
Behavioral Subtyping, Specification Inheritance,
and Modular Reasoning

Gary T. Leavens and David A. Naumann

TR #06-20b
July 21, 2006, revised Aug 4, Sept. 3 2006

Keywords: Behavioral subtyping, supertype abstraction, specification inheritance, modularity, specification, verification, state transformer, dynamic
dispatch, invariants, Eiffel language, JML language.

2006 CR Categories: D.2.2 [Software Engineering] Design Tools and Techniques — Object-oriented design methods; D.2.3 [Software Engineering]
Coding Tools and Techniques — Object-oriented programming; D.2.4 [Software Engineering] Software/Program Verification — Class invariants,
correctness proofs, formal methods, programming by contract, reliability, tools, Eiffel, JML; D.2.7 [Software Engineering] Distribution, Maintenance,
and Enhancement — Documentation; D.3.1 [Programming Languages] Formal Definitions and Theory — Semantics; D.3.2 [Programming Languages]
Language Classifications — Object-oriented languages; D.3.3 [Programming Languages] Language Constructs and Features — classes and objects,
inheritance; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, invariants, logics of
programs, pre- and post-conditions, specification techniques;

Copyright c© 2006 by Gary T. Leavens and David A. Naumann.
Submitted for publication

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA



Behavioral Subtyping, Specification Inheritance,
and Modular Reasoning

Gary T. Leavens ∗

Iowa State University
Ames, IA 50011 USA
leavens@cs.iastate.edu

David A. Naumann †

Stevens Institute of Technology
Hoboken, NJ 07030 USA
naumann@cs.stevens.edu

Abstract
Behavioral subtyping is an established idea that enables modular reason-
ing about behavioral properties of object-oriented programs. It requires
that syntactic subtypes are behavioral refinements. It validates reason-
ing about a dynamically-dispatched method call, say E .m(), using the
specification associated with the static type of the receiver expression E .
For languages with references and mutable objects the idea of behavioral
subtyping has not been rigorously formalized as such, the standard infor-
mal notion has inadequacies, and exact definitions are not obvious. This
paper formalizes behavioral subtyping and supertype abstraction for a
Java-like sequential language with classes, interfaces, exceptions, muta-
ble heap objects, references, and recursive types. Behavioral subtyping
is proved sound and semantically complete for reasoning with supertype
abstraction. Specification inheritance, as used in the specification lan-
guage JML, is formalized and proved to entail behavioral subtyping.

1. Introduction
In object-oriented (OO) programming, subtyping and dynamic dispatch
are both useful and problematic. They are useful because supertypes can
abstract away details in the specifications of their subtypes, thus allow-
ing variations in data structures and algorithms to be handled uniformly.
They are problematic for modular reasoning because a dynamically-
dispatched method call such as E .m() seems to require a case analysis
to deal with all possible dynamic types of E ’s value. The basic idea of
modular reasoning, which we call supertype abstraction [22], is clear. It
is a generalization of typechecking: reasoning about an invocation, say
E .m(), is based on the specification associated with the static type of
E , and constraints are imposed on implementations of m at all subtypes.
While modular type safety conditions for dynamically-dispatched meth-
ods are well-known [12], a straightforward translation into conditions on
overriding method specifications, while sound, is more restrictive than
necessary. The translation also gives no help in reasoning about object
invariants, which need to be strengthened in subtypes. Hence, for modu-
lar reasoning one needs a behavioral notion of subtyping.

Remarkably, there is no mathematically rigorous account of behav-
ioral subtyping and its connection with modular reasoning about speci-
fications and programs in conventional OO programming languages —
although there has been much study [1, 2, 3, 11, 14, 15, 19, 22, 29, 30, 47]
(see [21] for a survey). Some of the current understanding of behavioral
subtyping is embodied in program logics [31, 40, 42, 43, 46] but is diffi-
cult to disentangle from various other complications. Some of the current

∗ Supported in part by NSF grant CCF-0429567.
† Supported in part by NSF grants CCR-0208984 and CCF-0429894.

[copyright notice will appear here]

understanding is embodied languages and tools such as Eiffel [30], JML
[20], ESC/Java [16], and Spec# [8, 7]. But these have unsoundnesses and
incompletenesses, some by engineering design and some for lack of ad-
equate theory and methodology. A key source of unsoundness is naive
treatment of object invariants, because many important design patterns
invalidate the simple hierarchical notion of encapsulation on which the
standard treatment [17] is based.

On one hand, behavioral subtyping has been rigorously studied in re-
strictive programming models (e.g., [19, 47]). On the other hand, various
embodiments have been implemented in static and runtime verification
tools and logics that apply to rich specification and programming lan-
guages such as Java and JML [20] and Eiffel [30]. Our goal is to close
the gap by providing a rigorous analysis on which can be based more
specialized assessments and justifications of specific tools and logics.
(With the ultimate aim of high assurance for verification tools, we have
undertaken to machine-check our results.)

We believe the gap has remained because it was far from clear how
to formalize a general theory that pertains directly to reasoning about
code in languages of practical interest. The semantic intricacies of the
languages —and of current methodologies for sound reasoning about
invariants, heap encapsulation and locality of effects, etc.— are daunt-
ing. The details of the OO language are important, because some lan-
guage features, such as reflection, allow programs to make observations
that can distinguish between supertype and subtype objects. The achieve-
ments closest to our aim are soundness and completeness proofs for log-
ics of Java fragments that embody supertype abstraction in some form
(e.g.,[43]). But these assess the reasoning power of a proof system, rather
than assessing and explicating the connection between behavioral sub-
typing and supertype abstraction; and they are somewhat removed from
the axiomatic semantics of some widely used verifiers (which simply
postulate soundness of behavioral subtyping in some form).

The key insight that led to our results is a purely semantic formula-
tion of supertype abstraction using two denotational semantics: in one,
method calls are statically dispatched. On this basis we are able to give
a formal treatment in a language with many constructs of sequential OO
languages, including classes, interfaces, mutable heap objects, assign-
ment, exceptions, inheritance, visibility, reference equality, type tests,
and recursive types. Even with effective definitions in hand, it was non-
trivial to find the right induction hypothesis and technique to prove the
main lemma.

We make no commitment to particular specification notations or rea-
soning system but rather formulate modular reasoning semantically in a
generic way that idealizes what is found in logics and tools. Using an op-
erationally sound compositional semantics allows us to provide a foun-
dation that will serve as a point of reference and as a basis for assessment
and further development of specification languages and verification tools.

This paper makes the following contributions.

• We give a semantic characterization of supertype abstraction, which
idealizes what is found in logics and verification tools. In contrast to
related work, our definition does not rely on derived notions such as
substituting one object for another [19, 27, 29], nor is it tied to a proof
system [31, 40, 42, 43, 46].

2 2006/9/3



• We formalize behavioral subtyping in terms of refinement of observ-
able behavior in a realistic programing model. Refinement does not
need to hold between all syntactically related types but only when the
subtype is a (non-abstract) class.

• In contrast to the standard view [29], we define refinement intrinsi-
cally, by quantifying over satisfying implementations. Separately, we
characterize refinement in terms of relations between pre- and post-
conditions. Our characterization adapts previous work [13, 33, 41]
that improves on the overly restrictive standard condition of postcon-
dition implications [2, 3, 15, 29, 30]. (This also isolates the way in
which characterization of completeness depends on the specification
language, see Sect. 7.) An outcome of our focus on reasoning about
correctness of programs rather than an abstract model is that we find
abstraction functions are not an integral part of behavioral subtyping
(compare, e.g., [19, 29]).

• We prove soundness and semantic completeness of behavioral sub-
typing for supertype abstraction. It was by seeking completeness that
we were led to the surprising findings noted in the preceding items.

• We justify the standard condition on invariants [29], by precisely de-
scribing the necessary soundness conditions and how they can be en-
forced by recently proposed techniques for sound modular reasoning
about invariants [24, 37, 32].

• We formalize specification inheritance [50] and show that it ensures
behavioral subtyping. Specification inheritance is part of the semantic
definition of JML and it embodies the proof obligations whereby
some logics achieve behavioral subtyping [31, 40, 42, 43, 46].

The rest of this paper is organized as follows. The next section gives
a synopsis of the main ideas. We then discuss related work. Following
that are technical details about the language (Sect. 3) and specifications
(Sect. 4). This is followed by a formalization of supertype abstraction
and behavioral subtyping (Sect. 5), with the main theorems connecting
them. We then extend these results to handle invariants (Sect. 6). In
Sect. 7 we characterize behavioral subtyping by a checkable condition on
specifications and prove that specification inheritance ensures behavioral
subtyping. Sect. 8 concludes.

2. Synopsis
In an OO language it is not obvious how to do modular reasoning,
because dynamic dispatch selects different methods depending on the
exact run time type of an object. What specification should one use to
reason about a call, such as E .m(), given that the static type of E , say T ,
is only an upper bound on its dynamic type? While we consider formal
specifications and reasoning in this paper, the problem also applies to
informal reasoning based on informal specifications. The first expert OO
programmers used T ’s specification of m to reason about such calls.
This kind of reasoning, supertype abstraction [22], is modular in that
it does not depend on E ’s dynamic type, and hence does not have to
be changed when subtypes of T are changed in compatible ways or are
added to a program [27]. Supertype abstraction supports maintenance
and evolutionary programming styles.

However, supertype abstraction is only valid if methods that override
T ’s method m satisfy T ’s specification for m , since that specification
is the one used in reasoning about such calls. Making overrides obey the
specification of overridden methods, specification inheritance [14, 50],
ensures that objects of subtypes of T do not cause surprising behavior
when treated as if they are objects of type T ; that is, it ensures behavioral
subtyping [2, 3]. An alternative is to check the given specifications and
treat violations as a design error [15]. Either way, a characterization is
needed for soundness and to avoid unnecessary restriction.

2.1 Supertype abstraction
An influential discussion of the benefits of these ideas is Liskov’s invited
talk at OOPSLA 1987 [27]. Liskov stated an easily-remembered test for
behavioral1 subtyping (p. 25): “If for each object o1 of type S there is an
object o2 of type T such that for all programs P defined in terms of T ,
the behavior of P is unchanged when o1 is substituted for o2, then S is a

1 The quote refers to what we call “behavioral subtyping” simply as “subtyping.”

subtype of T .” This is often called the “Liskov Substitutability Principle”
(LSP) and is a strong form of supertype abstraction. The LSP is actually
too strong, because it uses the notion of “unchanged” behavior; the
point of introducing subtype objects is often to change behavior in a
way that is allowed by the supertype’s specification. A more flexible
intuition defines observations that are not allowed by this specification
as “surprising,” and says that behavioral “subtyping prevents surprising
behavior” [19, Chapter 1].

As a formulation of supertype abstraction, the LSP is not easy to ap-
ply to imperative OO languages. It is not clear what it means to substitute
one object for another: imperative programs are not referentially trans-
parent, object identity matters, and the state of “an object” often depends
on other objects in the heap. (Object identity is also a problem with the
algebraic work on applicative languages from which the LSP is drawn
[11, 19].) One of the contributions of our paper is to precisely formal-
ize supertype abstraction in a way that captures modular reasoning about
imperative OO programs.

Our definition of supertype abstraction says that properties of a com-
mand can be proved by reasoning about its method calls as if they were
statically dispatched to an arbitrary implementation that satisfies the
specification associated with the static type of the receiver. The defini-
tion is in terms of a denotational semantics. For a command S , its mean-
ing, D[[S ]], is interpreted in a method environment, µ, that gives a mean-
ing to each method at each type. Thus D[[S ]]µ is a function from initial
states to final states. We are interested in proving that S satisfies some
pre/post specification, spec. Modular reasoning proves that D[[S ]]µ sat-
isfies spec, using only the specifications associated with the static types
of receivers of method calls. We call the latter a specification table. To
avoid formalizing “reasoning” as such, our definition considers seman-
tic consequences that hold for any µ that satisfies the specification table.
Whereas the actual program semantics, D[[−]], uses dynamic dispatch,
we define a static dispatch semantics, S[[−]], to formalize reasoning in
terms of static types. Supertype abstraction is formalized roughly as fol-
lows: if it is true that S[[S ]]µ satisfies spec, then the actual semantics
D[[S ]]µ satisfies spec (provided that µ satisfies the specification table).
(For details see Def. 11.2)

In a program logic, supertype abstraction is embodied by the proof
rule for method invocation, which allows to derive {P} E .m() {Q}
only from a specification (preT

m , postTm ) associated with the static type,
T , of E . Similarly, an automated verifier typically uses weakest precon-
dition semantics and achieves modularity by replacing a call E .m() by
the sequence “assert preT

m ; assume postTm ” (with various optimizations,
e.g., [23]). Both techniques aim to produce sound conclusions about
the actual semantics. We model both by the static-dispatch semantics
S[[E .m()]]µ. What makes both techniques sound is behavioral subtyp-
ing, imposed by proof obligations on implementations of m in subtypes
of T (typically via some form of specification inheritance). The proof
obligations are modeled by our specification table; behavioral subtyping,
i.e., refinement of specifications, is a property of the specification table.

The main result of the paper (Thms. 12, 24) says that supertype
abstraction for commands is equivalent to behavioral subtyping. The
proof that behavioral subtyping implies supertype abstraction goes by
induction over the syntax of the language and is the paper’s hardest
technical result (Lemma 16).

2.2 Behavioral subtyping
Several authors have offered definitions of behavioral subtyping, but
the most influential definition has been Liskov and Wing’s [29]. We
paraphrase part of their “constraint rule” (from their Figure 4, page
1823).3 For type T to be a behavioral subtype of U :

2 We resist the temptation to abstract the specification table as a single method
environment that uses nondeterminacy to represent a specification by the “least
refined implementation”; though elegant and useful (e.g, [39, 43]), this technique
requires justification with respect to the actual program semantics.
3 Their rule allows for method renamings and an abstraction function, our seman-
tics of OO languages does not allow the former and allows us to disregard the
latter. We also ignore the part of the rule about history constraints, since we study
a sequential language.

3 2006/9/3



interface Tracker {
public model goal, curr: int;
public invariant 0<self.goal ∧ self.goal≤self.curr;
// ...
meth lose(kg: int)

requires self.goal ≤ self.curr − kg;
ensures exc = null ∧ self.curr = old(self.curr − kg);

}

class WeightLoss extends Object implements Tracker {
protected g, c: int;
protected invariant 0<self.g ∧ self.g≤self.c;
protected represents goal := self.g;
protected represents curr := self.c;
// ...
meth lose(kg: int)

requires true;
ensures (old(self.goal ≤ self.curr − kg)

⇒ (exc = null ∧ self.curr = old(self.curr−kg)))
∧ (old(self.goal > self.curr − kg)

⇒ (exc 6=null));
{ if (self.g≤self.c−kg) then self.setCurr(self.c−kg)

else throw new IAE()
}
meth setCurr(kg: int)

requires self.goal≤kg;
ensures exc = null ∧ self.curr = kg;

{ self.curr := kg }
}

Figure 1. The interface Tracker and the class WeightLoss.

• The subtype’s invariant must imply the supertype’s. That is, whenever
T ’s invariant holds for a subtype object4, then U ’s invariant holds:

invT (self) ⇒ invU (self) for all self :T . (1)

• “Subtype methods preserve the supertype method’s behavior.” That
is, if T ’s method m overrides U ’s method m , then the usual static
typing conditions [12] hold, and for all subtype objects self :T , U ’s
precondition for m implies T ’s precondition:

preU
m (self) ⇒ preT

m (self) (2)

and T ’s postcondition implies U ’s:

postTm (self) ⇒ postUm (self). (3)

The above definition is intended to be part of a “descriptive and
informal” presentation (p. 1813), which concentrates on ideas and has
only “informal justifications” (p. 1813). However, even at a conceptual
level, it has several problems.

Liskov and Wing’s postcondition rule (3) is stronger (i.e., less flexi-
ble) than necessary for the soundness of supertype abstraction [14]. To
see this, consider Fig. 1. The interface Tracker declares two model fields,
goal and curr that are only used in specifications [25]. They stand for the
goal of a diet and the current weight. The values of these model fields
are given by the represents clauses in class WeightLoss. The clause
“represents goal := self.g” declares part of the object invariant for
WeightLoss, which says that goal = self.g. This is a predicate on the
protected field and the inherited public model field. This is typical of
JML and other specification languages, where the connection between a
data representation and an abstraction are expressed by a hidden invari-
ant. Frame axioms (modifies clauses) could be encoded in the postcon-
dition, but for brevity we ignore them in our examples.

The lose method of the class WeightLoss illustrates the problem with
the postcondition rule (3). That rule requires that lose’s postcondition
implies the postcondition in Tracker. However, this implication does not
hold for this example, as can be seen by considering the case where goal

4 Liskov and Wing state the invariant rule for object “values,” not for objects.

is strictly larger than the difference curr− kg, since exc6=null contradicts
exc = null. (The specification variable exc refers to exception results;
when exc is null in a post-state, the method returned normally.) How-
ever, in this example, supertype abstraction works fine, because the lose
method of the class WeightLoss obeys Tracker’s specification for lose
whenever Tracker’s precondition holds. Clients that reason about calls
to lose using Tracker’s specification will not be surprised, WeightLoss
can be a behavioral subtype of Tracker. One way of expressing the most
flexible sound rule for U to be a behavioral subtype of T is to require
that for all subtype objects self :U , the precondition rule (2) holds and
[13, 33, 41]:

old(preT
m (self)) ∧ postUm (self) ⇒ postTm (self). (4)

where old(P) refers to the value of predicate P in the pre-state of a call.
The idea is that the behavior of the subtype’s method does not need to
be constrained when the supertype’s precondition does not hold in the
pre-state.

These conditions are just approximations of refinement and it is re-
finement that explains the equivalence between behavioral subtyping and
supertype abstraction (Theorem 12). Our formulation of behavioral sub-
typing (Def 8) is in terms of the intrinsic refinement order on specifi-
cations. In Sect. 7 we confirm that (4) characterizes refinement in our
setting and can thus be used to check behavioral subtyping. Disentan-
gling the two is important since the characterization is sensitive to the
form of specifications as discussed in Sect. 7.

2.3 Invariants and behavioral subtyping
While Liskov and Wing’s postcondition rule is sound but too restrictive,
their invariant rule is unsound if applied to general OO programs, unless
further restrictions on programs are applied. Object invariants are predi-
cates that can be assumed in method pre-states and must be established in
method post-states [17]. Liskov and Wing’s discussion implies that “the
invariant” is what the programmer declares and reasons about. This is
broken in unrestricted OO languages, because of sharing and reentrance
[31, 32, 34, 38]. We illustrate these problems below. We also review re-
cent methodologies for sound reasoning about invariants; in brief, the
methodologies derive from the declared invariants an effective invariant
for which Liskov and Wing’s invariant rule does work.

To explain the problems, we begin by considering how invariants
interact with pre- and postconditions. Invariants could be thought of as
conjoined to the pre- and postcondition of each method’s specification,
because invariants must hold at the beginning and end of each method’s
execution; this is the usual proof obligation. This conjunction semantics
would cause a conflict between the invariant rule (1) and the precondition
rule (2), as the invariant may be strengthened in a subtype (covariantly),
which will strengthen a precondition it is conjoined with, which in turn
violates the rule that preconditions may only be weakened in a subtype
(contravariantly). The standard solution to this problem [17] ensures
that the implementation can assume the invariant as a precondition, by
restricting the invariant to depend only on part of the state that is within
an encapsulation boundary, say private to the class, so that it cannot be
falsified by clients between calls to methods of the class. For example,
consider the invariant in Fig. 1; if field c in Fig. 1 were public, instead
of protected, then clients could assign -1 to it, falsifying the invariant.
Indeed, one would like per-instance encapsulation, so that an invariant
for object o can only be invalidated by a method execution whose
receiver is o. But privacy in Java-like languages is at the level of classes,
not instances, and in this example field c is visible in subclasses. The
general rule is that if a mutable field is visible in some context, say a
client or subclass, then that code must be responsible for maintaining
invariants that depend on the field (and therefore such invariants must be
visible).

Encapsulation is partly achieved using scope and visibility, but that is
not enough, due to the problem of sharing mutable objects. between an
object’s representation and client code. This is the problem of represen-
tation exposure [28, 32, 38]. To see the problem, imagine that c in Fig. 1,
instead of containing an integer, referred to a mutable IntCell object:

protected c: IntCell;
Imagine the IntCell objects contain a (model) field val that can be
changed in a program and that the invariant is changed to refer to it:

4 2006/9/3



class WghtDiff extends WeightLoss {
protected d: int;
protected invariant 0<self.g ∧ self.g≤self.c

∧ self.d=self.c−self.g;
// ...
meth setCurr(kg: int)

requires self.goal≤kg;
ensures exc = null ∧ self.curr = kg;

{ super.setCurr(kg);
// invariant should hold, but doesn’t
self.d := self.c−self.g

}
}

Figure 2. The class WghtDiff.

protected invariant 0<self.g ∧ self.g≤self.c.val;

The problem is that the IntCell object c can be shared between this
version of the WeightLoss class and clients. This allows clients to mutate
c.val, potentially violating the invariant. Liskov and Wing’s rule is thus
only sound if objects cannot contain mutable subobjects, or if some other
restrictions on ownership are applied [24, 37, 32].

Reentrance is another source of unsoundness for invariants. The class
WghtDiff shown in Fig. 2 illustrates the problem. Consider a call such
as wd.lose(5), where wd is an object of dynamic type WghtDiff. In this
case, the inherited lose method of WeightLoss is called, which reenters
WghtDiff by calling its setCurr method. WghtDiff’s setCurr method
makes a super call up to WeightLoss’s setCurr method, which (in the
nonexceptional case) sets g and c, potentially breaking WghtDiff’s in-
variant in the last conjunct. This violates WghtDiff’s invariant in a visi-
ble state, namely the post-state of this super call, as indicated in the code.
According to the assumption that all invariants must hold in all visible
states, the last assignment in WghtDiff’s setCurr method is not neces-
sary, even though operationally it is certainly needed to re-establish the
invariant broken by the super call. This illustrates a problem with the
simplest view of invariants. But the most difficult problem to solve is
reentrant callbacks. The self-call to setCurr in the superclass method
is dynamically dispatched to the override in WghtDiff; in this example
nothing goes wrong but in general such a call can find the invariant tem-
porarily false because there is already a method invocation (here, lose) in
progress.

We expected to need visibility, ownership, etc. to formalize a sound
notion of invariants —it was a pleasant surprise that in semantic terms
these all amount to ways to ensure that invariants can be assumed as
preconditions by method implementations, so they do not complicate our
formalization (Def. 20). The effective invariant is governed by (1) and the
means by which it is made sound to assume invariants as preconditions
is independent from the justification of supertype abstraction (Thm. 24).

Two techniques for ensuring that invariants can be assumed as pre-
conditions in OO languages have been investigated recently. The rele-
vant invariant semantics is based on an ownership type system, which
defines the invariants that are “relevant” to a given method [32]; in this
technique a method must establish all relevant invariants that might have
been broken before making a method call. The Boogie [7, 24, 37] tech-
nique uses a dynamic notion of ownership and strong invariants that hold
in all states. Declared invariants are allowed to be temporarily broken.
To express whether the declared invariant is in effect, Boogie uses a
specification-only field, invar, that ranges over the object’s supertypes.
An object’s invariant takes the form

∀T · self.invar ≤ T ⇒ invT (self) (5)

where invT is the invariant explicitly declared for type T . During tem-
porary violations of the declared invariant for T , this field is set to a
supertype of T . Thus the methodology ensures that (5) holds in every
reachable state. What matters is that these techniques provide invariants,
derived from the declared ones, that can soundly be assumed as a pre-
condition in verifying a method implementation.

2.4 Enforcing behavioral subtyping by specification inheritance
As can be seen from our examples, writing the specifications for a behav-
ioral subtype often involves a certain amount of repetition. For example,
the postcondition of the lose method in class WeightLoss (Fig. 1) has
two conjuncts, and the first of these repeats both the precondition and the
postcondition of the overridden method in the supertype Tracker (Fig. 1).
A similar repetition happens for invariants, as can be seen in the invariant
of class WghtDiff (Fig. 2), whose first two conjuncts repeat the invariant
of its supertype WeightLoss.

Such repetition can be avoided using specification inheritance [14,
50]. In JML, the programmer declares two specifications, one for the
supertype, and one for the subtype. The effective specification is given by
specification inheritance as described below. For invariants, the extension
of the subtype’s specification produces the conjunction of its declared
invariant with the conjunction of the invariants from its supertypes. This
would allow the invariant of WghtDiff to be stated as follows:

protected invariant self.d=self.c − self.g;
which avoids repeating the first two conjuncts shown in Fig. 2. For meth-
ods, an overriding method declaration inherits the specifications of each
declaration of that method that it overrides. Its effective specification is
the join (least upper bound) of the explicit specification with the speci-
fications of that method in all supertypes. In JML the join of a method
specification with the specifications of overridden methods is indicated
by the keyword also. Using this convention one could write the specifi-
cation of the lose method in class WeightLoss as follows:

meth lose(kg: int)
also

requires self.goal > self.curr − kg;
ensures exc6=null;

As we explain in Sect. 7, the meaning of the above specification under
specification inheritance is essentially the same as the specification given
in Fig. 2. That is, the meaning has as its precondition the disjunction of
the explicit precondition and those inherited (which in this example is
true), and as its postcondition a conjunction of implications, which says
that if a precondition was satisfied, then the corresponding postcondition
must hold. Theorem 30 says specification inheritance forces behavioral
subtyping. A number of tools and logics enforce behavioral subtyping
through equivalent means, though it is not always explicit.

2.5 Related work
Liskov and Wing’s paper [29] has already been discussed above. Their
paper is famous because they clearly present the main ideas and sev-
eral interesting examples. Liskov and Wing formulate something like
supertype abstraction, their “Subtype Requirement” (p. 1812), but it is
sketched in terms of provability and does not directly address modular
reasoning about code and method contracts. They present informal argu-
ments why behavioral subtyping ensures their subtype requirement. The
reasoning they permit involves only invariants and history constraints,
apparently because the model of computation allows concurrency. By
contrast, we use a sequential language that allows Hoare-style reasoning
using invariants as well as pre- and postconditions.

Leavens and Dhara [21] survey a lot of older work on behavioral sub-
typing, including the pioneering work of America [2, 3] and Meyer [30].
Much of it is similar to Liskov and Wing’s and has similar limitations.

Several logics have been given for sequential fragments of Java which
incorporate supertype abstraction [31, 42, 43, 46]. These logics mostly
achieve behavioral subtyping by requiring that each overriding method
implementation in a type satisfies the corresponding specification in each
of its supertypes. This has the same effect as our definition of specifi-
cation inheritance, which explicitly constructs the “effective specifica-
tions”. Some prove soundness and even completeness of a proof system
with behavioral subtyping, which justifies supertype abstraction in their
setting. Of these, only Müller’s [31] considers interfaces, and even this
misses our insight that interfaces can be exempted from the requirements
of behavioral subtyping that must apply to (non-abstract) classes. Müller
concentrates on a modular treatment of frame axioms (modifies clauses)
and invariants using ownership.

Parkinson’s work [42] is based on separation logic [39] and encapsu-
lates invariants using a nonstandard form of opaque predicate [10] which
can be seen as higher order quantification [9]. Parkinson says “behav-
ioral subtyping” for the standard implications (2) and (3) and “specifi-

5 2006/9/3



cation compatibility” for a proof-theoretic formulation of the intrinsic
refinement ordering [42, Def. 3.5.1]. Pierik [43] gives a more conven-
tional proof system, in particular a proof outline logic with a first-order
assertion language using finite sequences for heap expressions. As we do
in Sect. 7, Pierik explicitly connects specification refinement with adap-
tation rules. Supertype abstraction and behavioral subtyping are present
but intertwined with many other details. Pierik and Parkinson both prove
soundness and Pierik proves completeness. But the relation between a
logic and its models does not address our objective of explicating the
connection between behavioral subtyping and supertype abstraction.

Pierik and de Boer [44] investigate various notions of completeness
of logics in the presence of behavioral subtyping.

One reason it is important to have disentangled behavioral subtyping
from specification inheritance is that it illuminates an important design
decision for specification languages. Many of the above cited works force
behavioral subtyping by using specification inheritance. This decision
prevents redundancy in specifications and avoids the need for subtypes
to see all specifications in supertypes, some of which may be invisible
(such as private invariants). The downside of this decision is that the join
used in specification inheritance can lead to unsatisfiable specifications.
Worse yet it can mask design mistakes.

Findler and Felleisen take the opposite decision [15], i.e., checking
for behavioral subtyping rather than imposing it by fiat with specifica-
tion inheritance. Their work is a foundational study of runtime asser-
tion checking for pre/post specifications without invariants. Their con-
tract checker can detect violations of behavioral subtyping as embodied
in Liskov and Wing’s pre/post rules, (2) and (3). They note that viola-
tions of the precondition rule (2) do not occur in a specification language
that constructs effective preconditions by using disjunction, as in specifi-
cation inheritance. So runtime checkers for such languages cannot detect
violations of the precondition rule.

3. Language
The technical development uses an idealized object-oriented language
that models a large fragment of the class-based languages like Java and
C#. It includes interfaces, mutually recursive classes, exceptions as first-
class objects, type test and casts, inheritance and dynamic binding. It
does not model: concurrency, nested classes, and reflection including
dynamic class loading, to avoid complications. Constructors are also
omitted, to keep the language small. For issues like evaluation order
and the semantics of null casts, where reasonable languages may differ
on semantic details, we follow Java. The semantics is adapted from [6]
which in turn draws on [18] for formalization of syntax including the
class table.

Readers familiar with conventional languages should have little dif-
ficulty with the language syntax, but some effort is needed to follow the
details of the semantic definitions so we begin with design rationale.

For reasoning about specifications, a “big step” or state transformer
semantics is appropriate, since specifications describe behavior in terms
of initial and final states of commands. Although state transformer se-
mantics can be defined from a small-step semantics, it is more conve-
nient to give a direct definition that is compositional, to support proof by
induction on the structure of commands. Nonetheless, our model uses a
standard concrete model of state and the semantic definitions for expres-
sions and commands are operational and unsurprising.

A key aspect of modular reasoning is that reasoning about a command
is based on the specifications of methods invoked by the command —
independent from any particular implementations of those methods. To
model this aspect of modular reasoning without over-specializing our
theory by bringing proof theory into the picture, we use a denotational
semantics: the meaning of a command or expression is defined with
respect to a given method environment which provides the denotations
of all methods.

Four technical features of the semantics streamline the formal devel-
opment but may be unexpected. First, although a distinction is made be-
tween expressions and commands, both may have effects. Reasoning sys-
tems often restrict expressions to be pure; but we include exceptions in
full generality which entails heap effects in expressions. Second, thread-
ing state through the semantics of expressions adds considerable compli-
cation which is mitigated by the uniform use of a general form of state

transformer, with separate variable declarations for the initial and final
state spaces. In the case of a command, the initial and final state space
are the same except for the addition of an exception variable (exc) in the
final state space. In the case of an expression, the initial state space is as
expected, but the final state space consists only of two variables, the ex-
ception variable and a variable to hold the normal result (res). In the case
of a method, the initial state consists of parameters and the receiver vari-
able self; the final state has exception and normal result variables as in
the case of expressions. A state transformer of a given type is a mapping
from initial states to final states or ⊥, the later modeling divergence.

The third feature is the encoding of exceptions. An expression may
diverge, yield a normal result, or throw an exception. The semantics uses
a disjoint sum of just two kinds of outcome: either ⊥ or a state. But that
state includes a special variable exc, of type Thrwbl, to encode a disjoint
sum: the value of exc is either null, which signifies normal termination,
or a reference to the exception object (which may contain references to
other objects in the heap). Variable exc is not allowed to occur in the
program text but is used in specifications.

Fourth, the syntax is in something like “A-normal form” [49], i.e.,
subexpressions in various constructs are restricted to be variables. To
avoid loss of expressiveness, let-expressions are added; desugaring trans-
formations are not difficult to define, e.g., a general equality test E1 =
E2 can be desugared (−o) by the rule

(E1 = E2)
o = let x be Eo

1 in let y be Eo
2 in x = y

which preserves order of evaluation and propagation of exceptions.

Notation summary. The metatheory is standard set theory and we often
use partial functions (finite maps) treated as sets of pairs. Unqualified, the
term function means total function. Much of the formalism is expressed
in terms of dependently typed functions, the notation for which is de-
ferred until later.

Application is written with juxtaposition and associates to the left as
in f a b for a curried f . Finite mappings are used for typing contexts
and variable stores, e.g., [self :C , x : int] or with brackets omitted. The
extension of a finite mapping g to map b to z , where b /∈ dom g , is
written [g , b : z ]. To override the mapping for an element c ∈ dom g
we write [g | c : z ]. To streamline the semantic definitions, our meta-
language uses ⊥-strict let-expressions: the value of “let x = α in β”
is ⊥ in case α = ⊥, otherwise it is as usual. A raised dot separates a
variable binding from its scope, as in ∀x : int · a[x ] > 0.

Syntax. The grammar is based on some given sets of names, using the
following nomenclature for typical elements:

C ∈ ClassName names of declared classes
I ∈ InterfaceName names of declared interfaces
x , y , f variable names (for param., fields, and locals)
m method names

There are two distinguished variable names, self for the receiver object
(this in Java) and res. The final value of res gives the return value
of a method, as if every method body has the form “S ; return res;”.
Using res fits with JML and lets us omit return statements. There is
one distinguished interface name, Thrwbl, and three distinguished class
names Object, NullDeref and ClassCast; the latter implement Thrwbl.

Class and interface declarations have the following forms:

class C extends C implements I { vis f :T mdec }
interface I extends I { vis f :T msig }

Here and throughout we use over-lines to indicate sequences, possibly
empty. Instance fields are included in interfaces since they are needed
in specifications. In a specification language they would be designated
as “ghost” or “model” fields and our results apply to programs that are
properly annotated for ghost fields, but the distinction is not needed for
our results.

6 2006/9/3



The remaining syntactic categories are as follows. (Bold keywords
and punctuation marks including “{” and “}” are terminal symbols.)

T ::= C | I | bool | int | unit data type
vis ::= private | protected | public visibility modifier
msig ::= m(x :T ) :T method signature
mdec ::= meth msig { S } method declaration
S ::= x := E | x .f := x assign to var., to field

| var x :T in S local variable block
| S ; S | if E then S else S sequence, conditional
| throw x throw exception
| try S catch(x :T ) S try-catch
| try S finally S try-finally

E ::= x | it | null | true | 0 . . . variable, constants
| x .f | x = x field access, equality test
| x is T | (T ) x type test, cast
| new C () object construction
| x .m(x ) method call
| let x be E in E sequenced local binding

For brevity the term ref type is used to mean any non-primitive data type,
i.e., a class or interface name, and we define

RefType = ClassName ∪ InterfaceName

A complete program is a collection of class and interface declarations.
Formally, we consider a class table CT which is a mapping sending each
class name C to its declaration CT (C ) and each interface name I to its
declaration CT (I ). We eschew the term “statement” but use identifier S
for commands since C is mnemonic for class names.

The typing rules are syntax directed. The rules for commands and
expressions use judgments in which the variable context is explicit,
giving names and types of local variables and parameters that are in
scope (namely, the method parameters, any locals in scope, and the
special variables self, res). The rules also depend on the complete class
table, as is needed to deal with recursive class declarations —this is not
made explicit in the judgments.

Various auxiliary notations are used that depend on the class table,
again without explicit indication. Suppose CT (C ) is

class C extends D implements I {vis f :T ; mdec}

Then we define super C = D and superinterfaces C = I . Let mdec be
in the list mdec of method declarations, so mdec has the form

meth m(x :T ) :T1 { S }
We record the type and parameter names by defining mtype(C ,m) =
x :T→T1. If m is inherited in C from D (i.e., is defined in D but not
declared in C ) then mtype(C ,m) is defined to be mtype(D ,m). Thus
mtype(C ,m) is defined iff m is declared or inherited in C . Similarly for
interfaces: if I extends I then superinterfaces I = I and mtype(I ,m) is
defined the same as for classes.

For declared fields of the class displayed above we define dfields C =
vis f :T and similarly dfields I are the fields declared by interface I . To
include inherited fields for such a class C we define

fields C = fields D ∪ dfields C ∪ (∪I ∈ superinterfaces C · fields I )

In a well formed class table each of these unions will be disjoint. For in-
terfaces define fields I = dfields I ∪ fields(superinterfaces I ). We define
Meths T = {m | mtype(T ,m) is defined }, noting that mtype(T ,m)
is defined just when T is a ref type and m is declared or inherited in T .

The subtype relation ≤ is defined inductively by

• C ≤ D if super C = D

• T ≤ I if I ∈ superinterfaces T (in which case T is a ref type)
• I ≤ Object if I ∈ dom(CT ) is an interface
• ≤ is reflexive and transitive

Note that for primitive types, T ≤ U holds just if T is U .
A class table CT is well formed provided it satisfies standard con-

straints such as acyclicity of ≤. Every type in a field declaration, param-
eter, etc, is one of the primitives or in RefType . Every method decla-

ration m(x :T ) :T {S} in CT (C ) is typable in the sense that Γ ` S
where Γ = [self :C , res :T , x :T ]. Method overrides must not change
the signature. Rules that define Γ ` S are in Appendix A. We give here
just two.

Γ ` E :T [Γ, x :T ] ` E1 :U

Γ ` let x be E in E1 :U

Γ ` x :T T ∈ RefType
mtype(T ,m) = z :T→U Γ ` y :V V ≤ T

Γ ` x .m(y) :U

3.1 Semantic domains
Details of the semantics for expressions and commands are not very
important, although they are needed in some proofs. But familiarity
with the semantic domains —especially state transformers and method
environments— is essential since specifications are treated semantically.

We assume a given set Ref of references —abstract addresses. A ref
context is a finite partial function ρ that maps references to class names.
The idea is that if o ∈ dom ρ then o is allocated and moreover o points
to an object of type ρ o. We define the set RefCtx = Ref ⇀ClassName ,
where ⇀ denotes partial functions. Note that for ρ and ρ′ in RefCtx, we
can write ρ ⊆ ρ′ to express that the domain of ρ′ includes at least the
objects in ρ and for objects allocated in ρ the types are the same in ρ′.

Semantic domains are the sets of possible meanings for various kinds
of phrases such as data types, expressions, and method bodies. The
definitions capture important invariants about the semantics, e.g., that
the value of a field or variable of a given static type is a value of that
type. Moreover, if T is a ref type then its values include references to
objects in subclasses. Finally, there are no dangling references. Most of
the semantic domains are defined in terms of a given ref context. For
example, Val(T , ρ) is the set of values of type T in a state where ρ is
the ref context. In case T is a primitive type, the definition of Val(T , ρ)
is independent from ρ. But if T is a class type, then Val(T , ρ) is some
set containing null and some references —all the allocated objects of
some type U such that U ≤ T .

Here is a guide to the domains. Those marked with ∗ are just special
cases of the others as explained below.

domain description metavariables
Val(T , ρ) value of type T o, v
Store(Γ, ρ) stores for Γ r
∗ Obrecord(C , ρ) fields of C -objects
Heap(ρ) heaps h
State(Γ) states for Γ s, t
STrans(Γ1, Γ2) state transformers σ, τ
∗ SemExpr(Γ,T ) semantic expression
∗ SemCommand(Γ) semantic command
∗ SemMeth(C ,m) semantics of method m in C
MethEnv method environment µ
XMethEnv extended meth. env. (incl. interfaces) µ̇

For data types T the definition is by cases on T :

Val(bool, ρ) = {true, false}
Val(int, ρ) = {. . . ,−2,−1, 0, 1, 2, . . .}
Val(unit, ρ) = {it}
Val(C , ρ) = {null} ∪ {o | o ∈ dom ρ ∧ ρ o ≤ C}
Val(I , ρ) = {o | ∃C · C ≤ I ∧ o ∈ Val(C , ρ)}

The next definitions involve dependent function spaces or dependent
pairs, for which we use the following.

Notation for dependent types in metatheory

Suppose X is a set and for every x ∈ X a set Zx is given. Then the
dependent product (y :X ) × Zy is the set of pairs (x , z ) such that
x ∈ X and z ∈ Zx . The dependent function space (y :X ) → Zy

is the set of functions f from X to ∪x∈XZx such that f x ∈ Zx

7 2006/9/3



for all x ∈ X . Note that y is a bound variable in these notations.5

The first use is in the definition

Store(Γ, ρ) = (x : dom Γ) → Val(Γ x , ρ)

What this means is that Store(Γ, ρ) is a set of functions; and for any r
in Store(Γ, ρ) (the name r is mnemonic for store), the domain of r is
dom Γ and r x is an element of Val(Γ x , ρ) for each x ∈ dom Γ.

Next we build up to program states.

Obrecord(C , ρ) = Store(fields C , ρ)
Heap(ρ) = (o : dom ρ) → Obrecord(ρ o, ρ)
State(Γ) = (ρ : RefCtx)× Heap(ρ)× Store(Γ, ρ)

Recall that obcontext C is the variable context obtained by removing vis-
ibility markers from fields C . So a heap h is map sending each allocated
reference o to a record, h o, of the object’s current field values.

The most important domain is state transformers:

STrans(Γ, Γ′) = (s :State(Γ))
→ {⊥} ∪ {s ′|s ′ ∈ State(Γ′) ∧ extState(s, s ′)}

Relation extState is used to say that one state’s ref context extends the
other’s:6 extState((ρ, h, r), (ρ′, h ′, r ′)) ⇐⇒ ρ ⊆ ρ′.
Elements of STrans(Γ1, Γ2) are functions that map a state in State(Γ1)
to either ⊥ or a state in State(Γ2). The domain of state transformers
subsumes meanings for methods, expressions and commands.

SemExpr(Γ,T ) = STrans(Γ, [res :T , exc : Thrwbl])
SemCommand(Γ) = STrans(Γ, [Γ, exc : Thrwbl])
SemMeth(T ,m) = STrans( [self :T , x :T ],

[res :U , exc : Thrwbl])
where mtype(m,T ) = x :T→U

A (normal) method environment is defined to be a table of meanings
for all methods in all classes:

MethEnv = (C :ClassName)×(m :Meths C ) → SemMeth(C ,m)

The idea is that a method environment µ is defined for pairs (C ,m)
where C is a class with method m and moreover µ(C ,m) is a state
transformer suitable to be the meaning of a method of type mtype(C ,m).
In case m is inherited in C from B , µ(C ,m) will be the restriction of
µ(B ,m) to receiver objects of type C .

The semantics of a command depends on its method environment and
a complete program CT denotes a method environment, described later.

In the formulation of modular reasoning based on static types it turns
out to be convenient to use an extended kind of method environment
which associates method meanings to interfaces as well as to classes
(even though the receiver of an invocation is always an object of some
class, cf. the definition of Val(I , ρ)).

An extended method environment is defined to be a table that also
includes meanings for methods of interfaces:

XMethEnv = (T :RefType)× (m :Meths T ) → SemMeth(T ,m)

The metavariable µ ranges over normal method environments and µ̇ is
used to range over extended method environments —the dot is intended
to be mnemonic for the dotted i in interface.

3.2 Semantics of expressions, commands, and class table
The semantic definitions for expressions and commands are straight-
forward but mostly relegated to Appendix B. We explain just what
is needed for the proofs. For an expression Γ ` E :T , the seman-
tics [[Γ ` E :T ]] gets applied to a method environment µ to yield
a state transformer [[Γ ` E :T ]]µ that in turn is applied to a state,
e.g., [[Γ ` E :T ]]µ(ρ, h, r). Similarly for commands. The definition is

5 More standard notations are Σ y :X .Zy for (y :X ) × Zy and Π y :X .Zy for
(y :X ) → Zy . Ours are similar to the PVS prover’s.
6 Since ρ and ρ′ are partial functions which we treat as sets of pairs, ρ ⊆ ρ′ says
that ρ′ has at least the domain of ρ and they agree on their common domain.

syntax-directed, e.g., here is the semantics of an assignment:

[[Γ ` x := E ]]µ(ρ, h, r) =
let (ρ1, h1, r1) = [[Γ ` E :T ]]µ(ρ, h, r) in
if r1 exc = null then (ρ1, h1, [r | x : r1 res, exc :null ])
else (ρ1, h1, [r , exc : r1 exc])

If E yields⊥ then so does the assignment. If E throws no exception then
its value is assigned to x and the final state is extended with exc set null.
Otherwise, the final state is extended with exc mapped to the exception.

This definition and the ones in the appendix use the notation [[−]] for
the semantics function, but this abbreviates two definitions. They are de-
fined in the same way, except in the case of method call. The dynamic dis-
patch semantics, for which we decorate the semantics brackets asD[[−]],
is the operationally accurate one. It dispatches to a method meaning in
the method environment based on the dynamic type of the receiver. Let
T = Γ x and z :T→U = mtype(m,T ) as in the typing rule. Define

D[[Γ ` x .m(y) :U ]]µ(ρ, h, r) =
if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y ] in µ(ρ(r x ),m)(ρ, h, r1)

Because the dynamic type of the receiver is a class (specifically, ρ (r x )),
this semantics is based on a normal method environment. The helping
function except builds a state with exc set to a new NullDeref object
(see Appendix B).

The static dispatch or nominal [22] semantics of method call applies
a method meaning determined by the static type T of the receiver.
Since interfaces are included among the static types, the static dispatch
semantics is defined in terms of an extended method environment µ̇.

S[[Γ ` x .m(y) :U ]]µ̇(ρ, h, r) =
if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y ] in µ̇(T ,m)(ρ, h, r1)

One of the proofs deals with the case of let-expressions in detail. Here
is the semantics, where [[−]] is either S[[−]] or D[[−]] throughout.

[[Γ ` let x be E in E1 :U ]]µ(ρ, h, r) =
let (ρ0, h0, r0) = [[Γ ` E :T ]]µ(ρ, h, r) in
if r0 exc 6= null then (ρ0, h0, [res : default U , exc : r0 exc])
else let r1 = [r , x : r0 res] in [[Γ ` E1 :U ]]µ(ρ0, h0, r1)

The semantics is defined with respect to an arbitrary allocator. An
allocator is just a choice function for unused locations, i.e., a function
fresh that maps a pair (ρ, h), with h ∈ Heap(ρ), to a location such that
fresh(ρ, h) 6∈ dom ρ.7

Semantics of class table. A well formed class table denotes a method
environment, bµ, the least upper bound of an ascending chain of method
environments—the approximation chain—each of which is given using
the command semantics for method bodies and the preceding approxi-
mation. The i th element in the chain approximates bµ in a way such that,
in operational terms, it gives the correct semantics for executions with
method call stack bounded in length by i . Details are in Appendix B.

4. Specifications and refinement
This section formalizes method specifications and satisfaction by state
transformers. On this basis we define specification tables and satisfac-
tion for them as well as the induced refinement relation between specifi-
cations. Refinement is used in the following section to define behavioral
subtyping.

From now on it is assumed that CT is some well formed class table.
Specification languages have long used special syntax in postcondi-

tions to refer to initial state, such as “old(x)” in JML, so that postcon-
ditions are two-state predicates (but see Sect. 7 in regards to auxiliary
variables).

Specifications for methods and commands are obviously needed, but
expression specifications are also needed, to prove one of the main
results. So it is convenient to use the notation of a state transformer type
Γ Γ′ for specifications of state transformers in STrans(Γ, Γ′).

7 As a simple example, Ref can be taken to be the naturals and fresh(ρ, h) can
be the least n not in dom ρ. A realistic allocator depends on program state which
is why we include h here.

8 2006/9/3



Definition 1 (state transformer specification) A specification of type
Γ Γ′ is a pair (pre, post) such that

• pre is a subset of State(Γ)
• post is a subset of State(Γ)× State(Γ′)

For ref type T , a method specification of type (T ,m) is a specification
of type [self :T , x :T ] [res :U , exc : Thrwbl] where mtype(m,T ) =
x :T→U . A Γ-specification is one of type Γ [Γ, exc : Thrwbl].

Specifications are interpreted in the sense of total correctness, which
is expressed very simply since ⊥ is not in State(Γ′).

Definition 2 (satisfaction by state transformer) Let (pre, post) be a
specification of type Γ Γ′ and σ be in STrans(Γ, Γ′). Then σ satisfies
(pre, post), written σ |= (pre, post), iff

∀t · t ∈ pre ⇒ (t , σ t) ∈ post

A specification table provides specifications for all methods (we add
an invariant for each class in Sect. 6). It models what might be called
the “effective specification”, which is typically obtained from declared
specifications by means of context-dependent interpretation of modifies
clauses [26, 31], specification inheritance (see Sect. 7), etc. Roughly
speaking, a method environment satisfies a specification table if each
method satisfies its specification; formally there are two notions corre-
sponding to the two kinds of method environment.

Definition 3 (specification table) A specification table, ST , contains a
method specification ST (T ,m) of type mtype(T ,m) for each ref type
T and each m ∈ Meths T .

For perspicuity we sometimes write (preT
m , postTm ) for ST (T ,m).

Definition 4 (satisfaction by method environment) Let ST be a spec-
ification table. An extended method environment µ̇ satisfies ST , writ-
ten µ̇ |= ST , iff µ̇(T ,m) |= ST (T ,m) for all ref types T and
m ∈ Meths T .

A normal method environment µ satisfies ST , written µ |= ST , iff
µ(C ,m) |= ST (C ,m) for all classes C and m ∈ Meths C .

Note this does not require µ(C ,m) to satisfy specifications of
the interfaces implemented by C , nor of its superclass. The idea is
that ST (C ,m) is the actual behavioral condition specified for C ,m .
In Sect. 7 we define specification inheritance as a means to derive
ST (C ,m) from declared specifications of C ’s interfaces and super-
classes.

Ordering specifications. The behavioral subtyping property is ex-
pressed in terms of a refinement ordering on specifications, saying that
if T is a subtype of U then ST (T ,m) is a stronger specification than
ST (U ,m) in the sense that any method satisfying ST (T ,m) also sat-
isfies ST (U ,m). This intrinsic ordering on specifications is determined
by the nature of command denotations and the definition of satisfaction.
Some care needs to be taken with the details, because if T is a class, a
method in class T is defined to act on receiver objects of type T whereas
a specification of type (U ,m) imposes a requirement on state trans-
formers for target type U . Owing to the semantics of dynamic dispatch,
however, it is sound for a method in class T to assume a strengthened
precondition saying that the receiver object has type T . (This is explicit
in the proof obligation for method bodies in proof systems, e.g. [31, 45].)

For a method m of class U with mtype(U ,m) = x :T→V ,
the relevant state transformers are in SemMeth(U ,m), i.e., of type
[self :U , x :T ] [res :V , exc : Thrwbl]. For T , a method meaning will
have type [self :T , x :T ]  [res :V , exc : Thrwbl] —only the type of
self varies.8 This leads us to define a nonstandard notion of satisfac-
tion. To that end it is convenient to define an operation that converts a
predicate to a two-state predicate. For p a set of states, define old(p) by

(s, t) ∈ old(p) ⇐⇒ s ∈ p

8 It is well known how to vary parameter and result types; our results can be easily
adapted to such variation but we use invariant method overriding as in Java to
avoid unenlightening notational complications.

Definition 5 (satisfaction under a type, �, ||=T ) Let (pre, post) be a
specification of type Γ Γ′ and let T ≤ Γ self. Define (pre, post)�T
to be the specification (pre ′, post ′), of type [Γ | self :T ] Γ′, where
pre ′ is defined by (ρ, h, r) ∈ pre ′ ⇐⇒ r self ≤ T ∧ (ρ, h, r) ∈ pre
and post ′ = old(pre ′) ∩ post .

An element σ ∈ STrans([Γ | self :T ], Γ′) satisfies (pre, post)
under T , written σ ||=T (pre, post), iff9 σ |= (pre, post)�T

This differs from |= only by strengthening the precondition to restrict to
states where the receiver object is in Vals(T , ρ). So ||=T is |= in case
T = Γ self.

Definition 6 (specification refinement, wT ) Let spec0 be a specifica-
tion of type Γ Γ′ and spec1 be of type [Γ | self :T ] Γ′ where T ≤
Γ self. Then spec1 refines spec0 with respect to T , written spec1 wT

spec0, iff

σ |= spec1 ⇒ σ ||=T spec0 for all σ ∈ STrans([Γ | self :T ], Γ′)

Note that σ ranges over the smaller set of transformers and only weakly
satisfies spec0. In case T = Γ self, however, σ |= spec0 is the same as
σ ||=T spec0. We may omit the superscript on w just in this case.

Note that w is not antisymmetric: by definition of satisfaction any
(pre, old(pre)∩post) satisfies the same specifications as (pre, post).10

Lemma 7 (weak transitivity) Suppose spec0 is a specification of type
Γ Γ′, spec1 is of type [Γ | self :T ] Γ′ where T ≤ Γ self, and spec2

is of type [Γ | self :U ]  Γ′ with U ≤ T . If spec2 wU spec1 and
spec1 wT spec0 then spec2 wU spec0, provided spec1 is satisfiable.
Proof To show spec2 wU spec0, assume σ ∈ STrans([Γ | self :U ], Γ′)
and σ |= spec2 with the aim to prove σ ||=U spec0. From spec2 wU

spec1 we get σ ||=U spec1; but this does not yield σ |= spec1 which isn’t
even defined. Define τ ∈ STrans([Γ | self :T ], Γ′) by

τ(ρ, h, r) = if r self ≤ U then σ(ρ, h, r) else s

where s is an arbitrarily chosen state that satisfies spec1 for (ρ, h, r).
From σ ||=U spec1 we get τ |= spec1. Then by spec1 wT spec0 we
get that τ ||=T spec0. Now σ ||=U spec0 follows from τ ||=T spec0 by
definition of τ and ||=. �

To see that the satisfiability condition is necessary, let spec1 have
pre1 = true and let post1 say that self is U . No element of STrans([Γ |
self :T ], Γ′) satisfies spec1. Owing to unsatisfiability we have spec1 wT

spec0 for any spec0. Define spec2 to have pre2 = true = post2. Then
because wU restricts the initial state we get spec2 wU spec1. But it is
easy to choose spec0 so that spec2 6wU spec0.

5. Supertype abstraction and behavioral subtyping
This section states and proves the supertype abstraction theorem. Behav-
ioral subtyping is defined in terms of the intrinsic refinement order on
method specifications and then an alternative formulation is given. The
rest of the section is devoted to stating and proving the main theorem.

The definition of behavioral subtyping is slightly weaker than one
might expect, as needed for an equivalence with supertype abstraction.

Definition 8 (behavioral subtyping) A specification table ST has be-
havioral subtyping if and only if for all ref types U and classes C with
C ≤ U and all m ∈ Meths U we have ST (C ,m) wC ST (U ,m).

If ≥ is any preorder relation on some set, an instance a ≥ b is
equivalent to ∀c · b ≥ c ⇒ a ≥ c. Supertype abstraction for methods
is roughly a restatement of behavioral suptyping in this manner, though
taking into account the change of type.

Definition 9 (supertype abstraction for method specifications)
Specification table ST has supertype abstraction for method specifica-
tions iff the following holds for all ref types T , all m ∈ Meths T , and all

9 The notation ||=T doesn’t fully capture the contextual assumptions but it should
suffice to avoid ambiguity in our uses of it.
10 If desired, antisymmetry can be achieved without loss of generality by normal-
izing specifications.

9 2006/9/3



method specifications spec of type mtype(T ,m): If ST (T ,m) w spec
then ST (C ,m) wC spec for every class C with C ≤ T .

Lemma 10 A satisfiable specification table ST has behavioral subtyping
iff it has supertype abstraction for method specifications.

Proof For the implication left to right, suppose ST has behavioral
subtyping. Consider any pair(T ,m) and method specification spec
for (T ,m) such that ST (T ,m) w spec and any C with C ≤ T .
By behavioral subtyping we have ST (C ,m) wC ST (T ,m). Since
ST (T ,m) is satisfiable, we can apply weak transitivity (Lemma 7) to
get ST (C ,m) wC spec.

For the implication right to left, suppose ST has supertype abstrac-
tion for method specifications. Consider C ≤ U where U is any
ref type. Instantiate supertype abstraction with T : = U and spec : =
ST (U ,m). Since ST (U ,m) wT ST (U ,m), supertype abstraction
yields ST (C ,m) wC ST (U ,m). �

Supertype abstraction for commands. The idea is that a modular rea-
soning system is a sound means to prove that some command Γ ` S
satisfies some specification spec. For the proof to be modular means that
reasoning about method calls in S is based only on the specifications of
those methods. Thus our semantic formulation says that S satisfies spec
when S is interpreted by the static dispatch semantics. Of course the
static dispatch semantics of a command has many properties that are in-
consistent with its standard semantics, so reasoning on the basis of static
dispatch semantics with a particular method environment would be un-
sound. To capture that reasoning about method calls is based only on
their specifications, our formulation quantifies over all environments that
satisfy ST . Reasoning is expressed in terms of program semantics, so
this is a property of a class table together with a specification table.

Definition 11 Let ST be a specification table for class table CT . Su-
pertype abstraction is valid for ST ,CT iff for all Γ ` S and all Γ-
specifications spec, (6) implies (7), where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` S ]]µ̇ |= spec (6)

∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` S ]]µ |= spec (7)

The idea is that modular reasoning establishes (6) but it is then a
consequence that S satisfies spec in the sense of the standard semantics,
i.e., D[[Γ ` S ]]bµ |= spec where bµ is the semantics of the class table
—provided that bµ does satisfy ST (i.e., there is a proof obligation that
each method implementation satisfies its specification). In fact, owing
to modularity of reasoning about satisfaction as described by (6), the
stronger conclusion (7) can be drawn.

In light of Lemma 10, the main result says that behavioral subtyping
validates such reasoning, and indeed it is necessary.

Theorem 12 (supertype abstraction) For any satisfiable ST the fol-
lowing are equivalent.

(a) ST has supertype abstraction for method specifications.
(b) supertype abstraction is valid for ST ,CT .

We sketch the argument here and return to it after laying some ground-
work. The idea for (b)⇒ (a) is to instantiate S with suitable method call
and unfold the semantics. The idea for (a)⇒ (b) is to prove (b) by struc-
tural induction on S assuming that ST has supertype abstraction. A key
lemma to prove (b) is an analogous result for expressions, also proved by
induction. In these proofs there are three kinds of cases:

• S is a method call —then the semantics is used to reduce implication
(6) ⇒ (7) to the implication given by the supertype abstraction
property.

• S is some other primitive expression or command —then the seman-
tics is used to prove (7) directly from (6).

• S is a compound command or expression. In that case we decompose
it to some state transformers used in its semantic definition and appeal
to the induction hypothesis for these state transformers and certain
specifications obtained using weakest preconditions.

It is important that the quantifiers are arranged as they are in Def. 11,
so that the induction hypothesis is of the form “for all spec and S ,
(6) ⇒ (7)”, because for a given S of the third kind we need multiple
instantiations of spec and S .

Putting the Theorem together with lemma 10 we obtain the following.

Corollary 13 (semantic soundness and completeness) Suppose ST
has behavioral subtyping. Suppose S[[Γ ` S ]]µ̇ can be proved to satisfy
some Γ-specification spec, assuming only that µ̇ satisfies ST . Then the
actual semantics D[[Γ ` S ]]bµ satisfies spec, provided that the semantics,bµ, of the class table satisfies ST . Moreover, if such reasoning is sound
then ST has behavioral subtyping.

Proving the Theorem. The most difficult part of the proof is to prove
(7) by structural induction on S (Lemmas 16 and 17). We need to
argue in a way that can be illustrated by considering the case that S
is a sequence S0;S1. Dropping the semantic brackets etc., the idea is
that to show S0;S1 |= spec we find specifications spec0 and spec1

such that S0 |= spec0, S1 |= spec1. If S0;S1 |= spec in the static
dispatch semantics then owing to our careful choice of spec0 and spec1

we get S0 |= spec0 and S1 |= spec1 in the static dispatch semantics.
Now the induction hypothesis can be invoked to yield that these hold
in the dynamic dispatch semantics, whence the semantic equation for
sequence can be used to get S0;S1 |= spec. Suitable spec0 and spec1

can be obtained by using the weakest precondition of S1 with respect
to the given post . So the technical details involve defining the weakest
precondition for a state transformer and proving decomposition results
for sequential and conditional composition of state transformers.

The semantics for expressions and commands are based on explicitly
defined state transformers (described by the mathematical notations for
updates, dropping variables, etc.) and those given by the method envi-
ronment. These are composed sequentially and conditionally. (The defi-
nitions use the⊥-strict let construct which combines sequence with test-
ing for ⊥.)

Suppose σ is a state transformer of type Γ Γ′ and post is a subset of
State(Γ)×State(Γ′). Define the weakest precondition of σ with respect
to post , written wp σ post , to be a subset of State(Γ) as follows:

t ∈ wp σ post ⇐⇒ (t , σ t) ∈ post

Clearly σ |= ((wp σ post), post). Now we can give the decomposition
lemma for sequenced transformers.

Lemma 14 (sequential decomposition) Suppose σ is a state trans-
former of type Γ0  Γ2. Suppose moreover that σ = σ0; σ1 where
each σi has type Γi  Γi+1 and semicolon is function composition.
Suppose spec = (pre, post) and define spec0 = (pre, (wp σ1 post))
and spec1 = ((wp σ1 post), post). Then

σ |= spec iff σ0 |= spec0 and σ1 |= spec1

and moreover for any σ′
0, σ

′
1, if σ′

0 |= spec0 and σ′
1 |= spec1 then

σ′
0; σ

′
1 |= spec.

These are well known facts about weakest preconditions; the lemma
merely spells them out in a particular way because their use later is a
little intricate. Similarly for the following.

Lemma 15 (conditional decomposition) Suppose σ is a state trans-
former of type Γ Γ′ such that for all states s we have

σ s = (if s ∈ P then σ0 s else σ1 s)

where P ⊆ State(Γ) and each σi has type Γ Γ′. Suppose spec has
type Γ Γ′ and let spec = (pre, post) to define spec0 = (P∩pre, post)
and spec1 = (pre − P , post). Then

σ |= spec iff σ0 |= spec0 and σ1 |= spec1

and moreover (if s ∈ P then σ′
0 s else σ′

1 s) |= spec for any σ′
0, σ

′
1 that

satisfy spec0, spec1.

Lemma 16 (supertype abstraction for expressions) Suppose ST has
supertype abstraction and is satisfiable. Then for all Γ, E , T , spec such
that Γ ` E :T and spec is of type Γ [res :T , exc : Thrwbl] we have
that (8) implies (9) where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` E :T ]]µ̇ |= spec (8)

10 2006/9/3



∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` E :T ]]µ |= spec (9)
Proof By structural induction on E . For the case Γ ` x :T , the result
follows from a much stronger property:

S[[Γ ` x :T ]]µ̇ = D[[Γ ` x :T ]]µ for all µ and all µ̇

This holds because the two semantics are identical, there are no sub-
expressions, and the semantics is independent of the method environ-
ment. The argument is the same for null and other constants, as well as
for x .f , x = y , E is T , (T ) x , and new C ().

The remaining cases are x .m(x ), which involves the method envi-
ronment and supertype abstraction, and let x be E in E1, for which the
induction hypothesis is used.

For case Γ ` let x be E in E1 :U , assume

∀µ̇ ∈ XMethEnv · µ̇ |= ST
⇒S[[Γ ` let x be E in E1 :U ]]µ̇ |= spec

(10)

for some spec of type Γ [res :U , exc : Thrwbl]. Let µ be any normal
method environment such that µ |= ST . We must show

D[[Γ ` let x be E in E1 :U ]]µ |= spec

By assumption (10) and satisfiability of ST there is some µ̇ such that

S[[Γ ` let x be E in E1 :U ]]µ̇ |= spec (11)

Let us write out the definition of S[[Γ ` let x be E in E1 :U ]]µ̇ in a way
that makes explicit the manipulation of⊥. (The definitions in Table 3 use
the monadic let to suppress ⊥.)

S[[Γ ` let x be E in E1 :U ]]µ̇(ρ, h, r) =
let X = S[[Γ ` E :T ]]µ̇(ρ, h, r) in
if X = ⊥ then ⊥
else let (ρ0, h0, r0) = X in

if r0 exc 6= null
then (ρ0, h0, [res : default U , exc : r0 exc])
else let r1 = [r , x : r0 res] in S[[Γ ` E1 :U ]]µ̇(ρ0, h0, r1)

The dynamic-dispatch semantics is identical except for replacing the
three occurrences of S[[−]] with D[[−]] and using a normal method en-
vironment.

The point of writing out the semantics is to make clear that it is just
the alternative/sequential composition of certain state transformers:11

• S[[Γ ` E :T ]]µ̇ of type Γ [res :T , exc : Thrwbl]

• S[[[Γ, x :T ] ` E1 :U ]]µ̇ of type [Γ, x :T ] [res :U , exc : Thrwbl]

• others, such as one we will call f , that sends (ρ0, h0, r0) to
(ρ0, h0, [res : default U , exc : r0 exc : Thrwbl]).

By the decomposition lemmas there are specifications specE , specE1,
specf , . . . such that (11) holds iff each of the component transformers
satisfies its specification.

Since assumption (10) holds for all µ̇, it follows that S[[Γ ` E :T ]]µ̇ |=
specE for all µ̇ and S[[Γ ` E1 :U ]]µ̇ |= specE1 for all µ̇. (Some readers
will want to check that the arrangement of quantifiers in the Lemma does
justify this step and that plausible simplifications do not work.) As a con-
sequence, we may appeal to the induction hypothesis for Γ,E ,T , specE

and for [Γ, x :T ],E1,U , specE1. This yields that D[[Γ ` E :T ]]µ |=
specE and D[[[Γ, x :T ] ` E1 :U ]]µ |= specE1 for our arbitrarily cho-
sen µ. The other component transformers like f are same in both the
static and dynamic dispatch semantics. Having established that the com-
ponent transformers of D[[Γ ` let x be E in E1 :U ]]µ all satisfy the
component specifications, we obtain D[[Γ ` let x be E in E1 :U ]]µ |=
spec which was to be proved.

Finally, consider the case of Γ ` x .m(y) :U . Recall the static
dispatch semantics for methods:

S[[Γ ` x .m(y) :U ]]µ̇(ρ, h, r) =
if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y ] in µ̇(T ,m)(ρ, h, r1)

Suppose mtype(m,T ) = z :T→U as in the typing rule for method
call. Suppose spec has type Γ [res :U , exc : Thrwbl] and choose some

11 We refrain from spelling out the details, which are a bit intricate owing to the
way r is threaded through.

µ̇ such that S[[Γ ` x .m(y) :U ]]µ̇ |= spec. (Such µ̇ exists owing to
satisfiability of ST and the assumption (10).) By decomposition we
obtain spec′ of type z :T→U such that µ̇(T ,m) |= spec′. Moreover,
noting that if µ̇ |= ST then so does [µ̇ | (T ,m) : σ] for any σ with σ |=
ST (T ,m), it follows from assumption (10) that ST (T ,m) wT spec′.

Now suppose µ is any normal method environment that satisfies ST
and recall the dynamic dispatch semantics which differs in using the
dynamic type ρ(r x ) of the receiver, rather than its static type T , to look
up the method in the environment.

D[[Γ ` x .m(y) :U ]]µ(ρ, h, r) =
if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y ] in µ(ρ(r x ),m)(ρ, h, r1)

By supertype abstraction for methods (Def. 9), ST (T ,m) wT spec′

implies that C ≤ T ⇒ ST (C ,m) wC spec′ for all C . Since µ |= ST
we have for each C ≤ T that µ(C ,m) |= ST (C ,m) and thus
µ(C ,m) ||=C spec′. To complete the proof of D[[Γ ` x .m(y) :U ]]µ
it is not enough to use decomposition backwards; we also unfold the
definition of |= and since µ(C ,m) is used just in case ρ(r x ) ≤ C . �

The satisfiability hypothesis is necessary. Suppose that ST (C ,m)
is unsatisfiable for some C . Then (8) implies (9) because both have
false antecedents. This does not let us drop the satisfiability hypothesis
because it can happen that the only unsatisfiable part is some interface
specification ST (I ,m), falsifying the antecedent only of (8).

The following result amounts to the (a)⇒ (b) part of Theorem 12.

Lemma 17 (supertype abstraction for commands) Suppose ST has
supertype abstraction and is satisfiable. Then for all Γ, S , spec such that
Γ ` S and spec is of type Γ [Γ, exc : Thrwbl] we have that

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` S ]]µ̇ |= spec

implies

∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` S ]]µ |= spec

Proof By structural induction on S .
In the cases that S is x .f : = y and throw x , the semantics using

S[[−]] and D[[−]] are identical so the proof is immediate.
In the cases of conditional, sequence, try-catch and try-finally, the

argument is by induction following the pattern for let-expression in the
proof of Lemma 16. That is also the pattern for the remaining command
form, x : = E , except that instead of the induction hypothesis there is an
appeal to Lemma 16 for E . �

It remains to prove the (b)⇒ (a) part of Theorem 12; for this, (b) can
be specialized to the case of method calls. For lack of space the proof is
in an appendix.

Lemma 18 If ST is satisfiable then it has supertype abstraction for
method specifications provided that (12) implies (13) for all T and all
m ∈ Meths T with mtype(m,T ) = x :T→U , where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒
S[[[self :T , y :T , z :U ] ` z : = self.m(y)]]µ̇ |= spec

(12)

∀µ ∈ MethEnv · µ |= ST ⇒
D[[[self :T , y :T , z :U ] ` z : = self.m(y)]]µ |= spec

(13)

6. Object invariants
This section formalizes a semantic account of invariants in which we
can express what is achieved by invariant methodologies (Sect. 2.3) and
prove soundness of supertype abstraction with invariants.

An object invariant is a predicate that holds of a particular object
together with some others on which it depends. So an invariant suitable
for objects of type T can be taken to be a subset of State([self :T ]). In
this section we extend the notion of specification table as follows.

Definition 19 A specification table, ST , consists of method specifica-
tions ST (T ,m) exactly as in Definition 3, together with a predicate
ST (T ) ⊆ State([self :T ]), also written invT , for each ref type T .

Invariants serve as pre- and post-conditions for methods. For a
method specification of the form ST (T ,m) = (preT , postT ) where

11 2006/9/3



mtype(m,T ) = x :T→U , we will be concerned with specifications of
the form

(preT
m ∩ invT , postTm ∩ invT

m ) (14)

Taken literally this is nonsense —the intersections are empty— be-
cause invT is a subset of State([self :T ]) whereas preT is a subset of
State([self :T , x :T ]) and postT is a subset of State([self :T , x :T ])×
State([res :U , exc : Thrwbl]). But there is a natural way to make sense
of the intersections. For the precondition, we can define cinv

T
⊆

State([self :T , x :T ]) by (ρ, h, r) ∈ cinv
T

iff (ρ, h, r − x ) ∈ invT .
(Here r−x means to remove it from the domain of r .) Now the intersec-
tion of cinv

T
with preT makes sense. For the postcondition we interpret

postT ∩ finv
T

to mean the set of (s, (ρ, h, r)) such that (s, (ρ, h, r)) is
in postT and (ρ, h, r − x ) is in invT .

What is achieved by invariant methodologies is to arrange that in fact
invT holds before any method call, so that the reasoning is sound. In this
section our formalization adapts Def. 4 as follows.

Definition 20 (satisfaction by method environment, |=inv ) Let ST be
a specification table. An extended method environment µ̇ satisfies ST ,
written µ̇ |=inv ST , iff for all ref types T and m ∈ Meths T we have

µ̇(T ,m) |= (preT ∩ cinv
T

, postT ∩ finv
T

)

where (preT , postT ) = ST (T ,m) and invT = ST (T ).
A normal method environment µ satisfies ST , written µ |=inv ST iff

for all classes C and m ∈ Meths C we have

µ(C ,m) |= (preC ∩ cinv
C

, postC ∩ finv
C

)

Our formalization in the preceding section treated a specification
ST (T ,m) both as the proof obligation for an implementation and as
an assumption to be made for an invocation. Now we are considering the
situation where the proof obligation is (14).

What is achieved by a sound methodology has a simple semantic
formulation: reasoning about a command S is carried out using the static-
dispatch semantics as before but now the proof obligation for method
implementations is in terms of µ |=inv ST from Def. 20. That is, we adapt
Def. 11 as follows.

Definition 21 Let ST be a specification table for class table CT . su-
pertype abstraction is valid for ST ,CT iff for all Γ ` S and all Γ-
specifications spec, (15) implies (16), where

∀µ̇ ∈ XMethEnv · µ̇ |=inv ST ⇒ S[[Γ ` S ]]µ̇ |= spec (15)

∀µ ∈ MethEnv · µ |=inv ST ⇒ D[[Γ ` S ]]µ |= spec (16)

The point is that (15) will be false unless invT holds as a precondition of
every invocation on an object of dynamic type T . Of course it is not an
explicit precondition, since invT is a conjunction of several invariants
which may be implicit in the methodology and/or not visible at the call
site. The soundness result for a methodology must nonetheless ensure
that the effective invariant, which we refer to as invT , does hold before
every call.

The authors were surprised to find how little impact the addition of
invariants has on the theory of supertype abstraction and behavioral sub-
typing.12 Definition 9 of supertype abstraction does not need to change.
Recall that ST has supertype abstraction for method specifications just if
for all ref types T , all m ∈ Meths T , and all method specifications spec
of type mtype(T ,m): if ST (T ,m) wT spec then ST (C ,m) wC spec
for every class C with C ≤ T .

Definition 22 (behavioral subtyping, with invariants) A specification
table ST has behavioral subtyping if and only if for all ref types U and
classes C with C ≤ U and all m ∈ Meths U we have ST (C ,m) wC

ST (U ,m) and moreover ST (C ) ⊆ ST (U ).

The revised version of Lemma 10 is no longer an equivalence.

12 We suspect that the history constraints may similarly have little impact.

Lemma 23 (behavioral subtyping, with invariants) Any satisfiable spec-
ification table with behavioral subtyping has supertype abstraction for
method specifications.

This is an immediate consequence of Lemma 10: the relevant definitions
have not changed except for the added invariant condition in Def. 22.
Unlike in Lemma 10, the converse does not hold. Supertype abstraction
as we have defined it is only concerned with reasoning about method
calls. Behavioral subtyping also imposes a condition on invariants. It
would be straightforward to add “invariant reasoning” to the notion of
supertype abstraction and thereby get an equivalence like Lemma 10, but
it would shed no light. Thus the analog of Corollary 13, which we refrain
from stating, is only an implication.

Theorem 24 (supertype abstraction with invariants) For any satisfi-
able ST the following are equivalent.

(a) ST has supertype abstraction for method specifications.
(b) Supertype abstraction is valid for ST ,CT .

Remarkably, the proof looks just the same as the proof of Theorem 12.
The reason is that the proof involves conditions dependent on µ |= ST
and µ̇ |= ST and various arguments about refinement and specifications.
But it does not involve the definition of µ |= ST or µ̇ |= ST per se. The
argument goes through using |=inv instead of |=.

What has changed is the interpretation of the result. Hypothesis (15)
describes modular reasoning that S satisfies spec under the assumption
that methods satisfy their specifications, in the revised sense of satis-
faction that adjoins the invariant. In practice, this means the reasoning
system has restricted the invariants and restricted S in such a way that
an object’s invariant indeed holds as a precondition for every invoca-
tion. The conclusion (16) says that indeed S is correct in the context of
the real program semantics, provided that the implementations do satisfy
their specifications with invariant adjoined.

Although supertype abstraction is based on |=inv, behavioral subtyping
(Def 22) is still defined using the relation w applied to the pre/post
specifications in the specification table.

7. Checking and ensuring behavioral subtyping
In light of the importance of behavioral subtyping, it is obviously useful
to check whether given specifications satisfy the refinement condition. A
characterization of w is needed since the definition of quantifies over all
state transformers. This is the first topic of this section. The second topic
is an alternative to checking: to impose behavioral subtyping by fiat.

Characterizing refinement. The most common formulation of behav-
ioral subtyping uses the implications (2) and (3) that correspond to the
rule of consequence in Hoare logic which derives a weaker specification
from a stronger one. Even in Hoare logic for simple procedures these are
incomplete. Hoare proposed an “adaptation rule” which is not complete
and some subsequent proposals were found to have subtle unsoundness
in connection with auxiliary variables in specifications (corrected in [4]).
By now, sound and complete rules are known and the connection with
specification refinement has been made clear [13, 33, 41, 43].

To characterize when (pre ′, post ′) w (pre, post) holds, it is not
difficult to show necessity of pre ⊆ pre ′; it is the postconditions that are
tricky. In our setting, one characterization is old(pre) ∩ post ′ ⊆ post ,
cf. (4). There is an equivalent condition [14] that is similar to the join of
specifications investigated later.

pre ⊆ pre ′ ∧ (¬old(pre ′) ∪ post ′) ⊆ (¬old(pre) ∪ post)

where we write ¬p for the complement of p with respect to the set of
all states of its type. Taking the type of self into account we have the
following (the proof can be adapted from arguments in [13]).

Lemma 25 (characterization of refinement) Let (pre, post) be a spec-
ification of type Γ Γ′ and (pre ′, post ′) be of type [Γ | self :T ] Γ′

where T ≤ Γ self. Then (pre ′, post ′) wT (pre, post) if and only if

pre ∩ p ⊆ pre ′ ∧ old(pre) ∩ post ′ ⊆ post

where p = State([Γ | self :T ]).

12 2006/9/3



Completeness of such a condition depends on the program seman-
tics, since the definition of wT quantifies over all program meanings.
Moreover the presence of general auxiliary variables scoped over speci-
fications can require a more complicated condition [33, 41, 43]. For the
results in this paper, we found that using general auxiliary variables led
to quite complicated semantic definitions so for perspicuity we chose the
simpler form of specification with two-state postconditions. By disen-
tangling the characterization of refinement from the use of refinement to
define and reason about behavioral subtyping, we make it straightforward
to adapt our results to other forms of specification.

Specification inheritance. Specification inheritance was pioneered by
Wills [50, 51] and is found in JML where it is made explicit by the also
keyword. It is defined in terms of the join of specifications. Regardless
of whether the class table is finite, there are only finitely many U that
are supertypes of a given T so binary join suffices. The key property of
specification inheritance is that it forces behavioral subtyping [14], as we
show below.

Definition 26 (join of specifications) Let (pre, post) and (pre ′, post ′)
be specifications of type Γ Γ′. Define (pre, post) t (pre ′, post ′) to
be (p, q) of the same type, where

p = pre ∪ pre ′

q = (¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′)

Lemma 27 (least upper bound) Consider specifications of some type
Γ  Γ′. The specification (pre, post) t (pre ′, post ′) is a least upper
bound of (pre, post) and (pre ′, post ′) among specifications of type
Γ Γ′.

The proof is in Appendix C.
Join only involves specifications at a single type, but for specification

inheritance we need to consider its effect in terms of different types. To
that end we need the following result which has a tedious but elementary
proof in which the definitions are unfolded all the way to satisfaction.

Lemma 28 (monotonicity) Suppose spec0 and spec1 are specifications
of some type Γ Γ′ and suppose T ≤ Γ self. Suppose spec′0 and spec′1
are specifications of type [Γ | self :T ] and moreover spec′i wT speci for
i = 0 and i = 1. Then (spec′0 t spec′1) wT (spec0 t spec1).

Definition 29 (inheriting specifications) Let ST be a specification ta-
ble as in Def. 19. Define specification table cST as follows.

For each T let cST (T ) be the intersection of ST (U ) over all U with
T ≤ U .

For each T and m in Meths T , let cST (T ,m) be the join of over all
U with T ≤ U of ST (U ,m)�T .

Recall from Def. 5 that (pre, post)�T denotes the restriction of the
specification to states where self is ≤ T .

Theorem 30 If cST is the extension of ST by specification inheritance
then cST has behavioral subtyping.

Proof If T ≤ V then cST (T ) ⊆ cST (V ) because if V ≤ U then
T ≤ U so cST (T ) is an intersection of more sets.

For methods, suppose T ≤ V . Let X be the set of U such that U ≥
V and observe that X is a subset, possibly a proper subset, of the set of
U with U ≥ T . Now cST (V ,m) is the join of all ST (U ,m)�V with
U ∈ X . Let JT be the join of ST (U ,m)�T with U ∈ X . By the least
upper bound property (Lemma 27), cST (T ,m) w JT since cST (T ,m)
joins over a set containing X . By definitions we have for every U ≥ V
that ST (U ,m)�T wT ST (U ,m)�V , so by Lemma 28 we have that
JT wT cST (V ,m). Provided that JT is satisfiable, this can be put
together with cST (T ,m) w JT to get cST (T ,m) wT cST (V ,m) (by
Lemma 7). If JT is unsatisfiable, then since cST (T ,m) is unsatisfiable
and cST (T ,m) wT cST (V ,m) is immediate by definition of wT . �

8. Conclusions
We have formalized behavioral subtyping in terms of the intrinsic refine-
ment ordering on specifications, where spec w spec′ means that any

program satisfying spec also satisfies spec′. For T to be a behavioral
subtype of U involves conditions like specT

m w specU
m , where specU

m

is the specification for method m in class U . We have also formalized
supertype abstraction: static reasoning about a program fragment using
only specifications of methods it calls. The main result, Corollary 13,
says that behavioral subtyping not only validates supertype abstraction
but is equivalent to it, which we view as semantic completeness (see
Thms. 12 and 24).

The semantic model has been encoded in the PVS theorem prover
and type soundness proved, building on previous work [35]. Machine
checking of the results of this paper is planned in the near future.

It is impractical to checkw directly since its definition quantifies over
all implementations. The contravariant/covariant relations (2) and (3) are
a sound approximation but not complete. A corollary of Lemma 25 is
that behavioral subtyping is equivalent to a simple logical condition re-
lating pre- and post-conditions in the relevant specifications. However,
to apply the condition to check, say specT

m w specU
m , requires reasoning

about the entire specification whereas in practice the specification should
be defined in terms of state in supertypes that is often not visible in the
subtype, and vice versa. This is especially true for postconditions that
express modifies specifications. This is one motivation for constructing
the “effective specifications” by specification inheritance from arbitrary
invariants and method specifications explicitly declared by the program-
mer. Theorem 30 confirms that the result has behavioral subtyping.

On the other hand, joining specifications in this way can lead to unim-
plementable specifications. It can be argued that, at least in situations
where both super- and sub-type specifications are visible, failure of re-
finement should be detected as a design error [15] rather than masked
by specification inheritance. Further investigation would be worthwhile
to reconcile the issues pertaining to information hiding and reuse with
the need to detect design flaws, leading to better tools and specification
notations.

Another direction for future work is to extend our treatment of be-
havioral subtyping to other kinds of specifications and programming
languages, especially concurrency and temporal logic. Such an exten-
sion would involve answering questions such as: what is the right notion
of specification inheritance for temporal logic? Another direction would
be to extend our treatment to explicitly deal with frame axioms (modi-
fies) clauses and other features of rich specifications (such as universally
quantified auxiliaries).

An active area of research is to find easily used disciplines for mak-
ing local definitions of relevant pieces of specifications —especially
invariants— which can given an interpretation that validates modular
reasoning. Our results serve to specify the semantic properties to be
achieved by any sound discipline. Tools may be unsound or incomplete
by design. Our results will help ensure that it is not for lack of theory or
understanding.

Acknowledgments
Thanks to Paulo Borba and Augusto Sampaio for hosting us in Recife
during our initial work on this paper and for stimulating discussions.
Thanks to Shengchao Qin, Joseph Kiniry, Andreas Podelski, and Erik
Poll for comments on earlier drafts.

References
[1] S. Alagic and S. Kouznetsova. Behavioral compatibility of self-typed

theories. In B. Magnusson, editor, ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, Máalaga, Spain, Proceedings,
volume 2374 of LNCS, pages 585–608, Berlin, June 2002. Springer-Verlag.

[2] P. America. Inheritance and subtyping in a parallel object-oriented language.
In J. Bezivin et al., editors, ECOOP ’87, European Conference on Object-
Oriented Programming, Paris, France, pages 234–242, New York, June
1987. Springer-Verlag. Lecture Notes in Computer Science, Volume 276.

[3] P. America. Designing an object-oriented programming language with
behavioural subtyping. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX
School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990,
volume 489 of LNCS, pages 60–90. Springer-Verlag, New York, 1991.

13 2006/9/3



[4] P. America and F. de Boer. Proving total correctness of recursive procedures.
Information and Computation, 84(2):129–164, 1990.

[5] A. Banerjee and D. A. Naumann. Representation independence, confine-
ment and access control. In ACM Symposium on Principles of Programming
Languages (POPL), pages 166–177, 2002.

[6] A. Banerjee and D. A. Naumann. Ownership confinement ensures
representation independence for object-oriented programs. Journal of
the ACM, 52(6):894–960, Nov. 2005. Extended version of [5].

[7] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.
Verification of object-oriented programs with invariants. Journal of Object
Technology, 3(6):27–56, 2004. Special issue: ECOOP 2003 workshop on
Formal Techniques for Java-like Programs.

[8] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, International Workshop (CASSIS 2004),
Revised Selected Papers, volume 3362 of LNCS, pages 49–69, 2005.

[9] B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines and higher-
order separation logic. In European Symposium on Programming (ESOP),
volume 3444 of LNCS, pages 233–247, 2005.

[10] G. Bierman and M. Parkinson. Separation logic and abstraction. In ACM
Symposium on Principles of Programming Languages (POPL), pages 247–
258, 2005.

[11] K. B. Bruce and P. Wegner. An algebraic model of subtypes in object-
oriented languages (draft). ACM SIGPLAN Notices, 21(10), Oct. 1986.

[12] L. Cardelli. A semantics of multiple inheritance. Information and
Computation, 76(2/3):138–164, February/March 1988.

[13] Y. Chen and B. H. C. Cheng. A semantic foundation for specification
matching. In G. T. Leavens and M. Sitaraman, editors, Foundations of
Component-Based Systems, pages 91–109. Cambridge University Press,
New York, NY, 2000.

[14] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258–267.
IEEE Computer Society Press, Mar. 1996.

[15] R. B. Findler and M. Felleisen. Contract soundness for object-oriented
languages. In OOPSLA ’01 Conference Proceedings, Object-Oriented
Programming, Systems, Languages, and Applications, October 14-18, 2001,
Tampa Bay, Florida, USA, pages 1–15, Oct. 2001.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In ACM Conf. on Program.
Lang. Design and Implementation (PLDI), pages 234–245, 2002.

[17] C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf.,
1:271–281, 1972.

[18] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM Trans. Prog. Lang. Syst., 23(3):396–459,
May 2001.

[19] G. T. Leavens. Verifying object-oriented programs that use subtypes.
Technical Report 439, Massachusetts Institute of Technology, Laboratory
for Computer Science, Feb. 1989. The author’s Ph.D. thesis.

[20] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report
98-06-rev29, Iowa State University, Department of Computer Science, Jan.
2006. To appear in ACM SIGSOFT Software Engineering Notes.

[21] G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and a
sketch of their extension to component-based systems. In G. T. Leavens
and M. Sitaraman, editors, Foundations of Component-Based Systems,
chapter 6, pages 113–135. Cambridge University Press, 2000.

[22] G. T. Leavens and W. E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Informatica,
32(8):705–778, Nov. 1995.

[23] K. R. M. Leino. Efficient weakest preconditions. Inf. Process. Lett.,
93(6):281–288, 2005.

[24] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In
European Conference on Object-Oriented Programming, pages 491–516,
2004.

[25] K. R. M. Leino and P. Müller. A verification methodology for model
fields. In European Symposium on Programming (ESOP), Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[26] K. R. M. Leino and G. Nelson. Data abstraction and information hiding.
Technical Report see SRC160, 2000.

[27] B. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,
23(5):17–34, May 1988. Revised version of the keynote address given at
OOPSLA ’87.

[28] B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

[29] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Trans. Prog. Lang. Syst., 16(6), 1994.

[30] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York,
second edition, 1997.

[31] P. Müller. Modular Specification and Verification of Object-Oriented
Programs, volume 2262 of LNCS. Springer-Verlag, 2002.

[32] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for
layered object structures. Technical Report 424, ETH Zurich, Mar. 2005.

[33] D. A. Naumann. Calculating sharp adaptation rules. Inf. Process. Lett.,
77:201–208, 2001.

[34] D. A. Naumann. Assertion-based encapsulation, object invariants and
simulations. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, Post-proceedings, Formal Methods for Components and
Objects (FMCO 2004), volume 3657 of LNCS, pages 251–273, 2005.

[35] D. A. Naumann. Verifying a secure information flow analyzer. In J. Hurd
and T. Melham, editors, 18th International Conference on Theorem Proving
in Higher Order Logics TPHOLS, volume 3603 of LNCS, pages 211–226,
2005.

[36] D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning
about invariants and sharing of mutable state (extended abstract). In IEEE
Symp. on Logic in Computer Science (LICS), pages 313–323, 2004.

[37] D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning
about invariants and sharing of mutable state. Theoretical Comput. Sci.,
2006. Extended version of [36], to appear.

[38] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
ECOOP ’98 – Object-Oriented Programming, 12th European Conference,
Brussels, Belgium, volume 1445 of LNCS, pages 158–185. Springer-Verlag,
July 1998.

[39] P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding.
In ACM Symposium on Principles of Programming Languages (POPL),
pages 268–280, 2004.

[40] D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In L.-H. Eriksson and P. A.
Lindsay, editors, Formal Methods – Getting IT Right (FME’02), volume
2391 of LNCS, pages 89–105. Springer, 2002. http://isabelle.in.
tum.de/Bali/papers/NanoJava.html.

[41] E.-R. Olderog. On the notion of expressiveness and the rule of adaptation.
Theoretical Comput. Sci., 24:337–347, 1983.

[42] M. J. Parkinson. Local reasoning for Java. Technical Report 654, University
of Cambridge Computer Laboratory, Nov. 2005. Dissertation.

[43] C. Pierik. Validation techniques for object-oriented proof outlines.
Dissertation, Universiteit Utrecht, 2006.

[44] C. Pierik and F. de Boer. On behavioral subtyping and completeness. In
ECOOP Workshop on Formal Techniques for Java-like Programs. 2005. To
appear.

[45] C. Pierik and F. S. de Boer. A proof outline logic for object-oriented
programming. Theoretical Comput. Sci., 2005. to appear.

[46] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential
Java. In S. D. Swierstra, editor, Programming Languages and Systems
(ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages
162–176. Springer-Verlag, 1999.

[47] E. Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor,
Coalgebraic Methods in Computer Science (CMCS), number 33 in
Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam,
2000.

[48] B. Reus. Modular semantics and logics of classes. In M. Baaz and J. A.
Makowsky, editors, Computer Science Logic (CSL), volume 2803 of LNCS,
pages 456–469, 2003.

[49] A. Sabry and M. Felleisen. Reasoning about programs in continuation
passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

14 2006/9/3

http://isabelle.in.tum.de/Bali/papers/NanoJava.html
http://isabelle.in.tum.de/Bali/papers/NanoJava.html


[50] A. Wills. Specification in Fresco. In S. Stepney, R. Barden, and D. Cooper,
editors, Object Orientation in Z, Workshops in Computing, chapter 11,
pages 127–135. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[51] J. M. Wing. A two-tiered approach to specifying programs. Technical
Report TR-299, MIT Lab for Computer Science, 1983.

A. Syntax
A class table CT is well formed provided it satisfies the following.

1. The subtype ordering ≤ is acyclic and T ≤ Object for all T .

2. Any ref type that appears as a field type, superclass, local variable
type, cast etc. is declared in CT .

3. Field names are not shadowed, that is, if vis f :T is in fields T and
super T = U then f is not in dfields U . (Note that the effect of the
definition of fields is that fields are inherited.)

4. Method types —including parameter names— are invariant, that
is, if mtype(U ,m) is defined and T ≤ U then mtype(T ,m) =
mtype(U ,m).

5. For any C , every method declaration m(x :T ) :T {S} in CT (C )
is typable in the sense that Γ ` S where Γ = [self :C , res :T , x :T ].
Rules that define Γ ` S appear just below.

6. For any C , any I ∈ superinterfaces C , and any method signature
m(x :T ) :T declared or inherited in I , there is a declared or inher-
ited method in C with the same signature.

7. Variable exc does not occur anywhere. (It must be available for use
in the semantics, and postconditions can refer to it.)

Typing rules for expressions

Γ ` 0 : int Γ ` x : Γx Γ ` new C ()

T ∈ RefType

Γ ` null :T
Γ ` x :T1 Γ ` y :T2

Γ ` x = y : bool

Γ ` x :U (vis f :T ) ∈ dfields V
U ≤ V (vis = private ⇒ Γ self = V )

(vis = protected ⇒ Γ self ≤ V )

Γ ` x .f :T

Γ ` x :T U ≤ T T ∈ RefType

Γ ` (U ) x :U

Γ ` x :T U ≤ T T ∈ RefType

Γ ` x is U : bool

Γ ` x :T T ∈ RefType
mtype(T ,m) = z :T→U Γ ` y :V V ≤ U

Γ ` x .m(y) :U

Γ ` E :T [Γ, x :T ] ` E1 :U

Γ ` let x be E in E1 :U

Typing rules for commands

Γ ` E :T T ≤ Γ x x 6= self

Γ ` x := E

Γ ` x :U (vis f :T ) ∈ dfields V U ≤ V
Γ ` y :T1 T1 ≤ T (vis = private ⇒ Γ self = V )

(vis = protected ⇒ Γ self ≤ V )

Γ ` x .f := y

Γ ` x : bool Γ ` S1 Γ ` S2

Γ ` if x then S1 else S2

[Γ, x :T ] ` S

Γ ` var x :T in S

Γ ` S1 Γ ` S2

Γ ` S1; S2

Γ ` x :T T ≤ Thrwbl

Γ ` throw x

Γ ` S1 [Γ, x :T ] ` S2 T ≤ Thrwbl

Γ ` try S1 catch(x :T ) S2

Γ ` S1 Γ ` S2

Γ ` try S1 finally S2

B. Semantics of commands and expressions
The semantics of commands and expressions are defined in figures 3
and 4. The semantics of expressions is defined by recursion on the struc-
ture of E . In case E has subexpressions, the definition uses nomenclature
from the corresponding typing rule.

To streamline the semantics of expressions, we define a helping
function to create exceptional result states. Given ref context ρ, heap
h ∈ Heap(ρ), classname C ≤ Thrwbl, and any type T we define
except(ρ, h,T ,C ) to be an element of State([res :T , exc : Thrwbl]) as
follows.

except(ρ, h,T ,C ) = let o = fresh(ρ, h) in
let ρo = [ρ, o :C ] in
let ho = [h, o : defaultObrecord C ] in
(ρ0, h0, [res : default T , exc : o])

This is similar to the semantics of new C (), but the new object is
assigned to exc rather than to res.

A similar helping function is used in the semantics of commands.
Given (ρ, h, r) in State(Γ) and classname C ≤ Thrwbl we define
except(ρ, h, r ,C ) to be an element of State([Γ, exc : Thrwbl]) as fol-
lows.

except(ρ, h, r ,C ) = let o = fresh(ρ, h) in
let ρo = [ρ, o :C ] in
let ho = [h, o : defaultObrecord C ] in
(ρ0, h0, [r , exc : o])

For any derivable typing Γ ` E :T , any method environment µ, and
any state (ρ, h, r) ∈ State(Γ), the definition of [[Γ ` E :T ]]µ(ρ, h, r)
yields either ⊥ or an element of State([res :T , exc : Thrwbl]). That is,
[[Γ ` E :T ]] is an element of SemExpr(Γ,T ).

For cast and type test, the typing rule ensures that type T (and hence
type U ) is a class or interface; this justifies application of ρ in the
semantics.

For method call, the receiver object is r x so ρ(r x ) is the dynamic
type of the object; thus to look up in method environment µ the meaning
of the dynamically dispatched method we write µ(ρ(r x ))m . Since the
argument expressions y are variables we can write r y for their values.

The semantics of commands is also defined by recursion on struc-
ture and using nomenclature from the typing rules. For any deriv-
able typing Γ ` S , the definition of [[Γ ` S ]] yields an element of
SemCommand(Γ). For semantics of local variables we use another
bit of notation: To remove an element from the domain of a function we
use the minus sign, e.g., if r is a store then r − exc is the same store but
with exc removed from its domain.

15 2006/9/3



Semantics of class table. The semantics of a complete program is a
method environment defined as a limit. The first step is to give a meaning
for a method declaration mdec of the form meth m(x :T ) :T { S } in
some class C . We define [[mdec]] to be a function in

MethEnv → STrans([self :C , x :T ], [res :T , exc : Thrwbl])

as follows, using Γ = [self :C , res :T , x :T ] so that Γ ` S (owing to
condition 5 in the definition of well formed class table). For any method
environment µ and state (ρ, h, r) in State([self :C , x :T ]), define

[[mdec]]µ(ρ, h, r) = let r0 = [r , res : default T ] in
let (ρ1, h1, r1) = [[Γ ` S ]]µ(ρ, h, r0) in
(ρ1, h1, r1 − (self, x ))

where default is a fixed default value. The next step is to define an
ascending chain µ ∈ N → MethEnv of method environments as
follows.
µ0(C ,m) = λs · ⊥, for any m declared or inherited in C .
µj+1(C ,m) = [[mdec]]µj , if m is declared as mdec in C .
µj+1(C ,m) = restr((µj+1(B ,m)),C ), if m inherited in C from B .

Here restr restricts the function µj+1(B ,m), which is defined on stores
with self :B , to stores with self :C . This works because C ≤ B implies
[[C ]] ⊆ [[B ]] which in turn induces an inclusion for stores.

We take pains to make such conversions explicit throughout the paper.
It is necessary for machine-checking the results. More importantly a key
aspect of behavioral subtyping is the need for a method declared in some
class C to satisfy a specification in which self has some different type
T ≥ C .

Method environments are ordered by µ ≤ µ′ iff µ(C ,m) ≤
µ′(C ,m) for all C ,m . This refers to the usual ordering on state trans-
formers: For σ and τ in STrans(Γ, Γ′), define σ ≤ τ iff for all s in
State(Γ) we have either σ s = τ s or σ s = ⊥. The everywhere-⊥
function is the least element in the set of state transformers of a given
type, and this induces a least method environment. These sets are closed
under limits of ascending chains. For lack of space we refrain from prov-
ing that for any Γ ` S , the semantics [[Γ ` S ]] is a monotonic function
from method environments to state transformers. Similarly, the seman-
tics of a method declaration is monotonic in the method environment.
It follows that i ≤ j ⇒ µi ≤ µj for the approximation chain. The
semantics bµ is defined to be the least upper bound of the approximation
chain.13

Remark on closed world. The semantics is given for a class table which
is a closed collection of class declarations. Although it is compositional
at the level of commands, the semantics is not compositional at the level
of classes: the semantics of a class table is not defined by composing a
separate semantics for each class. Such a semantics, for a language with
mutually recursive methods and mutually recursive class declarations,
would be far more complex [48] and less operationally transparent. But
one may wonder whether our semantics is suitable for formulating results
concerning modular reasoning. In fact we lose little or nothing, since our
results quantify over arbitrary class tables. Indeed, there may be infinitely
many classes and infinitely many methods in a class. So in some sense
there is a universal class table containing all programs.

C. Additional proofs
Proof of Lemma 18. Proof For any T ,m and any spec of type
mtype(m,T ) we need to show that ST (T ,m) wT spec implies
ST (C ,m) wC spec for all C ≤ T . This follows by weak transitiv-
ity from ST (C ,m) wC ST (T ,m) which we will prove.

The command z : = self.m(y) is chosen because we can unfold
the semantics of z : = . . . as in the proof of Lemma 16, so that this
command satisfies spec just if self.m(y) satisfies an associated ex-
pression specification of type mtype(m,T ). We refrain from giving
the transformation on specifications and simply observe that for any
σ that satisfies ST (T ,m) there is µ̇ with µ̇(T ,m) = σ and µ̇ |=
ST . Moreover it is only µ̇(T ,m) that has any bearing on whether

13 A similar semantics is used in [6]; a characterization of least upper bounds and
machine-checked proofs of the monotonicity properties etc. appears in [35].

S[[[self :T , y :T , z :U ] ` z : = self.m(y)]]µ̇ satisfies spec. So if we in-
stantiate the antecedent (12) by spec : = ST (T ,m) it amounts to ∀σ ·
σ |= ST (T ,m) ⇒ σ |= ST (T ,m) which is true. Thus we obtain
the consequent (13) with spec : = ST (T ,m), which boils down, for any
C ≤ T , to ∀σ ∈ SemMeth(C ,m) · σ |= ST (C ,m) ⇒ σ ||=C

ST (T ,m) whence ST (C ,m) wC ST (T ,m).
�

Proof of Lemma 27. Proof To show that it is an upper bound, in-
stantiate Lemma 25 with pre ′ : = pre∪pre ′ and post ′ : = (¬old(pre)∪
post)∩(¬old(pre ′)∪post ′). Thus the upper bound property (¬old(pre)∪
post) ∩ (¬old(pre ′) ∪ post ′) w (pre, post) follows from pre ⊆
pre ∪ pre ′ —which is immediate— and

old(pre) ∩ (¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′) ⊆ post

which also reduces to true.
To show that t gives the least upper bound, suppose (pre, post) w

(pre0, post0) and (pre, post) w (pre1, post1). Now (pre, post) w
(pre0, post0) t (pre1, post1) iff σ |= (pre, post) implies σ |= (pre0 ∪
post0, ((¬old(pre0) ∪ post0) ∩ (¬old(pre1) ∪ post1)) for all σ. To
prove the consequent for arbitrary σ, consider any state t and suppose
t ∈ pre0 ∪ pre1. We must show that (t , σ t) is in (¬old(pre) ∪ post)
(and a symmetric condition). In the case t ∈ pre0 we have (t , σ t) ∈
(¬old(pre0)∪post0) immediately. For the case t ∈ pre1, note that from
(pre, post) w (pre1, post1) we have pre ⊇ pre1. So we can use the
antecedent σ |= (pre, post) to yield (t , σ t) ∈ post , which concludes
the proof that (t , σ t) is in (¬old(pre) ∪ post). �

16 2006/9/3



[[Γ ` x :T ]]µ(ρ, h, r) = (ρ, h, [res : r x , exc :null ]

[[Γ ` true : bool]]µ(ρ, h, r) = (ρ, h, [res : true, exc :null ])

[[Γ ` 0 : int]]µ(ρ, h, r) = (ρ, h, [res : 0, exc :null ])

[[Γ ` null :T ]]µ(ρ, h, r) = (ρ, h, [res :null , exc :null ])

[[Γ ` x = y : bool]]µ(ρ, h, r) = let v = (if (r x = r y) then true else false) in (ρ, h, [res : v , exc :null ])

[[Γ ` new C () :C ]]µ(ρ, h, r) =

let o = fresh(ρ, h) in let ρo = [ρ, o :C ] in let ho = [h, o : defaultObrecord C ] in (ρ0, h0, [res : o, exc :null ])

[[Γ ` x .f :T ]]µ(ρ, h, r) = if r x 6= null then (ρ, h, [res : h(r x ).f , exc :null ]) else except(ρ, h,T , NullDeref)

[[Γ ` (U ) x :U ]]µ(ρ, h, r) = if r x = null ∨ ρ(r x ) ≤ U then (ρ, h, [res : r x , exc :null ]) else except(ρ, h,U , ClassCast)

[[Γ ` x is U : bool]]µ(ρ, h, r) = let v = if r x 6= null ∧ ρ(r x ) ≤ U then true else false in (ρ, h, [res : v , exc :null ])

[[Γ ` let x be E in E1 :U ]]µ(ρ, h, r) =

let (ρ0, h0, r0) = [[Γ ` E :T ]]µ(ρ, h, r) in

if r0 exc 6= null then (ρ0, h0, [res : default U , exc : r0 exc])else let r1 = [r , x : r0 res] in [[Γ ` E1 :U ]]µ(ρ0, h0, r1)

[[Γ ` x .m(y) :U ]]µ(ρ, h, r) =

if r x = null then except(ρ, h,U , NullDeref)

else let z :T→U = mtype(m,T ) in let r1 = [self : r x , z : r y ] in µ(ρ(r x ))m(ρ, h, r1)

Figure 3. Semantics of expressions.

[[Γ ` x := E ]]µ(ρ, h, r) =

let (ρ1, h1, r1) = [[Γ ` E :T ]]µ(ρ, h, r) in if r1 exc = null then (ρ1, h1, [r | x : r1 res, exc :null ]) else (ρ1, h1, [r , exc : r1 exc])

[[Γ ` x .f := y ]]µ(ρ, h, r) = if r x 6= null then (ρ, [h | r x .f : r y ], r) else except(ρ, h, r , NullDeref)

[[Γ ` if x then S1 else S2]]µ(ρ, h, r) = if r x = true then [[Γ ` S1]]µ(ρ, h, r) else [[Γ ` S2]]µ(ρ, h, r)

[[Γ ` var x :T in S ]] = let (ρ1, h1, r1) = [[Γ, x :T ` S ]]µ(ρ, h, [r , x : default T ]) in (ρ1, h1, r1 − x )

[[Γ ` S1; S2]]µ(ρ, h, r) = let (ρ1, h1, r1) = [[Γ ` S1]]µ(ρ, h, r) in if r1 exc = null then [[Γ ` S2]]µ(ρ1, h1, r1 − exc) else (ρ1, h1, r1)

[[Γ ` throw x ]]µ(ρ, h, r) = if r x 6= null then (ρ, h, [r , exc : r x ]) else except(ρ, h, r , NullDeref)

[[Γ ` try S1 catch(x :T ) S2]]µ(ρ, h, r) =

let (ρ1, h1, r1) = [[Γ ` S1]]µ(ρ, h, r) in

if r1 exc = null ∨ ρ(r1 exc) � T then (ρ1, h1, r1)

else let r3 = [r1 | x : r1 res]− exc in

let (ρ2, h2, r2) = [[Γ, x :T ` S2]]µ(ρ1, h1, r3) in (ρ2, h2, r2 − x )

[[Γ ` try S1 finally S2]]µ(ρ, h, r) =

let (ρ1, h1, r1) = [[Γ ` S1]]µ(ρ, h, r) in

let (ρ2, h2, r2) = [[Γ, x :T ` S2]]µ(ρ1, h1, r1 − exc) in

if r2 exc = null then (ρ2, h2, [r2, exc : r1 exc]) else (ρ2, h2, r2)

Figure 4. Semantics of commands.

17 2006/9/3


	Introduction
	Synopsis
	Supertype abstraction
	Behavioral subtyping
	Invariants and behavioral subtyping
	Enforcing behavioral subtyping by specification inheritance
	Related work

	Language
	Semantic domains
	Semantics of expressions, commands, and class table

	Specifications and refinement
	Supertype abstraction and behavioral subtyping
	Object invariants
	Checking and ensuring behavioral subtyping
	Conclusions
	Syntax
	Semantics of commands and expressions
	Additional proofs

