
Demonstration of JML Tools

Gary T. Leavens, Yoonsik Cheon, and David R. Cok

TR #05-13
April 2005

Keywords: specification languages, runtime assertion checking, documenta-
tion, tools, formal methods, program verification, programming by contract,
Java language, JML language.

2000 CR Categories: D.2.1 [Software Engineering ] Requirements/ Specifica-
tions — languages, tools, JML; D.2.2 [Software Engineering ] Design Tools and
Techniques — computer-aided software engineering (CASE); D.2.4 [Software
Engineering ] Software/Program Verification — Assertion checkers, class invari-
ants, formal methods, programming by contract, reliability, tools, validation,
JML; D.2.5 [Software Engineering ] Testing and Debugging — Debugging aids,
design, testing tools, theory; D.3.2 [Programming Languages] Language Classifi-
cations — Object-oriented languages; F.3.1 [Logics and Meanings of Programs]
Specifying and Verifying and Reasoning about Programs — Assertions, invari-
ants, pre- and post-conditions, specification techniques.

Submitted for publication

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA



Demonstration of JML Tools

Gary T. Leavens
Department of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, Iowa 50011-1041 USA
leavens@cs.iastate.edu

Yoonsik Cheon
Department of Computer Science, The University of Texas at El Paso

500 W. University Avenue, El Paso, Texas 79968-0518
cheon@cs.utep.edu

David R. Cok
Eastman Kodak Company, R&D Laboratories,

Rochester, New York, USA
cok@kodak.com

April 21, 2005

Abstract

The Java Modeling language (JML) is a behavioral interface specifica-
tion language tailored to Java. This demonstration presents some of the
basic tools for generating and browsing documentation, runtime assertion
checking, and unit testing.

1 Introduction

This demonstration presents some fundamental tools that work with the Java
Modeling language (JML) [10, 11]. While many groups provide various tools
that work with JML [2], this demonstration focuses on the tools in the standard
distribution of JML, which is freely available from http://jmlspecs.org/.

2 Background on JML

JML is a behavioral interface specification language tailored to the specification
of Java classes and interfaces. To a first approximation JML is a cross between
Eiffel [12] and the interface specification languages of the Larch family [9, 14].
Like Eiffel, JML supports design by contract by allowing invariants, and method
pre- and post-conditions to be written using Java expressions. However, JML

1

http://jmlspecs.org/


extends the set of expressions used in assertions with some extra operators,
including quantifiers.

Like the Larch-style interface specification languages (and VDM), JML al-
lows specifiers to describe abstract values of objects using a built-in mathe-
matical library. This makes it easy to write fairly complete specifications of
collection classes. However, unlike Larch-style interface specification languages,
JML hides the mathematics behind a facade of Java classes. Also, unlike the
Larch approach, JML allows specifiers to describe the abstract values of objects
in several pieces, using several specification-only (model) fields.

3 The Tools to be Demonstrated

The demonstration will focus on three tools in the standard distribution of JML:
the documentation generation tool, jmldoc, the runtime assertion checking com-
piler, jmlc, and the unit testing tool, jmlunit.

3.1 Jmldoc: The Documentation Generation Tool

The documentation generation tool, jmldoc, produces HTML web pages from
JML specifications. In essence, it is a modified version of the javadoc tool [8]
that understands JML specifications. The web pages produced by the jmldoc
tool are similar to those produced by the javadoc tool. However they include
the JML specifications as well as the usual informal English documentation.

Besides doing syntax and type checking of the JML specifications, one of
the main features of the jmldoc tool is that its output shows the reader all of
the inherited specifications that affect an interface, class, or method. In JML,
public and protected non-static methods inherit the specifications of all methods
that they override. This is helpful in that it shows implementors the obligations
they have to fulfill due to specification inheritance.

3.2 Jmlc: The Runtime Assertion Checking Compiler

The runtime assertion checking compiler, jmlc, produces Java class files (byte-
code) from JML-annotated source files [3, 4]. The JML annotations can appear
either in the source itself or in a separate file. The compiled code checks all of
the executable assertions when the code is run, and throws errors when assertion
violations are encountered.

One of the most interesting aspects of the runtime assertion checking com-
piler is its support of JML’s specification-only (model) variables. In the current
jmlc references to such specification-only variables are realized by method calls.
Such variables allow one to write assertions abstractly without referring to con-
crete program states, and are particularly useful for specifying container objects,
such as collection classes [7].

Another interesting aspect of the runtime assertion checking compiler is its
support for Java interfaces. Besides its ability to compile specification-only

2



variables in interfaces, the tool can also handle other kinds of specification an-
notations in Java interfaces. In particular, jmlc can compile interfaces that
include invariants and method pre- and post-conditions. Moreover, it incorpo-
rates the effects of multiple inheritance of specifications in such interfaces. This
allows the specification of interfaces in class libraries, which describes common
behavior that is inherited by many classes that implement the interface.

3.3 Jmlunit: The Unit Testing Tool

The unit testing tool, jmlunit, produces Java source files that can be used to
test a class (or interface) [5, 6].1 The unit testing tool works together with
the JUnit unit testing framework [1]. The tool eases the process of testing by
automatically producing a test oracle that decides test success or failure based
on violations of runtime assertions. It automatically ignores test cases for a
method m by ignoring those that cause m’s precondition to be violated.

Using this tool, a user generates a class that will hold test data, and another
class which serves as a test driver. After filling in some sample test data in the
first class (done by hand, currently), tests can be run automatically. This makes
testing easier and helps increase confidence in both code and specifications.

References

[1] Kent Beck and Erich Gamma. Test infected: Programmers love writing
tests. Java Report, 3(7):37–50, 1998.

[2] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. International Journal on Software Tools for
Technology Transfer (STTT), 2004. To appear.

[3] Yoonsik Cheon. A runtime assertion checker for the Java Modeling Lan-
guage. Technical Report 03-09, Department of Computer Science, Iowa
State University, Ames, IA, April 2003. The author’s Ph.D. dissertation.

[4] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the
Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong
Mun, editors, Proceedings of the International Conference on Software En-
gineering Research and Practice (SERP ’02), Las Vegas, Nevada, USA,
June 24-27, 2002, pages 322–328. CSREA Press, June 2002.

[5] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In Boris Magnusson, editor,

1 Parasoft’s independently-developed Jtest tool [13] is similar. However, the Jtest tool uses
a specification language that has less ability to write specifications abstractly, and is not able
to write model-oriented specifications for interfaces.

3



ECOOP 2002 — Object-Oriented Programming, 16th European Confer-
ence, Máalaga, Spain, Proceedings, volume 2374 of Lecture Notes in Com-
puter Science, pages 231–255, Berlin, June 2002. Springer-Verlag.

[6] Yoonsik Cheon and Gary T. Leavens. The JML and JUnit way of unit
testing and its implementation. Technical Report 04-02a, Department of
Computer Science, Iowa State University, April 2004. Submitted for pub-
lication.

[7] Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: Cleanly supporting abstraction in design by contract.
Software—Practice and Experience, 35(6):583–599, May 2005.

[8] Lisa Friendly. The design of distributed hyperlinked programming docu-
mentation. In S. Fräıssè, F. Garzotto, T. Isakowitz, J. Nanard, and M. Na-
nard, editors, Proceedings of the International Workshop on Hypermedia
Design (IWHD’95), Montpellier, France, 1–2 June 1995, pages 151–173.
Springer, 1995.

[9] J. V. Guttag and J. J. Horning. Preliminary report on the Larch Shared
Language. Technical Report 307, Massachusetts Institute of Technology,
Laboratory for Computer Science, October 1983.

[10] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of
JML: A behavioral interface specification language for Java. Technical Re-
port 98-06-rev27, Iowa State University, Department of Computer Science,
April 2005. See www.jmlspecs.org.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David R. Cok, and Joseph Kiniry. JML reference manual. Department
of Computer Science, Iowa State University. Available from http://www.
jmlspecs.org, April 2005.

[12] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, second edition, 1997.

[13] Parasoft Corporation. Automatic JavaTM software and component testing:
Using Jtest to automate unit testing and coding standard enforcement.
Available from http://www.parasoft.com/jsp/products/tech_papers.
jsp?product=Jtest, as of Feb. 2003.

[14] Jeannette M. Wing. Writing Larch interface language specifications. ACM
Transactions on Programming Languages and Systems, 9(1):1–24, January
1987.

4

www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.parasoft.com/jsp/products/tech_papers.jsp?product=Jtest
http://www.parasoft.com/jsp/products/tech_papers.jsp?product=Jtest


A Description of the Presentation

The presentation would follow roughly the following outline, which is similar to
the outline of the main paper itself.

A.1 Introduction and Overview

First we would give an introduction to the JML project as a whole, and the
JML specification language. We would describe the different research groups
working on JML in very brief terms. We would also give a sample specification
to be used both to explain the specification language and in the rest of the
presentation.

A.2 Jmldoc

Next we would present a brief look at how to run the jmldoc tool, and then
focus on its output features. We would give a tour of a specification of a small
hierarchy of classes and interfaces. We would focus on showing the effects of
specification inheritance and the ease of browsing in various directions using
hyperlinks.

A.3 Jmlc

Next we would present a brief look at how to run the jmlc tool, and then
focus on how it can be used to detect various errors that we would seed into
sample code that implements the specification described in the previous parts.
Time permitting, we could also look at the compilation strategy used to compile
specifications in interfaces.

In this step we will also briefly present the jml tool, which only does type
checking and not compilation. It is useful because jmlc is fairly slow.

A.4 Jmlunit

Next we would present a brief look at how to run the jmlunit tool, and then
focus on how it can be used to do a unit testing. We would take some of the
implementations used in the previous section of the demonstration and perform
unit testing on them to reveal additional errors in specifications and code. We
would demonstrate how to supply test data for different kinds of types involved
in these samples (immutable, cloneable, and immutable objects without clone
methods).

A.5 Summary

After this there would be a brief summary and then time for questions.

5



B Tool Availability and Maturity

The tools described in this demonstration are open source and freely available
(see the next section).

The tools have been through several releases, but are not completely indus-
trial quality. They’ve been used in classes and by a small number of people.
There are still several efficiency issues with the tools, and in particular the
runtime assertion checking compiler is quite slow in compilation time.

C Web-Page for the Tool

The JML tools described in this paper are downloadable from the sourceforge
page for JML: http://sourceforge.net/projects/jmlspecs. More informa-
tion about JML is available from the project’s home page, which is located at
http://jmlspecs.org/.

6

http://sourceforge.net/projects/jmlspecs
http://jmlspecs.org/

	Introduction
	Background on JML
	The Tools to be Demonstrated
	Jmldoc: The Documentation Generation Tool
	Jmlc: The Runtime Assertion Checking Compiler
	Jmlunit: The Unit Testing Tool

	Description of the Presentation
	Introduction and Overview
	Jmldoc
	Jmlc
	Jmlunit
	Summary

	Tool Availability and Maturity
	Web-Page for the Tool

