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Abstract. Advice in aspect-oriented programming helps programmers
modularize crosscutting concerns by allowing additions and changes to a
program’s execution. However, formal reasoning about the functional
behavior of aspect-oriented programs requires a non-modular, whole-
program search to find applicable advice.
To allow modular reasoning, we describe a discipline that categorizes
aspects into two sorts: spectators and assistants. “Spectators” are stat-
ically checked to not modify the behavior of the code they advise; this
restriction lets them remain unseen. Unlike spectators, “assistants” are
not restricted in their behavior. However, for modular reasoning one
must be able to identify all applicable assistants, hence assistants must
be explicitly accepted by the code they advise. Besides allowing modular
reasoning, this discipline permits the use of existing idioms, and appears
to be statically verifiable and practical for software development. Indeed,
expert aspect-oriented programmers seem to use such a discipline.

1 Introduction

Aspect-oriented programming [20] deals with the problem of modularizing cross-
cutting concerns. Cross-cutting concerns are features of a program that are or-
thogonal to its main decomposition [35]. Such concerns inherently result in scat-
tering of code across various modules in the main decomposition of the program.
From the perspective of the main decomposition, such cross-cutting code is said
to be tangled . Aspect-oriented programming moves code for cross-cutting con-
cerns into separate modules, called aspects, and declares how code, advice, is
associated with events in the main decomposition at run time.

This declarative association of advice with events is a powerful technique
for eliminating the scattering of code. It can result in modules that are more
? This paper is adapted from Clifton’s Ph.D. thesis [7] and builds on ideas from our

earlier work [8]. The work of both authors was supported by NSF grant CCF-04-8078.
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focused and concise. It promotes modularity and hence helps modular reasoning.
As Laddad [23, §1.3.3] points out, well-written aspects consolidate code for a
concern that would otherwise be scattered. Thus, one can check that such a
concern is properly implemented (e.g., that a policy is enforced as desired) by
just looking at a single aspect; without aspect-oriented techniques, such checks
would need a whole-program search to find the scattered code and to check that
it was written in all the required places.

However, aspects also present challenges to code understanding and main-
tenance. These problems occur because the semantics of weaving advice into a
program’s execution scatters the effects of advice throughout a program. Thus,
to formally reason about functional behavior, programmers must, in general,
know what advice applies to each piece of code.

In the early years of object-oriented programming, similar concerns were
raised about polymorphic method invocations. Such method invocations can in-
voke code of a subtype, making it hard to formally reason about the functional
behavior of method calls without a whole program search for all possible overrid-
ing methods in subtypes. The discipline of behavioral subtyping [3, 11, 25, 28, 29]
addresses these concerns. It places a constraint on subtype programmers: over-
riding methods in a subtype must satisfy the specification of the overridden
supertype methods. In exchange for programming with this constraint, clients
of the supertype may reason about invocations of supertype methods without
worrying about the effects of overriding methods in unseen subtypes. Behavioral
subtyping thus provides both practical guidance to programmers and has been
proven to allow sound modular reasoning. Our goal is to present an analogous
discipline for aspect-oriented programming.

1.1 The Behavioral Subtyping Analogy

In this section we describe the desired analogy in more detail.

1.1.1 Modular Reasoning There are various definitions of modularity in
the literature. The weakest definition might be that an analysis is modular if
the portion of the program that must be considered to perform the analysis
is a well-defined, proper subset of the whole program. At the other end of the
spectrum, the definition might require that an analysis must consider only the
code for a single compilation unit. Work that uses this definition, particularly in
the area of component-based programming [16], typically requires a compilation
unit to declare its expectations of external modules [34]. These expectations can
then be verified during composition of the unit with external modules.

We will use a definition between these two extremes: a language allows modu-
lar reasoning if it is possible to reason about a compilation unit in that language
based on the code of that compilation unit and the specifications of any modules
(e.g., classes, interfaces, and packages) referred to by that compilation unit. A
compilation unit refers to a module M if it explicitly names M , is lexically nested
within M , or if M is a standard module in a fixed location (such as Object in
Java). Java [17] with JML [26] and Eiffel [29] both satisfy this definition.
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In languages that allow modular reasoning the cognitive burden on the pro-
grammer is reduced—the specifications of referenced modules serve as behavioral
abstractions of all the code implementing those modules.

1.1.2 Object-Oriented Non-modularity In single-dispatch object-orient-
ed languages, the dynamic type of the receiver object is used to select the appro-
priate method to execute for a given invocation. Such dynamic selection of the
target method can prevent modular reasoning. For example, consider the dec-
laration of Point in Figure 1 and its method, move. The //@-comments before
move’s declaration give its behavioral specification in JML.

– The clause “assignable pos” says that the pos field of the object, but no
other locations, may be changed by the method.

– The clause “ensures ...” says that, after move returns, the value returned by
getPos() is equal to the sum of the dist argument and the value returned
by getPos() before move was called.

public class Point {

private /*@ spec_public @*/ int pos;

//@ ensures \result == pos;

public final /*@ pure @*/ int getPos() {

return pos;

}

/∗ ... ∗/

//@ assignable pos;

//@ ensures getPos() == dist + \old(getPos());

public Point move(int dist) {

pos = pos + dist;

return this;

}

}

Fig. 1. Point Class

Suppose an object of static type Point is passed to a method client, as
in Figure 2 on the next page. If modular reasoning is sound, then the programmer
can reason about the invocation of move based on its specification in Point. That
is, if the first assertion in the figure holds, then the second assertion is valid
based on the specification of Point’s move method. The definition of modular
reasoning requires that the programmer should not have to consider possible
unseen subtypes of Point when reasoning, since they are not mentioned in the
client code. But, by subsumption, an instance of just such an unseen subtype may
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public void client(Point p) {

/∗ ... ∗/
assert p.getPos() == 0;

p.move(-10);

assert p.getPos() == -10;

}

Fig. 2. Sample Client Code

be passed to client. What if (as in Figure 3) the subtype RightMovingPoint
overrides method move, but does not satisfy the specification of move in Point?
Then modular reasoning such as that described for client is not valid. If an
instance of RightMovingPoint is passed to client, then after the invocation of
p.move(-10), the assertion fails: p.getPos() returns 10, not -10.

public class RightMovingPoint extends Point {

public Point move(int dist) {

if (dist < 0) return super.move(-dist);

else return super.move(dist);

}

}

Fig. 3. RightMovingPoint Class

1.1.3 Behavioral Subtyping Modular reasoning is not an inherent property
of object-oriented languages. However, the discipline of behavioral subtyping
restores sound modular reasoning by imposing the specification of Point on
all its subtypes [11, 25, 28]. RightMovingPoint does not correctly implement
a behavioral subtype of Point, because its implementation does not satisfy the
specification of move in Point. Behavioral subtyping is often described by saying
that the behavior of a subtype should not be surprising with respect to the
specified behavior of a supertype. Behavior is surprising if the (possibly unseen)
code executed in response to a method invocation fails to satisfy the visible
method’s specification.

1.1.4 Non-modularity in Aspect-Oriented Languages Filman and Fried-
man [13] assert that aspect-oriented languages are characterized by two features:
quantification and non-invasiveness (originally “obliviousness”). Quantification
is the declarative specification of a set of points, in either the static code or the
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dynamic control flow graph of a program, where aspect-oriented code is to be
added. Non-invasiveness is the execution of additional aspect-oriented code at a
program point, P , without effort by the programmer of the code containing P .
Filman and Friedman point out that object-oriented subtyping with subsump-
tion is a form of non-invasiveness. Aspect-oriented programming languages allow
programmers much greater latitude in defining behaviors with unseen code.

Just as modular reasoning is not a general property of object-oriented pro-
gramming languages in the absence of behavioral subtyping, modular reasoning
is not a general property of aspect-oriented languages. To show this, we present
an aspect-oriented extension to the Point example.

Figure 4 gives an aspect, OneWayMoving, that modifies the behavior of Point
instances in the same way as RightMovingPoint [8]. OneWayMoving declares a
piece of around advice. This advice intercepts calls to Point’s move method. If
the argument passed to the client is negative, then, just as in RightMovingPoint,
control proceeds to Point’s move method with the parameter set to the absolute
value of the original parameter. As with RightMovingPoint, the client pro-
grammer’s reasoning in Figure 2 is not correct in the presence of OneWayMoving.

public aspect OneWayMoving {

Point around(int dist): call(Point *.move(int)) && args(dist) {

if (dist < 0) return proceed(-dist);

else return proceed(dist);

}

}

Fig. 4. OneWayMoving Aspect

In AspectJ the advice is applied without explicit reference to the aspect from
either the Point module or a client module. Thus, modular reasoning about the
Point module or a client module has no way to detect that the behavior of
the move method will be changed when the Point module and OneWayMoving
are composed. In AspectJ the programmer must potentially consider all such
aspects and the Point class together in order to reason about the Point module.
Some potentially applicable aspects, such as OneWayMoving, may not even name
Point directly, but instead may use wild card type patterns. Therefore, just as in
object-oriented programming without behavioral subtypes, the non-invasiveness
of aspect-oriented languages can prevent modular reasoning.

1.1.5 Summary and Solution Characteristics The discipline of behav-
ioral subtyping restores modular reasoning to object-oriented programming lan-
guages. It does this by requiring that an overriding method satisfy the specifi-
cation that it inherits from the superclass method [11, 25, 28]. This discipline
is enabled by the fact that the superclass method is visible from the declaration
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of the overriding method. This is crucial. A class declares its superclass. The
declaration allows the class to inherit or override methods from the superclass.
So the class declaration containing an overriding method provides a reference to
the overridden method.

Thus the non-invasiveness in object-oriented programming only cuts one way.
From a method call site, the actual code to be executed may be in an unseen,
overriding method. However, from the declaration site of the overriding method,
the superclass method is visible, allowing the overriding method to satisfy the
superclass method’s specification.

In contrast, the non-invasiveness in aspect-oriented programming cuts both
ways. From a method call site, the actual code to be executed may be in an un-
seen aspect. And from the declaration site of an aspect, because of quantification,
the code to be advised may also be unseen. For example, the aspect might only
advise code that implements some interface, and the code implementing that
interface might not be known or even exist when the aspect is written. Thus,
with aspect-oriented languages one cannot adopt the solution of behavioral sub-
typing: it is not enough to simply require that advice satisfy the specification of
the code it augments.

This, then, is the core challenge in developing a programming discipline that
allows modular reasoning about aspect-oriented programs. If reasoning is to be
modular, then how can one reason about potentially advised code when (1) un-
seen aspects may apply to the code, and (2) aspects may be developed without
(complete) knowledge of the code that will be advised?

1.1.6 Requirements for a Solution The OneWayMoving aspect represents
poor aspect-oriented programming, just as the RightMovingPoint class in Fig-
ure 3 represents poor object-oriented programming. This is because both exam-
ples change the behavior of move with regard to a Point’s position; behavior
that is, by virtue of move’s strong specification, restricted to Point itself.

How do aspect-oriented programmers avoid such problems? Experienced pro-
grammers separate concerns into orthogonal aspects. Orthogonality of these as-
pects helps the reader of a program to understand it, provided she can find the
applicable aspects. Specifically, if she wants to reason just about the functional
behavior of a code fragment, she must just consider the base program code. If
she is concerned with the persistence behavior of a code fragment in the base
program, she must just consider the single aspect for persistence. Based on these
observations, a detailed design discipline must have two key features:

1. easy identification of applicable aspects, and
2. orthogonality of the concerns expressed by those aspects.

The first feature is provided in some aspect-oriented languages, for example,
in Hyper/J’s module interconnect language and in Weave.NET’s XML-encoded
aspect bindings [24]. In AspectJ, the first feature is generally provided by tool
support, though this limits the possible analyses to those supported by the tool.
We demonstrate that the easy identification of applicable aspects can be more
generally accommodated at the language level.



7

The second feature is possible in existing aspect-oriented languages (indeed,
this is largely what makes them aspect-oriented). However, we are not aware of
any other languages that explicitly help software engineers to statically verify
such orthogonality.

1.2 The MAO Discipline

In what follows we describe the MAO discipline for modular, aspect-oriented
programming that: (1) allows modular reasoning, (2) permits the use of existing
aspect-oriented idioms for separation of concerns, (3) can be verified by a combi-
nation of static typechecking and simple verification conditions, and (4) can be
incorporated into a practical, aspect-oriented language. We support these claims
this paper by:

– describing the MAO discipline;
– presenting a small set of language features, as an extension to AspectJ (ver-

sion 1.2), designed to facilitate the discipline;
– developing extensions to JML for specifying features of aspect-oriented pro-

grams; and
– sketching an algorithm for calculating the effective specification of an expres-

sion in our AspectJ extension, given the specifications for any potentially
applicable advice.

The language features are formally described in detail in Clifton’s dissertation [7].
Clifton has described, and proved sound, a static type system for a core calculus
containing these features. He has also proved key meta-theoretic properties that
demonstrate the effectiveness of the MAO discipline and our proposed language
features for modular aspect-oriented reasoning.

While Clifton’s dissertation is primarily formal, in this paper, we concentrate
on the informal description of the MAO discipline and our proposed language ex-
tensions, to both AspectJ and JML. We refer the reader to Clifton’s dissertation
for the formal details that support the claims we make about the discipline.

2 Shared Responsibility

In the discipline of behavioral subtyping all the burden of ensuring modular rea-
soning is placed on the author of an overriding method. A “client” programmer—
that is, a programmer writing code that calls the method—may reason about
a call without seeing the overriding method. The specification of the superclass
method is normally sufficient for reasoning.

However, in the MAO discipline, the burden is shared. The division of re-
sponsibility is mediated by the MAO discipline’s division of aspects into two
sorts based on whether the advice might introduce “surprising” behavior [8].
Surprising behavior causes the specification of the advised code to be violated.

For advice that is not surprising, the advice author must satisfy certain re-
strictions (detailed below). Having done so, the client programmer can remain
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safely oblivious to the benign advice when reasoning about advised code. On the
other hand, for advice that might introduce surprising behavior, the language
must allow the client programmer to modularly identify what advice may apply.
Having identified this advice, the client programmer must compose the specifica-
tions of the advice and the advised code, thus finding the effective specification
of the code in the presence of the advice.

The MAO discipline satisfies the requirements for solving the modular rea-
soning problems that we identified in Section 1.1.6 as follows. (1) Aspects that
would be unseen in regular AspectJ are divided into two kinds. Those with
unsurprising advice remain unseen, but do not affect the behavior of the code
within the bounds of its specification. Those with surprising advice must be
made visible so that their effects can be considered. (2) For aspect development,
the programmer of unsurprising advice must satisfy a set of restrictions, but
having done so, she does not need to consider the specific behavior of the code
that will be advised. For surprising advice, she must simply satisfy the specifica-
tion of the advice; the responsibility for reasoning about the interaction of such
surprising advice and the advised code falls to the client programmer.

3 Proposed Language Features

In this section we describe some language features that are sufficient to support
the MAO discipline. For concreteness we describe these features as extensions
to AspectJ. Our running example expands on the Point example of Figure 1.

The key feature to support modular reasoning in our proposal is to divide
aspects into two sorts: spectators and assistants. “Spectators” are limited in
that they may not introduce surprising behavior. “Assistants” are not limited in
this way. Since spectators do not change the specified behavior of the modules
to which they are applied, they preserve modular reasoning even when applied
without explicit reference by said modules. Hence spectators preserve most of
the flexibility of the current version of AspectJ. Because assistants can change
the specified behavior, to maintain modular reasoning they can only be applied
to modules that reference them.

3.1 Assistants

We call aspects that can change the specified behavior of a module assistants.
The MoveLimiting aspect of Figure 5 on the facing page is an assistant; it
changes the behavior of Point’s move method to limit the maximum change
in position from any single call. The term “assistant” is intended to connote a
participatory role for these aspects.

What information is needed to modularly reason about behavior when assis-
tants are present? Quite simply, a module must explicitly name those assistants
that may change its behavior or the behavior of modules that it uses. We say
that a module accepts assistance when it names the assistants that are allowed
to change its behavior or the behavior of modules that it uses. Assistance may
be accepted by either:
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1 public aspect MoveLimiting {

2 private static int MAX_DISTANCE = 10;

3 /∗ Constrains distance of any single movement ∗/
4 Point around(int arg) :

5 execution(* mao.Point.move(int)) && args(arg)

6 {

7 if ( arg > MAX_DISTANCE ) {

8 return proceed( MAX_DISTANCE );

9 } else {

10 return proceed( arg );

11 }

12 }

13 }

Fig. 5. MoveLimiting Example (in AspectJ)

– the module to which the assistance applies (called the implementation mod-
ule), or

– a client of that module.

3.1.1 Explicit Acceptance of Assistance AspectJ does not currently in-
clude syntax for explicitly accepting assistance. Explicit acceptance of assistance
can, however, be roughly simulated by the “hyper-cutting” pattern in AspectJ.
In this pattern, one creates a marker interface, and the pointcuts of assistants
would only apply to types that implement that interface [22, pp. 214–216]. An
implementation module can then implement the marker interface, and thus in-
directly accept the advice of the assistant. However, if a single client declares
that the implementation module is a subtype of the marker interface (using the
declare parent syntax of AspectJ), then the change affects all clients of the im-
plementation module, but no trace appears in the implementation module; hence
such changes are not modular. Annotations can also be used for hyper-cutting,
with similar modularity issues.

To automate the hyper-cutting pattern, and to avoid non-modular uses of it,
we propose a simple syntax extension for accepting assistance:

accept TypeName;

where TypeName must be the name of an assistant respecting Java’s usual
namespace rules for packages and imports [17, §6.5]. Multiple accept clauses
may appear in a single module, following any import clauses. For example, the
Point module could accept the MoveLimiting assistant by declaring:

accept MoveLimiting;

We will generalize this idea with concern maps below.
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When an implementation module accepts assistance, that assistance is ap-
plied to every applicable join point within the implementation module, regardless
of the client making the call.

On the other hand, if the assistance is accepted by a client module, then that
assistance is only applied to applicable join points in that client. Other clients
that did not accept the assistance would not have it applied to their join points.

AspectJ includes two pointcut descriptors that roughly simulate this behav-
ior. Advice on join points described via call pointcuts is woven into all client
code. Advice on join points described via execution pointcuts is woven into the
implementation code. Unfortunately, clients of such an implementation module
have no (modular) way to know that such advice will be applied to their calls
to the implementation module. In our proposal clients of such an implementa-
tion module would know about the advice; this is an example of how explicitly
accepted assistance allows modular reasoning.

3.1.2 Concern Maps Modular reasoning in aspect-oriented programming
languages can be achieved if modules explicitly accept assistance. But some
assistants are applicable to code throughout an entire package or program, for
example, a common exception handler. It would be inconvenient and error prone
to include accept clauses for these assistants in every module. In fact, such accept
clauses would represent code tangling.

We propose concern maps to avoid these problems. A concern map is a source
code construct that specifies a mapping from modules in a package, or set of
packages, to the assistance that is accepted by those modules. In our initial
design, each package may contain at most one concern map. In file-system-based
implementations, the concern map for a package would be given in a file named
package.map stored in the directory containing the package source code. The
syntax for concern maps is given in Figure 6 on the next page. Figure 7 gives an
example concern map for the package named mao.

The type pattern *, in line 3 of Figure 7, says that all types in the mao package
accept the MoveLimiting assistant. (We do not allow concern maps to specify
fully qualified names in type patterns; instead we implicitly concatenate the
name of the map’s package with the given pattern. Thus the pattern “*” in the
example, signifies the pattern mao.* in the global namespace. We do this because
the map should only be able to specify acceptance of assistance for local types
and types in “subpackages”.) The Rectangle pattern in line 7 of the example
says that, in addition to the MoveLimiting assistant, the mao.Rectangle class
also accepts the AreaStretching assistant. As with accept clauses in modules,
the identifier in an accept clause of a concern map is subject to Java’s usual
namespace rules for packages and imports.

One can think of concern maps as like an AspectJ “introduction”; they add
accepts clauses to modules in the local package and subpackages. It would de-
feat the purpose of accepts clauses to allow their global introduction. So unlike
AspectJ introductions, concern maps are lexically scoped.
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AspectMap :: = PackageDecl ImportDeclsopt MappingListopt

PackageDecl :: = package Identifier;

MappingList :: = Mapping MappingListopt

Mapping :: = TypePat { AcceptListopt }
AcceptList :: = AcceptClause AcceptListopt

AcceptClause :: = accept Identifier;

DomainClause :: = domain Identifier;

where TypePat refers to type patterns in the AspectJ Programming Guide [4, Appendix
A], and ImportDecls refers to regular Java import declarations [17, §7.5].

Fig. 6. Syntax of Concern Maps

1 package mao;

2
3 * {

4 accept MoveLimiting;

5 }

6
7 Rectangle {

8 accept AreaStretching;

9 }

Fig. 7. Example Concern Map

The assistance accepted via concern maps still allows modular reasoning. To
wit, the package clause at the beginning of a module names all the possible loca-
tions where a concern map naming that module might appear. The programmer,
or a tool, must only look in that package, or possibly any outer packages, to find
the applicable concern map. More specifically, the assistance accepted by a given
module consists of:

1. all assistants named in accept clauses in the module,
2. all assistants to which the module is mapped by the package.map file for

the module’s package, and
3. all assistants to which the module is mapped by any package.map files in

outer packages (i.e., packages surrounding the module’s package).

This recursive search for acceptance of assistance in the module’s package and
outer packages allows the programmer to specify widely-applied assistance in
the root of a package hierarchy, package-specific assistance in the concern map
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of the package it applies to, and module-specific assistance in the modules it
applies to. 3

3.2 Spectators

Explicitly accepted assistance supports modular reasoning. Concern maps give
the programmer flexibility in accepting assistance. But what about “development
aspects”[21, p. 61], like tracing or debugging code, that are only sometimes
included in an executing program? In a language that just supported explicitly
accepted assistance, a programmer would need to edit concern maps or source
code modules to control the application of development aspects.

To resolve this we propose that an aspect-oriented programming language
should also support a category of aspects that we call spectators. A spectator
is an aspect that does not change the specified behavior of any other module.
Because it does not change the behavior, we will say that a spectator views
(rather than “advises”) methods. The term “spectator” is intended to connote
the hands-off role of these aspects.

A spectator must not change the control flow to or from a viewed method
and may only mutate the state that it owns. We define ownership using an alias
controlling type system [1, 2, 6, 12, 31]. Each location in the heap is declared to
belong to a “concern domain”, as described below. We do not allow mutation
of global state, as that is not handled in the supporting formalism, described in
Clifton’s dissertation.

3.2.1 Verifying Spectatorhood The primary challenge of implementing
this part of our proposal lies in determining whether a given aspect is really a
spectator. Clifton’s dissertation formalizes a static analysis that conservatively
verifies this. We outline this analysis here. It has two parts—verifying control
flow and verifying that only appropriate locations are mutated.

In general the problem of verifying that a spectator does not disrupt control
flow is undecidable (by reduction to the halting problem); however, one can
restrict the sort of control flow allowed in spectators to achieve an approximate
solution. In spectators:

– before advice must not throw a checked exception and must not explicitly
throw an unchecked exception on any control flow path,

– around advice must proceed, exactly once, to the advised method on all
control flow paths, and

– after advice must not throw a checked exception and must not explicitly
throw an unchecked exception on any control flow path.

3 Strictly speaking, packages in Java and AspectJ are not hierarchical. They merely
provide a hierarchical namespace. For example, code in an inner-package in Java does
not have access to package-privileged code from any outer packages. Our treatment
of concern maps reflects the namespace hierarchy of packages, while still respecting
their non-hierarchical encapsulation properties.
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This solution is approximate because it still allows advice in spectators to
include (possibly infinite) looping constructs and to call other (possibly non-
terminating) methods, provided any checked exceptions declared by those meth-
ods are caught and handled. These conditions correspond to partial correctness
(i.e., behavioral correctness ignoring termination) and ignore Java Errors, which
we treat as outside the scope of specification.4

In addition to these control flow checks, the checks for “spectatorhood” must
also verify that the proceed expression in around advice passes all arguments to
the advised method in their original positions and without mutation. Any value
returned from the advised method (or exception thrown) must be passed on by
the advice without mutation.

The requirement that around advice in spectators proceeds exactly once, and
with the same arguments, can be solved syntactically. Clifton’s dissertation [7]
separates spectator’s around advice into before and after parts with a mandatory
proceed that implicitly uses the original arguments. The problem of returning
the value of the advised code can also be solved through language design, by
changing the semantics of spectator’s around advice to do that. (Clifton’s dis-
sertation uses a surround keyword for spectator’s around advice and prohibits
the use of around in spectators.) In spectator’s around advice, the special vari-
able reply can be used in the after part of surround advice to refer to the result
of mandatory proceed. A similar, but more draconian, restriction would be to
only allow spectators to use before and after advice.

The mutation analysis for spectators is more challenging. It is closely related
to the problem of verifying frame axioms [5]. In fact one can think of spectators
as having an implicit frame axiom that prevents modification of locations not in
the home domain of the spectator. Clifton’s dissertation proves the soundness of
this approach.

3.2.2 Concern Domains Informally, concern domains represent a partition-
ing of the heap into sets representing orthogonal, or cross-cutting, concerns.
Concern domains allow these cross-cutting concerns to be represented in the
type system. This enables efficient static detection of tangled code. We sketch
the design of this language feature here.

An additional declaration form in concern maps declares the concern do-
mains that may be used to partition the heap. Thus, the programmer controls
which actual concerns are expressed in the type system. Public concern domain
declarations have the simple form domain g;, where the g is a concern domain
name, drawn from the set of Java identifiers. A program may have zero or more
concern domain declarations. Like accept clauses, concern domain declarations
may also appear with class and interface declarations.

The signatures of declarations, along with object instantiation expressions,
determine the actual partitioning. Figure 8 gives an updated version of the Point
class using concern domains. Also in the figure is a sample spectator declaration.
In class and aspect declarations a list of concern domain variables are given
4 This also corresponds to JML’s treatment of Errors.
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following the class or aspect name. These concern domain variables are in scope
for the remainder of the declaration (see lines 1 and 18). The first concern domain
variable listed, home in both examples, represents the home domain for instances
of the class or aspect. Any remaining concern domain variables (other in line 18
of the example) are used to endow instances of the class or aspect with permission
to reference objects in other domains. An extends clause of a class declaration
specifies the mapping of the concern domain variables to those of the superclass.

1 public class Point in <home> {

2 private /*@ spec_public @*/ int pos;

3 //@ ensures \result == pos;

4 public final /*@ pure @*/ int getPos() writes() {

5 return pos;

6 }

7 /∗ ... ∗/
8
9 //@ assignable pos;

10 //@ ensures getPos() == dist + \old(getPos());

11 public Point in <home> move(int dist) writes(home) {

12 pos = pos + dist;

13 return this;

14 }

15 }

16 package mao;

17
18 spectator DistanceTracking in <home, other> {

19
20 /∗∗ Records all the distances moved by all points. ∗/
21 private ArrayList in <home,home> distances

22 = new ArrayList() in <home,home>;

23 private readonly Point in <other> lastPoint;

24
25 before(int delta, readonly Point in <other> targ)

26 writes(home) :

27 execution(* Point in <other>.move(int))

28 && args(delta) && target(targ)

29 {

30 lastPoint = targ;

31 distances.add(delta);

32 }

33 }

Fig. 8. Point Class and DistanceTracking Spectator Using Concern Domains
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We extend the object instantiation instruction, new, to include concern do-
main arguments (see line 22). The static type system ensures that new expres-
sions within static contexts, such as the main method of a program, only use the
names of declared, public concern domains. Furthermore, new expressions within
a method or advice declaration must only use concern domain variables that are
in scope. When the body expression of the method or advice is evaluated, the
concern domain variables will be replaced with the concern domain names used
to instantiate the self object of the evaluation.

Furthermore, methods and advice have an effects clause of the form writes
(g1, . . . , gn), where the gi are names of concern domains, added to their decla-
rations (see line 11 and line 26). The type system ensures that no other domains
may be modified at evaluation time (modulo domain dependencies).

(Although not needed for verifying spectatorhood, the language also adds
concern domain dependency declarations, of the form g1 varies with g2; to
aspects. These declarations allow an assistant aspect to declare that one concern
domain may be modified when code that is declared to modify another domain
is executed. These dependency declarations allow assistant aspects to modify
other domains besides those written by some advised code, but they also allow
a static analysis of what other domains might be modified.)

The type system enforces a non-interference property so that a non-global,
signature-level search can identify all the code that might mutate a particu-
lar concern domain. By non-global we mean that only the types declared in
a package or subpackage declaring a concern domain must be considered. By
“signature-level”, we mean that only method and advice headers, and not their
bodies, must be considered. This search is related to the global configuration in-
formally argued for by Kiczales and Mezini [19], but concern maps and explicit
acceptance of advice allow the scope to be narrower.

The type system statically detects code tangling, based on a separation of
concerns defined by the programmer [7].

More importantly the type system prevents spectators from modifying the
public concern domains of the base program. The proof in Clifton’s dissertation
[7, §5] can be summarized as follows. Theorem 5.13 (Tag Frame Soundness) al-
lows the unseen, private concern domains of spectators to be modified during
method or advice execution. However, because of Theorem 5.16 (Respect for
Privacy), one can still reason about the effects of a method or piece of advice.
To reason about the execution of a method or piece of advice one must know
its signature including its effects clause, the concern domains of the target ob-
ject, and the configuration of assistants in the program, including the concern
domains used for assistants and their dependency declarations. This same the-
orem says that if the concern domains of the target object do not include any
private concern domains, then no changes made by unseen spectators will be
visible in the code being considered. The side effects of spectators are effectively
sequestered, and thus spectators can be used non-invasively.
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3.2.3 Read-only Fields In addition to concern domains, we also add read-
only fields. The field declaration in line 23 of Figure 8 is declared read-only.
This allows the spectator to capture (in line 30) a reference to the target object
of the advised call. The type system prevents the spectator from mutating this
reference (or any objects transitively reachable through the reference) [7].

3.2.4 Spectator Example The DistanceTracking spectator in Figure 8
meets the restrictions on spectatorhood; our type system can statically detect
this. The declaration (in line 18) that this aspect is a spectator says that this
aspect does not change the behavior of any other module. This spectator mu-
tates its own state by adding the (immutable) int delta to its own ArrayList
distances (in line 31). It also captures a reference to the target object in line 30,
though this is stored in a read-only field. The spectator does not change the be-
havior of Point’s move method. DistanceTracking merely views the arguments
to the move method. The arguments are passed on to the method unchanged and
the method’s result is unchanged. In addition to cross-cutting concerns like this
tracking example, spectators would also be useful for logging, tracing, and as
the observer in the Observer design pattern [15, pp. 293–303]. For example, one
can imagine a traffic simulation program that uses spectators for visualization,
thus separating the visualization and simulation concerns.

Because spectators do not change the behavior of the methods they view,
code outside an existing program can apply a spectator to any join point in the
original program without loss of modular reasoning. In reasoning about the client
and implementation code for a method, a maintainer of the original program does
not need any information from the spectator.

3.3 Impact of the MAO Discipline

To better understand how our proposed restrictions might limit the practical
expressiveness of AspectJ, Clifton [7, §2.3] surveyed examples from three sepa-
rate sources—the AspectJ Programming Guide [4] and the books by Kiselev [22]
and Laddad [23]. Clifton’s study looked only at the categorization of aspects
with respect to the MAO discipline. (Hence we leave a study of the constraints
imposed by concern domains to future work.)

3.3.1 Spectators Many of the example aspects clearly meet our definition
of spectator. To satisfy our restrictions they would only require the spectator
syntax. In the AspectJ Programming Guide there were 9 spectators, including
all of the examples in the tracing package, as well as telecom.TimerLog and
tjp.GetInfo. In Kiselev’s book there were 4 spectators, although Profiler and
NullChecker required minor changes to be spectators. The changes to Profiler
would require it to either swallow any I/O exceptions and record the problems or
to convert I/O exceptions into unchecked Errors; alternatively, Profiler could
be an assistant that was put in a root-level concern map. NullChecker throws
an exception and so to be considered a spectator it would need to be modified
to throw an Error instead.
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3.3.2 Assistants Aspects in the examples that could be implemented as assis-
tants can be divided into two kinds. Client utilities are used by client modules
to change the effective behavior of objects whose types are declared in other
modules. The changes in effective behavior do not affect the representation of
those objects. To satisfy our restrictions, client utilities’ assistance would have to
be explicitly accepted by the clients. In fact, some of the client utility assistants
are declared as nested aspects. These are similar in spirit to explicitly excepted
assistance and would be implicitly accepted under our proposal.

In the AspectJ programming guide, there were 11 examples of client utilities.
These include Bean.BoundPoint, the three Point aspects in the introduction
package, the SubjectObserverProtocol and its implementation, three nested
aspects the spacewar package, and the telecom package’s Billing and Timing
aspects. In Kiselev’s book the Authentication, Exceptions, and NewLogging
aspects were client utilities.

Other example aspects that could be implemented as assistants might be
considered implementation utilities. These assistants encapsulate a unit of cross-
cutting concern related to a single module, e.g., enforcing a common precondition
across the methods of a class. In our proposal each implementation utility would
be accepted by the module that it advises, creating a mutual dependency. How-
ever, in all the examples this mutual dependency could be fixed by nesting the
implementation utility inside the advised module. We would also require that
the call join points in these aspects be changed to execution join points.

In the AspectJ programming guide, there were 4 examples of implementation
utilities, all the spacewar package. All 4 of Kiselev’s “runtime aspects” were
also implementation utilities: Pooling, ReadCache, ConnectionChecking, and
OutputStreamBuffering.

3.3.3 Combined To satisfy our restrictions, one example aspect, the Debug
aspect of the AspectJ spacewar example, would require a combination of spec-
tators and assistants. This aspect would be a spectator, except that it provides
after advice to a GUI frame’s constructor, to add debugging options to the
frame’s menu bar. To support this pattern with our restrictions, the GUI frame
would have to accept assistance from an assistant, say AdditionalMenuConcern.
This assistant would provide methods allowing other code to add to the GUI
frame’s menu bar. The debugging aspect would become a spectator viewing the
program and using the methods provided by AdditionalMenuConcern to display
the debugging menus.

3.3.4 Summary of Evaluation Our proposed language features add restric-
tions to AspectJ. But our evaluation shows that these restrictions do not restrict
the expressiveness of the language. In fact, most of the examples studied fall
neatly into three categories: spectators, implementation utilities, and client util-
ities. The latter two are assistants with natural locations for explicit acceptance.
This supports our contention (in Section 1.2) that experienced aspect-oriented
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programmers are already following disciplines, like the MAO discipline, that
enable modular reasoning.

4 Discussion

The current work does not address AspectJ’s introduction mechanisms and
declare parents construct. An aspect that used introduction to replace an
inherited method of a class with an overriding method would clearly change the
behavior of that class and would therefore be an assistant. On the other hand,
suppose an aspect introduced a new, non-overriding method to a class. Since
no other code could have called that new method, this introduction should not
change the behavior of existing code. So such an introduction could be allowed in
a spectator. (This case is similar to the introduction of external generic functions
via MultiJava’s “open class” mechanism [9].) However, we leave this decision for
future work, because introduction involves subtle modularity issues, particularly
for avoiding runtime ambiguities. These issues are made more complex by the
possibility that the newly introduced methods might be advised by existing as-
pects, or that a change in the base program might make a previously “fresh”
introduced method into an overriding one.

This paper also does not address AspectJ’s declare error and declare
warning constructs. But these constructs do not change the behavior of a pro-
gram in any way. Instead they provide advice to the compiler itself, telling the
compiler that if certain join points are detected, then an error or warning should
be issued. Thus, these constructs can be allowed in spectator aspects.

An aspect that used the declare soft construct, which converts checked
exceptions to unchecked ones, would clearly change the control flow of a program
to which it was applied. Such an aspect is thus an assistant.

An alternative technique in regular AspectJ for implementing the hyper-
cutting pattern (discussed in Section 3.1.1) is to use within and withincode
pointcut descriptors to statically limit the code to which a particular piece of
advice applies. Unlike accepts clauses and concern maps, this approach buries
the applicability of advice within pointcut descriptors. The within approach to
hyper-cutting makes it even harder to find applicable advice than with the (al-
ready non-modular) marker interface approach. The within approach is a handy
implementation technique, however. In our prototype implementation of accepts
clauses and concern maps, we use the within technique in the intermediate code.

5 Related Work

Kiczales and Mezini [19] argue that the modularity properties of aspect-oriented
programs should be understood in terms of “aspect-aware interfaces”. These in-
terfaces are based on the global configuration of a system and essentially provide
a bi-directional mapping from methods to associated advice, and advice to ad-
vised methods. Assuming the existence of such an aspect-aware interface, the
authors then argue that reasoning about cross-cutting concerns is simpler in an
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aspect-oriented implementation than in a purely object-oriented implementation
of the same program. However, the paper presents no formal analysis; instead a
single example is used to support the claims. That example examines the pro-
cess necessary to refactor a program written in an aspect-oriented style, versus
the same program written in a pure object-oriented style. In either program an
implementation-level search is needed to understand the design. In the aspect-
oriented version, the change necessary to support the refactoring can be localized
in a single module. But it seems that the localization of this change is enabled by
AspectJ’s predicates over the current call stack: cflow and cflowbelow, and not
by the the cross-cutting expressiveness of aspect-oriented programming per se.
That is, the example’s refactoring could be done in a pure object-oriented lan-
guage that had such predicates.5 So essentially, their argument is that reasoning
is no less modular in aspect-oriented programs than it is in object-oriented pro-
grams where cross-cutting concerns are scattered and tangled. The long-range
objective of our work is to demonstrate that, given the appropriate design dis-
cipline, reasoning in aspect-oriented programs can actually be more modular.

The “aspectual collaborations” of Lieberherr et al. [27] are somewhat related
to our concern maps. With aspectual collaborations, advice is declared within
modules using abstract representations of the pointcuts to be matched. Modules
must be explicitly composed. This composition reifies the pointcuts, making ex-
plicit the ways in which one module’s advice might attach to another module’s
methods. While aspectual collaborations offer some nice modularity properties,
they require all composition to be done at the top-level, instead of at any level
of the module hierarchy as for concern maps. Aspectual collaborations do not
address the problem of reasoning about AspectJ programs, since aspectual col-
laborations do not use AspectJ. Finally, it is unclear how anything with the
flexibility of spectators could be expressed using aspectual collaborations.

Katz and Gil [18] suggest that the body of work on “superimposition”, for
reasoning about distributed algorithms, might provide a fertile ground for ideas
in developing aspect-oriented programming. They briefly sketch three categories
of aspects. Their “spectative” category matches our notion of spectators. The
other two categories of aspects they mention map to our notion of assistants.
However, they do not consider a language design that might help enforce and
exploit these distinctions. Because of this they do not address anything like our
concern maps and they do not talk about how one might enforce that declared
spectators have no observable side effects.

Sullivan et al. [33] compare using non-invasive AspectJ versus a new ap-
proach, which they call “design rules”. Design rules place control flow restric-
tions on programs, requiring an explicit specification of the join points to which
advice may attach and placing pre- and post-conditions on any advice that at-
taches to those join points. They analyze the implementation of an application
using the standard AspectJ approach and using their design rules approach.
They conclude that the non-invasive AspectJ approach may decouple base pro-

5 This idea is based on a post to the aosd-discuss mailing list by Christina Lopes
that mentioned including call-stack predicates in a non-aspect-oriented language.
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gram development from aspects, but tightly couples aspects to the development
of the base program. Their system is really just a design methodology, it does
not include static checking and has not been formalized.

Dantas and Walker [10] present a calculus for “harmless advice”, based on an
extension of the typed lambda calculus, with references and objects. Dantas and
Walker use a type system with “protection domains” to keep aspects from alter-
ing the data of the base program. In keeping with this non-interference property,
they do not allow advice to change values when proceeding to the base program.
They use the lattice-ordered protection domains to prevent lower integrity data,
such as that generated by advice, from interfering with higher integrity data,
such as that from the base program. These protection domains in their core
calculus are more expressive than our concern domains. This expressiveness is
relinquished in their user-level calculus. Their user-level calculus generates a sin-
gle protection domain for the base program and a separate protection domain
for each declared aspect. Thus the protection system is tied to the program
structure and, unlike concern domains, cannot represent designs where the pro-
tection domains cross-cut the modularity structure of the program. For example,
they cannot represent potentially “surprising” assistants, which are important
in many uses of AspectJ.

Aldrich and Chambers [1] present an ownership type system that is decou-
pled from the encapsulation relation in a program. Their system allows very
fine-grained specification, and static typechecking, of the aliasing relationships
in a program. The system replaces the traditional owners-as-dominators property
of ownership type systems with a link soundness property. The link soundness
property says that the only interdomain aliases are those between “ownership
domains” that are explicitly given permission to hold such aliases. These per-
missions are closely related to our concern domains. The authors’ ownership do-
mains are significantly more fine-grained than our concern domains, with each
object having its own member domains. Their system includes a single global
domain, called “shared”, to which objects belong by default. Their system is not
designed to control mutation and does not distinguish between read-only and
write-enabled pointers.

6 Conclusions And Future Work

In this paper we have shown that the MAO discipline: (1) allows modular rea-
soning, (2) permits the use of existing aspect-oriented idioms for separation of
concerns, (3) can be verified by a combination of static typechecking and simple
verification conditions, and (4) can be incorporated into a practical, aspect-
oriented language.

The MAO discipline addresses the twin problems of modular reasoning in
aspect-oriented languages: (1) unseen aspects may apply to the code, and (2) as-
pects may be developed without complete knowledge of the code that will be
advised. The discipline addresses these problems by separating aspects into two
sorts: benign spectators and surprising assistants. The discipline also requires
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that the aspect author and the programmer of advised code share the burden of
ensuring modular reasoning.

We have argued that a few additional language features are sufficient to
support the MAO discipline in a language like AspectJ. Our proposed features
statically separate aspects into assistants and spectators. Assistants have the full
power of AspectJ’s aspects, but to maintain modular reasoning we require that
assistants be explicitly accepted. Spectators are constrained to not modify the
behavior of the modules that they view. This allows modular reasoning about
the advised code, even if spectators remain unseen.

Our proposal introduces concern maps to allow acceptance of assistance,
while avoiding the scattering of duplicate accept clauses throughout a program.
It also adds concern domain declarations to verify spectatorhood and to detect
unwanted tangling.

We have described an evaluation of the practical effect of our proposed lan-
guage features (with the exception of concern domains). Our evaluation looked
at three sets of AspectJ examples: the AspectJ Programming Guide, and Kise-
lev’s and Laddad’s books. For the AspectJ constructs considered in the current
work, our language features can handle their examples with no changes in most
cases, and minor changes otherwise. The ready identification of places to accept
assistance from client or implementation utilities in these examples supports
our contention that experienced aspect-oriented programmers are already using
disciplines, like the MAO discipline, that enable modular reasoning.

The major technical challenge for our proposal is checking that aspects de-
clared as spectators meet our definition, as discussed in Section 3.2. We have
specified constraints on spectators that allow modular reasoning about their
(lack of) effect on control flow. A type system that restricts aliasing and muta-
tion allows modular reasoning about spectators (lack of) effect on the relevant
state of the modules they view. Clifton’s dissertation [7] presents:

– an aspect-oriented calculus for investigating these ideas in a formal setting,
and

– a sound type-system for the calculus that statically enforces our proposed
restrictions on spectators.

Clifton’s evaluation of existing AspectJ examples, discussed in Section 3.3,
provides some evidence as to the practicality of our proposal. Clifton’s formal
study provides strong, theoretical support for our claims. However, some open
problems remain.

– To fully support claim 3, we must formalize the verification conditions en-
tailed by our proposed specification language constructs, and prove that
reasoning using effective specifications is sound.

– To fully support claim 4, we must demonstrate the incorporation of our
proposed language features into a practical programming language. We must
use that language to implement realistic-scale programs.

Each of these open problems entails a significant research program.
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6.1 Future Work

In additional to the open problems discussed above, the current work also sug-
gests several other interesting lines of investigation.

Our study focused on sequential aspect-oriented programs. This focus ex-
cludes some interesting techniques. For example, Laddad’s worker object cre-
ation pattern uses proceed closures [23, §8.1]. In this pattern, advice captures
a proceed expression inside an instance of an anonymous Runnable class. This
allows the advised code to be postponed, or executed immediately but in a new
thread. Such use of proceed is fascinating, but to study it we would need a
formalism that models concurrent processes. It may be that some variant of the
π-calculus would be appropriate for this study [30].

It would also be interesting to compare the reasoning problem in aspect-
oriented programming to reasoning in component-based programming [34].

Component-based programming requires components to specify their expec-
tations of external modules. This allows separate verification of the components,
provided that expectations are checked at composition time. In the MAO disci-
pline, the steps are performed in a different order. Each piece of advice is sepa-
rately verified. Then, for a given composition, the specifications are composed to
determine the effective specification of an advised join point. This effective spec-
ification is used to verify the code that triggers the join point. A problem that
would surface as an unsatisfied expectation in component-based programming,
appears as an effective specification like requires false; ensures true;. It
is essentially useless for verifying the client code.

It seems that the essential trade-off is that component-based programming
provides simpler compositional reasoning, but less expressive composition mech-
anisms versus aspect-oriented programming. Aspectual collaborations [27] can
be considered a mid-point between these extremes, though that system does not
include formal specifications.
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