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Abstract. Object-oriented frameworks are an important technique for
capturing design expertise. However, the learning curve for a framework
is usually quite steep and can be the biggest obstacle in its adoption.
We propose an executable and yet readable method for framework doc-
umentation using the Java Modelling Language (JML), based on the
specification of the interaction between a framework’s template methods
and its customizable hooks. This method is geared toward allowing the
developers to quickly instantiate a prototype application from the frame-
work, which can be later tweaked using some other detailed and usually
non-executable documentation. We use flow-based assertions to specify
the hook method preconditions and template method postconditions.
The flow-based precondition for a particular hook serves as a modular
documentation of when and how that hook is called in the framework’s
overall call-sequence. Similarly, the flow-based postcondition of a tem-
plate method tells the possible sequences of hook invocations that its ex-
ecution may cause. Flow-based assertions are written using a few types,
which we precisely specify. We also briefly describe a case study that
uses our technique to document a Model-View-Controller framework.

1 Introduction

1.1 Background

Object-oriented frameworks are skeletons for applications. They can be instan-
tiated into a specific application by customization. The users of a framework,
i.e., the developers, customize the framework by supplying it with concrete sub-
classes that override callback methods to form the application-specific custom
code. These overridden methods—also known as hook methods—are invoked by
the framework in response to events (such as user input or model state changes).
The control logic of the framework resides in its template methods, which invoke
hook methods according to a predefined control sequence. These template meth-
ods are usually not overridden by the developers.

A framework’s documentation plays the crucial role of a how-to manual for
the developers; developers must learn how to customize the framework into an
application by using the framework’s documentation and code. We will focus
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on formalizing documentation for frameworks using specifications written in the
Java Modelling Language (JML) [1], which is a behavioral interface specification
language for Java.

1.2 Motivation and Objective

In order to understand the problem, it will help to see it from a developer’s
point of view. The developer adds extra state to a framework, in the form of
fields declared in subtypes of the framework’s types. Thus the state of an in-
stantiated application consists of two parts: the framework-specific state, which
is contained in the superclasses that the framework declares, and the application-

specific state, which is declared in the application’s customizing subclasses.
A simplified view of the process of designing applications from a framework,

is thus as follows:

State Design The developer decides what information must be kept in the
application-specific state.

Customization Using the framework’s documentation, the developer assigns
responsibilities to each hook method, so that the application-specific state
is manipulated according to the application’s requirements.

Specification This detailed design for each hook can then be specified using
additional pre- and postconditions that describe its effects on the application-
specific state.

This paper provides a technique for framework documentation that eases cus-
tomization. Customization is important because each method has to be cus-
tomized before its details can be specified. The perceived ease of customization
is critical to the framework’s adoption.

An example of the process of customization for a hook is as follows. Consider
the hook method createView() in the interface ViewCreator given in Fig. 1.

public interface ViewCreator {

/* ... */

public View createView();

}

Fig. 1. The ViewCreator interface

To understand the role of this hook in managing the application-specific state,
and thus correctly override it, the developer must at least have information that
answers the following questions:

1. What are the possible application-specific states in which this hook is in-
voked?
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2. What are the expectations of the framework, with respect to the framework-
specific state, for this hook’s invocation?

The second question can be mainly handled by specifying a frame axiom
[2] (assignable clause in JML) and a postcondition for the hook method in an
interface such as Fig. 1.

Thus, we will focus on the first question in this paper.
Some hook methods do validation of the application-specific state, while oth-

ers transform it.1 Thus, to effectively override a hook method, the developer must
comprehend the possible application-specific states in which it may be called. To
this end, the developer must know what possible sequences of hook invocations
may have preceded this invocation.

The other—less critical—information that a developer must know is what
other hooks may be collaborating or depending on this hook and can possibly
be affected by its customization. These collaborative hooks are usually grouped
together in one template method. Thus knowing about which possible template
methods can invoke a hook, aids the developer in figuring out the hook’s collab-
orators.

There is a lot more information that can help the developer, but as we point
out in the Sec. 6, we want to keep the specifications readable and executable.
Following the theory of minimalist instruction [3], we assume that the developer
will use her intuition and/or consult more detailed documentation to fill in the
missing pieces. So we will not include any more information in our flow-based
formal specifications.

To sum up, the problem is to provide information that can answer the fol-
lowing questions for the developer:

1. What are the various hook invocation traces that may precede a given hook’s
invocation?

2. What are the different template methods that may directly or indirectly
invoke a particular hook? In other words, which template methods are active

in the sense that they may have been entered but not exited when this hook
is invoked?

Using the answers to the above questions, the developer can reason about
the application-specific state at a hook’s invocation point and also—if needed—
reason about what other hooks may be affected by that hook.

One way to answer the above questions for a given hook is to list all possible
sequences of active templates and hook calls that can precede the invocation
of that hook. As can be seen in Fig. 1, the signature of the hook method does
not carry enough information to construct such sequences. At most, it tells us
about the static types of the arguments and return values. The developer will
have to analyze the source code of all the template methods in the framework
to decide what hooks invocations may precede the hook in question. This source

1 It is also possible for a hook method to both validate and transform the application-
specific state.
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code can be complex and will often contain details that make it not especially
readable, at least in terms of answering such a specific question. Therefore, some
other method would be helpful for capturing this information in a more readable
format. It would also help if this information was modular i.e. if for each hook,
the information about the possible preceding hook invocations and the active
templates, could be located in one module, preferably where the hook is declared
by the framework.

One readable and modular method of capturing this kind of information
is to use a visual artifact such as a flow graph, which represents the call se-
quences graphically. Figure 2 shows a flow graph that depicts an example call-
back context for the above hook method createView(). From the flow graph
it is clear that there are two different paths of call sequences that may precede
the invocation of this hook. It also shows that the invocation of ViewCreator’s
createView() method can happen within the temporal extent of two different
template methods in InputDataBroker: processForm() and getFirstForm().

Invocation of View.createView()

InputDataBroker.processForm() entered

FormProcessorCreator.createFormProcessor() invoked

FormProcessor.processFormData() invoked

InputDataBroker.getFirstForm() entered

ApplicationSetup.initializeAndGetFirstFormCode() invoked

Fig. 2. Flow graph showing the possible sequences that can reach the invocation
of ViewCreator.createView(). The hollow circles denote the activations of the
template methods, and the solid circles represent hook invocations.

While flow graphs are quite valuable, as they intuitively convey the context
information, they must be converted into some textual or other easily manip-
ulated representation to be used for automatic checking. For our initial explo-
rations of framework specifications, we use a textual representation directly.
More sophisticated tools could use a graphical format directly, and convert it
internally into an equivalent representation. Our “low tech” solution has the ad-
vantage of being directly usable within textual source code and in other existing
design by contract style specification languages.

Our goal is thus to provide an easy-to-use technique to encode flow graphs as
succinct, readable and machine-checked control flow assertions that can be used
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to document hooks and template methods. Machine-checked assertions can be
used to guarantee that the specifications are always up to date.

Our technique uses JML’s runtime assertion checker to provide machine-
checked, executable specifications for frameworks. Runtime assertion checking
in this style allows documentation of how the framework-specific state is ma-
nipulated, in addition to the flow-based assertions that are the focus of this
paper. With both kinds of assertions, bugs in the instantiated application be-
come easier to trace as either due to faulty framework code or due to developer’s
application-specific subclasses.

As a preview of our technique, consider the JML precondition specification
given in Fig. 3. Although we have not yet presented any details of our specifi-
cation types, we believe that the formal specification is readable enough to be
apparent that Fig. 3 is the textual representation of the visual graph in Fig. 2.

public interface ViewCreator {

/* ... */

/*@ requires

@ new Flow().

@ withinTemplate(InputDataBroker.processForm).

@ hookInvoked(FormProcessorCreator.createFormProcessor).

@ hookInvoked(FormProcessor.processFormData).

@ here()

@ || new Flow().

@ withinTemplate(InputDataBroker.getFirstForm).

@ hookInvoked(ApplicationSetup.initializeAndGetFirstFormCode).

@ here();

@*/

public View createView();

}

Fig. 3. JML precondition specification for ViewCreator.createView()

1.3 Outline

The rest of this paper is structured as follows. Section 2 describes the various
flow based constructs that can be used to create the control flow assertions.
Section 3 provides a formal, high-level semantic description of the various classes
involved in the specifications. Section 4 describes the instrumentation process for
capturing the execution trace. Section 5 summarizes our experiences in testing
our technique on a Model-View-Controller framework. We discuss the underlying
theme of our approach in Sec. 6, and cover related work in Sec. 7. We conclude
the paper with future directions and conclusions.
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2 Flow Specification Constructs

Here, we illustrate with examples the various flow constructs that can be used
to build the control flow assertions. For an exact semantic description of the
various specification types and operations, please see Sec. 3.

2.1 Simple Composition

The simplest flow construct is one where the specifier adds on atomic events
to create a linear, one-path flow graph. An example of this is given in Fig. 4.
As shown in the listing, the precondition of the hook Form.reBuildContent()

simply mandates that before this hook is invoked, the template method
InputDataBroker.processForm() should be entered—but not exited, followed
by invocations of the hooks FormProcessorCreator.createFormProcessor(),
FormProcessor.processFormData(), and ViewCreator.createView() in that
order.

/*@

@ requires

@ new Flow().

@ withinTemplate(InputDataBroker.processForm).

@ hookInvoked(FormProcessorCreator.createFormProcessor).

@ hookInvoked(FormProcessor.processFormData).

@ hookInvoked(ViewCreator.createView).

@ here();

@*/

public abstract void reBuildContent(...);

Fig. 4. A linear flow precondition for Form.reBuildContent()

This linear composition construct forms the base case for the higher level
construction of flows using the concatenate, looping and choice operators—each
of which will explained in turn, next.

2.2 Concatenation

Using the Flow.concatenate() method, we can attach new flows to existing
flows. When the same flow i.e the same method call sequence repeats several
times in a specification, or when a flow needs to be constructed dynamically,
then the concatenate operation in conjunction with JML model methods can be
used to make the specification concise and readable. We will see examples of its
use in the looping and deterministic choice constructs, shortly.
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2.3 Looping

The operations for attaching atomic events and for concatenation, can be param-
eterized with an integer that indicates how many times that operation should
repeat. This is useful in specifying a loop in the call sequence. For example,
consider the specification snippet given in Fig. 5. Here, an inner flow sequence
is attached consecutively to the outer flow using the concatenate operation to
create a new flow. This new flow has a single path which starts with an invo-
cation of ApplicationSetup.getFormCodeList(), followed by invocations of
ApplicationSetup.getViewCreator() and
ApplicationSetup.getFormProcessorCreator()—in that order—repeated
numberOfFormCodes times, and ending with an invocation of
ApplicationSetup.setupCompleted().

/*@ ...

@ new Flow().

@ hookInvoked(ApplicationSetup.getFormCodeList).

@ concatenate(

@ new Flow().

@ hookInvoked(ApplicationSetup.getViewCreator).

@ hookInvoked(ApplicationSetup.getFormProcessorCreator),

@ numberOfFormCodes

@ ).

@ hookInvoked(ApplicationSetup.setupCompleted);

@ ...

@*/

Fig. 5. Specifying a loop using the concatenate operation

2.4 Choice

The choice construct is used to specify branching within a flow. This construct
can be used in two different ways depending on whether the branching can be
specified in a deterministic manner or not.

Non-Deterministic Choice. It is possible that the specifier does not have
enough information to indicate the conditions for each branch in a flow. It may
also be that doing this may expose internal details, or is just plain inconvenient.
In such cases, the branching can specified in a non-deterministically by using
the non-deterministic choice constructs. We have already seen an example of
non-deterministic choice in Fig. 3. There, we used JML’s logical OR operator
‘||’, to specify that the paths of either of the two flows can be a possible trace
prior to the invocation of ViewCreator.createView().
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The ‘||’ operator works fine when the multiple paths are completely disjoint.
However, if the different paths have a common prefix or a common suffix or both,
then the ‘||’ operator forces these common parts to be repeated for each path
specification. To avoid this repetition, we can use the Flow.choice() method to
indicate non-deterministic branching within a flow. Figure 6 shows an example
of using this operator. The listing shows two flows merging into a common suffix
flow—ViewCreator.createView() followed by ApplicationSetup.getForm().
The initial split is specified non-deterministically with the choice operator.

/*@

@ requires

@ new Flow().

@ choice(

@ new Flow().

@ withinTemplate(InputDataBroker.processForm).

@ hookInvoked(...).

@ hookInvoked(...),

@

@ new Flow().

@ withinTemplate(InputDataBroker.getFirstForm).

@ hookInvoked(...)

@ ).

@ hookInvoked(ViewCreator.createView).

@ hookInvoked(ApplicationSetup.getForm).

@ here();

@*/

public abstract void buildContent(...);

Fig. 6. Non-deterministic choice with a common suffix

Deterministic Choice. If it is possible to specify the conditions under which
a certain branch of a flow will be taken, then JML model methods and the con-
catenate operator can be used together to specify the deterministic choice. This
is illustrated in Fig. 7. Here, the model method processingBranch() constructs
and returns a flow depending on which of the three branches of its if conditional
is satisfied. This dynamically returned flow is then concatenated with a stati-
cally specified flow to construct the complete postcondition flow specification.
Although the final flow specification can only be determined at runtime, the
JML model method processingBranch() does provide a static specification of
the conditions under which the three different branches may be taken.
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/*@

@ public model pure Flow processingBranch(){

@ if(this.inputDataHasErrors){

@ return new Flow();

@ }

@ else{

@ if(this.dataProcessingHasErrors){

@ return

@ new Flow().

@ hookInvoked(...);

@ }

@ else{

@ return

@ new Flow().

@ hookInvoked(...).

@ hookInvoked(...).

@ hookInvoked(...);

@ }

@ }

@ }

@*/

/*@

@ ensures

@ new Flow().

@ hookInvoked(...).

@ concatenate(this.processingBranch()). //<- deterministic choice

@ hookInvoked(...).

@ since(processFormData.lastEntry());

@*/

protected final ProcessingResult processFormData(...);

Fig. 7. Deterministic choice using a JML model method and flow concatenation
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3 Formal Semantics

3.1 Preliminaries

Here, we define some functions and relations on sequences, which will be used
later in the semantic descriptions of the specification types.
We define a ‘sequence’ as an ordering of some elements (of the same type). Our
sequences will begin with index 1 from the left. The empty sequence is denoted
by the epsilon character i.e ε. This character will always be the rightmost
element in a non-empty sequence and denotes the end of the sequence.
We can refer to the ith element of the sequence by using the index i as a
subscript of the sequence name. The |〈 sequence name 〉| notation will be used
to denote the length of the sequence. We can extract part of the sequence seq

by using the notation seqi...j which denotes the sequence
seqi : seqi+1 : seqi+2 : . . . : seqj : ε.
For example, if seq = x1 : x2 : x3 : . . . : xn : ε, then |seq| = n is the length of
the sequence and seq2 = x2 is the 2nd element of the sequence. To denote a
suffix of seq starting from the third element, one would write seq3...|seq|.
Next, we define some (total and partial) functions for sequences.
Appends an element to the end of a sequence.

appendElt(ε, x) = x : ε

appendElt(y : Ys, x) = y : appendElt(Ys, x)

Concatenates two sequences.

appendSeq(ε, X) = X

appendSeq(x : Xs,Ys) = x : appendSeq(Xs,Ys)

Returns the index of the last occurrence of an element in a sequence.

lastOccurrenceOf(x, seq) = i, where (seqi = x) ∧ (∀j : |seq| ≥ j > i : seqj 6= x)

Deletes from a sequence, the element at a given index.

deleteEltAt(x : Xs, i) =

{

x : deleteEltAt(Xs, i − 1) if i > 1
Xs if i = 1

Next, we define the relation in to check if an element occurs in a sequence.

x in (y : Ys) ⇐⇒





(x = y)
∨
(x 6= y ∧ x in Ys)





Lastly, we define the binary relation subsequenceOf.

ε subsequenceOf X

(x : Xs) subsequenceOf (y : Ys) ⇐⇒





(x = y ∧ Xs subsequenceOf Ys)
∨
(x 6= y ∧ (x : Xs) subsequenceOf Ys)





It is straightforward to prove that subsequenceOf is transitive.



11

3.2 Semantics of Specification Types

Following are abstract semantic descriptions of the temporal specification types
that can be used to record the actual execution trace, and construct temporal
assertions based on this trace.
In order to maintain consistency with the functional notation, the instance
methods will be specified as though they are functions, by explicitly listing the
implicit this reference as the first parameter. For abstraction purposes, we
consider the execution trace as a static global variable of type (EventID)∗. It
appears as the second parameter called trace, in several methods.
EventID class
This class is the supertype of event identifiers. EventID has two subclasses:
HookMethod and TemplateMethod.
HookMethod class
recordInvocation : HookMethod× (EventID)∗ → (EventID)∗

We specify this method by describing the effect it has on the execution trace.

recordInvocation(h,trace) = appendElt(trace, h)

Informally, it appends the supplied HookMethod to the end of the execution
trace.
TemplateMethod class

recordEntry : TemplateMethod× (EventID)∗ → (EventID)∗

recordExit : TemplateMethod× (EventID)∗ → (EventID)∗

lastEntry : TemplateMethod× (EventID)∗ → N

We specify the first two methods, again by describing the effect each has on the
execution trace.

recordEntry(tm,trace) = appendElt(trace, tm)

recordExit(tm,trace) = deleteEltAt(trace, lastOccurrenceOf(tm, trace))

The first method just appends the supplied TemplateMethod to the end of the
execution trace, while the second one deletes the last entry of the supplied
TemplateMethod from the execution trace.
Lastly, the third method—lastEntry—can be abstractly specified as:

lastEntry(tm,trace) = i, where i = lastOccurrrenceOf(tm, trace)

Flow class
new Flow : Flow
withinTemplate : Flow× TemplateMethod→ Flow

withinTemplate : Flow× TemplateMethod× N → Flow

hookInvoked : Flow× HookMethod→ Flow

hookInvoked : Flow× HookMethod× N → Flow

concatenate : Flow× Flow → Flow

concatenate : Flow× Flow× N → Flow

choice : Flow× (Flow)∗ → Flow

here : Flow× (EventID)∗ → {true, false}
since : Flow× (EventID)∗ × N → {true, false}
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Of the above ten methods, the first eight methods are used to construct a Flow

object, while the last two are query methods.
We specify the first eight methods using the abstraction function, paths.

paths : Flow → P((EventID)∗)

new Flow() = f, where paths(f) = {ε}

paths(withinTemplate(f,t)) = {appendElt(tr, t) | tr ∈ paths(f)}

paths(withinTemplate(f,t,n)) =
{

paths(f) n = 0
paths(withinTemplate(withinTemplate(f,t,n-1),t)) otherwise

paths(hookInvoked(f,h)) = {appendElt(tr, h) | tr ∈ paths(f)}

paths(hookInvoked(f,h,n)) =
{

paths(f) n = 0
paths(hookInvoked(hookInvoked(f,h,n-1),h)) otherwise

paths(concatenate(f,f’)) = {appendSeq(tr, tr′) | tr ∈ paths(f), tr′ ∈ paths(f’)}

paths(concatenate(f,f’,n)) =
{

paths(f) n = 0
paths(concatenate(concatenate(f,f’,n-1),f’)) otherwise

paths(choice(f,a)) =
{appendSeq(tr, tr′) | tr ∈ paths(f), (∀i : 0 ≤ i < |a| : tr′ ∈ paths(ai))}

Next, we define the relation satisfies to formally specify when a Flow is
‘satisfied’ by an execution trace.

satisfies : (EventID)∗ × Flow

trace satisfies f ⇐⇒ (∃p : p ∈ paths(f) ∧ p subsequenceOf trace)

Informally, the above definition means that we consider a Flow to be satisfied
by an execution trace if the Flow contains at-least one path of EventID objects
in which the objects are specified to be in the same order as in some
subsequence of the execution trace.
Now, we specify the last two methods of Flow using the above relation.

here(f,trace) =

{

true trace satisfies f

false otherwise

since(f,trace,mark) =

{

true trace(mark+1)...|trace| satisfies f

false otherwise
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4 Instrumentation

Evaluation of the flow based assertions requires a comparison with the actual
execution trace as described in Sec. 3. This trace—which is a sequence of invo-
cation events—can be recorded using methods provided by some of the specifi-
cation types.2 These types and their recording methods are used in a systematic
manner to capture the execution trace. This process involves (a) defining spec-
ification type trace variables and (b) instrumentation of the template methods.
Let us see each in detail.

4.1 Trace Variables

Trace variables can be defined to be of type HookMethod or TemplateMethod.
The recording operators of these trace variables are invoked at runtime from
within the instrumented template methods and possibly from their private helper
methods. The general strategy for introducing these variables into the framework
classes is as follows:

For each hook method3, we add a static JML ghost variable of type
HookMethod to the class or interface where the hook is first defined. Simi-
larly for every template method, we add a static JML ghost variable of type
TemplateMethod to the class containing the template. These ghost variables are
used in the specifications4 as representations of their respective methods. In
interest of specification comprehensibility, the ghost variables names are kept
similar to the names of the methods that they represent. If no hooks or tem-
plates are overloaded and there isn’t a field already defined with this name, then
the method names should be used as the names for the ghost variables. If there
is already a field with the same name or in case of overloaded methods, the
variable name should be the method name with some small suffix added.

4.2 Template Method Instrumentation

Since the control flow of the framework resides in the template methods, we
assume that all hook invocations occur only within the templates and possibly
within any private helper methods called directly or indirectly by the templates.
Therefore, only the template methods and any of their helper methods that
contain hook invocations in their lexical scope need to be instrumented. This
instrumentation is set up as follows:

1. Upon entry into a template method, we invoke the recordentry() method
of the TemplateMethod ghost variable representing this method.

2 The precise semantics of these recording operations are given in Sec. 3.
3 We assume that any framework method that can be overridden is a hook method,

and that template methods cannot be overridden.
4 Due to a bug in the JML checker, we had to abstract the ghost variables to model

fields and use the model fields in the specifications.
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2. Right after every return of a hook call within a template or its private helper
method, we invoke the recordInvocationDone() of the HookMethod ghost
variable representing that hook.

3. Just before every normal return of a template method, we invoke the
recordExit() method of the TemplateMethod ghost variable representing
this method.

The recording method invocations shown above are implemented by introduc-
ing JML debug statements at the appropriate points in the template methods,
and in any of their private helpers if needed. Figure 8 shows an example template
method with the instrumentation code added as JML debug statements.

public final Form getFirstForm() {

//@ debug InputDataBroker.getFirstForm.recordEntry();

...

Form firstForm = this.applicationSetup.getForm(...);

//@ debug ApplicationSetup.getForm.recordInvocationDone();

firstForm.buildContent(...);

//@ debug Form.buildContent.recordInvocationDone();

//@ debug InputDataBroker.getFirstForm.recordExit();

return firstForm;

}

Fig. 8. An instrumented template method

5 Case Study

Following is a brief description of our experiences in documenting a simple
Model-View-Controller (MVC) framework using our technique. All the exam-
ples used in this paper are adapted from this case study.

5.1 Testbed

The MVC framework that we used as our testbed is a single user, desktop version
of Sun’s Model 2 web application architecture [4]. It consists of a front-end which
displays forms in a sequence, and a back-end which validates and processes
the input forms and updates the model. The form display, the validation and
processing of the forms and the model updates are all delegated to subclasses as
hook invocations. The proper sequencing of these hook invocations is controlled
by framework’s template methods which encode the abstract MVC functionality.
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5.2 Setup

We manually analyzed each template method to determine all possible paths
of invocation events that could occur within the scope of that template. Using
the results of this analysis and the specification constructs described in Sec. 2,
we created the template’s flow-based postcondition such that it depicted the
analysis results correctly and concisely.

For each of the hook methods, we analyzed the framework classes to de-
termine: (a) which templates could invoke that hook, and (b) what were the
possible paths of invocation events that could reach the invocation of this hook.
We then constructed the hook’s precondition to reflect the analysis results.

Finally, we carried out the instrumentation process as described in Sec. 4.

5.3 Execution

Once the specification and instrumentation were completed, we instantiated the
framework into a real-world application designed for soil scientists, which in-
volves database reads, floating point computations and chart graphics. This ap-
plication was then executed with the JML runtime assertion checker [5] using
several different input cases.

5.4 Observation

Our test framework was quite small in that it only contained 5 different template
methods. Analyzing these template methods to come up with a flow-based post-
condition was quite straightforward, since these templates were non-recursive.
There was one instance where a hook in the framework was redefined as a tem-
plate method in a subclass in the same framework. So while we used a flow based
precondition to document the hook in the superclass, we used a postcondition
in the subclass to document the same method that was now overridden as a
template method. Specification of hooks was also straightforward although we
had to spend some time picking and choosing the most readable of several alter-
natives for constructing the same flow based precondition. Due to the small size
of the framework, the instrumentation was also quite easy.

Four months after writing the framework’s specifications, the first author
updated the above-mentioned application by extending its state.5 Adding this
new application-specific state involved most of the design process. Thus the
development problem was how to manage the new application-specific state.
While the first author had a fair idea about what hooks needed to be overridden,
he had forgotten enough about the design to need help reasoning about the
details of the application-specific state in which the hooks would be invoked. He

5 The first author was the creator of both the framework and the application, and
thus these observations have to be taken with a grain of salt. As part of future work
we plan to have developers not involved in the construction of the framework to
instantiate an application and record their experiences.
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found that, compared to previous application updates that were done without the
benefit of flow-based specifications, this update took less time, since the author
never had to consult the source code of the template methods. Consulting the
source code of the template methods in previous updates was more painful and
time consuming than looking at the succinct flow-based specifications of the
hooks. The specifications of the template methods were also consulted in some
cases to determine what other hooks would be affected. Overall the experience
of using the flow-based specifications was very positive.

6 Discussion

Although we implemented our technique using JML, the method could be imple-
mented in other Design by Contract specification languages. The features needed
to implement our technique are fairly standard, however, in the instrumentation
part we used ghost variables and debug statements. These features would have
to be added to some specification languages or there would have to be some
native support for capturing execution traces.

Our technique can be roughly described as a minimalist instruction [3] ap-
proach to the formal specification of a framework, which can complement the
framework’s minimalist natural language documentation [6]. As Chai points out
[7], the minimalist approach is based on two ideas:

– People do not want extraneous information when trying to learn a particular
task, and

– People are not good at following step-by-step instructions.

For frameworks, the idea is to give the developers the minimal amount of
documentation to get the instantiation of the framework. This documentation
should be preferably composed of self-contained modules so the developers can
read them in whatever order suits them.

Our hope is that the flow-based hook preconditions in our approach can
provide such minimal and modular documentation which is sufficient for cus-
tomization of the hook methods and would enable the developers to quickly get
an application up and running. Other approaches with more complex and de-
tailed specifications would, according to the theory of minimalist instruction,
make the customization process more difficult.

The original inspiration for this work came from Froehlich et al.’s “hook
models” [8]. The “hooks” in that work refer to a framework’s general abstract
customization points and not necessarily just to the code-level overridable hook
methods. So we will call them customization points for clarity below. These cus-
tomization points are specified modularly by mapping each of them to a struc-
tured piece of mostly natural language documentation. This document contains
sections such as requirements, uses, participants, constraints etc. that contain
the respective information for the hook. The objective is to document the in-
tended uses of the framework, and not the design details. The developer can
browse a listing of all the hook methods in a framework using a “hook-book”
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which contains references to their context descriptions. Although they provide
a grammar for structuring the hook descriptions, the system remains at best
a semi-formal depiction of each hook’s context. Our technique can be seen as
aiding the formal specifications of hooks in these hook books. We expect that
the context for each high-level customization point will contain the names of
the actual hook methods that need to be overridden. Once the developer creates
a list of the hook methods to be overridden, she can refer to the flow-based
specifications of each method to override it.

7 Related Work

There are several proposals for informally documenting framework design [9,7,10].
However such informal documentation is not easily kept up to date with the
framework, whereas our executable specifications can be easily kept up to date.

Büchi and Weck’s greybox specifications [11] are written with “abstract pro-
grams” in a refinement calculus. These abstract programs allow reasoning about
the instantiated application, however, that is different than the customization
problem in which we are interested. Abstract programs could, in theory, help with
the customization problem, if there was a way to extract the active templates
and sequence of hook methods that might be invoked prior to the invocation of a
particular hook method. However, extracting such sequences from the abstract
programs is non-trivial and currently there is no automated support. Finally,
abstract programs do not, by themselves, provide a notation for recording, in
the specification of a hook method, all such sequences, and so their notation
does not give as much help as ours in for customization.

Soundarajan et al. [12,13,14,15], have carried out sustained investigations
into using hook invocation traces to formally specify frameworks and applica-
tions instantiated from frameworks. Their technique supports incremental rea-
soning about the instantiated application. However, the only part relevant to
the problem we address in this paper is their trace notation.

Their trace notation allows one to specify considerable details about the hook
invocations such as argument values, return values, intermediate states and his-
tory constraints. Following the minimalist philosophy, we did not attempt to
document this level of detail with our flow specification types. Their trace nota-
tion can quickly lead to unweildy specifications and is quite poor at expressing
flow constructs like deterministic choice and looping, which we feel are essential
to effectively document the template control sequence. It is also not clear how
much of this notation can be executed (without intolerable overhead). To remedy
the problems with their notation, they introduced a programmer-friendly nota-
tion scheme called “macros” [12], which are similar to the abstract programs of
the greybox technique. However, these macros are currently not executable. Also
in the case of complicated template sequences, reading the macros to understand
the sequence can be as difficult as reading the actual source code of the template
method, because it looks like code.
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Next, we will look at several specification languages with trace-based asser-
tions.

The Jass specification language [16,17] can be used to write trace assertions
for dynamic checking of object protocols. However, because their notation seems
limited to expressing protocols on individual objects, it does not seem easy to
express a collaborative protocol distributed across many hook classes. Also, the
CSP-based notation for trace specification may be unfamiliar to many devel-
opers. Our flow notation is in familiar Java syntax with operators that have
straightforward semantics.

Similarly, Cheon and Perumendla’s extension to JML [18] does not currently
check protocol properties of a set of collaborating objects. Thus it is not suitable
for sequences which that span multiple hook classes, as is often the case in
frameworks. Also their notation, based on regular expressions, is not rich enough
to express the flow constructs that we need; in particular it may not be possible
to specify deterministic choice or looping. Our technique, because it uses JML’s
model methods, is able to express sets of sequences that are not describable by
a regular expression.

8 Future Work

The current instrumentation scheme makes the ghost variables that capture the
execution trace globally visible and modifiable. We plan to remedy this using
some sort of ownership construct that would only allow the template methods
to modify the ghost variables of its hooks.

We also plan to investigate how these flow based specifications can be used
in model checking of a framework’s temporal properties.

We also need a detailed case study on a larger framework using developers
who are totally new to the framework. Their experiences in using the flow spec-
ifications during instantiation would be the best indicators of the strengths and
weaknesses of this documentation approach.

9 Conclusion

Our contribution lies in creating a simple, easy-to-use, trace-based assertion
technique for documenting the template-hook interactions of a framework. This
technique has been implemented, using JML, and was used in a small case study.
Our (limited) experience using this technique was positive. This experience is
consistent with the ideas of minimalist instruction theory, which guided the
technique’s design.

The technique is aimed at providing developers enough information to cus-
tomize the framework for a particular application’s requirements. This cus-
tomization step involves assigning responsibilities to individual hook methods
with respect to their manipulation of the application-specific state. The flow-
based specification technique allows each hook method’s documentation to have
an expressive, readable, and executable description of the necessary information.
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