other unoverrideable methods since such calls do not result in
downcalls. 

For example, Figure 6.2 is an implementation of IntCell that has the suggested calling
structure. The private method set is called by the overrideable methods setValue and setTo;
therefore, these methods will not be invalidated by subclasses that introduce additional side-effects,
such as CellPlusTotal and CellPlusPrevious from Chapters 1 and 2, because private
method set cannot be overridden and hence cannot be downcalled. Therefore, the implementation of
CellPlusTotal given in Figure 1.7 would have been correct in the context of the implementation
of IntCell given in Figure 6.2. 

_________________________________________________________________________

public class IntCell {

  protected int _val;

  public IntCell(int initVal) {
      set(initVal);
  }
  public void setValue(int newVal) {
      set(newVal);
  }
  public void setFrom(IntCell c) {
      if (_val != c.getValue() ) {
          set(c.getValue());
      }
  }
  public int equals(IntCell c) {
      return _val == c.getValue();
  }
  public /*@ pure @*/ int getValue() {
      return _val;
  }
  protected IntCell(IntCell c) {
      set(c.getValue());
  }
  private void set(int val) {
      _val = val;
  }
}

Figure 6.2:  IntCell's implementation from the file IntCell.java.
_________________________________________________________________________
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Figure 6.3 shows the code contract for the methods of IntCell based on the code from Figure
6.2; notice that the call of the private method set does not appear in the code contract because, as
described in subsection 2.6, private methods can be treated as if they were inlined. Furthermore, based
on this code contract, the additional side-effects invalidation rule would no longer invalidate method
setFrom in subclasses like CellPlusPrevious and CellPlusTotal. Notice also that

_________________________________________________________________

//@ refines "IntCell.jml";

public class IntCell {

  /*@ also
    @ protected code normal_behavior
    @   callable \nothing;    @*/
  public IntCell(int initVal);

  /*@ also
    @ protected code normal_behavior
    @   callable \nothing;    @*/
  public void setValue(int newVal);

  /*@ also
    @ protected code normal_behavior
    @   callable c.getValue();    @*/
  public void setFrom(IntCell c);

  /*@ also
    @ protected code normal_behavior
    @   callable c.getValue();    @*/
  public int equals(IntCell c);

  /*@ also
    @ protected code normal_behavior
    @   callable \nothing;    @*/
  public int getValue();

  /*@ also
    @ protected code normal_behavior
    @   callable c.getValue();    @*/
  protected IntCell(IntCell c);
}

Figure 6.3:   The code contract for the implementation of IntCell given in Figure 6.2.
_________________________________________________________________
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methods with side-effects can make object-calls, but they cannot make self-calls to overrideable
methods with side-effects. 

Furthermore, methods with side-effects should not call overrideable, pure methods because of
situations such as the one shown in Figures 2.4 - 2.7. In this example, method copyFrom of Figure
2.6 calls down to the pure method getChange that expects the subclass invariant involving _diff
to hold; such calls should not be allowed because, as in this case, the overriding method may access a
subclass instance variable constrained by a subclass invariant. Therefore, our guidelines for class
libraries do not allow methods with side-effects to call any overrideable methods; this eliminates
downcalls and prevents such superclass methods from being invalidated by the Additional Side-
Effects Invalidation Rule or the Invariant Invalidation Rule. However, these restrictions also prevent
methods with side-effects from calling pure methods even though such calls may not always be unsafe
(see the discussion in subsection 6.3.2). 

It should also be noted, however, that this calling structure does not eliminate the problems related
to aliasing. No special set of guidelines can eliminate the need for the alias control rules either for
library implementers or customizers, i.e., the rules from Chapter 3 have to be enforced for both
superclasses and subclasses to ensure that pivot fields are declared and that pivot objects are protected.
Therefore, the guidelines given in the following subsection include guidelines that state this, i.e., L9 of
Figure 6.4 and R3 of Figure 6.5 (see subsection 5.1.2 for the formalization of the alias control rules). 

6.1.2  Guidelines for Class Library Implementers

The intent of the guidelines given in Figure 6.4 is to ensure that the implementation of a class
library follows the calling structure shown in Figure 6.1 and to make it easier for customizers to extend
those library classes. For example, if the implementer of a framework or class library follows these
guidelines, then superclass methods cannot be invalidated by new subclasses. That is, these guidelines
make sure that methods inherited from the superclass can will always be safely super-called.
Furthermore, if the library provider and reuser adhere to these guidelines, then reasoning about
creating valid subclasses is simplified. 

However, these guidelines are overly restrictive in some cases, but they guarantee that a
customizer can easily make a correct subclass without seeing the library's source code. By “easily” we
mean that the customizer only needs to follow the simple guidelines for programmers given in Figure
6.5 and described later in subsection 6.1.3; that is, the reuser does not need to read Chapter 2 and does
not need to think about the application of most of the rules given in Chapter 2. In particular, these two
sets of guidelines guarantee that methods in the library are never invalidated, so super-calls will always
be safe. 

The first three guidelines, L1 - L3 in Figure 6.4 are necessary for soundness; they are assumptions
or are built into the semantics of JML. Guideline L1, in Figure 6.4, is fundamental to behavioral
subtyping and is built into JML (see functions req and ens of the Figure 4.11 and subsection 4.4.4).
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Guidelines L2 and L3 are assumptions made in our approach and are necessary for its soundness; these
two guidelines, as explained in subsection 2.4.3, prevent problems caused by side-effects to fields of
objects other than the receiver. For example, direct assignment to fields of a parameter object could
invalidate an unknown invariant, e.g., an invariant of a subtype of the static type of that parameter
object; the same problem can also occur unless Guideline L3 is followed. 

_________________________________________________________________________

For each library class: 
L1. Overriding methods should refine the method being overridden.

L2. Methods should not directly assign to instance variables of an object other than the current 
receiver (this in Java and C++).

L3. Methods should not object-call an unoverrideable (e.g. private) method with side-effects.

L4. Methods with side-effects (i.e. non-pure methods) should not self-call overrideable methods.

L5. Unoverrideable methods should not self-call overrideable methods.

L6. Non-private methods with side effects should be overrideable.

L7. Concrete fields should have protected visibility so they are visible to all subclasses.

L8. If a protected concrete instance variable of type T cannot hold all values of type T, then its 
domain should be described in a public or protected invariant.

L9. Classes and methods should follow the rules for declaring and protecting pivot objects given in 
Chapter 3.

Figure 6.4:   The guidelines for framework and class library designers and implementers.
_________________________________________________________________________
_________________________________________________________________________

R1. When overriding a superclass method, always refine it.

R2. Make the subclass's protected invariant imply the superclass's protected invariant, when super-
class instance variables have been exposed to the subclass. 

R3. Classes and methods should follow the rules for declaring and protecting pivot objects given 
in Chapter 3.

Figure 6.5:   The guidelines for customizers and reusers of a framework or class library that followed the guide-
lines in Figure 6.4.
_________________________________________________________________________
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Guidelines L4 - L8 ensure that customizers do not have to be concerned with the invalidation rules
given in Chapter 2. A class is extensible if it can be extended, i.e., can have subclasses; a class cannot
be extended if it is private or final in the Java sense. 

Guidelines L4 and L5 partition the methods of a library class into layers, as shown in Figure 6.1;
they allow methods with side-effects to be self-called, but only if they are unoverrideable and thus do
not introduce downcalls. Guidelines L4 and L5 also ensure that private methods cannot make
downcalls, and therefore, cannot directly or indirectly access or depend on subclass variables. Thus
private methods cannot be invalidated by a new subclass. 

In summary, Guidelines L2 - L5 ensure that superclass methods can only implement side-effects
by directly assigning to instance variables of the current receiver, by self-calling unoverrideable
methods, or by object-calling overrideable methods. Therefore, these guidelines prevent inherited
superclass methods from being invalidated when a subclass introduces additional side-effects or a
subclass invariant. The implementation of IntCell shown in Figure 6.2 is an example. Hence,
Guidelines L2 - L5 eliminate the need for the Additional Side-Effects and Invariant Invalidation Rules. 

Another problem identified in Chapter 2 was unimplementable subclasses caused by
unoverrideable methods (see subsections 2.9.2 and 2.9.3). However, if Guideline L6 is followed, then
the only unoverrideable methods will be private or (final) pure methods. Therefore, Guideline L6
eliminates unimplementable subclasses when a subclass introduces additional side-effects since the
only unoverrideable methods visible to subclasses would be pure methods, i.e., every method that
might have to implement additional side-effects is overrideable. 

Guideline L7 prevents a subclass method from being unimplementable when a superclass method
has been invalidated and cannot be super-called. That is, Guideline L7 ensures that superclass fields
can be maintained or accessed even if the superclass methods that access and assigned to those fields
have been invalidated and cannot be super-called. Therefore, Guideline L7 eliminates the need for the
Mandatory Super-Call Rule given in subsection 2.8. 

Guidelines L7 and L8 also prevent the need for concrete data refinement to avoid an
unimplementable subclass. Guideline L7 requires that all superclass fields be visible to subclasses, and
Guideline L8 requires that the type invariant be visible to all subtypes (both are assumptions in
subsection 1.6.6). For example, in JML, the superclass invariant must hold in all visible states of
subclasses; this is fundamental to behavioral subtyping and is, therefore, required in JML (see function
inv of Figure 4.11 and the Invariant Clause Lemma 5.1). However, concrete data refinement would be
required if the subclass cannot access or change the necessary superclass variables or the superclass
invariant is private. For example, concrete data refinement would be required if the subclass needs to
restrict the domain of private superclass fields and the domain, as declared in a private superclass
invariant, is not visible. That is, a concrete data refinement would be required unless the subclass can
be sure the subclass invariant implies the superclass invariant (i.e., the subclass invariant must be
conjoined with the superclass invariant as is done in function inv of Figure 4.11). Furthermore, if a
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superclass method, that maintains private fields, is invalidated, then the subclass may be
unimplementable, unless the subclass implements a concrete data refinement or the superclass code is
available. 

The guidelines also recommend that methods of library classes not initiate changes to the state of
objects except through pivot fields or other owner variables; this prevents the problem of unexpected
changes to the abstract value of container objects. That is, Guideline L9 says that library classes should
follow the alias control rules given in Chapter 3. 

In summary, if all the guidelines in Figures 6.4 and 6.5 are followed, then superclass methods
cannot be invalidated by new subclasses and customizers do not have to consider the invalidation rules
given in Chapter 2. Therefore, superclass methods can always be safely super-called. 

6.1.3  Guidelines for Customizers Inheriting from Libraries

Programmers who use libraries or frameworks that follow the above guidelines, but are not
themselves producing extensible libraries or frameworks, do not need to follow the guidelines given in
Figure 6.4. However, customizers need to pay attention to the guidelines for reusers given in Figure
6.5. 

In particular, if implementers of the inherited library classes have adhered to the guidelines in
Figure 6.4 and the customize or follows the guidelines in Figure 6.5, then super-calls will always be
safe. That is, if the calling structure is as shown in Figure 6.1 and there are no recursive methods, no
non-refining methods, and the superclass invariant holds, then super-calls will always be safe. Note
that the semantics of JML requires that Guidelines R1 and R2 be followed. 

Also, Guideline R3 recommends that customizers not change the state of objects returned from
method calls, i.e., from methods of objects in library classes. Thus methods of library classes would
not have to be inefficient and make deep copies of pivot objects to protect them from clients and
customizers. Specifically, Guideline R3 says that clients and customizers should follow the rules given
in Chapter 3. 

6.2  Tool Support
Another important way to make our technique less of a burden for class library implementers and

customizers is through tool support. Tool support is necessary to automatically create code contracts
and to assist in enforcing the rules. This section briefly describes the tool that would fill this role for
JML and Java.

Our proposed tool will have two phases after the initial Java type checking. It will work on a per-
class basis, looking at related classes mentioned in the code. For a given class, the first phase will
generate its code contract (i.e., the callable clause and possibly the assignable clause). Generating
the assignable and callable clauses can be done as demonstrated in the T-rules of Figures 5.1 - 5.3,
i.e., instead of checking whether or not the assignment or method call is allowed, the tool would add
that field or method to the assignable or callable clause respectively. 
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The code contract always reflects the current calling structure of a class no matter how many
layers there are in the class hierarchy; that is, the code contract of a method defined in the subclass is
derived directly from the code of that method, but the code contracts of inherited methods are inherited
in the same way that methods are inherited by subclasses.

Phase 2 will check to make sure, based on the T-rules given in Figures 5.1 - 5.3 and the predicates
in Figures 5.4 - 5.8, that all methods have been properly overridden and that no invalid super-calls
have been made. For example, the tool may say that a superclass method should be overridden, or it
may complain that an overriding method made a super-call to an invalidated superclass method. The
checking done in Phase 2 would be an implementation of the T-rules given in Chapter 5 (note,
however, that the predicates given in Figure 5.8 would supersede those given earlier in the chapter to
make our technique less restrictive and more practical). 

The T-rules also enforce our alias control rules from Chapter 3. Thus the checker would also issue
errors when an improper assignment to a pivot field is detected (i.e., the right hand side is not a new
object constructor call or null), or when an actual parameter to a method call is not an owner variable
(i.e., the called method has permission to assign to fields of that argument object). 

6.3  Discussion

6.3.1  Recursive Methods

Customizers also have to be concerned about recursive methods and termination when superclass
code is unavailable. Guideline L10, when combined with our alias control rules, prevents mutual
recursion and callbacks among methods of unrelated classes and objects3. Furthermore, Guidelines
L10 and R4 eliminate mutual recursion between superclass and subclass methods, so they eliminate
the need for customizers to think about the Callback Cycle Invalidation Rule. Note, however, that
Guideline L10 does not prevent unoverrideable (private or final pure) methods from being recursive or
mutually recursive with other unoverrideable methods since these methods cannot make downcalls
when Guideline L5 is followed. 

L10. Overrideable methods should not be recursive or mutually-recursive with other methods.

Guideline R4 for customizers is also helpful for reasoning about termination of recursive methods.
The main principle of these two guidelines is to ensure that customizers and verifiers can reason about
method termination by ensuring that the code of all methods that could be executed are available to
verifiers. 

3. Since there are patterns involving callbacks, libraries could make the code of methods available to 
reusers if they are involved in mutual recursion among unrelated classes; this would allow reusers to 
reason about termination.
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R4. Avoid creating a group of mutually recursive methods involving a method of a library super-
class.

6.3.2  Another Guideline for Libraries

There are situations where the guidelines in Figure 6.4 are more conservative than necessary. For
example, we could allow methods with side-effects to call pure overrideable methods under some
circumstances (even though this violates Guideline L4 and our rules). That is, the problem caused by
subclass invariants, as illustrated by class CellPlusInvariant in Figures 2.4 - 2.7, can be
avoided by requiring that all calls to pure overrideable methods be made prior to any changes in the
state of the receiver object. If this is possible, then the subclass invariant will always hold when the call
(or downcall) is made. The following guideline expresses this idea. 

L11. Methods with side-effects should only call overrideable pure methods when the pre-state of 
the receiver object has not been changed.

Note, however, that we do not include this guideline in our recommendations because it does not
follow the rules given in Chapter 2. For example, if the guidelines in Figure 6.4 are followed by the
superclass and the guidelines given in Figure 6.5 are followed by the subclass, then none of the
superclass methods can be invalidated by any of the rules given in Chapter 2. However, this would not
be true if we included Guideline L11, i.e., such methods could be invalidated by the Invariant
Invalidation Rule (see subsection 2.4.1). Furthermore, our formalization has no way of checking that
Guideline L11 is being followed. Also, since Guidelines L4 and L11 are incompatible, L4 would have
to be modified to accommodate L11. 

6.3.3  Informal Documentation

What do these guidelines say about informal documentation for class libraries and frameworks?
One clear conclusion is that the notion of documentation as a contract [LG86, Mey88, Mey92] is

essential. For example, Guideline L8 says that libraries have to be documented with public and
protected invariants, and this is required by Guideline R2 as well. Such contracts benefit greatly from
formality, but even informal contracts are better than none. Informal contracts can be structured into
invariants, pre- and postconditions for methods, and assignable clauses to help make them more
understandable and readable [LG86]. We believe that the division of specifications into public and
protected parts is another way to help make such specifications more understandable, since it separates
the information needed by clients from that needed by customizers writing subclasses.

Guidelines L4 and L5 divide the methods of a library class into layers, as illustrated in Figure 6.1.
The layers themselves, along with other guidelines, are a substitute for the code contract. That is, they
eliminate the need for library documentation to include something like the code contract. However, if a
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library provider cannot strictly follow this layering, something like the callable clause in the code
contract needs to be part of the documentation provided for the library. Since these are essentially lists,
there seems to be no reason not to use the formal notation and automatic tool support for generating
them.

Finally, documentation for a library needs to discuss the guidelines for reusers, and especially to
highlight Guideline R4 so reusers understand why and how to avoid mutually-recursive methods when
super-class code is unavailable. This documentation should also highlight Guideline R3 and specify
that (or at least when) it is unsafe for customizers or clients to modify the state of objects returned from
methods of library classes. Otherwise, library class implementers and customizers should never expose
pivot objects to clients. 

6.3.4  Conclusions

Following both sets of guidelines from Figures 6.4 and 6.5 ensures that subclasses do not
invalidate superclass methods; this means that methods can be implemented and reasoned about
independently from the implementation of superclass methods. Our guidelines could also be used to
help with the organization of a class library or framework, i.e., its implementation could be reviewed
for its reusability using the code contracts of its classes in light of the guidelines for library providers
shown in Figure 6.4. These two sets of guidelines also give insight into the information that needs to be
included in documentation for library classes and frameworks. 

Guidelines L2, L3, L5, L6, and L7 hold automatically in Smalltalk, i.e., only instance variables of
the current receiver are in scope and all methods are overrideable. Furthermore, Guidelines L1 and L8
are necessary for behavioral subtyping and for method verification, but are not part of the T-rules or
static checker. Therefore, only Guidelines L4 and L9 would have to be enforced by a checker for
Smalltalk programs. Since large systems have been coded in Smalltalk and because so many of the
guidelines are automatically enforced by Smalltalk itself, this provides good evidence that the
restrictions imposed by these guidelines are not going to be impractical for library implementations. 
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CHAPTER 7: CONCLUSION

7.1  Summary
In Chapter 2, we gave a set of rules for preventing the invocation of superclass methods when

those methods may no longer satisfy their superclass specification or may have unverifiable side-
effects; we also illustrated how and why these problems arise when superclass methods make
downcalls. Our rules prevent the problems caused by downcalls by disallowing super-calls and by
requiring method overrides. That is, we provided a set of invalidation rules to prevent super-calls to
methods that may have unverifiable behavior and we provided an analogous set of overriding rules to
prevent self-calls and object-calls to invalidated superclass methods. 

The soundness of our reasoning technique requires that there be no unexpected changes in the
abstract value of an object. Therefore, in Chapter 3, we gave another set of rules for ensuring that pivot
fields are declared and that pivot objects are protected from unexpected side-effects. We gave
examples to illustrate why declaring and protecting pivot objects is necessary for the soundness of any
verification logic and for the soundness of the assignable and represents clauses used by our
technique. 

To prove that the rules given in Chapters 2 and 3 prevent the problems described, we needed to
show, based on our rules, that there is a sound, modular proof system for verifying the correctness of
subclasses without superclass code. In Chapter 4, we formally defined the syntax of Java-C, a subset of
Java, and JML-C, a subset of JML; these languages only include the features needed to demonstrate
that our technique is sound and sufficient for preventing the unverifiable behavior and unexpected
side-effects described in Chapters 2 and 3. We also specified an operational semantics for Java-C and
an axiomatic semantics for JML-C. As required, the operational semantics includes rules and data
structures to represent and handle objects, dynamic binding, and the run-time stack and heap. In
Chapter 4, we also provided some examples to illustrate how the axioms and inference rules of the
verification logic would be used to verify correctness of subclass methods using JML-C specifications;
the verification was done without the need for superclass code. 

In Chapter 5, we formalized the rules from Chapters 2 and 3 as a statically enforceable type
system, i.e., as the set of T-rules. The T-rules were then used in the soundness proof of the verification
logic from Chapter 4. The soundness of this verification logic proves that our technique permits sound,
modular verification of subclasses without superclass code. 

In Chapter 6, we investigated ways in which the implementers of a class library can make their
frameworks more user friendly. That is, we provided a set of guidelines that, if followed, make it easier
for customizers to extend the classes in these libraries. These guidelines ensure that super-calls are
always safe and that our verification logic can be used to prove the correctness of subclass methods
without superclass code. 
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In the sections that follow, we will discuss related work and some of the results and contributions
of our research. In Section 7.2, we describe research related to our technique for handling downcalls.
In Section 7.3 we describe some of the work related to object invariants. In Section 7.4 we discuss
research related to aliasing, and finally, in Section 7.5, we describe some conclusions and directions
for future work. 

7.2  Research Related to Correct Subclassing
In this subsection, we discuss papers related to our technique for preventing problems caused by

downcalls. This subsection is adapted from our OOPSLA paper [RL00]. 
In a paper presented at OOPSLA’98, Leino introduced the notion of data groups and dependencies

for controlling which subclass fields can be modified by an overriding subclass method [Lei95, Lei98].
The maps and in clauses in JML are derived from Leino's work [LPHZ02]. A specification language
needs a feature like these data group clauses to declare dependencies so a tool can apply the Additional
Side-Effects Invalidation and Overriding Rules. However, Leino's work does not attempt to solve
downcall problems caused by subclassing. 

Kiczales and Lamping informally describe the kind of documentation that needs to be provided by
an “extensible class library”[KL92]. Kiczales and Lamping show that more knowledge of the calling
relationships among methods is needed by programmers inheriting from a class library. They propose
that methods be organized into layers; a method may call another method, only if the other method is a
member of the same layer or is on a lower layer [KL92][section 4.8]. This is similar to our guidelines
for library providers that organize the methods of a class into three levels. However, in our guidelines,
the public non-pure methods are not allowed to call each other, which is key to preventing invalidation
of superclass methods. Kiczales and Lamping also propose that methods be grouped based on the
instance variables manipulated by methods within the group; every method in such a group would be
overridden whenever any member of the group is overridden [KL92][sections 4.5 and 4.6]. Thus, a
group would have to be inherited as a whole by subclasses. The documentation they propose is
informal, and thus, does not allow static checks for possible problems when new subclasses are
created. 

Lamping later formalizes some of these ideas into a type system approach for describing what he
calls the specialization interface, an interface between a class and its subclasses [Lam93]. An
important benefit of this technique is that it allows for additional error detection when new subclasses
are created. However, in contrast to our technique, Lamping's does not say anything about super-calls
and requires that entire groups be overridden. Our technique only requires that methods be overridden
if they have been invalidated, i.e., if they have additional side-effects or need to establish a subclass
invariant. Also, Lamping’s work [Lam93, KL92] does not attempt to solve the problems caused when
the superclass code is unavailable to customizers. 
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Steyaert, Lucas, et al. introduce a similar approach called “reuse contracts” for specifying a
contract between a class and its subclasses [Luc97, SLMD96]. Like a specialization interface, a reuse
contract specifies the calling interdependencies of methods of a class, that is, a reuse contract lists the
other methods on which a particular method depends. The primary innovation of this approach is in
defining a set of operators on reuse contracts that allow safe transformations to the calling structure. It
also allows the detection of conflicts between a class and its subclasses due to changes in the calling
structure of the superclass, and it formalizes the meaning of correctly implementing a reuse contract.
However, a reuse contract does not necessarily list all methods called. Only those methods manually
determined to be important for inheritors are included, and no guidelines are given for how to do this.
In addition, reuse contracts are primarily concerned with the evolution of superclasses, while our work
is concerned with the addition of new subclasses and their effect on the behavior of superclasses.

All of the above approaches are syntactically based, that is, they do not necessarily detect or
prevent errors caused by changes in the behavior of methods overridden by subclasses. 

Perry and Kaiser [PK90] address the semantic problem caused by changes in the behavior of
methods overridden by subclasses in the context of their work on testing. They point out that inherited
superclass methods must be retested unless “the new subclass is a pure extension of the superclass, that
is, … there are no interactions in either direction between the new [subclass] instance variables and
methods and any inherited instance variables and methods.” They further show that a different set of
tests may be needed to retest these inherited methods. However, our technique does not limit the
interactions between superclasses and subclasses so severely. Further, if the documentation and
reasoning technique we propose is followed, then inherited methods would not need to be retested or
reverified. 

Stata and Guttag [SG95] solve this semantic problem by requiring that new subclasses implement
behavioral subtypes [Ame91, DL96, LW93, LW94] of their superclass. They extend the partitioning
ideas of Kiczales and Lamping [KL92] and Lamping [Lam93] into a formal system of class
components composed of disjoint sets of methods and instance variables. No method in one
component is allowed to directly access variables in another component, and all methods within a
component must be overridden whenever any one of the methods in the component is overridden. This
permits individual components to be implemented, reasoned about, and overridden independently of
other components of a class. However, in this formalization, improvements to individual methods
cannot be made without overriding all methods of a component, even when the modifications would
not change observable behavior. Edwards weakens this requirement by allowing individual methods to
be overridden as long as the representation invariant of instance variables of the component is
maintained [Edw96]. Neither Stata and Guttag nor Edwards give conditions under which super-calls
may be made.

Like Stata and Guttag, JML requires that subclasses implement behavioral subtypes. However,
like Edwards, JML also allows improvements to individual methods by specifying the representation
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invariant (i.e., the protected invariant) in the protected specification. JML's specification inheritance
ensures that the subclass representation invariant implies the superclass representation invariant; thus,
in JML, an individual method may be overridden as long as it refines the method it overrides.
Furthermore, although JML does not allow non-refining methods or all forms of concrete data
refinement, we do provide rules for reasoning about how to safely create subclasses with such methods
and data structure changes. 

Stata later separates the notions of subtyping and subclassing, as we do, to allow overriding parts
of a component [Sta97]. Overriding parts of a component is permitted if the superclass representation
invariant is maintained by the new subclass (as Edwards requires). Stata also proposes conditions to
allow super-calls. Super-calls are allowed if the specification of each overridden superclass method is
refined by the specification of the new subclass method. This condition, like the method refinement
rule, only ensures that superclass method invocations satisfy the superclass method specification.
When superclass code is not available, this condition does not handle verification problems caused by
additional side-effects or subclass invariants, i.e., superclass code would have to be available and the
behavior of super-calls reverified. Our approach, however, handles these problems and sometimes
requires that fewer methods be overridden by providing the calling structure of the methods in a class
and rules for determining which methods to override. Also, there is no need to explicitly partition
methods and instance variables into components, although our tool could be used as an aid in creating
and enforcing such a partitioning. 

Mezini proposes a metalevel cooperation contract that allows library designers to declare
properties of classes that are propagated to subclasses [Mez97]. These properties are specified in a
cooperation contract language (CCL). The cooperation contract allows base classes to be monitored to
detect modifications to a superclass that may invalidate existing subclasses. Mezini incorporates ideas
from Lamping [Lam93], Stata and Guttag [SG95] and Steyaert, Lucas, et al. [SLMD96]. For example,
class designers can partition methods or classes into groups, can express dependencies such as when
certain methods must be called, or can specify when methods are required or are non-overrideable.
Although super-calls are shown in examples, it is unclear whether the mechanism ensures their safety
and no claim is made as to how to reason about such super-calls. Cooperation contracts are entirely
syntactic, so they do not contain enough information to prove correctness of a new subclass. In
addition, this method cannot be used for languages, such as C++, Java, Smalltalk and Eiffel, unless
extended to have a metaobject protocol [KdRB91], whereas code contracts can be generated and used
by any statically typed, OO language. 

The approaches described above would be carried out as part of the analysis and design activities
for a class library; furthermore, the determination of what information is included is done manually,
whereas the code contract, a major part of our approach, would be generated automatically by our
proposed tool. A tool that ensures that no rules are violated eases the work of applying the rules and
thus automates some of the work involved in creating correct subclasses. In addition, except for Stata
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[Sta97], the above approaches do not handle downcalls caused by super-calls other than ignoring or
prohibiting them. However, even Stata's work does not handle reasoning about additional side-effects
or subclass invariants when superclass code is unavailable.

Szyperski shows how downcall and callback problems are avoided by using object composition
and message forwarding rather than implementation inheritance [SGM02][pp.133-135]. Object
composition means building an object from other objects. The contained objects perform tasks for the
containing object. Forwarding means sending a message on from one object to another object.
Szyperski's technique simulates implementation inheritance by forwarding method calls to a contained
object; this contained object would have the type of what would have been the superclass. Forwarded
calls are somewhat like super-calls except that forwarded calls do not create downcall problems
because, once control has been passed to the contained object, control stays inside its methods unless
the contained object itself has a reference to the original object. Thus, even though object composition
eliminates many downcall problems, it does not address the problems related to aliasing and
unexpected side-effects. Furthermore, object composition works fairly well in the design of some
classes, but protected methods will not be available to subclasses when implementing new subclass
methods. Furthermore, Szyperski gives an example showing that implementation inheritance cannot
be simulated in all cases by object composition and method forwarding, and other examples are
difficult and complicated [SGM02][p. 135-138]. 

Our study focused on the semantic fragile subclassing problem, that is, how to create valid
subclasses using only specifications. This problem is closely related to the semantic fragile base class
problem because both problems are caused by downcalls and changes to the calling structure of
classes. Mikhajlov and Sekerinski describe the fragile base class problem and give four requirements
for disciplining inheritance to avoid such problems [MS98]. Their requirements prohibit access to
superclass instance variables and do not allow instance variables to be declared in subclasses. Our
technique, however, allows both, i.e., declaration of subclass variables and access to superclass
instance variables by subclass methods and invariants. The method specifications used by Mikhajlov
and Sekerinski implicitly document what methods may be called. This information is used to disallow
overriding a method in a callback cycle, since this would introduce a “new cyclic method
dependency.” But, our technique, which relies on similar information in the callable clause, allows
methods in such cycles to be safely overridden. Furthermore, the callable clause is automatically
generated. Their technique, like ours, requires that superclass method specifications be used when
verifying subclass methods. However, their technique prevents the problems caused by additional
side-effects and subclass invariants by placing severe restrictions on subclasses, i.e., by disallowing
declaration of subclass fields or access to superclass fields by subclasses. In contrast, our rules allow
sound reasoning about the state of subclass instance variables, additional side-effects, and subclass
invariants without requiring these restrictions. 
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Changes in the code contract could also be used to catch problems such as method capture. Method
capture occurs when a new method is added to a (super) class in a new version of the library and that
method was already defined in an existing subclass [Luc97, SLMD96]. Therefore, the subclass would
have to delete or rename the captured subclass method or make sure the captured method refines the
method it now overrides. 

To summarize, our approach has important advantages over all the work described above in that it
allows super-calls and reasoning about the safety of such calls. Furthermore, creation of the code
contract need not be part of the manual design activities of a class library.

7.3  Research Related to Object Invariants
Liskov and Wing [LW94] require that the subclass invariant imply the superclass invariant, as we

do, but this requirement is not sufficient for modular soundness. That is, reasoning about type
invariants that depend on the state of internal objects is not sound without some form of alias control. 

Huizing and Kuiper [HK00] present a verification logic for an object-oriented language with class
invariants. As in Liskov and Wing above, they require that the subclass invariant imply the superclass
invariant but, without proper restrictions on aliasing, this technique is also unsound for layered object
structures; also, Huizing and Kuiper do not say how their technique would ensure that the subclass
invariant holds prior to a downcall. Thus superclass methods would have to be reverified in the context
of the whole program, including every new subclass, but this is not modular and requires superclass
code. 

Barnett et al. [BDF+04] developed a way of statically determining when type invariants are
guaranteed to hold. Two auxiliary variables are defined for each object. One variable indicates the type
lowest in the hierarchy for which the invariant holds; thus, using our notation, this special variable
equals T when inv(T) holds for the object (i.e., the invariant of subclasses of T may be invalid). The
second variable has type boolean and indicates when the run-time type invariant holds for the object.
The validity of the invariant is then tracked for each statement in the program. These auxiliary
variables are updated by two special statements to indicate when parts of the invariant are no longer
valid and when they hold again. Aliasing is unrestricted but, to prevent unexpected side-effects,
changes to the state of an object have to be initiated by an owner. A disadvantage of this technique is
that method specifications can become cluttered quite quickly because pre- and postconditions have to
include assertions about these special variables for each argument object; these assertions are needed
in method specifications so the static checking can be done modularly. In contrast, our technique
automatically ensures that the run-time type invariant holds when necessary. As future work, however,
we would like to loosen our restrictions on actual parameters1. At the same time, our goal is not to
require any annotations other than method specifications (requires, ensures, assignable, and
callable clauses) and data specifications (in, maps, and represents clauses); so far we have been able
to do this. Barnett et al. do not handle invariants over cyclic data structures, nor does our technique. 
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Leino and Mueller [LM04] extend Barnett et al. but they use the more flexible Universe type
system [Mül02, MPH01] to control aliasing and side-effects. The subclass type invariant is allowed to
depend on superclass fields, fields transitively owned by the subclass, and fields reachable from an
internal object. Thus invariants are allowed to depend on cyclic data structures. They also allow
ownership transfer. Our technique is not as flexible, i.e., the syntax of invariant clauses is more
restricted, we do not allow ownership transfer, and we restrict actual parameters in method calls to
owner variables (to ensure that the invariant holds for argument objects). On the other hand, our
technique is fairly simple compared to their technique and it seems unclear when and how to properly
use the two new statements used in Barnett et al. 

Mueller, Poetzsch-Heffter, and Leavens [MPHL06] have also developed a technique for reasoning
about invariants over layered object structures. That is, they allow invariants to depend on the state of
internal objects and cyclic data structures; for soundness, alias control is enforced by the Universe type
system [Mül02, MPH01]. They also use visibility-based invariants, i.e., declarations of an invariant
must be visible in every method that might invalidate that invariant. Visibility-based invariants permit
additional dependencies across underlying layers of objects. However, this does not allow subclass
invariants to depend on superclass fields, whereas we do allow such dependencies. An area of future
work would be to investigate the possible integration of visibility-based invariants into our technique
to loosen our restrictions on invariants and actual parameters. 

Barnett and Naumann [BN05] also extend Barnett et al. with visibility-based invariants but they
do not handle cyclic data structures. 

7.4  Research Related to Aliasing
The approaches to dealing with aliasing can be divided into four broad categories: detection,

advertisement, prevention, and control [HLW+92]. Alias detection means determining either statically
or dynamically where the potential and actual aliases occur in a program. Alias advertisement means
declaring the aliasing properties of methods so detection of unwanted aliasing can be done modularly.
Alias prevention means adding constructs to the programming or specification language so a program
analyzer can statically check and guarantee there is no aliasing within a particular context. Alias
control means isolating the effects of aliasing in the run-time state. 

Alias detection appears to be impractical because the static interprocedural analysis necessary to
detect it is NP-hard [LR91]; thus it is likely to be too slow. Programmers could write code to detect
aliasing at runtime so they can take evasive action, but this is not always possible because of
limitations in programming languages [HLW+92]. 

1. Another possibility would be to have invariants that always hold, e.g., an invariant that depends on 
some boolean model field [LM04, Lea06]. Specifically, the invariant would be implied by some field 
that specifies whether the consequent of the implication holds; with such invariants, read-only vari-
ables could be allowed as actual parameters since the invariant would always be true and it would be 
possible for the verifier and implementer to use this information in reasoning about correctness. 
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Alias control2 is based on the analysis of state reachability, i.e., determining whether the system
will ever reach a state in which there is unexpected aliasing. Aliasing control is applied when the
effects of aliasing can only be determined by taking into account the run-time state of the system
[HLW+92]. The object-oriented language SPOOL [AdB90] uses a system of alias control as the basis
of its proof system. Some effect systems [LG88, GB99] control aliasing and unexpected side-effects
through regions to restrict how the state of the system can be accessed. Wills [Wil91] bases alias
control on demesnes, a set of objects that participate in the representation of an abstraction. 

Our technique falls into the category of alias prevention, i.e., we prevent objects from being
referenced by more than one owner variable in the same context, but otherwise we do not restrict
aliasing. Furthermore, we require that changes to the state of objects be initiated through an owner
variable; we use the assignable clause to modularly enforce this restriction on side-effects. 

This section is organized a little differently because there is a large amount of research on aliasing.
In subsections 7.4.1 and 7.4.2 we review some of the techniques that fall into the categories of alias
prevention and alias advertising. In the last subsection 7.4.4, we compare and draw conclusions. 

7.4.1  Alias Prevention

In this subsection, we review of some of the alias prevention techniques for dealing with aliasing
and preventing unexpected side-effects due to representation exposure. 

7.4.1.1 Islands
Hogg [Hog91] proposes that the existence of aliases be rigorously controlled through “islands of

aliasing”. An island is the set of internal objects accessible from a bridge object. An island guarantees
that no object other than the bridge or members of the island hold a reference to any object internal to
the island. That is, no access paths to internal objects are allowed to exist except through the bridge
object. 

Islands are implemented through access modes, i.e., each variable has a declared access mode.
There are four access modes: unrestricted, read, unique, and free. The read mode specifies that the
variable has read-only access to the object it references. The unique mode specifies that the variable is
the only one in the system that references a particular object. The free mode specifies that no variable
in the system references a specific object. 

Clearly a variable cannot be free without a special way of reading that variable. That is, Islands
need a new atomic operation, the destructive read, for handling unique and free variables. The
destructive read operation returns the value held in a variable (i.e., a reference to an object) and sets
the variable to null. If applied to a unique variable, this operation, in effect, deletes the only reference
to the object and thus converts a unique expression into a free expression. Furthermore, a free variable

2. We have been using this term in a more generic sense, i.e., we have been using alias control to mean 
any technique that prevents unexpected side-effects due to aliasing. After this paragraph, we will 
return to the more generic meaning. 
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may only be accessed via a destructive read to ensure that the object reference remains free. A new
object constructor call also returns a free object reference. 

There is a set of rules for ensuring that the aliasing properties of an island are maintained. For
example, a read variable may not be the left side of an assignment statement, and unique variables may
only be assigned the result of free expressions. Also, because the destructive read has side effects, it
cannot be applied to a read variable. 

7.4.1.2 Balloons
Almeida [Alm97] proposes Balloon Types as another method of controlling aliasing. The type

system enforces restrictions on the code permitted in methods of a Balloon class to ensure that none of
its internal objects are statically aliased by any external object. Dynamic aliasing of internal objects of
a Balloon is allowed. 

Almeida gives the following invariant that must be maintained for any balloon object B:
(1) There is at most one static access path to B in the system.
(2) Any reference to B must be from an object external to B.
(3) No object external to B may reference any object internal to B.

This invariant is enforced for Balloon Types by a set of rules. For example, (1) and (2) are
enforced through restrictions on assignments, i.e., a reference to an already existing Balloon object
cannot be assigned to any variable. This is the only restriction that also applies to methods of non-
balloon classes. Thus no methods are allowed to include assignment statements that create a static alias
to an existing Balloon object. 

7.4.1.3 Unique Variables
Baker [Bak95] proposes that programming languages include “use-once” variables in addition to

the usual variables. A use-once variable is assigned a value exactly once and subsequently read exactly
once. The read of a use-once variable would have to be a destructive read that nullifies that variable
immediately afterward. Thus the use of a variable in one expression disallows its use in any other
expression; this property can be checked statically. Objects referenced by a use-once variable have the
property that there is only one access path through which they can be referenced at any given time. 

Minsky [Min96] argues that aliasing caused by pointers (object references) can be avoided through
the similar concepts of “unique pointers” and unshareable objects, also called u-objects. Variables that
hold the only reference to an object are called u-variables. Minsky extends the Eiffel programming
language to incorporate support for u-variables and u-objects. 

U-variables are similar to the unique variables in Hogg’s Islands and are handled through a similar
set of type rules. This technique also requires a special move-assignment statement analogous to the
destructive read operator. A move-assignment statement copies the object reference from the source
variable into the target variable and then assigns null to the source. The compiler automatically
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interprets an assignment statement in this way when the right side is a u-variable. Also, regular
variables may not be assigned to u-variables. 

7.4.1.4 Unique Variables without destructive reads
Boyland [Boy01] demonstrates that the uniqueness property of a variable can be preserved with

existing language features, e.g., without the need for destructive read operators. He describes a
technique for annotating the program in such a way that a static checker can ensure that the uniqueness
property is preserved. The basic idea is that a unique variable can only be read after any previously
existing aliases have been eliminated. That is, a unique variable can temporarily be aliased, but it
cannot be read until the uniqueness property has been reestablished. 

7.4.2  Alias Advertisement

In this subsection, we review some of the alias advertisement approaches to preventing the kind of
aliasing and representation exposure that could lead to unexpected side-effects. 

7.4.2.1 Ownership Types
Ownership types as embodied in the Flexible Alias Protection system [NVP98, CPN98, CNP01] is

an example of alias advertisement. It uses aliasing modes to advertise which objects can be exported
and which must be encapsulated. It does not require that all internal objects be unaliased via external
objects; thus it is not an alias prevention technique. It has a formal type system to enforce the rules of
the technique [CPN98].

Flexible Alias Protection is a programming discipline that allows the designer of an abstract data
type to hide information about the internal representation of the abstraction while allowing static
aliases to other internal “argument” objects. To protect the abstraction from unexpected changes, the
discipline restricts the way argument objects are used. 

The internal objects of a class are divided into several groups: representation, argument, free,
value, and mutable objects. Representation objects can be modified, but only by methods of the object
to which they belong. Representation objects can be stored in and retrieved from internal objects, but
cannot be exposed (exported or aliased) outside the abstraction. Argument objects can be aliased, but
the abstraction cannot modify or depend on the state of these objects; furthermore, methods of
argument objects cannot be called if they access any mutable state [NVP98][p. 171]. Free objects are
not referenced by any variables in the system (as in Islands). Value objects are immutable and
therefore can be exported and aliased. Mutable objects can be modified, exported, and aliased.

Clarke, Potter, and Noble [CPN98] formalize a type system for a slightly simplified version of
Flexible Aliasing and give a proof of its soundness. Clarke and Drossopoulou [CD02] extend the
Flexible Aliasing discipline and the notion of ownership types with a proof system for reasoning about
the absence of aliasing; they also include an effects system for reasoning about the non-interference of
computation, i.e., the absence of unexpected side-effects. For example, when two types are disjoint,
then fields having these types cannot be aliases. 
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7.4.2.2 Universe Type System
The Universe Type System [MPH01, Mül01, Mül02, DM05] is a technique to statically control

aliasing; it primarily builds on the ideas from ownership types. The Universe Type System enforces a
hierarchical partitioning of the object store into universes and controls references between universes.
However, to increase flexibility, it includes read-only references that can be exported across universe
boundaries, i.e., outside an abstraction. Fields, local variables, and parameters must be annotated to
indicate whether the reference is read-write (part of the owner object’s representation) or read-only
(could be part of the representation of a different object). 

Static and dynamic aliases are controlled by ensuring that the following invariant holds for a
program: If there is a reference from object X to object Y, then at least one of the following must hold:

1. X and Y belong to the same universe,

2. Y belongs to a universe owned by X, or

3. the reference is read-only.

This invariant guarantees that a modification of an object’s abstract representation is only possible
by calling a method on an appropriate owner object. An advantage of the Universe Type System over
Flexible Alias Protection is that representation objects can be exported and aliased across universe
boundaries via read-only references, i.e., they can safely be exposed outside the abstraction. 

Allowing read-only references to migrate outside of an abstraction results in the same problem that
we faced with invariants. That is, the run-time type invariant of an object referenced by a read-only
reference is not guaranteed to hold without additional restrictions. Mueller teamed with others to
present several possible solutions to this problem (see Section 7.3). We temporarily solved the problem
by not allowing non-owner variables as the actual parameter in method calls. As future work, we hope
to loosen this restriction. 

7.4.2.3 Pivot fields
Detlefs, Leino, and Nelson [DLN98] describe a specification technique for preventing

representation exposure in many situations through the declaration and encapsulation of pivot objects.
Leino and Stata [LS99] extend these ideas with a specification technique for preventing some
additional forms of unwanted aliasing in programs built in layers of abstraction. Their focus is to
protect the pivot objects of a class from unwanted aliasing. Pivot fields are determined from the
depends clauses [Lei95, Lei98] appearing in class declarations. Pivot fields and pivot objects have
the same meaning here and in our technique3. 

Pivot objects are similar to the representation objects of Flexible Alias Protection and the Universe
Type System in that they contain data related to the value of the higher-level abstraction. Therefore, to
avoid conflicting or unexpected changes to the state of the lower-level abstraction, mutable pivot

3. The depends clause is a precursor of the in and maps clauses from Leino et al. [LPHZ02]. JML 
used the depends clause before changing to the in and maps clauses. 
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objects are not allowed to be aliased. To guarantee that pivot fields are not aliased, the specification
must be strong enough so that a pivot field: 

1. will not be assigned a reference to an input argument unless the argument is unaliased, 

2. will not be assigned the result of a method call unless this result is unaliased, and

3. can safely be passed as a parameter to a method or constructor without being statically aliased.

Leino and Stata solve this problem based on the notion of virginity for objects. They add three
boolean-valued auxiliary variables to every object: virgin, pivot, and plenary. The program is not
allowed to explicitly modify these variables. An object is virgin if it is not, and never has been,
reachable from a global variable. This auxiliary variable is true when the object is first created and then
is automatically set to false as soon as a reference to the object is assigned to an instance or global
variable. The auxiliary variable pivot indicates whether or not the object is referenced by a pivot field,
and plenary indicates whether or not the object is referenced by a non-pivot location. A non-pivot
location is a global variable or non-pivot field. This approach uses the depends clause that specify
dependencies like those described previously for JML specifications using the in and maps clauses.

The techniques discussed in previous sections are based on type systems. However, the current
technique is based on a specification technique and a set of restrictions that can be statically checked
modularly. To be checked modularly, assertions about these auxiliary variables have to be included in
method specifications. Also, leaking of pivot objects from a context is prevented by disallowing the
return of a pivot object from a method call. 

7.4.2.4 Side-effects, data groups, and pivot fields
Since the soundness of our rules from Chapter 2 depends on the soundness of the assignable

clause, we needed some way of ensuring that there could be no unexpected side-effects. Leino et al.
[LPHZ02] describe a sound, modular technique for specifying and statically checking side-effects in
methods of an object-oriented programming language. This technique was appealing because,
syntactically, it only required data groups and a clause for specifying side-effects, both of which were
already included in JML. 

Our technique is an extension of this work by Leino et al. For example, our technique, like theirs,
requires that a pivot field be the first to contain a reference to a newly created object; also, assignment
to a pivot field that creates an alias is not be allowed. However, to prevent unexpected side-effects to
pivot objects, Leino et al. also enforce other restrictions to ensure that pivot fields are unique. Our
rules in Chapter 3 do not enforce this restriction, i.e., in our technique, pivot fields are allowed to be
aliased by non-pivot variables. Thus our other rules are less restrictive. 

To allow aliasing of pivot objects and avoid unexpected side-effects, all non-owner variables are
automatically read-only in our technique. However, as mentioned above, read-only variables may
reference objects with an invalid invariant, so we had to restrict actual parameters in method calls to
achieve soundness. Also, as mentioned earlier, we plan to loosen these restrictions in future work. 
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We also replaced the depends clause [Lei95, Lei98] in JML with the in and maps clauses from
Leino et al. [LPHZ02] because the in and maps clauses automatically enforce the visibility
requirements of data dependency declarations (subsection 2.2.1.2). 

Finally, our technique, unlike Leino et al., deals with correctness of method implementations
beyond side-effects; that is, we handle, pre- and postconditions, invariants, subclassing, and downcalls
in our verification logic. 

7.4.3  Controlling Side-Effects

We needed the rules in Chapter 3 to prevent assignment to fields not allowed by the assignable
clause; this is also necessary to prevent the abstract value of an object from changing unexpectedly.
Leino and Nelson [Lei95, Lei98, LN02] were the first to use dependencies and public data groups to
control assignment to concrete fields hidden from clients. Mueller et al. [MPHL03] generalized the
modularity rules from Leino and Nelson’s work to handle dynamic dependencies, i.e., to handle pivot
objects. Pivot objects determine the abstract value of the enclosing object so the soundness of a
verification logic depends on preventing unexpected changes to these internal objects. 

As mentioned in the previous subsection 7.4.2.4, our technique is adapted from Leino et al.
[LPHZ02]; however, instead of encapsulating object references in unique variables as they do, we
encapsulate side-effects without restricting aliasing. That is, we require that side-effects be initiated
through owner variables so changes to the state of an internal pivot object will be encapsulated in
(methods of) the object containing the pivot field. Also, in our technique, an object can have only one
owner variable that is visible in a given context (i.e., formal parameters are temporary owners and
cannot be aliases of other owner variables visible in the same context). 

Lu and Potter [LP06] and Skoglund [Sko02] have techniques that also focus on encapsulating side-
effects rather than object references; however, these techniques require special annotations in all
variable declarations so their restrictions can be modularly enforced by a type system. Therefore, these
techniques have a large syntactic overhead compared to ours, i.e., we do not require that variable
declarations include special annotations other than the data group clauses needed for specifying
dependencies and controlling side-effects. 

7.4.4  Comparisons and Conclusions

Islands have a large syntactic overhead; they require that every variable in a class be labeled with
access modes, including the parameters and results of all method signatures. Unique Variables,
Flexible Alias Protection, and the Universe Type System have a similar disadvantage, i.e., each
variable declaration has to be annotated with an aliasing mode. Furthermore, it seems that a change to
the access or alias mode of one parameter or instance variable could have a ripple effect requiring
changes to the modes of variables and method signatures in other classes. Leino and Stata’s Virgin
Objects technique require additional assertions in method specifications so the technique can be
enforced modularly. 
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Balloon types, on the other hand, have considerably less syntactic overhead since they are declared
with a single keyword in the definition of a class. However, this low syntactic overhead means that
programs must undergo a complex, non-modular static analysis and abstract interpretation to ensure
that the Balloon invariant holds. In contrast, our alias control technique can be enforced modularly
even though it does not require any additional annotations beyond the standard JML data and method
specifications; as mentioned earlier, this was one of the primary goals of our technique. 

Islands, Balloons, and Unique Variables are limited because they do not allow abstractions that
share objects, a common object-oriented idiom. For example, an abstract data type that shares objects
would not be allowed by these techniques, such as an iterator or set of objects. Flexible Alias
Protection encapsulates representation objects while allowing argument objects to be statically aliased;
however, mutable fields cannot be accessed except by methods of the owner object. The Universe
Type System allows sharing of objects, but needs additional restrictions to ensure that invariants of
read-only objects hold prior to method calls (Section 7.3). Our technique has read-only references and
sharing, but we had to restrict actual parameters in method calls to achieve soundness; loosening these
restrictions is an important area of future work. 

Islands encapsulate the state of the objects within them. That is, the state of the island cannot
change except through calls to methods of the bridge since objects exported via method calls are read-
only. Similarly, Flexible Aliasing and Universes encapsulate the state of representation objects. Our
technique (like Universes) encapsulates the state of pivot (representation) objects by encapsulating the
side-effects applied to these objects while allowing them to be aliased through read-only references. In
our technique, all variables and fields that are non-owners are automatically read-only. 

Balloons allow external methods to modify internal Balloon objects. Thus modifications by
objects external to a Balloon object could cause problems if the changes are unexpected. Therefore, a
Balloon class does not necessarily prevent unexpected interference between unrelated classes. Also, if
the abstraction might contain non-balloon objects, the members cannot be exported without either
deleting the reference or making a deep copy of the exported object. 

Balloons, Islands, and Unique Variables (except Boyland’s technique) require special operators
such as the destructive read, deep copy assignment, or move-assignment, whereas the other techniques
do not. Flexible Alias Protection, the Universe Type System, and encapsulation of pivot objects are
enforced by a static, modular type system. These techniques can be checked modularly because of the
additional assertions and annotations in method signatures and specifications. Our technique can be
checked modularly, but without additional annotations or assertions. 

A disadvantage of our technique is that references to pivot objects cannot be transferred from a
pivot field in one object to a pivot field in another object. The other techniques have a similar
disadvantage (unless combined with other restrictions). 

Our technique does not encapsulate references to pivot objects, but rather our goal was to
encapsulate side-effects to pivot objects by requiring that all changes be initiated through a pivot field.
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Also, our technique allows a pivot object to be modified when passed as an argument, but other
techniques do not allow this, i.e., they have to be read-only variables or references. 

7.5  Contributions and Future Work

7.5.1  Summary of the Problem and Our Solution

In our study, we created formal public and protected specifications for a base class and
implemented it; based on this implementation, a code contract for the base class was derived by hand,
simulating what our tool would do. We next gave formal public and protected specifications for
several new subclasses and studied the problem of how to correctly implement them without access to
the superclass code. We found that reasoning about a correct superclass method can only be
problematic when there is unexpected aliasing or a new subclass overrides a method, resulting in
downcalls. In some cases, when there was no easy or sound way to prevent a problem, we added
restrictions to eliminate the problem, i.e., the rules given in Chapters 2 and 3. 

As illustrated in Chapters 1 and 3, sound reasoning about the behavior of method calls requires
information that would allow users to reason about and prevent or control aliasing. For example,
clients cannot reason soundly about programs using public specifications unless the value of the lower-
level abstraction (which is usually hidden from clients) remains synchronized with its higher-level
value (which is usually public). Our technique deals with aliasing using JML specifications and a static
type system (the T-rules given in Chapter 5). 

The rules presented in Chapters 2 and 3 generalize our experiences; the T-rules of Chapter 5
provide a formal system for avoiding downcall and aliasing problems. The rules are conservative,
because we are assuming that superclass code is not available, and thus the rules can only use
information from specifications. The rules allow a programmer to know which methods have to be
overridden and when it is safe to call a superclass method. These formal rules form the basis of our
proposed tool, which would give warning messages when the rules are violated by a new subclass. 

In Chapter 5 we proved the soundness of our technique. In Chapter 6, we provided guidelines for
library providers and customizers that greatly simplify reasoning about how to avoid downcall
problems, and we described our proposed tool. 

7.5.2  Class Library Documentation

One primary goal of this research was to provide enough information in the public and protected
specifications and the subclassing contract so programmers could create correct subclasses without the
code of the superclass. The subclassing contract and code contract are important new kinds of
documentation. The code contract contains information derived from the implementation code; in
general, this is what our tool would automatically generate. The subclassing contract includes the
callable and accessible clauses needed for reasoning about new subclasses; these clauses can be part
of the code contract or non-code contract (see Section 4.1). 
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Our formal specifications for superclasses represent the documentation of a class library or
framework. Our reasoning technique corresponds to using the documentation. The ability to prove
correctness of the subclass is used as a criteria to judge whether these specifications and the reasoning
technique are adequate. Since our technique has been shown to be sound, we believe our study
provides sound guidance for providing adequate information in user manuals and informal
documentation. 

7.5.3  The Three-Part Specification

To allow the safe creation of a subclass without using the source code of its superclasses, our
technique uses a three part specification, which is incorporated into JML:

1. a public specification used by clients to create and manipulate objects, and by programmers to 
reason about overriding subclass methods,

2. a protected specification that provides additional information to programmers who want to 
specialize or extend a class; it includes protected information such as invariants and also spec-
ifications for protected instance variables and methods,

3. an automatically-generated code contract that provides important additional information 
needed by programmers to safely specialize or extend a class.

7.5.4  Contributions

This subsection and the next are an expansion of part of our OOPSLA paper [RL00]. 
The code contract is an unusual feature of our technique. It is unusual in that it records information

about code, as opposed to purely behavioral information. While this is precisely what makes it able to
stand in for the code of a library method, it may seem the we are revealing too much detail about the
methods. However, we believe that the code contract contains just enough information to safely create
subclasses and avoid downcall problems.

As a substitute for source code, such a specification allows a library or framework provider to keep
source code secret. But it also functions as a contract with the usual benefits to both reusers and library
providers [LG86, Mey92]. Both parties benefit because the specification, and in particular the code
contract, abstracts out code details. For reusers, we believe that reading the specification is much less
complex than studying the superclass code. For the library provider, it allows some details in the code
to change without breaking the contract with reusers. Both parties also gain a more stable contract,
since changes to code details do not necessarily break it.

Our technique and proposed tool could also support evolution of a library or framework. Using
specifications for an older version of a class, the tool could detect when a new version might invalidate
some existing subclass. For example, the tool could give a warning if the code contract of the old
version of a class is broken by the new version. A code contract is broken if it has additional calls that
do not appear in the old version. A broken code contract could invalidate an existing subclass, based
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on our rules. The tool could be used to either prevent breaking the contract, or to inform the users of
what classes have changed in an incompatible way. In the latter case, reusers could use the tool and the
new specifications to correct their subclasses.

Changing the specifications of existing superclass methods and changing the protected invariant of
concrete instance variables would also break the superclass's specification. A superclass method
specification can be neither weakened nor strengthened; weakening it means the method may no
longer behave as expected by clients, and strengthening it may result in a refining subclass method
becoming a non-refining method. These violations would not be detected by our tool; library providers
would have to notify reusers manually. 

A major contribution of our work is its new rules for using such specifications to reason about
which methods must be overridden and when super-calls are safe. While the method refinement rule
and concrete data refinement rule are based on existing notions of refinement, all the rules rely on the
subclassing contract, whose use in reasoning is new with this work. Although the method refinement
and concrete data refinement rules would have to be checked manually or with the aid of a theorem
prover, the other rules could be checked automatically by our proposed tool.

This reasoning technique is backed up by an analysis of how downcall problems can occur, which
is also a contribution of the work. 

Our approach to creating subclasses is general in the sense that it does not impose restrictions
(other than the assumptions given in subsection 1.6.6) on the implementation of a framework or class
library. It identifies potential problems that should be considered by OO programmers using any
language. In addition, we have described the details of adapting the rules to Java, using our
specification language JML.

While our technique and reasoning method allows for considerable flexibility in inheritance,
reusers need considerable knowledge to apply it. As an alternative, we have also offered guidelines for
library implementers and reusers (see Chapter 6). These guidelines place greater demands on the
library implementer, but make only limited demands on the customizer. 

Our technique for preventing unexpected side-effects is another important contribution of our
work. We have shown that pivot objects can be protected from unwanted side-effects with a few
simple rules (Section 3.5) that can be statically and modularly enforced (Section 5.1). Furthermore,
this can be done without the large syntactic overhead of other techniques or a complicated whole
program analysis. 

7.5.5  Future Work

There are several areas for future work in addition to those mentioned earlier. One area is to extend
our ideas to languages with different kinds of inheritance, such as Beta's [MMPN93]. Another area is
to relate concrete data refinement to refactoring [Opd92]. 
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Our proposed tool is also important future work. Recall that this tool would use superclass
specifications and the specification of a new subclass to list superclass methods that must be
overridden based on the rules. It would also statically generate the code contract of the new subclass,
and check for violations of the rules. Building this tool is important future work because it would catch
and help prevent potential errors prior to execution.

A case study is also important future work. It is important to find out how practical or limiting our
technique is for real world systems. As mentioned earlier, another important direction for future work
is the loosening of the restrictions on actual parameters that were necessary for soundness. 
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A: RULES FROM CHAPTER 2

A.1: Overriding Rules

Additional Side-Effects Overriding Rule. Let S be a subclass of C. If S specifies that method C::M
can have additional side-effects on field W or if method C::M makes a self-call down to a method
that may have additional side-effects on W, then C::M must be overridden. 

Invariant Overriding Rule. Let S be a subclass of C. Let V be a concrete instance variable visible in
S. Let S specify an invariant that accesses and constrains the value of V. If superclass method C::M
can assign to V, then C::M must be overridden. 

Callback Cycle Overriding Rule. Let P be an overriding method in a subclass. If P self-calls a
superclass method M that self-calls back directly or indirectly to P, then M must be overridden. 

A.2: Invalidation Rules

Additional Side-Effects Invalidation rule. Let S be a subclass of C. Let S specify that superclass
method (or constructor) C::M can have additional side-effects on field W. If C::M self-calls down
to a method S::N that is allowed to modify W, then C::M may not be super-called by any method
(or constructor) of S. 

Invariant Invalidation Rule. Let S be a subclass of C. Let V be a concrete instance variable visible in
C. Let S specify an invariant that accesses and constrains the value of V. If superclass method C::M
can assign to V and it makes a self-call, then C::M may not be super-called by any method (or
constructor) of S. 

Callback Cycle Invalidation Rule. Let S be a subclass of C. Let P be an overriding method in S. If a
superclass method M directly or indirectly self-calls down to method S::P, then C::M cannot be
super-called by S::P. 

Constructor Invariant Invalidation Rule. Let S be a subclass of C. If S specifies a subclass invariant
and constructor C::M self-calls down to a method S::N, then C::M may not be super-called by
constructors of S. 

Constructor Initialization Invalidation Rule. Let S be a subclass of C. Let W be an instance variable
directly or indirectly declared in S. If constructor C::M self-calls down to a method S::N that
directly or indirectly accesses the value of W, then C::M may not be super-called by constructors
of S. 
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A.3: Special Rules

Mandatory Super-Call Rule. Let S be a subclass of C. Let V be an instance variable declared in C.
Let V’s data group contain private variables. If S has to implement a new or overriding method (or
constructor) M that modifies V, then S::M can only modify V (along with the private variables in
V’s data group) by directly or indirectly super-calling methods (or constructors) of C. 

Super-Call Authorization Rule. Let S be a subclass of C. A superclass method C::M may only be
called by subclass method S::P, if C::M has not been invalidated for S::P. 

A.4: Other Rules (not applicable to JML)

Data Refinement Overriding Rule. Let S be a subclass of C. A method, M, must be overridden if (i)
C::M makes a direct self-access or object-access to a concrete variable V that is data refined by S
and (ii) the part of C's invariant1 that concerns V is not maintained by S. 

Data Refinement Invalidation Rule. A superclass method must not be super-called if it had to be
overridden based on the data refinement overriding rule. 

Non-Refining Method Overriding Rule. A superclass method must be overridden if it makes a direct
self-call or a subclass object-call to a method that has been overridden by a non-refining method. 

Non-Refining Method Invalidation Rule. A superclass method must not be super-called if it makes a
direct self-call or a subclass object-call to a method that has been overridden by a non-refining
method. 

Unoverrideable Method Rule. Let M be a non-public superclass method that is not (object-) called by
methods of an unrelated class. If M cannot be overridden and is invalidated by the new subclass,
then all methods that directly call M must be overridden and M cannot be super-called by subclass
methods. 

Method Refinement Overriding Rule. Let S be a subclass of C. If the specification of S::M refines
the behavior of superclass method C::M, then C::M must be overridden. 

1. The represents clause specifies an invariant relationship between a model field and concrete fields; 
therefore, we consider the represents clause to be a part of the superclass invariant that needs to be 
maintained unless the subclass is doing a concrete data refinement. 
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B: RULES FROM CHAPTER 3

B.1: Declaring Pivot Fields

Pivot Declaration Rule. Let x.V be an instance field indirectly declared in type C or one of C’s super-
types. If x is a concrete field and x.V is accessed on the right-hand side of a represents clause or
in a predicate clause in the specification of C, then x.V must be a member of (i.e. mapped into) a
data group visible to C. 

Predicate Clause Access Rule. Let class S be C or a subtype of C. Let F be a model field with a
reference type that is directly declared in C. If F’s represents clause accesses a non-pivot object
V, then fields of model object F cannot be accessed by predicate clauses in C and S. 

Predicate Clause Access Rule???. Let class S be C or a subtype of C. Let F be a model field with a
reference type that is directly declared in C. If predicate clauses in C and S access a field F.x, then
F.x cannot access fields of a non-pivot object [[[may not be necessary]]]. 

Model Field Access Rule. Let class S be C or a subtype of C. Let F be a model field with a reference
type that is directly declared in C. If F’s represents clause maps a concrete field V to F, i.e., if they
both denote the same object, then fields of model object F can be accessed by predicate clauses in
C and S, otherwise fields of F cannot be accessed by predicate clauses. 

Represents Clause Access Rule. Expressions occurring on the right side of a represents clause must
follow the syntax given in Figure 3.10. 

Assignable Clause Rule. A field of a model object cannot be directly accessed in an assignable or
maps clause. 

B.2: Specifying and Controlling Side-Effects

Model field Data Group Rule. Let V be a concrete instance field directly or indirectly declared in C
or in a superclass of C. Let F be an instance model field directly declared in C or in a supertype of
C. If V is accessed on the right-hand side of F’s represents clause, then either (i) V must be a
member of data group F or (ii) V must be a member of at least one data group and F must be a
member of all such data groups containing V. 

Assignable Data Group Rule. Let V be a concrete instance field directly or indirectly declared in C or
in a superclass of C. Let F be an instance model field directly declared in C or in a supertype of C.
If V is a member of data group F and V is assignable in an instance method M, then F must also be
assignable in M. 
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B.3: Protecting Pivot Objects

Owner Variable Rule. When a method is allowed to assign to fields of the receiver or formal parameter
object, then the corresponding actual parameter must be an owner variable, null, or a new object
constructor call. 

Pivot Assignment Rule. When a pivot field or formal parameter is the left operand (target) of an
assignment statement, then the right operand must be null or a new object constructor call, unless
the type of the target variable is immutable or a primitive type.

Actual Parameter Aliasing Rule. An argument object of a method call cannot have assignable fields
if the called method directly or indirectly accesses those assignable fields through a different access
path. 

C: RULES FROM CHAPTER 5

Actual Parameter Aliasing Rule’. Two argument objects to a method call cannot have aliased fields
if those fields are assignable in the called method. 

Subclass Invariant Rule: Let S be a subclass of C. Let V be a concrete instance variable visible in C.
If superclass method C::M is unoverrideable and can assign to V, then S cannot specify an invariant
that accesses and constrains the value of V. 

Additional Side-Effects Rule: Let S be a subclass of C. Let V be a concrete instance variable declared
in S. If superclass method C::M is unoverrideable, then S cannot allow C::M to assign to V. 
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