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Abstract

The state of knowledge in how to specify sequential programs in object-oriented languages such as Java and C#
and the state of the art in automated verification tools for such programs have made measurable progress in the last
several years. This paper describes several remaining challenges and approaches to their solution.

1 Introduction
The last few years have shown a renewed interest in formally verifying software. For example, within the last decade,
interactive program verifiers have been applied to control software and other critical applications [2, 26], software
model checking has made strides into industrial applications [7], and a number of research tools for bug detection have
been built using automatic program-verification technology [23, 47, 49, 74, 96]. In fall 2005, a large, international
group of researchers gathered in Zurich at the Verified Software: Theories, Tools, Experiments conference [63], to
explore the next steps in a long-term initiative by Tony Hoare [62] to advance the science of program construction.
Specification and verification of sequential object-oriented software is certainly important to this overall picture.

In this paper, we describe several important specification and verification challenges as we see them today. We
draw on our experience with specifying and verifying code using the Java Modeling Language (JML) [77, 78, 82] and
Spec# [10, 12, 87], and static checking and verification tools for these [9, 49, 74]. While we do not claim that the set
of challenges is complete, we hope that these problems will provide a roadmap for problems to attack and a basis for
measuring future progress.

Three years ago, Jacobs, Kiniry, and Warnier described several challenge problems for Java program verifica-
tion [67]. Here, we group them into the categories used in our paper (plus a category “Others” for the remaining
challenges):

A. Data Abstraction in Specification

1. Specification: numeric models and method calls in specifications

B. Frame Properties

2. Side effects in expressions

C. Heap Data Structures

3. Aliasing and field access

4. Class invariants and callbacks

5. Static initialization

D. Control Flow
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6. Breaking out of a loop

7. Catching exceptions

E. Others

8. Bitwise operations

9. Overloading and dynamic method invocation

10. Inheritance

11. Non-termination

The specification challenge of dealing with computer versus infinite arithmetic (A.1) has been addressed in the
context of JML [25]. The problem of how to deal with method calls in specifications (A.1) has also seen some
work recently [34, 38, 69], but still faces open issues regarding frame properties. We discuss these in Sec. 3.1.
Side effects in expressions (B.2) as well as aliasing (C.3) are handled by various program logics for object-oriented
languages [1, 14, 15, 17, 65, 66, 70, 85, 105, 106, 107, 108, 109, 111] and also in ESC/Java [49, 92, 74] and other
tools geared to the verification of Java-like programs [9, 23]. There has been much work on invariants and callbacks
(C.4) [10, 87, 90, 103], which we discuss in more detail in Sec. 4.1. Although some work has also been done on static
initialization (C.5) [88], we still consider this problem an open challenge, which we discuss further in Sec. 3.2. Both
challenges related to control flow (D.6 and D.7) are solved by logics for abrupt termination [15, 65] or by translating
programs to low-level languages such as BoogiePL [9, 39, 92] before verification. Handling bitwise operations (E.8) is
important in practice. To automate verification of bitwise operations, there are various decision procedures [35, 122],
but there is still work to be done on integrating these decision procedures with theorem provers, in particular, on
combining them with arithmetic operations. Dynamic method binding (E.9) and inheritance (E.10) are largely handled
by the discipline of behavioral subtyping [4, 80, 83, 93, 98], which is incorporated into JML and Spec# using the idea of
specification inheritance [41, 76, 81, 118]. Finally, non-termination (E.11) can be addressed using standard techniques
such as loop variants. The problem has also been tackled successfully using model checkers [36].

In summary the challenges presented by Jacobs, Kiniry, and Warnier’s paper are areas where much progress has
been made. Still, a number of difficult challenges remain, which are the subject of the present paper.

1.1 Scope and Assumptions
Our survey of these challenges is limited to specification and verification techniques for object-oriented languages,
such as Eiffel, Java, and C#. Because we draw on our experience with JML and Spec#, we largely ignore concurrency
issues and instead concentrate on issues in the specification and verification of sequential code.

Even within the domain of specification and verification techniques for sequential object-oriented programs, there
are several different styles of specification and verification. We focus on detailed design specification, i.e., the specifi-
cation of interfaces of individual program modules, also known as interface specification [57, 120, 121]. This can be
contrasted with requirements specification, which often occurs earlier in the development cycle and is more concerned
with the behavior of an entire program and less with the specification of individual modules.

Most interface specification languages use some variation on Hoare’s pre- and postcondition technique [5, 54, 60].
A well-known early example of such a language is VDM [71]. The Larch family [57, 120] of interface specification
languages exemplifies the approach of writing such pre- and postconditions using a specialized mathematical vocab-
ulary. Specifications operate on abstract values [61], which are abstractions of the “concrete” state of the program.
Furthermore, the operations used on abstract values are completely mathematical, and thus an excellent fit for formal
manipulation (e.g., with theorem provers).

Unfortunately, experience with Larch-style interface specification languages indicates that a mathematical syntax
for assertions, such as the Larch Shared Language [57], which is different than the programming language’s syntax,
is a barrier to use by programmers. Programmers seem more comfortable with an assertion language that is based on
the programming language’s own expression syntax. This is the approach followed by Gypsy [3], Anna [94, 95], APP
[112], and Eiffel [97, 98], and adopted by JML [79] and Spec# [12].

Several of the challenges we describe in the design of such Eiffel-like interface specification languages stem
from this fundamental decision to write assertions using a subset of the expressions in the underlying programming
language. One of the basic problems is to overcome the mismatch between the programming language’s expressions
and the needs of automatic theorem provers.
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It is essential that verification techniques are modular, that is, that they allow one to reason about a class inde-
pendently of its clients and subclasses. Modularity is crucial to verify reusable classes such as library classes and
for scalability. Many of our challenges stem from this modularity requirement. They call for modular solutions to
problems for which non-modular solutions already exist.

The specification and verification challenges described in this paper are challenges for specification and verifi-
cation methodology, that is, how to apply existing concepts, formalisms, logics, etc. to specify and verify a pro-
gram. Therefore, the discussion is somewhat independent of the particular program logic that is used. We be-
lieve the discussion applies to all or most of the logics for object-oriented languages, including Hoare-style logics
[1, 17, 65, 66, 70, 85, 106, 107, 109], dynamic logics [14, 15], and separation logic [105, 108, 111].

1.2 Outline
In this paper, we describe challenges in the areas of data abstraction in specification (Sec. 2), frame properties (Sec. 3),
reasoning about heap structures (Sec. 4), control flow (Sec. 5), and practical considerations (Sec. 6). We describe each
challenge and try to give an idea of why it is not yet solved, by describing a number of solution approaches with their
potentials and limitations.

2 Data Abstraction in Specification
One of the key innovations in JML’s design is the use of a library of modeling types that describe mathematical bags
(multisets), sets, sequences, relations, and maps [79]. These modeling types play the same role in a JML specification
as the built-in traits in the Larch Shared Language or the built-in types of VDM: they allow the specifier to describe
abstract values of objects using standard mathematical notions. These types are designed to have immutable objects,
to better match mathematics. They allow the specification of abstract values, especially for collection classes. For
example, the abstract value of a java.util.Collection can be specified using a (specification-only) model
field whose type is a JMLEqualsBag. While the hope was that such types would be useful for both runtime assertion
checking and static verification, they do not work well with static verification. This leads to our first two challenges.

2.1 Specifying Modeling Types
If an interface specification language provides several built-in modeling types, a fundamental problem arises in how to
specify them in a way that is useful for verification. Modeling types can, of course, be specified using other modeling
types, but ultimately some modeling types must be specified in some other way.

Challenge 1 Develop a specification technique for modeling types.

2.1.1 Solution Approach 1: Collected Algebraic Specifications

One approach to solving this challenge is to specify modeling types by mimicing algebraic specification techniques
[19, 44, 51, 56, 117]. This approach initially seems sensible, because modeling types typically have immutable objects.
Thus, semantic ideas developed for equational algebraic specifications, such as the initial algebra approach [19, 44, 51]
or the final algebra approach [117], could be used to give the mathematical meaning to such a specification. Specifiers
can use the technique of sufficient completeness [56] to make sure that they have specified a type to the level of
completeness desired.

For instance, a data type Set contains laws that relate the operations add and has , such as: (∀Set s,Element e :
has(add(s, e), e)) . In a similar way, we can relate the methods of a modeling type. For instance, each instance s of
a modeling type ModelSet has to satisfy the law: (\forall Object e; s.add(e).has(e)). In this JML
notation, universal quantification starts with \forall. (Such expression keywords start with a backslash to prevent
them from being confused with programmer-defined names.)

Fig. 1 on the following page shows a specification for ModelSet using this approach. In this specification, the
invariant states several properties of the methods shown in the figure. Such specifications are used for many of the
JML modeling types, and in actual practice they are considerably more extensive than shown in Fig. 1.

Unfortunately, this approach is not usable for verification, due to several problems.
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public /*@ pure @*/ class ModelSet {

/*@ public invariant (\forall Object e, e2;
@ this.add(e).has(e)
@ && this.add(e).add(e2).equals(this.add(e2).add(e))
@ && this.add(e).add(e).equals(add(e))
@ && (this.equals(new ModelSet()) ==> !this.has(e)));
@*/

public ModelSet() { /* ... */ }
public boolean has(Object o) { /* ... */ }
public ModelSet add(Object o) { /* ... */ }
public boolean equals(/*@ nullable @*/ Object o) { /* ... */ }

}

Figure 1: A JML modeling type ModelSet that is specified using an algebraic specification technique. In JML,
annotations are enclosed in special comments that start with an at-sign (@); in such annotations initial at-signs on
a line are ignored. They keyword pure says that the methods of this type have no side effects. An invariant
declares a property that is true in all visible states. The operator ==> means implication. The modifier nullable
allows the parameter to equals to be null, contrary to JML’s default.

A first problem is that the invariant in Fig. 1 quantifies over all objects, making it non-executable and thus unsuit-
able for runtime assertion checking. With static verification techniques, this invariant’s quantification would mean that
every new object created could potentially violate the invariant. It is not clear how to reason efficiently about such
invariants. Such additional proof obligations would be non-modular and impractical. In our example, creating a new
object in fact cannot violate the invariant. Therefore, we would like to tell the theorem prover not to check every new
object against this invariant. However, taking such invariants as axioms instead of as invariants seems dangerous, as it
may lead to inconsistencies and would not be checked against the implementation.

A second problem is that the approach shown in Fig. 1 uses the equals method of the ModelSet type, whereas
standard algebraic specification techniques work with a built-in notion of equality. The use of the equals method
introduces several considerations that are not problems in standard algebraic data type specifications, such as that
equality might not be a congruence (reflexive, symmetric, transitive, preserved by the methods). Furthermore, calls to
the equals method make theorem proving more difficult (see Sec. 3.1).

2.1.2 Solution Approach 2: Specifying Methods via other Methods

It seems possible to solve the problems of the first approach while still using ideas inspired by algebraic specification
techniques, in that methods are specified in terms of their effect on other methods. However, this second approach does
not use a single algebraic style specification in an invariant. Instead, it divides the set of methods up into query and
non-query methods; no specifications are written directly for query methods, but each non-query method’s behavior
is specified by describing how it changes the results of all query methods [98]. (One can also distinguish between
primitive and derived query methods, to help abbreviate such specifications [56].)

As an example, consider the type UModelSet in Fig. 2 on the following page. In this example, the meaning of
the non-query methods emptySet and add are both specified using the query method has. The method has itself
is not directly given a specification.

The main drawback of this approach seems to be that the verification of an implementation of a modeling class
may need additional specifications. For example, to verify an implementation of the has method in UModelSet,
one would have to write a (private) implementation-dependent specification.

This approach also requires a sound treatment of quantifiers, such as the one in the specification of emptySet
(see Sec. 2.2), and of method calls in specifications (see Sec. 3.1).
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public /*@ pure @*/ interface UModelSet {

public boolean has(Object o);

/*@ ensures \result.has(o)
@ && (\forall Object e; e != o ==> this.has(e) == \result.has(e));
@*/

public UModelSet add(Object o);

//@ ensures (\forall Object e; !\result.has(e));
public UModelSet emptySet();

}

Figure 2: A JML modeling type UModelSet that is specified by giving specifications of various methods in terms
of other methods. The keyword ensures starts a postcondition for the following method. The keyword \result
stands for the result of a (non-void) method.

2.1.3 Solution Approach 3: Translation between Modeling Types and Mathematical Theories

Another approach for specifying modeling types in some technique other than that used to specify normal, user-defined
types. One possibility is to develop an automatic translation between modeling types and theories of some standard
theorem prover (as suggested in [79]). Such a translation could be defined either from modeling types to mathematical
theories or vice versa.

Translating modeling types into mathematical theories allows programmers to write new modeling types and then
automatically translate them for static verification. This seems possible, but is non-trivial [99]. First, the resulting
data types are typically complicated. For instance, JML’s model class JMLObjectSet for sets of references cannot
simply be mapped to a mathematical set of references. JMLObjectSet contains several ghost fields, which are
independent coordinates in the state space. Therefore, the resulting data type is a tuple, where one component is a
mathematical set. This makes working with it tedious. Second, if the modeling type is not final, then programmers
can override the equals method in various ways. Therefore, the equals method of a non-final modeling type
cannot always be translated to mathematical equality. The same problem occurs when programmers implement their
own modeling types and equals methods. Third, modeling types may refer to methods of normal program code.
For instance, the has method of JMLValueSet uses the equals method to determine whether the (non-model)
argument is in the set. It is not clear how such calls to program code can be expressed in a mathematical theory
(without formalizing the whole language semantics as part of the theory).

Translating mathematical theories into modeling types also has shortcomings. First, if programmers want to de-
velop their own modeling types, they would have to specify them in the language of a theorem prover. This is contrary
to the basic idea of contract languages, which try to shield programmers from specialized theorem prover notation.
Second, runtime assertion checking requires that modeling types be executable. However, arbitrary mathematical
theories cannot be translated automatically into executable program code.

In summary, it seems that the generality of these translation approaches causes problems. In particular, it is unclear
how to verify that the implementations (used by a runtime assertion checker) of such modeling types are correct with
respect to the mathematical theories (used by a theorem prover or other static analysis tool).

2.1.4 Solution Approach 4: Built-in Modeling Types Based on Mathematical Theories

The problems of the automatic translations between modeling types and mathematical theories can be avoided if the
specification language provides a fixed, but carefully chosen set of modeling types together with their translations to
mathematical theories. Programmers could then develop new modeling types only by instantiating existing ones. In
essence, this approach would harken back to VDM [71], in using a small set of built-in types for specification.

This approach meshes with the very recent work of Charles [27]. In Charles’s work on JML, the Java “native”
keyword is reused to declare methods and types that have a correspondence in the prover (Coq). Types declared
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as native are considered to be value types, that is, not to be subtypes of Object. Also, the prover has a built-in
understanding of how certain Java types (such as Object) correspond to types in the prover (e.g., Reference).
That is, when translating from JML to the prover’s language, all occurrences of such Java type are replaced by their
corresponding prover type. Methods of such native types must also be “native” and are treated as uninterpreted
function symbols in the theorem prover. The JML declaration of such native types and methods is accompanied by
text in the prover’s native language that axiomatizes the corresponding uninterpreted function symbols. Normal users
would not extend the set of such types, and no extra ghost or model fields would be permitted in such types.

This seems like a promising approach to solving the challenge. One problem is defining a set of such “native” types
that would satisfy the demands of a wide variety of theorem provers and that would also work for runtime assertion
checking. In particular, correctness of the implementations of “native” types with respect to the mathematical theories
is again an issue. Another problem is figuring out how to use “native” types to specify types such as Java’s collection
types, where program code (equals) is supposed to define membership in the collection.

2.2 Quantifiers and Comprehensions
It is well known that various generalized quantifiers (such as summations and products) are useful in specifications [33,
55]. Similarly, mathematicians have long found that set comprehensions are very convenient notational abbreviations.
Haskell [64] and other functional languages also use comprehension notations for lists to great effect.

Generalized quantifiers and comprehensions are equally useful and important in specification languages, where
generalized quantifiers are notational shorthands and comprehensions act as literals for modeling types. A promi-
nent example of the utility of comprehension notations is Z [115], in which, for example, set comprehensions are
a central and important feature. JML has a few kinds of generalized quantifiers and set comprehensions. The ex-
ample in Fig. 3 on the next page shows the use of a generalized quantifier \num_of, which counts the number
of integers, j, that both satisfy the range predicate, 0 <= j && j < args.length, and the body predicate
args[j].startsWith("-"). This numerical quantifier is used in a loop invariant. The loop invariant is needed
to show that count is within the boundaries of the out array, which illustrates that quantifiers can be useful even in
situations where one’s verification ambitions are limited, like trying only to prove the absence of array index bounds
errors; of course, quantifiers and comprehensions are even more useful if one is trying to prove full functional correct-
ness.

Quantifiers and comprehension expressions pose several pitfalls for specification language designers. For example,
if quantifiers only quantify over non-garbage objects, then they become sensitive to garbage collection, which causes
semantic problems [24]. On the other hand, quantifying over non-allocated objects is also problematic. For instance,
if the quantifier in the invariant of class ModelSet (Fig. 1 on page 4) ranges over all objects including non-allocated
objects, then the invariant calls methods with parameter objects that are not allocated. It is unclear what it means if
these methods access the state of these parameter objects.

There are also practical difficulties in the implementation of quantifiers for runtime assertion checking, which
require either restriction of the language [73, 75] or recognition of patterns of bounded quantification [28, 116].
Similar difficulties affect comprehension expressions. However, these difficulties in language design and runtime
assertion checking seem fairly well understood.

The remaining challenge is about program verification.

Challenge 2 Develop a verification technique for general quantifiers and comprehensions that is suitable for auto-
matic verification systems.

This challenge focuses on automatic program verifiers, such as ESC/Java and Boogie. These encode the proof
obligations as first-order formulas that are passed to an automatic theorem prover like Simplify [40]. In such automatic
first-order provers, common inductive definitions of generalized quantifiers are not readily available.

2.2.1 Solution Approach: Replace Comprehensions by Functions

In our example, we could introduce the side-effect free (pure) method shown in Fig. 4 on the next page to count
the number of elements in the array a from index from that start with "-". We use this method to replace the

comprehension in the loop invariant of method filter as follows:

//@ loop_invariant 0 <= count && countHits(args,i) == out.length - count;
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public class Comprehension {
private static String[] filter(String[] args) {
int count = 0;
for(int i = 0; i < args.length; i++) {
if(args[i].startsWith("-")) { count++; }

}
String[] out = new String[count];
count = 0;

/*@ loop_invariant 0 <= count
@ && (\num_of int j; 0 <= j && j < args.length;
@ args[j].startsWith("-"))
@ == out.length - count;
@*/

for(int i = 0; i < args.length; i++) {
if(args[i].startsWith("-")) {
out[count] = args[i];
count++;

}
}
return out;

}
}

Figure 3: A JML example that uses a generalized quantifier \num of in its loop invariant. Details of this expression
are explained in the text.

/*@ requires 0 <= from;
@ ensures a.length <= from ==> \result == 0;
@ ensures from < a.length ==>
@ \result == (a[from].startsWith("-") ? 1 : 0) + countHits(a, from+1);
@*/

/*@ pure @*/ static int countHits(String[] a, int from) {
int n = 0;
for(int i = from; i < a.length; i++) {
if(a[i].startsWith("-")) { n++; }

}
return n;

}

Figure 4: A method, countHits, that could be used to avoid the \num of quantifier in the previous figure. The
requires clause specifies its precondition. The use of two ensures clauses is equivalent to the conjunction of the
postconditions they specify.
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However, this solution has some shortcomings. First, it requires a technique for reasoning about method calls in spec-
ifications (see Sec. 3.1). Second, specifiers generally have to introduce auxiliary methods with non-trivial (typically
recursive) specifications for each quantifier or comprehension, which increases the specification overhead significantly.
One possible line of attack might be to develop heuristics that cause the verification-condition generation to introduce
suitably axiomatized functions whose parameters are the variables mentioned in the generalized quantifier.

Without a solution to Challenge 2, users would have to choose between automatic theorem proving support and
specifications that are rich enough to mention generalized quantifiers and comprehensions.

3 Frame Properties
This section presents several challenges related to frame properties. Frame properties say what a method is permitted to
change during its execution [18]. The permitted modifications are often specified in so-called “modifies clauses” [57].
Our JML examples use “assignable clauses” to say what locations a method may assign. For instance, the assignable
clause of method push in Fig. 5 on the following page permits the method to assign to all fields of its receiver, but
nothing else. Assignable clauses are slightly more restrictive than modifies clauses. A method that assigns to a location
l and then re-establishes its original value still has to list l in its assignable clause, but since the method in effect does
not modify l , l need not be listed in the modifies clause. The challenges presented in this section do not rely on this
subtle difference.

3.1 Method Calls in Specifications
Assertions in Eiffel, JML, and Spec# rely on pure (that is, side-effect free) methods, so-called observers, to support
data abstraction. For instance, the BoundedStack interface in Fig. 5 on the next page contains an observer method
hasRoomFor, where stack.hasRoomFor(i) yields true if and only if stack has room for at least i additional
elements. This observer is used to provide a specification for method push without referring to the concrete imple-
mentation of the stack. Implementation independence is required by information hiding. Moreover, implementation
independence is crucial to supporting subtyping since different subtypes must satisfy a common specification, but may
have different implementations (or no implementations at all in the case of abstract classes and interfaces).

Recent papers by Cok [34] as well as by Darvas and Müller [38] present encodings of observer methods in program
logics. However, they do not explain how to reason about frame properties when the specification uses observer
methods.

Existing specification techniques for frame properties [78, 89, 90, 102] allow one to describe the fields that are
potentially modified by a method execution using an assignable clause. However, assignable clauses do not specify
the effects of a method execution on the results of observers. In our example, method push affects the result of
hasRoomFor for some arguments, but this effect is not declared in push’s assignable clause.

Since effects on observers are not covered by assignable clauses, the specification of method getOperand of
class Calculator does not express whether the result of stack.hasRoomFor is potentially affected by the
method. In fact, the specification in Fig. 5 on the following page does not prevent such an interaction between
getOperand and stack.hasRoomFor. Class StrangeStack in Fig. 6 on the next page stores the stack el-
ements in the unused part of the operand array of the Calculator object calc. Consequently, modifications of
calc.next affect the capacity of the stack and, therefore, the result of hasRoomFor. If a Calculator object c
and a StrangeStack object mutually use each other, then calling c.getOperand may indeed affect the result of
c.stack.hasRoomFor.

Due to its requires clause, method constOp may assume stack.hasRoomFor(1). However, we cannot
conclude that this property still holds when it is needed to satisfy the requires clause of the call to stack.push,
because that property might have been invalidated by the preceding call to getOperand. Consequently, we cannot
prove that the requires clause of push is satisfied, which causes the verification of constOp to fail. This example
illustrates an open challenge.

Challenge 3 Develop a specification and verification technique that allows one to determine the effects of heap mod-
ifications on the results of observer methods.
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public interface BoundedStack {
/*@ pure @*/ boolean hasRoomFor(int i);

//@ requires hasRoomFor(1);
//@ assignable this.*;
void push(int i);

/* other methods omitted */
}

public class Calculator {
/*@ spec_public @*/ BoundedStack stack;
int[] operands;
int next;

//@ requires stack.hasRoomFor(1);
public void constOp() {
int op = getOperand();
stack.push(op);

}

//@ assignable next;
int getOperand() {
int res = operands[next];
next++;
return res;

}

/* other class members omitted */
}

Figure 5: Interface BoundedStack uses the pure method hasRoomFor to provide an implementation-independent
JML specification for push. The notation this.* in push’s assignable clause means that all fields of this (in-
cluding the inherited model field objectState and its data group) are assignable. Class Calculator uses a
BoundedStack to store a stack of operands. The method constOp fetches an operand and pushes it onto the stack.
The modifier spec_public allows the field stack to be used in public specifications.

public class StrangeStack implements BoundedStack {
Calculator calc;
int count;

/*@ pure @*/ public boolean hasRoomFor(int i) {
return i <= calc.next - count;

}
}

Figure 6: A possible implementation of interface BoundedStack. The stack elements are stored in the unused
part of the operand array of the Calculator object calc. Consequently, modifications of calc.next affect the
capacity of the stack and, therefore, the result of hasRoomFor.
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3.1.1 Solution Approach 1: Listing Modified Observers

One approach to this challenge is to require a method’s assignable clause to list all observers that are potentially af-
fected by the method. This can be done in COLD-K [46, section 5.7], where the frame of a procedure specification lists
the variables, including the COLD-K equivalent of observer methods, whose value may be changed by the procedure.

However, this solution is obviously not modular.1 To see why, consider a class Sequence with an observer
method isEqualTo(BoundedStack b), which states whether the sequence and the stack contain the same val-
ues. Method push affects the result of isEqualTo by adding an element to the stack, but since class Sequence
might have been developed long after BoundedStack, method push cannot be required to declare its effect on
isEqualTo.

Besides not being modular, listing modified observers is also too weak since it handles only heap changes through
method calls. However, field updates also change the heap and, therefore, potentially affect the result of an observer.
Consider a variant of the Calculator example, where the implementation of getOperand is inlined into the
body of the method constOp. In this case, it is again not possible to prove that constOp’s call to push satisfies
the requires clause of push because we cannot prove that the assignment to the field next that now precedes the call
to push does not affect the result of hasRoomFor.

3.1.2 Solution Approach 2: Model Fields

Model fields [30, 84] are specification-only fields whose value is determined by applying a mapping (a representation
function) to the concrete state of an object. Therefore, model fields are similar to observers, but are restricted in two
ways. First, model fields do not have parameters. Second, since a model field encodes an abstraction of an object, it is
reasonable to require model fields to be confined [89, 102]. The value of a confined model field may depend only on
the state of the receiver object including the sub-objects of an aggregate object. We assume that the sub-object relation
is acyclic and is declared explicitly in programs, for instance, by using ownership annotations [32, 87]. Observers
typically serve a more general purpose than model fields. Therefore, the result of an observer method may depend on
the state of all reachable objects. For instance, an equals observer may depend on the state of its receiver and on the
state of its explicit parameter.

The confinededness of model fields allows one to specify frame properties for model fields in a modular way
[89, 102]. The modification of an object x potentially affects: (1) model fields of x and (2) model fields of aggregate
objects containing x as sub-object. Model fields of group 1 can be listed in assignable clauses. With appropriate
alias control, model fields of group 2 cannot be accessed by methods of x and, therefore, do not have to be listed in
assignable clauses [89, 102]. Note that the modularity problem of the isEqualTo example above stems from the
fact that this observer depends on the state of its explicit argument and is, therefore, not confined.

The similarity between model fields and observers suggests that the existing verification techniques for model
fields can be generalized to confined, parameterless observers. Fig. 7 on the following page shows a variant of the
BoundedStack example, where the observer hasRoomFor has been replaced by two confined, parameterless
observers getSize and getCapacity. In this example, we treat confined, parameterless observers like model
fields, that is, we require them to be listed in the assignable clause of each method that potentially affects their result
values.

Since getSize and getCapacity are confined, their results depend only on the state of the receiver and its
sub-objects. The rep annotation in the declarations of the fields stack and operands expresses that the stack and
operand array are sub-objects of the Calculator object. Since the sub-object relation is acyclic, we know that a
Calculator object c is not a sub-object of the BoundedStack object c.stack. Consequently, we can prove that
an execution of c.getOperand does not affect the values of c.stack.getSize and c.stack.getCapacity.
Hence, they need not be listed in getOperand’s assignable clause, and so we can conclude that the call, in constOp,
to getOperand does not invalidate the requires clause of push.

Soundness and modularity of existing verification techniques for model fields rely on the confinededness of the
model fields, because this allows one to determine whether a heap modification might affect the value of a model
field. Since heap modification does not affect parameter values, we expect that one can generalize these techniques
to confined observers with parameters such as hasRoomFor. This generalization supports, for instance, an equals
observer that tests for reference equality. Such an observer uses the parameter value, but does not read the state of the
explicit parameter. It is, therefore, confined. However, it does not support a version of equals that tests for deep

1 COLD-K also uses the third approach, described below, to deal with this modularity problem.
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public interface BoundedStack {
/*@ pure confined @*/ int getSize();

/*@ pure confined @*/ int getCapacity();

//@ requires
getSize() < getCapacity();
//@ assignable this.*, getSize;
void push(int i);

/* other methods omitted */
}

public class Calculator {
/*@ spec_public rep @*/

BoundedStack stack;
/*@ rep @*/ int[] operands;
int next;

/*@ requires stack.getSize() <
@ stack.getCapacity();
@*/

public void constOp() {
int op = getOperand();
stack.push(op);

}

//@ assignable next;
int getOperand() {
int res = operands[next];
next++;
return res;

}

/* other class members omitted */
}

Figure 7: Alternative JML specification of interface BoundedStack. The observers getSize and getCapacity
yield the number of elements and the capacity of the stack, respectively. They are parameterless and confined and can,
therefore, be treated like model fields. The confined modifier is supported by Spec#, but not by the current version
of JML. Listing observers in assignable clauses such as in the specification of push is currently not allowed in either
Spec# or JML.
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equality, which requires read access to the state of the explicit parameter. Therefore, this approach is promising for
many practical applications, but not a complete solution to the challenge.

3.1.3 Solution Approach 3: Read Effects

The solution approach based on model fields requires that observers read only the state of the receiver object and its
sub-objects. A verification technique can use this information about the read effect of an observer to determine which
heap changes (or write effects) potentially have an impact on the result of an observer. The read effect of a method m
is the set of all mutable heap locations that are potentially read by m [53]. Analogously, the write effect of m is the
set of all heap locations that are potentially modified by m .

In general, one can prove that a method m does not affect the result of an observer o if the write effect of m and
the read effect of o are disjoint. While specifications typically describe the write effect of a method in an assignable
clause, read effects are usually not specified explicitly.2 In the following, we discuss three approaches to using read
effects for reasoning about observers.

Mutable State Independent Observers. We call an observer mutable state independent if its result does not de-
pend on any mutable state. In other words, the read effect of a mutable state independent observer is the empty set.
Therefore, the result of a mutable state independent observer cannot be affected by any heap changes, which simplifies
reasoning significantly.

Consider class ArrayStack in Fig. 8 on the next page, which implements the BoundedStack interface from
Fig. 7 on the preceding page. The observer getCapacity is declared (mutable) state independent because it reads
only immutable fields, namely elems, which is immutable because it is final3, and elems.length, which is
immutable because the size of arrays cannot be changed in Java.

Since getCapacity is mutable state independent, its result cannot be affected by heap changes, in particular, by
the execution of getOperands in the Calculator example (Fig. 7 on the previous page).

Mutable state independent methods solve Challenge 3, but only for observers that do not read any mutable state,
such as many mathematical operations, and observers that operate on immutable state, such as most methods of
Java’s String class. However, they do not solve the challenge in general. For instance, method getSize of class
ArrayStack is not mutable state independent. Therefore, this approach does not suffice to verify method constOp
of class Calculator.

Complete Specifications of Result Values. The relevant read effect of an observer can be determined if the observer
has a complete specification of its result value, that is, an ensures clause of the form \result == E , where the
expression E refers to parameters, fields, and other observers with complete specifications of their result values. For
instance, method getSize in Fig. 8 on the following page completely specifies the result in terms of the field count.
With a complete specification of the result value, a conventional assignable clause is sufficient to determine whether a
method affects the result of an observer. In our Calculator example (Fig. 7 on the previous page), the assignable
clause of getOperand does not mention stack.count. Therefore, getOperand must leave stack.count
unchanged. From this information and the ensures clause of getSize in class ArrayStack, we can conclude
that the result of this observer is not affected. If class Calculator were to use class ArrayStack instead of the
interface BoundedStack, then one could use the stronger specification of getSize and getOperand to verify
method constOp.

The drawback of complete specifications of result values is that they are difficult to write in an implementation-
independent way. For instance, in class ArrayStack, the ensures clause of getSize violates information hiding
by mentioning the private field count (hence, in JML, count must be declared to be spec_public). This en-
sures clause would have to be expressed using a model field [30] in the interface BoundedStack (Fig. 7 on the
preceding page), since the field count cannot be declared in the interface. Furthermore, different subclasses of
BoundedStack might implement and specify getSize in different ways. Thus, complete specifications of result
values are only a partial solution to Challenge 3 and, in general, require additional support for data abstraction such as
model fields.

2However, JML does have an “accessible clause” that allows specification of read effects [82, Section 9.9.10].
3We assume that an observer is called only on fully initialized receiver objects. Therefore, it is safe to consider final fields as immutable state

because their value cannot be mutated after the object is initialized.
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public class ArrayStack implements BoundedStack {
final int[] elems;
/*@ spec_public @*/ int count;

//@ also
//@ ensures \result == count;
public /*@ pure @*/ int getSize() {
return count;

}

public /*@ pure state_independent @*/ int getCapacity() {
return elems.length;

}

//@ also
//@ requires getSize() < getCapacity();
//@ assignable this.*;
public void push(int i) { /* ... */ }

/* other methods omitted */
}

Figure 8: An implementation of interface BoundedStack. The observer getCapacity is mutable state indepen-
dent since it reads only immutable fields. The state_independent modifier is supported by Spec#, but not by
the current version of JML. In JML the keyword also must be used to start a specification for an overriding method;
it says that the given specification is joined with that of the method being overridden.
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Explicit Effect Specifications. The approaches discussed so far either work with a very coarse specification of read
effects (confined and mutable state independent observers) or infer read effects from ensures clauses. These approaches
are useful for special cases, but do not solve Challenge 3 in general. A more comprehensive solution can be achieved
by specifying the read effects of methods explicitly (see [46, section 10.11] [53, 69] for effect specifications).

Explicit specifications of read effects must be implementation independent to support interfaces and information
hiding. Clarke and Drossopoulou achieve that by building an effect system on top of an ownership type system [31].
Ownership type systems organize the heap hierarchically. This hierarchy of objects can be used in effect specifications.
For instance, the JML-style effect specification “accessible \under(this)” could express that the method
may read the state of its receiver and its sub-objects, that is, that the method is confined. In interface BoundedStack
(Fig. 7), we could annotate getSize and getCapacitywith this read effect. Since the Calculator object is not
a sub-object of the BoundedStack object (but vice versa), this read effect allows us to prove that the implementation
of getOperand does not affect the results of these observers.

Data groups [86, 91] enable more fine-grained effect specifications. A data group is essentially a named collection
of heap locations. Listing a data group in a read effect specification allows the method to read all fields in the data
group without exposing the names of these fields. Subtyping is supported by allowing subtypes to add new fields to
inherited data groups. In our example, getSize could be declared to read the size data group. The implementing
class, ArrayStack, would then declare count to be a member of data group size, which gives ArrayStack’s
implementation of getSize the right to read count. A linked list implementation of BoundedStack would put
all list nodes into the data group to allow getSize to iterate over the list and count the number of elements.

As originally described by Leino [86] (and as currently found in JML), a location may be declared to be a member
of more than one data group. Greenhouse and Boyland [53] observe that while this is fine for limiting what a method
may write (using assignable clauses), it does not give one a sound way to decide on possible interference between
methods, which is needed to solve this challenge. For example, in Fig. 5 on page 9, knowing the read effects of
hasRoomFor and the write effects of getOperand does not let one soundly say that getOperand does not
interfere with hasRoomFor if one is permitted to add new locations that are in both sets of data groups.

Recent work by Jacobs and Piessens [69] shows that explicit effect specifications seem to be the most promising
approach to Challenge 3. Specifying read effects might seem cumbersome, but the verification of multi-threaded
programs also requires these specifications [52, 110], which may justify the additional effort.

3.2 Modification of Static Fields
Most of the state of an object-oriented program resides in the fields of objects, but there are also situations where some
state is shared among all instances of a class. In those situations, one can use global variables, or static fields as Java
and C# call them. A problem arises in reasoning about when static fields change.

The program in Fig. 9 on the following page declares an abstract class whose overridable run method performs
an operation of some sort. The public method perform invokes run, bracketing the invocation with calls to now,
which retrieves the current time. The class keeps track of the number of operations that have completed since the
counters of the class were last reset, and also keeps track of the sum of the times elapsed during those operations.
Method perform ends by computing and printing the average time elapsed during an operation.

The correctness of the implementation of perform depends on operations being non-zero at the time the
average is computed, thus avoiding a division-by-zero error. The class invariant states that operations is at least
zero, so the increment will make operations positive. The implementation of perform is therefore correct,
provided the second call to now has no effect on the static field operations, more specifically that it does not set it
to zero. Such an undesired effect could, for instance, occur if an override of now in a subclass of Operation would
call reset. This shows that method specifications must express which static fields are potentially modified by the
method.

The effect of a method on instance fields is described by the method’s assignable clause. However, stipulating
that a method also affects only those static fields listed in the method’s assignable clause has a couple of fatal flaws.
First, the discipline violates information hiding, because public methods would have to advertise any private static
fields that they modify. Second, the assignable clause of a method would become overly verbose, because it would
have to include all static fields modified by all transitive callees. The need to declare modifications of both private
static fields and static fields modified by transitive callees in assignable clauses is due to potential reentrancy. Consider
for instance a method C.caller that calls D.middle, which in turn calls C.callee. If C.callee modifies a
private static field of class C, then this modification has to be advertised to C.caller and, therefore, must be declared
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import java.util.Date;
public abstract class Operation {
//@ public model JMLDataGroup runGroup;

private /*@ spec_public @*/ static long operations;
private /*@ spec_public @*/ static long elapsedTime;
private static Date date = new Date();

//@ public static invariant 0 <= operations;

//@ assignable runGroup;
protected abstract void run();

//@ assignable operations, elapsedTime, runGroup;
public void perform() {
long start = now();
run();
operations++;
elapsedTime += now() - start;

long avg = elapsedTime / operations;
System.out.println(avg);

}

//@ assignable operations, elapsedTime;
//@ ensures operations == 0 && elapsedTime == 0;
public static void reset() {
operations = 0;
elapsedTime = 0;

}

protected long now() {
return date.getTime();

}
}

Figure 9: A Java class with some static fields. In this example, the correctness of method perform relies on the fact
that executions of now do not change the value of operations. The field runGroup is a model field, and hence
only usable in specifications. The type JMLDataGroup is used in such declarations to declare data groups.
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in the assignable clauses of both C.callee and D.middle. Dealing with the information hiding problem and the
transitivity problem is an open challenge.

Challenge 4 Develop a specification and verification technique that allows one to determine the effects of methods on
static fields.

For instance fields, the information hiding problem and the transitivity problem are addressed by data groups [86]
and ownership [32]. Our solution approaches are to adapt these concepts to static fields.

3.2.1 Solution Approach 1: Data Groups

As explained in Sec. 3.1.3, data groups allow one to group several heap locations into one named collection. Data
groups support information hiding in assignable clauses by the following rule. The license to modify a data group
implies the license to modify the variables it contains. For example, in Fig. 9, the fields modified by run are specified
by the data group runGroup. Data groups also allow subclasses of Operation to introduce more instance fields
and declare that these are contained in runGroup. Thus, the assignable clause of run is both expressive and concise.

One can also attempt to use data groups to solve the information hiding problem for static fields. For example,
class Operation could declare a data group

//@ public static model JMLDataGroup staticGroup;

By declaring operations and elapsedTime to be contained in staticGroup, as in:

private static long operations; //@ in staticGroup;
private static long elapsedTime; //@ in staticGroup;

they no longer need to be declared as spec_public and the assignable clause of perform can be replaced by

//@ assignable staticGroup, runGroup;

which does not mention any private fields.
To address the transitivity problem, we must also declare nested containments of data groups. Suppose class Date

declares a data group Date.staticGroup and lists it in the assignable clause of method getTime (for instance,
because the method updates a cache stored in a static field). Then, in order for perform to own up to modifying
Date.staticGroup, we must arrange for that data group to be contained in Operation.staticGroup.

Nesting of data groups is also necessary to handle dynamic method binding. Consider for instance a dynamically-
bound method m declared in a class C, and a subclass D of C that overrides m. Let’s assume that C.m and D.m assign
to static fields of C and D, respectively. C.m lists a data group C.staticGroup in its assignable clause, but not D’s
data groups because in a modular setting, C cannot be expected to know all of its subclasses. Behavioral subtyping
requires that D.m satisfy the assignable clause of C.m. Therefore, the only way for D.m to be allowed to modify the
static fields in D is by declaring D.staticGroup to be contained in C.staticGroup.

To be useful, it must be possible, at verification time, to know that certain data group containments are not present
in a program. For example, in order to determine that the call to Date.getTime in Fig. 9 on the previous page does
not have an effect on operations, one needs to determine that Date.staticGroup does not (directly or transi-
tively) contain operations. Assume for instance that our specification technique would allow a class Illegal to
declare a data group to contain Operation.staticGroup and to be contained in Date.staticGroup. With
this declaration, operationswould be transitively contained in Date.staticGroup, but this containment could
not be determined in a modular way from the declarations of Operation and Date.

This example shows that a specification discipline needs to restrict where data group containments can be declared:
it can either make declarations of the form “data group g contains x” possible as part of the declaration of g (disci-
pline 1) or make them possible as part of the declaration of x (discipline 2). With discipline 1, one can determine
modularly all static fields contained in g by following the containment relation starting from g. With discipline 2,
one can determine modularly all data groups that contain x by following the inverse containment relation starting
from x. However, neither of the two declarations in isolation is expressive enough to handle our examples: disci-
pline 1 requires class C to declare that C.staticGroup contains D.staticGroup, but C cannot be expected to
know all of its subclasses; discipline 2 requires class Date to declare that Operation.staticGroup contains
Date.staticGroup, but Date cannot be expected to know all of its clients. Permitting a mix of both disciplines
leads to the modularity problem illustrated by class Illegal.
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In conclusion, using data groups to specify the modification of static fields cannot be made to fit the requirements
on data groups imposed by sound modular verification.

3.2.2 Solution Approach 2: Class Ordering

For instance fields, the transitivity problem of assignable clauses can be solved using ownership. For example, the
Boogie methodology [10, 87] allows a method to modify fields of objects directly or transitively owned by the receiver
without declaring these fields in the assignable clause. The intuition behind this rule is that owned objects are sub-
objects that belong exclusively to their owner. Therefore, client code does not need to know about their modification.

Ownership cannot directly be used for static fields because it prescribes a tree order of exclusive ownership. In
contrast, classes are typically global, that is, not exclusively owned by other classes. There is a variation of the Boogie
methodology that removes the restriction that entities be ordered by a tree according to the ownership relation. By
imposing some further restrictions on what variables may be named in invariants, this variation is able to allow any
partial ordering between entities. The variation has been developed in the context of invariants over static fields [88]
where the entities are classes.

We assume that the edges in the partial order among classes are declared explicitly. Typically, a class C succeeds
class D in the order if C is a client of D or if D is a subclass of C . In the former case, the edge is declared in the
client C ; in the latter case, it is declared in the subclass D . This shows that the methodology permits a mix of the
two disciplines described in Sec. 3.2.1. Soundness is restored by a simple link-time check. This partial order among
classes can also help with specifying and verifying frame conditions of static fields.

In this variation of the Boogie methodology, a class is in one of the states mutable , valid , or transitively-valid
( tvalid ). In the context of invariants over static fields, mutable means that the class is in a state in which its static
fields may be assigned. If a class is in state valid or tvalid , its invariant is known to hold. The methodology guarantees
the following property at all times: if a class is in state tvalid , then so are all the classes that it succeeds in the class
ordering. The typical precondition of a method is that the enclosing class is in state tvalid , which means that the
invariant of the enclosing class and all the classes that it succeeds in the class ordering may be assumed to hold.

A possible frame rule that governs the modification of static fields is: a method is allowed to affect the static fields
of any class that, in the pre-state of the method, is not in state mutable [88]. For example, since class Operation
in Fig. 9 on page 15 is a client of class Date, Operation would be declared to succeed Date in the class ordering.
The precondition of perform would say that class Operation is in state tvalid , which then implies that class
Date is also in state tvalid . Since method now does not rely on the invariant of Operation, it would only require
that Date be in state tvalid . This allows the implementation of now to meet the precondition of Date.getTime,
namely that Date is in state tvalid .

In order to mutate the state of a class, the methodology says that the class has to be in state mutable . Thus,
perform would need to change Operation into state mutable before assigning to the fields operations and
elapsedTime. Because Operation succeeds Date, this has no effect on the state of Date. Now the pro-
posed frame condition comes into play: because Operation is in state mutable during the executions of now and
Date.getTime, the frame rule says that the static fields of Operation are unchanged. This allows the implemen-
tation of perform to be verified.

But this frame rule is not entirely satisfactory, because it says nothing about the static fields of classes not in
state mutable . Imagine that method now would require class Operation to be in state tvalid . Then method
perform would make Operation mutable only between the calls to now instead of during the execution of the
whole method body. Consequently, now would be allowed to modify static fields of Operation without declaring
these modifications in its assignable clause, and we could not verify perform. In this particular example, since now
is a method of class Operation, one could add a stronger ensures clause to express that it does not modify static
fields of Operation. However, this would in general not be possible if the method was declared in a different class.
One could imagine making the frame rule stricter, to say that a method in a class C can only ever have an effect on
the static fields in classes that C succeeds. However, this does not help if the relative order of two classes is unknown.

3.3 Class Initialization
Modern programs often rely on large library components. Reducing the time to load and initialize these libraries is
important to improve the responsiveness of the programs. A solution employed by both the Java Virtual Machine and



3 FRAME PROPERTIES 18

the .NET Common Language Runtime is to support lazy class initialization. This means that a class is not loaded and
initialized until its first use. While this feature can improve responsiveness, it complicates reasoning about programs.

Consider the following program snippet:

int x = A.a;
int y = B.b;
int z = A.a;
assert x == z;

where A.a and B.b are static fields in two classes, A and B. If one expects the reading of static fields to have no side
effects, then one would conclude that the assertion will hold. However, given the following class declarations:

class A {
public static int a;
static { a = 0; }

}
class B {

public static int b;
static { b = 0; A.a = 5; }

}

it is possible, in the presence of lazy class initialization, to arrive at the assertion with local variables x and z having
the values 0 and 5, respectively. This would happen if class B has not yet been loaded at the time B.b is read; the
reading of B.b will then first invoke class B’s static initializer, which sets A.a to 5.4

We certainly need to allow static initializers to mutate state, but it would be horribly non-modular to have to reason
about the possibility of such mutations happening any time something from another class is referenced. What we
would like is a specification and verification technique that confines the side effects of class initializers in such a way
that one can ignore the specific time at which they actually occur.

Challenge 5 Develop a specification and verification technique for lazy class initialization.

3.3.1 Solution Approach 1: Limit Class Initialization Invocations

In some programming systems, it may be possible to limit when class initializers are invoked. For example, the .NET
Common Language Runtime allows some flexibility in when class initialization takes place. If class initializers are
invoked only when the program reaches a procedure boundary (call or return), then it may be possible to extend a
solution to Challenge 4 to also account for the state being modified as part of class initialization. A solution along
these lines would still need to develop restrictions on what state static initializers are allowed to modify.

3.3.2 Solution Approach 2: Class Ordering

Reasoning about eager class initialization, including the eager initialization of dynamically loaded classes and libraries,
can be facilitated by a partial order on the classes as described in Sec. 3.2.2. That methodology prescribes when it
is possible to rely on invariants declared about static fields [88]. Perhaps it is possible to use the class ordering to
restrict the modifications of static initializers to those static fields declared in predecessor classes. By doing so, it
seems possible to regain the property that reading a static field leaves the program’s state unchanged.

Note that it is not sufficient simply to define a rule that a class may only assign to static fields declared in super-
classes. For instance, if class B in the example above were declared to be a subclass of A, then the same problem
would exist. Also, note that it is not sufficient simply to define a rule that says a class can only assign directly to its
own static fields. In the example above, we could replace B’s direct assignment to A.a by a call to a method in A that
would do the actual assignment to A.a, in which case the problem would still exist.

The two solution approaches we have alluded to here may, at best, hint at some ingredients that may be useful in
solving Challenge 5. A full solution remains an open challenge.

4This problem has been noted by others. For example, N. G. Fruja mentioned it in his talk at the .NET Technologies workshop in Plzeň, Czech
Republic, in June 2004.
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4 Heap Data Structures
Over the last decade, research in program verification has seen tremendous improvements in reasoning about heap
structures and aliasing [13, 87, 90, 101, 102, 103, 105, 108, 111]. In this section, we discuss two of the remaining
challenges, the verification of invariants of complex object structures and the verification of finalizers.

4.1 Invariants of Complex Object Structures
Almost all interesting data structures consist of several interacting objects. The invariant of such a data structure
relates the state of several objects, which implies that modifications of these objects potentially affect the invariant.
Consequently, a sound verification technique has to generate proof obligations for all methods that modify an object
of the data structure to maintain the invariant.

We illustrate invariants of object structures by the implementation of the Composite Pattern [50] in Fig. 10 on the
next page. Each Composite object stores references to its direct sub-components in an array. The invariant of a
Composite object x expresses that the field x .total contains the number of components of the composite tree
rooted in x . Therefore, the invariant of x depends on the state of x , the array x .components, and the state of x ’s
direct sub-components. Any method that modifies any of these objects potentially violates x ’s invariant. Therefore,
the invariant leads to proof obligations for the methods of Component and its subclasses, methods of Composite,
and any method that has access to the components array. To handle the latter group of methods in a modular way,
one has to employ some form of alias control to limit this group, for instance, to the methods of Composite.

Our example illustrates that reasoning about invariants of object structures has to deal with the complications of
subclassing and aliasing, and is, therefore, a rather difficult challenge:

Challenge 6 Develop a specification and verification technique for invariants of complex object structures.

4.1.1 Solution Approach 1: Ownership-Based Invariants

Ownership [32] provides encapsulation for object structures, which can be used to verify invariants modularly [87,
101, 103]. Ownership organizes a data structure hierarchically into an interface object (the owner), which is used by
clients to access the data structure, and representation objects, which are accessed only via their owner. An admissible
ownership-based invariant of an object x depends only on fields of x and objects owned by x . Therefore, x has
full control over any modifications that potentially affect the invariant, and a verification methodology can impose
appropriate proof obligations on the methods of x .

Although many object structures are well encapsulated and can be verified using ownership, there are several
practically relevant data structures that expose their objects to clients. For instance, implementations of the Composite
pattern typically do not encapsulate the sub-components of a composite. Clients can add components to any composite
of the hierarchy, not only to the root composite. Forcing clients to always access a hierarchy through its root r would
be highly inefficient because the add operation would have to determine the roots of all sub-hierarchies between r
and the composite where the new sub-component should be added. In general, this requires a costly traversal of
the hierarchy. Consequently, a Composite object does not own its sub-components, and the invariant of class
Composite is not an admissible ownership-based invariant. The invariant is nevertheless maintained because the
addComponent method triggers a bottom-up traversal of the composite structure to re-establish the invariant. In our
example, this traversal is done by method addToTotal, which adjusts the total fields of the (transitive) parent
composites.

In summary, ownership-based verification is a powerful technique that is useful for many practical examples, in
particular, aggregate objects. However, some heap data structures such as the Composite pattern maintain interesting
invariants, but do not follow an ownership discipline [13]. Therefore, ownership-based invariants are only a partial
solution to Challenge 6.

4.1.2 Solution Approach 2: Visibility-Based Invariants

While ownership-based invariants gain their modularity from a strong encapsulation, visibility-based invariants [13,
87, 101, 103] gain their modularity from enforcing that all invariants that are potentially affected by a field update
are visible in the method that contains the update. Therefore, it is possible to show modularly that these invariants
are preserved. In our example, we assume that the classes Component and Composite are declared in the same
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class Component {
protected /*@ spec_public @*/ Composite parent;
protected int total = 1;

//@ protected invariant 1 <= total;
}

class Composite extends Component {
private Component[] components = new Component[5];
private int count;

//@ private invariant total == 1 + (\sum int i; 0 <= i && i < count; components[i].total);

//@ requires c.parent == null;
public void addComponent(Component c) {
// resize array if necessary
components[count] = c;
count++;
c.parent = this;
addToTotal(c.total);

}

//@ requires 0 <= p;
private /*@ helper @*/ void addToTotal(int p) {
total += p;
if(parent != null) { parent.addToTotal(p); }

}
}

Figure 10: An implementation of the Composite pattern. As expressed by the JML invariant in Composite, the
total field stores the number of (sub-)components of a component. For simplicity, we omit the invariants that
express that each component is correctly linked to its parent. The invariant shown in Composite uses \sum to
express the addition of all component totals. Method addToTotal is declared as helper, which means that it
cannot assume and need not preserve any invariants. The helper and private modifiers were missing in the
published version of this article, but are required for the example to be correct.
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import java.io.*;

public class TempStorage {
private /*@ nullable @*/ FileReader tempFile;
private /*@ nullable @*/ FileWriter logFile;

//@ private invariant tempFile != null && logFile != null;

public TempStorage() throws IOException {
tempFile = new FileReader("/tmp/dummy");
logFile = new FileWriter("/tmp/log");

}

protected void finalize() throws Throwable {
super.finalize();
logFile.write("Bye bye");
logFile.close();
tempFile.close();

}
}

Figure 11: The finalize method closes the files used by the receiver object. Although non-null is the default in
JML, we include, for emphasis, a declaration that makes this invariant explicit.

package and, therefore, mutually visible. In particular, Composite’s invariant is visible in every method that updates
Component’s total field. Therefore, it is possible to generate proof obligations that these methods maintain the
invariant.

Visibility-based invariants are useful for data structures that do not follow an ownership discipline. However,
they have several severe drawbacks. First, the visibility requirement is often too strict. For instance, visibility-based
invariants must not depend on array elements because every method in a program that gets hold of a reference to an
array can modify it. Without alias control (such as ownership), the set of such methods generally cannot be determined
modularly. Second, the visibility requirement does not support subtyping well. For instance, the invariant of a subclass
of Component in a different package cannot refer to the total field because this invariant is not visible where the
total field is declared. If the subclass invariant could refer to total, then methods in Component’s package
could break this subclass invariant by assigning to total. However, since the subclass invariant is not visible in
these methods, they cannot be required to maintain it. Third, visibility-based invariants increase the number and
complexity of proof obligations. For instance, the fact that the composite data structure forms a tree is trivial if
composites own their sub-objects (since ownership is a tree order) but has to be specified and verified explicitly if
no ownership discipline is applied. Such a specification involves reachability predicates, which are difficult to reason
about, especially by automatic theorem provers [40].

Due to these drawbacks, visibility-based invariants are useful to complement ownership-based invariants, but can-
not replace them. The invariant of the composite example in Fig. 10 on the preceding page can be expressed using
a combination of ownership (for the components array) and visibility (for Component-Composite). However,
this combination still suffers from the second and third drawback. Complex heap structures such as the Composite
pattern require new solutions to Challenge 6.

4.2 Finalizers
Finalizers are special methods that are invoked by the runtime system before an unreachable object is de-allocated.
Their purpose is mainly to free system resources. For instance, the finalize method in Fig. 11 closes the files used
by its receiver object.

Since the runtime environment of languages like Java and C# may invoke the garbage collector in any execution
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state, programs have no control over the execution of finalizers. This leads to two problems for verification.
First, a finalizer might be invoked in a state in which certain object invariants do not hold. In our example, the

constructor of TempStorage throws an exception if opening the files fails. In this case, the object is never fully
initialized and thus its invariant does not hold. However, the finalizer of TempStorage relies on the object invariant
and, therefore, will abort with a null-pointer exception when a partly-initialized object is destroyed. A verification
technique can prevent an application program from calling a method on a partly-initialized object, for instance, by
making explicit which object invariant may be assumed to hold [10]. However, finalizers are called by the runtime
system and, therefore, cannot be controlled.

Second, like any other method, a finalizer potentially modifies the heap. Since finalizers might be called in any
execution state, a verification technique has to deal with spontaneous heap changes, which is even worse than the heap
changes caused by static initializers (see Sec. 3.3).

Dealing with these problems is an open challenge:

Challenge 7 Develop a verification technique for finalizers.

A solution to this challenge is necessary to guarantee that verification is not unsound for programs containing
finalizers.

4.2.1 Solution Approach: Severe Restrictions

Since the runtime system may invoke finalizers in any execution state, reasoning about finalizers is similar to reasoning
about multi-threaded programs. However, multi-threading is very general, whereas finalizers are mainly used for the
special purpose of freeing system resources. Therefore, a specification and verification technique may impose strong
requirements on finalizers that would be too restrictive for multi-threading.

To deal with the first problem, we do not see an alternative to simply not making any assumptions about the heap
in finalizers. Any property a finalizer requires has to be checked at runtime. For instance, the method invocations in
our example have to be guarded by checks that the corresponding receivers are non-null. In order to allow finalizers
to call methods of other objects, which typically require their invariants to hold, it would be helpful to allow programs
to explicitly check at runtime whether certain invariants hold.

Concerning the second problem, it seems necessary to allow a finalizer to modify only those objects and system
resources that are exclusively used by the object that is being destroyed. In particular, finalizers must not modify
global state such as static fields. Techniques such as ownership type systems may be useful for reasoning about the
sharing of objects. However, it is unclear how to guarantee that certain system resources are not shared, for instance,
how to prevent two objects from creating handlers for the same file.

5 Control Flow
Program logics that can handle jumps [8, 11, 16, 37, 65] solve the earlier verification challenges of dealing with
unstructured control flow such as abrupt termination of loops and exceptions. However, a remaining challenge is to
deal with higher-order features, for instance, a filter method that takes a reference to a predicate method that determines
whether a data element should be filtered out of a collection. Higher-order features occur in object-oriented programs
in the form of objects that act as functions, which we refer to as function objects.

A type-safe way of implementing function objects in object-oriented languages is the Strategy pattern [50]. This
pattern consists of an interface with the signature of the method that should be passed as a function object and sub-
classes implementing this method. Alternatively, C#’s delegates [42] and Eiffel’s agents [43] are language features
that provide type-safe function objects. In this section, we discuss how to specify methods that use function objects
and how to verify invocations of function objects. We illustrate the challenges by the Strategy pattern and delegates
with a single underlying method, but the discussion also applies to multicast delegates and Eiffel agents.

5.1 Specification of Methods that Use Function Objects
Fig. 12 on the following page shows a typical application of function objects. In this example, the format method
of class Paragraph takes a delegate as an argument. This delegate represents a format algorithm that is applied to
the text paragraph. Class Formatters provides two implementations of formatters that can be used to instantiate
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class Paragraph {
char[][] text;
int width;

//@ assignable text;
public void format(Formatter f) {
f(this);

}
}

//@ assignable p.text;
delegate void Formatter(Paragraph p);

class Formatters {
//@ assignable p.text;
public static void alignLeft(Paragraph p)
{ /* modify p.text */ }

//@ assignable p.text;
public static void alignRight(Paragraph p)
{ /* modify p.text */ }

}

Figure 12: An implementation of text paragraphs with two formatters. The formatter for a text paragraph is passed to
the format method as a delegate. In this example, we have used Java and JML notation extended with C# delegates.

class Paragraph {
/*@ spec_public @*/ char[][] text;
int width;

//@ assignable text;
public void format(Formatter f) {
f.formatParagraph(this);

}
}

interface Formatter {
//@ assignable p.text;
void formatParagraph(Paragraph p);

}

class AlignLeft implements Formatter {
//@ also assignable p.text;
public void formatParagraph(Paragraph p)
{ /* modify p.text */ }

}

class AlignRight implements Formatter {
//@ also assignable p.text;
public void formatParagraph(Paragraph p)
{ /* modify p.text */ }

}

Figure 13: An alternative implementation of the example in Fig. 12 using the Strategy pattern (in Java and JML).

the delegate Formatter. The formatters format the text by directly modifying the text array of the Paragraph
object p. Fig. 13 shows the example using the Strategy pattern instead of a delegate.

Since different format algorithms can have very different behavior, we cannot completely specify their effect in
an ensures clause of the Formatter delegate (or the formatParagraph method of the interface Formatter of
Fig. 13). This is typical for function objects. The various methods a function object can be instantiated with often have
almost no common behavior that could be described in a specification of the function object. For instance, the update
methods of different observers in the Observer pattern may react to an event completely differently. This distinguishes
function objects from virtual methods with overriding implementations, where typically all implementations share
some common behavior.

It is also not possible to give a direct and complete specification of the effect of format on a Paragraph object.
Verifying such a specification would require knowledge about the effect of the invocation of the function object, but
this knowledge is not available because the function object does not (and cannot) have a strong specification.

Since we cannot give a direct specification for format, we would like to specify its behavior relative to the
behavior of the function object. In other words, we would like to specify that format applies the delegate instance f
(or the method f.formatParagraph) to its receiver object. However, to use f in a mathematical description of the
behavior of format one must summarize f’s behavior mathematically. This brings us again to the problem of using
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method calls in specifications. In JML, using f directly in a specification would require that the delegate f be pure,
and hence that all methods the delegate can be instantiated with also be pure. But this is not the case in our example
since these methods modify the text array. Function objects that are non-pure methods are common and occur, for
instance, in the cooperation between containers and layout managers in the Java Abstract Windowing Toolkit. Thus
reasoning about function objects is an interesting research challenge:

Challenge 8 Develop a specification technique for methods that use function objects.

5.1.1 Solution Approach 1: Pure Methods

Our first solution approach works for function objects that contain pure methods, which may be used in specifications.
Recent work on the encoding of pure methods [34, 38, 69] can be generalized to function objects. These encodings
introduce a mathematical function for each pure method of a program. The functions for pure methods are axiomatized
based on the method specifications.

A possible encoding of pure delegates is a mapping from delegate objects to the functions for the underlying pure
methods. However, such a second-order encoding is not supported by automatic theorem provers like Simplify [40].
Therefore, one has to develop alternative encodings in first-order logic.

This approach allows us to specify and verify applications of function objects to pure methods. However, this
approach does not work for non-pure methods like in the Paragraph example (Fig. 12 on the previous page and
Fig. 13 on the preceding page) because these methods cannot be used in specifications.

5.1.2 Solution Approach 2: Pure Check Methods

Based on the previous approach, we can handle non-pure function objects by always passing pairs of methods, the non-
pure method we want to call and a pure boolean check method that simply checks the effect of the non-pure method.
Objects containing such pairs of methods are easily implemented in the Strategy pattern, where we can simply add a
second method to the interface.

Fig. 14 on the next page illustrates this approach. In addition to the impure method formatParagraph, inter-
face Formatter declares a pure check method isFormatted, which is used in the specification of format. The
formal connection between the method formatParagraph and its check method isFormatted is the ensures
clause of formatParagraph.

Now we can use the first approach (Sec. 5.1.1) to verify the example. Provided that we know the concrete type of
the Formatter object passed to format, we can use the specification of the check method in that type to reason
about the effects of format.

This approach is a partial solution to Challenge 8 for the Strategy pattern. Unfortunately, it increases the speci-
fication overhead because pure check methods have to be added. Moreover, it requires a solution to Challenge 3 to
be useful in practice. It is not immediately clear how to extend this approach to delegates, which do not support the
pairwise combination of a method and its check method.

5.1.3 Solution Approach 3: Specification Reflection

C#’s delegates, Eiffel’s agents, and the Strategy pattern allow a specification language to equip function objects with
specifications and purity annotations. The previous two solution approaches show how to use such specifications for
static verification. Function objects can also be implemented by reflection, for instance, using class Method in Java.
This solution is not type-safe and does not allow one to associate specifications with function objects. It may be
possible to extend the reflective capabilities of the language to also allow access to specifications [29], or to extend the
specification language to permit access to the specifications of such objects [72]. However, the details of how to do
static verification with such specifications remain to be worked out.

5.1.4 Solution Approach 4: Model Programs and Enriched Traces

Yet another approach to this challenge is based on ideas of the refinement calculus [6, 100]. The “greybox” approach
to specification of Büchi and Weck [20, 21] specifies such higher-order procedures using abstract programs. JML’s
“model programs” are designed to allow for specifications in this style. As an example, the specification of method
format from Fig. 14 on the following page could be given as follows.
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class Paragraph {
/*@ spec_public @*/ char[][] text;
int width;

//@ assignable text;
//@ ensures f.isFormatted(this);
public void format(Formatter f) {
f.formatParagraph(this);

}
}

interface Formatter {
//@ assignable p.text;
//@ ensures isFormatted(p);
void formatParagraph(Paragraph p);

/*@ pure @*/
boolean isFormatted(Paragraph p);

}

class AlignLeft implements Formatter {
//@ also
//@ assignable p.text;
public void formatParagraph(Paragraph p)
{ /* modify p.text */ }

//@ also
//@ ensures (* \result == p is left aligned *);
public /*@ pure @*/
boolean isFormatted(Paragraph p)
{ /* ... */ }

}

class AlignRight implements Formatter {
//@ also
//@ assignable p.text;
public void formatParagraph(Paragraph p)
{ /* modify p.text */ }

//@ also
//@ ensures (*\result == p is right aligned*);
public /*@ pure @*/
boolean isFormatted(Paragraph p)
{ /* ... */ }

}

Figure 14: A JML specification of the example in Fig. 13 on page 23 using pure check methods. In JML, (* and *)
delimit informal specifications.
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//@ public model_program { f.formatParagraph(this); }
public void format(Formatter f) { f.formatParagraph(this); }

The model program in this case is quite simple, and just exposes the essential form of a conforming implementation
to the clients. So in this case, there are essentially no other correct implementations. In more interesting cases, one
can use specification statements to leave parts of such a method up to the implementation. Details of the semantics of
model programs in JML remain to be worked out (especially how to verify that a method satisfies the specification of
such a model program [113]). While the model program in theory contains enough information to reconstruct a trace
of the program’s execution, the technique by itself does not solve the challenge, because it does not provide a direct
way for clients to verify interesting properties about calls to methods that have model program specifications.

This challenge is more directly addressed by the work of Soundarajan and Fridella [114]. In their work, speci-
fications for function objects have an additional part, called an “extended specification”. The extended specification
describes what traces of method calls may result from the method’s execution. These traces allow clients to derive
stronger constraints on the post-state, by plugging in (more) exact specifications for the method calls in the trace.
That is, the extended specification is parameterized on the meaning of the methods it calls; if the client knows more
about such methods, then this extra knowledge can be used to strengthen what is known about the post-state. While
reasoning using extended specifications and traces is not simple, it seems like a promising direction for this challenge.
Soundarajan and Fridella claim both soundness and a kind of completeness for their technique.

5.2 Verification of Invocations of Function Objects
In the previous subsection, we discussed how to specify methods that use function objects. In this subsection, we focus
on a related problem, namely how to prove that the invocation of a function object is correct.

Fig. 15 on the next page shows an implementation of a storage system. The Archive delegate allows one to create
function objects for the store methods of different archives. In method Main, the Archive delegate is instantiated
with the instance method store. As illustrated by this example, instantiation of a delegate with an instance method
also fixes the receiver object of calls to this method, in this case, tapeArchive.

Invoking a function object triggers a call to the underlying method. Verification has to ensure that the requires
clause of this method holds when the function object is invoked. Conversely, the properties guaranteed by the under-
lying method should be available at the invocation site. The challenge is to enable this kind of reasoning.

Challenge 9 Develop a specification and verification technique for function objects.

5.2.1 Solution Approach 1: Pre-Post-Specifications and Refinement

With the Strategy pattern, invocations of function objects are verified using the specification of the method in the Strat-
egy interface. Behavioral subtyping enforces that all implementations of this Strategy method refine its specification.

To adapt this approach to delegates, we associate each delegate declaration with a specification similar to method
specifications. When a delegate type D is instantiated with a method m , one has to prove that m ’s specification
refines D ’s specification. More precisely, one has to prove that D ’s requires clause is stronger than m ’s and that
D ’s ensures clause is weaker than m ’s when D ’s requires clause holds. At the invocation site of the delegate, it
suffices to prove that the requires clause of D holds, which implies that the weaker requires clause of m holds as
well. Conversely, one may assume D ’s ensures clause after the invocation.

Ignoring for the moment the requires clause of method store, which will be used in a later example, the delegate
Archive and the method store have identical requires and ensures clauses. Therefore, store’s specification
trivially refines the specification of Archive, which allows us to verify the delegate instantiation in method main.
When the delegate is invoked in method log, we have to prove that the requires clause of the delegate is satisfied,
which in this example also is trivial.

Equipping delegates with specifications and checking a refinement relation when a delegate is instantiated allows us
to verify many delegate invocations such as the example in Fig. 12 on page 23. However, this approach is insufficient
when a delegate is instantiated with a method whose specification refers to properties of the receiver object. The
problem is illustrated in Fig. 15 on the next page by the requires clause of store, which requires the model field
isReady of the receiver to be true. In order to ensure that the specification of store refines the specification of
Archive, Archive’s requires clause has to express properties of the receiver of the underlying method. This can
be done using the target field of C#’s Delegate class:
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class Tape {
public void save(Object o)
{ /* ... */ }

// other methods omitted
}

class TapeArchive {
/*@ nullable @*/ Tape tape;

//@ public model boolean isReady;
//@ represents isReady
//@ <- tape != null;

//@ ensures isReady;
public TapeArchive()
{ tape = new Tape(); }

//@ requires isReady;
public void store(Object o)
{ tape.save(o); }

//@ requires isReady;
//@ ensures !isReady;
public void eject()
{ tape = null; }

}

delegate void Archive(Object o);

class Client {
public static void log(Archive logfile,

String s) {
logfile(s);

}
}

public class Main {
public static void main(String[] args) {
TapeArchive tapeArchive = new TapeArchive();
Archive archive =

new Archive(tapeArchive.store);
Client.log(archive, "Hello World");

}
}

Figure 15: A implementation of a tape archive and its client. The represents clause says that the model field
isReady is true when a tape is loaded in the archive. The model field provides an implementation-independent
specification for the methods of TapeArchive. The delegate Archive provides clients with a uniform way of
storing data in different archives.
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interface ArchiveStrategy {
void apply(Object o);

}

class TapeArchiveAdapter
implements ArchiveStrategy {

/*@ spec_public @*/ TapeArchive ta;
//@ invariant ta.isReady;

//@ requires t.isReady;
public TapeArchiveAdapter(TapeArchive t) {
ta = t;

}

public void appy(Object o) {
ta.store(o);

}
}

class Client2 {
public static
void log(ArchiveStrategy logfile,

String s) {
logfile.apply(s);

}
}

class Main {
public static void main(String[] args) {
TapeArchive tapeArchive =
new TapeArchive();

ArchiveStrategy archive =
new TapeArchiveAdapter(tapeArchive);

Client2.log(archive, "Hello World");
}

}

Figure 16: An implementation of the storage example based on the Strategy and Adapter patterns.

/*@ requires _target != null && _target is TapeArchive
@ ==> ((TapeArchive)_target).isReady;
@*/

With the appropriate substitution, it is trivial to show that this requires clause implies the requires clause of method
store. However, the above requires clause entails two problems. First, using target in the delegate specification
requires callers of the delegate to reason about properties of the receiver object. This is cumbersome because these
properties have to be propagated from the instantiation of the delegate (where the receiver is known) to each invocation
site. For instance, we have to add a similar requires clause to method log to verify the delegate invocation. Second,
the specifier of Archive has to foresee that the delegate might be instantiated with a method of TapeArchive.
Otherwise, they would not specify a requires clause for Archive that accesses isReady. This deprives delegates of
much of their flexibility. In particular, adding a new method such as DiskArchive.save to the program requires
an additional requires clause for Archive, which cannot be added without changing the existing code.

These problems are avoided by an implementation using a simple Strategy pattern instead of delegates. The model
field isReady could then be declared in the Strategy interface and used in the specification of the Strategy method.
Different subclasses of the Strategy interface can provide different representations for the model field. However,
such a simple Strategy pattern requires that all implementations of the Strategy method have the same name and be
declared in subclasses of the Strategy interface, which is often too restrictive. These restrictions are eliminated when
the Strategy pattern is combined with an Adapter pattern. We discuss an approach for this design next.

5.2.2 Solution Approach 2: Visibility-Based Invariants

The code in Fig. 16 shows a pattern-based implementation of the storage example from Fig. 15 on the previous page.
The Strategy interface ArchiveStrategy declares the method apply, which is used to invoke the function object.
To achieve the same flexibility as with delegates, in particular, to be able to instantiate the function objects with meth-
ods with different names or from classes that do not implement ArchiveStrategy, we combine the Strategy with
an Adapter pattern. Class TapeArchiveAdapter is the adapter for class TapeArchive. It delegates invocations
of apply to the store method of the TapeArchive instance ta. A similar adapter would be needed to instantiate
the function object with a method DiskArchive.save.

In this pattern-based implementation, the receiver for an invocation object is stored in a field of the adapter object.
Therefore, properties of the receiver object can be expressed as object invariant of the adapter as shown in class
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TapeArchiveAdapter.
Let’s assume a visible state semantics for invariants [57, 98], where all object invariants hold in the pre- and post-

states of all method executions. In our example, we can prove that the instantiation of TapeArchiveAdapter in
method main satisfies the requires clause of the constructor, which establishes the invariant. The visible state seman-
tics allows us to assume that the invariant of logfile holds in the pre-state of method log and, therefore, to verify
the invocation of the delegate. The verification of log neither needs additional requires clauses nor involves proper-
ties of the receiver of the function object. This shows that invariants solve the first problem of solution approach 1
(Sec. 5.2.1). The second problem of solution approach 1 is solved because the invariant is declared in the adapter class,
not the Strategy interface. In our example, the implementor of the interface ArchiveStrategy does not have to
foresee that the function object will be instantiated with TapeArchive.store.

If the invariant of a function object refers to the state of the receiver of the underlying method, it can be violated
by modifying this receiver. Suppose method main in Fig. 16 on the preceding page calls tapeArchive.eject()
before calling Client2.log. The call to eject violates the invariant of the adapter archive. Therefore, the
extended example should not verify. As discussed in Sec. 4.1, existing work provides two modular verification tech-
niques for invariants of object structures.

Ownership-based invariants require the adapter object to own the receiver of the underlying method. They prevent
the call tapeArchive.eject() because ownership forces all accesses to an owned object to be initiated by the
owner, in this case, archive. This is clearly too restrictive for many programs. Consider for instance an imple-
mentation of the model-view-controller architecture where the controller uses function objects to dispatch events to
the model. Using ownership would mean that the model can be accessed only through callbacks from the controller,
which is not realistic. Moreover, existing ownership systems support only single ownership. Therefore, the receiver
of a function object could not be part of another ownership hierarchy.

Visibility-based invariants are better suited for function objects. The invariant of TapeArchiveAdapter is
an admissible visibility-based invariant if TapeArchiveAdapter is visible in class TapeArchive, for instance,
because both declarations are contained in the same package. The visibility of the invariant allows us to impose proof
obligations that each method that modifies isReady preserves the invariant. The specification in Fig. 15 on page 27
does not allow one to show this proof obligation for method eject.

Visibility-based invariants provide a partial solution to Challenge 9, but leave some problems unsolved. First, they
require the adapter to be declared in the same package as the fields mentioned in its invariant. In particular, it is not
possible to declare an adapter with an invariant that mentions a field from a library class because in this case, the
adapter class is not visible where the field is declared. This is a severe restriction on reuse. Second, with a visible state
semantics, invariants have to be preserved by all methods of a program. In our example, the call x .eject violates the
invariant of any TapeArchiveAdapter object that references x . Consequently, eject needs a requires clause
that no such TapeArchiveAdapter object exists. In a pattern-based implementation, this requirement can be
established by setting the ta field of all relevant TapeArchiveAdapter objects to null. However, delegates do
not provide such an operation to detach their target. Barnett and Naumann [13] present a powerful methodology for
dealing with visibility-based invariants, but adapting their methodology to the peculiarities of delegates has not yet
been attempted.

6 Practical Considerations
In addition to the technical specification and verification challenges described above, there are also challenges of a
more practical nature. These involve the ease of using the specification language, its expressiveness, and tool support
for both specification and verification.

6.1 Library Specifications
One of the most important and difficult practical problems is obtaining specifications of standard class libraries, such as
the libraries that come with Java and C#. These libraries are especially important for the verification of real programs,
since most programs make heavy use of them; hence calls to methods in such libraries can only be verified if the
libraries are specified. For example, if the assignable clause for a library method m is not given, then callers of m
have to assume conservatively that m modifies the state of all reachable objects. In particular, m might be overridden
in subclasses such that a call to m may modify even fields that are not accessible to the library implementation of m .
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Furthermore, library methods are usually called to achieve some particular postcondition, so fairly complete functional
specifications will be needed by many clients.

The sheer size of the libraries that come with C# and Java makes the task of writing functional specifications
for these libraries daunting and costly. It would be ideal if the designers of these libraries had written specifications
for them, but failing that, some automated inference of specifications can be very helpful in making this task more
practical. Of course, an automated inference process cannot precisely infer design intent, so some decisions, for
example about preconditions, will need human judgment. Moreover, human input will be needed to decide what are
the appropriate abstractions. However, if a person decides what an appropriate abstraction would be for a type, then it
may be possible to automatically infer a reasonable specification (or set of likely specifications for many cases).

Challenge 10 Provide assistance in specifying libraries of classes.

One tool that can help with creating specifications is Daikon [22, 45]. It can infer specifications by performing data
mining on information gathered from test runs. However, using it requires a test suite that will exercise the relevant
modules. A similar approach, but without the requirement of a test suite, was taken by Houdini [48], which guessed
various method specifications and used ESC/Java [49] to prune away invalid guesses. Nimmer and Ernst worked to
combine these approaches by using ESC/Java to prune invariants produced by Daikon that could be statically shown
to be invalid [104].

However, all of these efforts produce specifications that describe the effects of methods on (private) fields. Allow-
ing users to specify abstractions, or inferring them, remains a challenge.

6.2 Dealing with Multiple Tools
Specifiers often write specifications in different styles and at different levels of detail and completeness. One reason
for this is that they may only be interested in using certain tools (such as a runtime assertion checker or static checker)
and not others. Having several different kinds of tools able to work on specifications is a benefit, as different tools
have different strengths and weaknesses [22]. However, having a choice of tools means that documentation is needed
that explains what features of the specification language are relevant for each of the tools. For example, unbounded
quantifiers are not usually considered executable by runtime assertion checking tools.

To design a specification language that serves the needs of several tools is thus a balancing act. The semantics of
the specification language has to be designed to work with all the different kinds of tools. Fortunately, it seems that
the needs of runtime checking and static verification are not incompatible [79]. Nevertheless, besides needing more
complete specifications, static verification often needs extra specification constructs, such as intermittent assertions
and assumptions, loop invariants or specifications of the entire effect of a loop [58, 59], and axioms. Different static
verification systems may also have different needs, for example based on their different strategies for handling loops
and recursion. This leads to the following challenge.

Challenge 11 Carefully document what specification language constructs are useful for which tools, and make sure
the semantics of all these constructs are compatible.

One approach to organizing documentation that may be helpful to users is to specify a graduated sequence of
language subsets. For example, one might specify a subset for runtime assertion checking, a larger one for extended
static checking, and a yet larger one for formal verification. This would also help users understand what constructs
are useful for what tools. The Omnibus environment takes such an approach and offers suggestions for how different
specification styles can be combined [119]. Yet another way to organize the documentation might be based on which
features are most often needed.

A related practical problem is that when one first starts using a new feature of a specification language, it often
must be used everywhere at the same time. For example, if one adds an assignable clause to a method M , one must
specify assignable clauses for all methods that M calls, and then all methods called by those methods, etc. Tools
might helpfully point out a (bottom-up) ordering that would allow useful checking during intermediate phases of such
additions.

Another related practical problem is to hide the complexity of various verification techniques from users by suitably
chosen defaults. One would like the flexibility to override such defaults when necessary, but suitable defaults can
greatly ease the burden of writing and reading specifications in the normal case, especially if the need to override the
defaults is rare.
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In our experience with Spec#, we have found it awkward to override the defaults, because it is difficult to be
specific about which part of the default should be overridden. For example, the current default of an ordinary method
in Spec# is that all parameters are “peer consistent” on entry and that the return value is “peer consistent” on exit.
If one wants a different precondition for, say, the receiver parameter, then one would mark the whole method as not
getting any default specifications, which means that the default specifications for the other parameters must all be
provided explicitly. The rationale behind this design of providing only one way to turn off (all) default specifications
for a method was to simplify the way a user works with defaults, but this has not worked out so smoothly. Perhaps
some support from an integrated development environment (IDE) could help here, since an IDE might be able to, upon
request by a user, display the defaults and allow them to be explicitly deleted or changed. The IDE could still keep the
defaults from view in the common cases.

7 Conclusions
In this paper, we described specification and verification challenges that we currently face in our work on JML and
Spec#. In trying to write down various challenges and solution approaches, we also found a few problems that turned
out to already have solutions. Two of the more notable of these are the following:

• Supporting field-like properties of objects, which is solved by using model fields [30, 84]

• Specifications of coroutine-like iterators, which is solved by the techniques of Jacobs et al. [68].

For many of the remaining challenges, we could at least give partial solutions or describe promising approaches.
We hope that the identification and description of the remaining challenges will help increase the understanding of
some important issues in specification and verification of sequential object-oriented programs, and that the described
approaches will help point out some likely avenues for future research.

Our list of challenges is not complete. For example, we did not consider how to specify and verify programs
that use multi-threading, reflection, dynamic class loading, and other advanced features. There are certainly plenty of
challenges in these and other areas. Furthermore, in the short period of time between our paper’s submission and the
final version, we had to rewrite several sections to accommodate the latest results; this shows how active the field is.
Nevertheless, we hope that our list of challenges and their analysis will help, in a small way, the field make progress
towards the grand challenge of verified software.
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