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Abstract

This paper describes MiniMAO1, a core aspect-oriented calculus. Unlike previous aspect-
oriented calculi, it allows around advice to change the target object of an advised operation before
proceeding. MiniMAO1 accurately models the ways AspectJ allows changing the target object,
e.g., at call join points. Practical uses for changing the target object using advice include proxies
and other wrapper objects.

In addition to accurate modeling of bindings for around advice, MiniMAO1 has several other
features that make it suitable for the study of aspect-oriented mechanisms, such as those found
in AspectJ. Like AspectJ, the calculus consists of an imperative, object-oriented base language
plus aspect-oriented extensions. MiniMAO1 has a sound static type system, facilitated by a
slightly different form of proceed than in AspectJ.

This paper gives an operational semantics, type system, and proof of soundness for MiniMAO1.

1 Introduction

This paper describes a core aspect-oriented [11] calculus, MiniMAO1. MiniMAO1 is designed to
explore two key issues in reasoning about operations in aspect-oriented programs:

— when advice may change the target object of the operation, possibly affecting dynamic method
selection, and

— when advice may change or capture the arguments to, or results from, the operation.

MiniMAO1 is sufficiently expressive to code key aspect-oriented idioms. But by minimizing the
set of features, we arrive at a core language that is sufficiently small as to make tractable formal
proofs of type soundness and—in planned extensions—proofs of desired modularity properties
and verification conditions.

For clarity, we begin with a core object-oriented calculus with classes. We then extend this
object-oriented calculus with aspects and advice binding. We assume that the reader is familiar
with the basic concepts of aspect-oriented programming as embodied in the AspectJ programming
language [12].

2 MiniMAO0: A Core Object-Oriented Calculus with Classes

In this section we introduce MiniMAO0, a core object-oriented calculus with classes. MiniMAO0
is an imperative calculus derived from Classic Java [7]. But, following the lightweight philosophy

1



P :: = decl∗ e

decl :: = class c extends c { field∗ meth∗ }
field :: = t f

meth :: = t m( form∗ ) { e }
form :: = t var, where var 6= this

e :: = new c() | var | null | e.m( e∗ ) |
e. f | e. f = e | cast t e | e; e

c, d ∈ C, the set of a class names

t, s, u ∈ T , the set of types

f ∈ F , the set of field names

m ∈ M, the set of method names

var ∈ {this} ∪ V , where V is the set of variable names

Figure 1: Syntax of MiniMAO0

of Featherweight Java [8], we eliminate interfaces, super calls, method overloading, and let expres-
sions. Since eliminating let expressions eliminates implicit sequencing [1], we introduce explicit
expression sequencing. We adopt Featherweight Java’s technique of treating the current program
and its declarations as global constants. This avoids burdening the formal semantics with excess
notation—when MiniMAO is fully developed the notation is quite heavy enough.

One innovation of MiniMAO0 is the separation of method call and method execution into two
primitive operations in the calculus. This simplifies the modeling method call and method execu-
tion join points in the aspect-oriented version of the calculus.

2.1 Syntax of MiniMAO0

The syntax for MiniMAO0 is given in Figure 1. A MiniMAO0 program consists of a sequence of
declarations followed by a single expression. The expression represents the entry point for the
program, like the execution of a program’s main method in Java.

In MiniMAO0 the declarations are all of classes; later calculi will add other sorts of declarations.
A class declaration gives the name of the class, the name of its superclass, and a sequence of fields
and methods. MiniMAO0 does not include access modifiers; all methods and fields are globally
accessible. For our purposes, access modifiers would be gratuitous complexity. MiniMAO0 also
omits constructors. All objects are instantiated with their fields set to null. Constructors can be
modeled by defining methods that initialize the fields.

The set of types in MiniMAO0 is denoted by T . MiniMAO0 includes just one built-in type, that
of Object, the top most class in all class hierarchies. In MiniMAO0, we define Object to contain no
fields or methods. For MiniMAO0, T = C, the set of valid class names. C is left unspecified, but for
examples we will take it to be the set of all valid Java identifiers. We use a similar convention for
the sets F of valid field names, M of valid method names, and V of valid variable names.

The field declarations within a class declaration just give a type and a field name. We omit field
initializers from the calculus.

Method declarations in MiniMAO0 consist of a return type, the method name, a sequence of
formal parameters (which are similar in form to field declarations), and a method body expression.
For simplicity we do not include return statements in MiniMAO0; instead, the result of the method
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is just the result of evaluating the body expression, with proper substitution for formal parameters
and this.

MiniMAO0 includes just a few different kinds of expressions. The expression new C() creates an
instance of the class named C, setting all of its fields to the default null value. Variable references
and null expressions have the usual meaning. Method invocations are written as in Java, as are
field access and update. For syntactic clarity, we follow Classic Java in using the syntax cast t e
to represent the Java cast ( t ) e. Finally, we include an expression for sequencing: e; e. One could
simulate sequencing through a baroque combination of classes and method calls, but the additional
complexity of including an actual sequencing expression is small, so we choose the direct approach.

2.2 Operational Semantics of MiniMAO0

We describe the dynamic semantics of MiniMAO0 using a structured operational semantics [6, 14,
17]. The semantics is given in Figure 2 on the next page and is quite similar to that for Classic Java.
There are three main differences: a stack (which will be used for aspect binding in MiniMAO1),
a primitive operation for expression sequencing, and the separation of method call and execution
into separate primitive operations.

We add two expressions for the operational semantics of MiniMAO0 that do not appear in the
static syntax. To model state, we extend the set of expressions to include locations, loc ∈ L. One can
think of locations as addresses of object records in a global heap, but for the purposes of the calculus
we just require that L is some countable set. To model method execution independently from
method calls, we add an application expression form, where a (non-first-class) fun term represents
a method and an operand tuple represents the actual arguments after method dispatch but before
substitution of actual arguments for formal parameters. The fun term carries type information: a
function type, τ, from a tuple of target and argument types to the return type of the method. This
type information is not used in evaluation rules, but is helpful in the subject-reduction proof. The
use of the application expression form in the operational semantics is described in more detail in
the subsequent subsection.

As is typical in an operational semantics, we consider a subset of the expressions to be irre-
ducible values. The values in MiniMAO0 are the locations and null. Evaluation of a well-typed
MiniMAO0 program will produce a value or an exception; this soundness property is proven later.

The evaluation context rules, denoted by E, serve as implicit congruence rules and give a non-
constructive definition of evaluation order. The first rule, “−”, is the base case. The next two rules
require that the target of a method call be evaluated before the arguments and that the arguments
are evaluated in left-to-right order. The rule for the application form only recurses on the arguments
and not on the method body expression in the fun term. Evaluation of the method body does not
take place until the substitution of actuals for formals has been done by the appropriate evaluation
rule. The rules E . f and cast t E are simple congruence rules. The rule for sequencing requires that
the left expression in a pair be evaluated first. The last two rules require that the target object for a
field update be evaluated before the new value for the field is evaluated.

The relation, ↪→, describes the steps in the evaluation of a MiniMAO0 program. The relation
takes an expression e ∈ E (the set of all expressions), a stack, and a store and maps this to a new
expression or an exception, plus a new stack and a new store. For MiniMAO0, the evaluation
relation on the stack is identity, so we leave the set Stack undefined for now; the aspect-oriented
calculus will manipulate the stack for advice binding. The set Store consists of a map from locations
to object records, where an object record has the form [t � { f 7→ v · f ∈ dom(fieldsOf (t))}]. That is, an
object record consists of a type and a map from the fields of that type to their values. The exceptions
in MiniMAO0 are elements of the set Excep = {NullPointerException, ClassCastException}.

Evaluation of a MiniMAO0 program begins with the triple consisting of the main expression
of the program, an empty stack, and an empty store. The ↪→ relation is applied repeatedly until
the resulting triple is not in the domain of the relation. This terminating condition can arise either
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Syntax extensions:

e :: = . . . | loc | ( l ( v . . . ) )

l :: = fun m〈var∗〉.e : τ

τ :: = t× . . .× t → t

v :: = loc | null

loc ∈ L, the set of store locations

Objects:

o :: = [t � F]
F :F → V

Evaluation contexts:

E :: = − | E .m( e . . . ) | v.m( v . . . E e . . . ) | ( l ( v . . . E e . . . ) ) |
cast t E | E . f | E ; e | E . f = e | v. f = E

Evaluation relation:

↪→ : E × Stack× Store → (E ∪ Excep)× Stack× Store

〈E[new c()], J, S〉 ↪→ 〈E[loc], J, S⊕ (loc 7→ [c � { f 7→ null · f ∈ dom(fieldsOf (c))}])〉 NEW

where loc /∈ dom(S)
〈E[loc.m( v1, . . . , vn )], J, S〉 ↪→ 〈E[( l ( loc, v1, . . . , vn ) )], J, S〉 CALL

where S(loc) = [t � F] and methodBody(t, m) = l
〈E[( fun m〈var0, . . . , varn〉.e : τ ( v0, . . . , vn ) )], J, S〉 ↪→ 〈E[e{|v0/ var0, . . . , vn/ varn|}], J, S〉 EXEC

〈E[loc. f ], J, S〉 ↪→ 〈E[v], J, S〉 GET

where S(loc) = [t � F] and F( f ) = v
〈E[loc. f = v], J, S〉 ↪→ 〈E[v], J, S⊕ (loc 7→ [t � F ⊕ ( f 7→ v)])〉 SET

where S(loc) = [t � F]
〈E[cast t loc], J, S〉 ↪→ 〈E[loc], J, S〉 CAST

where S(loc) = [s � F] and s 4 t
〈E[cast t null], J, S〉 ↪→ 〈E[null], J, S〉 NCAST

〈E[v; e], J, S〉 ↪→ 〈E[e], J, S〉 SKIP

〈E[null.m( v1, . . . , vn )], J, S〉 ↪→ 〈NullPointerException, J, S〉 NCALL

〈E[null. f ], J, S〉 ↪→ 〈NullPointerException, J, S〉 NGET

〈E[null. f = v], J, S〉 ↪→ 〈NullPointerException, J, S〉 NSET

〈E[cast t loc], J, S〉 ↪→ 〈ClassCastException, J, S〉 XCAST

where S(loc) = [s � F] and s 64 t

Figure 2: Operational Semantics of MiniMAO0
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because the resulting triple contains an irreducible value or it contains an exception. If the resulting
triple contains an irreducible value, then that value, interpreted in the resulting store, is the result
of the program. There is no guarantee that this evaluation terminates.

We write ↪→∗ for the reflexive, transitive closure of the ↪→ relation. (Because of exceptions, the
range of ↪→ does not equal its domain. So to be precise, ↪→∗ is actually the ↪→ relation unioned with
the reflexive, transitive closure of the ↪→ relation restricted to the range E × Stack× Store.)

Although suppressed in the evaluation relation, the declarations of the program are used to
populate a global class table, CT, that maps class names to their declarations.

The ↪→ relation is defined by a set of mutually disjoint rules. In the subsequent subsections,
we briefly describe the intuition behind each of the evaluation rules, and we give a small example
program and trace its evaluation.

2.2.1 Intuition for Evaluation Rules

The NEW rule says that an expression new c() evaluates to a fresh location, where that location
maps to an object record of the appropriate type with all of its fields initialized to null. This rule also
uses two auxiliary functions, which are formally defined in Figure 3 on the following page. The ⊕
operator represents map update; the fieldsOf (c) function returns a map from all the fields defined
in c (and its supertypes) to the types of those fields.

The CALL rule says that a method call expression, where the target is a location bound in the
store, is evaluated by looking up the body of the method (using the methodBody auxiliary function)
and constructing an application form with a function term, l, recording the formal parameters and
method body and an argument tuple recording the actual arguments. The separate EXEC rule
evaluates this application form by replacing this and the formal parameters in the body with the
appropriate values. (The notation e{|e′/ var|} denotes the standard capture-avoiding substitution of
e′ for var in e.) The rule, NCALL, says that if the target value of a method call expression is null, then
the result of evaluation is a NullPointerException. (The evaluation rules which result in exceptions
are grouped together at the bottom of Figure 2 on the previous page.)

The GET and SET rules both lookup the object record for the target location in the store. The
GET rule then looks up the value of the named field. The SET rule, on the other hand, updates the
store with a new object record that is identical to the original object record except that the value of
the named field is replaced with the new value. (This rule takes advantage of the definition of ⊕,
which lets the right-hand argument replace bindings in the left-hand map.) The NGET and NSET

rules handle the cases where the target value is null.
Three different rules deal with type casts. The CAST rule handles valid casts of non-null values.

A cast is valid at evaluation time if the target type of the cast is a supertype of the actual type of
the value. Figure 4 on page 7 gives the subtyping relation for MiniMAO0. The relation is just the
reflexive, transitive closure of the syntactic extends relation. The NCAST rule handles casts of null.
For both CAST and NCAST, the result of evaluation is just the value within the cast expression.
The XCAST rule handles invalid casts of non-null values; in this case, the result of evaluation is a
ClassCastException.

Finally, the SKIP rule says that a sequence expression, where the first expression is already
reduced to a value, is evaluated to just the second expression.

2.2.2 Sample Evaluation

In this section we illustrate several of the evaluation rules with an example. Figure 5 on page 7
gives the example program, which models the natural numbers. The program uses two classes: a
general natural number class, Natural, and a special class to model Zero.

The figure includes javadoc-style comments describing all the methods, though a couple of
these warrant further explanation.
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Map update:

⊕ :P(T 7→ U)× (T 7→ U) → P(T 7→ U), polymorphic in T and U

A⊕ (t 7→ u) = {t′ 7→ u′ · (t′ 6= t ∧ A(t′) = u′) ∨ (t = t′ ∧ u = t′)}

Field lookup:

CT(c) = class c extends d { t1 f1 . . . tn fn meth∗ } fieldsOf (d) = F′

fieldsOf (c) = { fi 7→ ti · i ∈ {1..n}} ∪ F′
fieldsOf (Object) = ∅

Method lookup:

CT(c) = class c extends d { field∗ meth1 . . . methp }
∃i ∈ {1..p} ·methi = t m( t1 var1, . . . , tn varn ) { e } τ = c× t1 × . . .× tn → t

methodBody(c, m) = fun m〈this, var1, . . . , varn〉.e : τ

CT(c) = class c extends d { field∗ meth1 . . . methp }
@i ∈ {1..p} ·methi = t m( t1 var1, . . . , tn varn ) { e } methodBody(d, m) = l

methodBody(c, m) = l

Method type lookup:

CT(c) = class c extends d { field∗ meth1 . . . methp }
∃i ∈ {1..p} ·methi = t m( t1 var1, . . . , tn varn ) { e }

methodType(c, m) = t1 × . . .× tn → t

CT(c) = class c extends d { field∗ meth1 . . . methp }
@i ∈ {1..p} ·methi = t m( t1 var1, . . . , tn varn ) { e } methodType(d, m) = τ

methodType(c, m) = τ

Valid method overriding:

methodType(d, m) = t1 × . . .× tn → t
override(m, d, t1 × . . .× tn → t)

CT(d) = class d extends d′ { field∗ meth1 . . . methp }
@i ∈ {1..p} ·methi = t m( t1 var1, . . . , tn varn ) { e } override(m, d′, τ)

override(m, d, τ)

override(m, Object, t1 × . . .× tn → t)

Valid class:

CT(c) = class c extends d { . . . }
isClass(c) isClass(Object)

Figure 3: Auxiliary Functions for MiniMAO0
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t 4 t
t 4 s s 4 u

t 4 u
CT(c) = class c extends d { . . . }

c 4 d

Figure 4: Subtyping in MiniMAO0

class Natural extends Object {
/∗∗ Stores the predecessor of this. ∗/
Natural pred;

/∗∗ Initializes the predecessor of this. ∗/
Natural setPred(Natural pred) {

this.pred = pred;
this

}

/∗∗ Returns the predecessor of this. ∗/
Natural pred() {

this.pred
}

/∗∗ Returns the successor of this. ∗/
Natural succ() {

new Natural().setPred(this)
}

/∗∗ Returns the sum of this and n. ∗/
Natural add(Natural n) {

this.pred().add(n.succ())
}

}

class Zero extends Natural {
Natural pred() {

this
}

Natural add(Natural n) {
n

}
}

new Zero().succ().add(new Zero().succ().succ()) // 1 + 2

Figure 5: A Sample MiniMAO0 Program
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— The Zero class overrides the pred method to just return this, because zero is considered to be
its own predecessor in the natural numbers.

— The add method in Natural calculates the sum by adding the predecessor of the current num-
ber and the successor of the argument (since t + n = (t − 1) + (n + 1)). The Zero class
overrides the add method to just return the argument, so the addition terminates.

The interpretation of instances of these classes is that the value of an instance of Zero is 0, and the
value of an instance of Natural is 1 plus the value of its predecessor.

The last line in the sample program uses this model of the natural numbers to calculate 1 + 2.
The listing below traces the evaluation of this expression in MiniMAO0. The most deeply nested
expression in the evaluation context—the term to be evaluated next—is italicized at each stage. We
omit type information on fun terms, because it is not used by the evaluation rules.

〈new Zero().succ().add(new Zero().succ().succ()), J, ∅〉
↪→ 〈loc0.succ().add(new Zero().succ().succ()), J, S0〉 (NEW)

where S0 = {loc0 7→ [Zero � {pred 7→ null}]}

↪→ 〈(fun succ〈this〉.new Natural().setPred(this) (loc0)).add(new Zero().succ().succ()), J, S0〉 (CALL)

↪→ 〈new Natural().setPred(loc0).add(new Zero().succ().succ()), J, S0〉 (EXEC)

↪→ 〈loc1.setPred(loc0).add(new Zero().succ().succ()), J, S1〉 (NEW)

where S1 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ null}]}

↪→ 〈(fun setPred〈this,pred〉.(this.pred = pred);this (loc1,loc0)).add(new Zero().succ().succ()), J, S1〉
(CALL)

↪→ 〈((loc1.pred = loc0); loc1).add(new Zero().succ().succ()), J, S1〉 (EXEC)

↪→ 〈(loc0; loc1).add(new Zero().succ().succ()), J, S2〉 (SET)

where S2 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}]}

↪→ 〈loc1.add(new Zero().succ().succ()), J, S2〉 (SKIP)

↪→ 〈loc1.add(loc2.succ().succ()), J, S3〉 (NEW)

where S3 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}]}

↪→ 〈loc1.add((fun succ〈this〉.new Natural().setPred(this) (loc2)).succ()), J, S3〉 (CALL)

↪→ 〈loc1.add(new Natural().setPred(loc2).succ()), J, S3〉 (EXEC)

↪→ 〈loc1.add(loc3.setPred(loc2).succ()), J, S4〉 (NEW)

where S4 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ null}]}

↪→ 〈loc1.add((fun setPred〈this,pred〉.(this.pred = pred);this (loc3,loc2)).succ()), J, S4〉 (CALL)

↪→ 〈loc1.add(((loc3.pred = loc2); loc3).succ()), J, S4〉 (EXEC)

↪→ 〈loc1.add((loc2; loc3).succ()), J, S5〉 (SET)
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where S5 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ loc2}]}

↪→ 〈loc1.add(loc3.succ()), J, S5〉 (SKIP)

↪→ 〈loc1.add((fun succ〈this〉.new Natural().setPred(this) (loc3))), J, S5〉 (CALL)

↪→ 〈loc1.add(new Natural().setPred(loc3)), J, S5〉 (EXEC)

↪→ 〈loc1.add(loc4.setPred(loc3)), J, S6〉 (NEW)

where S6 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ loc2}],
loc4 7→ [Natural � {pred 7→ null}]}

↪→ 〈loc1.add((fun setPred〈this,pred〉.(this.pred = pred);this (loc4,loc3))), J, S6〉 (CALL)

↪→ 〈loc1.add((loc4.pred = loc3); loc4), J, S6〉 (EXEC)

↪→ 〈loc1.add(loc3; loc4), J, S7〉 (SET)

where S7 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ loc2}],
loc4 7→ [Natural � {pred 7→ loc3}]}

↪→ 〈loc1.add(loc4), J, S7〉 (SKIP)

↪→ 〈(fun add〈this,n〉.this.pred().add(n.succ) (loc1,loc4)), J, S7〉 (CALL)

↪→ 〈loc1.pred().add(loc4.succ()), J, S7〉 (EXEC)

↪→ 〈(fun pred〈this〉.this.pred (loc1)).add(loc4.succ()), J, S7〉 (CALL)

↪→ 〈loc1.pred.add(loc4.succ()), J, S7〉 (EXEC)

↪→ 〈loc0.add(loc4.succ()), J, S7〉 (GET)

↪→ 〈loc0.add((fun succ〈this〉.new Natural().setPred(this) (loc4))), J, S7〉 (CALL)

↪→ 〈loc0.add(new Natural().setPred(loc4)), J, S7〉 (EXEC)

↪→ 〈loc0.add(loc5.setPred(loc4)), J, S8〉 (NEW)

where S8 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ loc2}],
loc4 7→ [Natural � {pred 7→ loc3}],
loc5 7→ [Natural � {pred 7→ null}]}

↪→ 〈loc0.add((fun setPred〈this,pred〉.(this.pred = pred);this (loc5,loc4))), J, S8〉 (CALL)

↪→ 〈loc0.add((loc5.pred = loc4); loc5), J, S8〉 (EXEC)

↪→ 〈loc0.add(loc4; loc5), J, S9〉 (SET)
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where S9 = {loc0 7→ [Zero � {pred 7→ null}],
loc1 7→ [Natural � {pred 7→ loc0}],
loc2 7→ [Zero � {pred 7→ null}],
loc3 7→ [Natural � {pred 7→ loc2}],
loc4 7→ [Natural � {pred 7→ loc3}],
loc5 7→ [Natural � {pred 7→ loc4}]}

↪→ 〈loc0.add(loc5), J, S9〉 (SKIP)

↪→ 〈(fun add〈this,n〉.n (loc0,loc5)), J, S9〉 (CALL)

↪→ 〈loc5, J, S9〉 (EXEC)

To interpret this result, we count the predecessors of loc5 in S9. From loc5, we must follow the pred
field three times (first to loc4 then to loc3 then to loc2) to arrive at an instance of Zero. Thus, we see
that 1 + 2 = 3.

2.3 Static Semantics of MiniMAO0

Figure 6 on the following page gives the static semantics for MiniMAO0. To avoid overburdening
the typing rules, we make the following simplifying assumptions:

— All declared classes in a program have unique names.

— The extends relation on classes, generated by the declarations in a program, is acyclic. (For-
mally, t 4 u ∧ u 4 t =⇒ t = u.)

— Field and method names are unique within a single declaration.

The typing rules for expressions use a simple type environment, Γ. The type environment Γ is a
finite partial map from Vthis to T , where Vthis = V ∪ {this} and T is the set of all types. Unlike the
expression typing rules, the typing rules for programs, classes, and methods do not rely on a type
environment.

The static semantics is standard, but a brief explanation of the typing rules is warranted.
The program typing rule, T-PROG, says that a program is well typed if all of its declarations are

well typed and if its main expression is well typed in the empty type environment. (The effect of
the declarations is implicit in the expression’s typing through the global class table, for example see
rule T-NEW.)

A class declaration is well typed, according to T-CLASS, if the declaration does not shadow any
of its superclass fields; if its declared superclass is, in fact, a class; and if its methods are all well
typed.

Rule T-MET says that a method declaration is well typed within a class c if the method body can
be shown to have a subtype of the declared return type by assuming that the formal parameters
have their declared types and this has type c. The last hypothesis of T-MET uses the auxiliary
function override (defined in Figure 3 on page 6) to require that either the method is fresh (i.e., no
method of the same name exists in a superclass) or the method is a valid override—it has the same
type as the overridden superclass method. This definition precludes static overloading.

The expression typing rules are mostly straightforward. Instead of a separate subsumption rule
as is sometimes used, subtyping is handled directly in the appropriate rules (T-CALL, T-EXEC, and
T-SET). The T-NEW, T-OBJ, and T-VAR rules are obvious. The T-LOC rule is used in the meta-
theory, where the domain of the type environment is extended to include locations. The T-NULL

rule says that null can be treated as having any type.
The T-CALL rule uses the type of the target object expression to look up the method type. The

rule checks that all argument expressions are subtypes of the formal parameter types. The type of
the entire call expression is the declared return type of the method.
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Program typing:

T-PROG
∀i ∈ {1..n}· ` decli OK ∅ ` e : t

` decl1 . . . decln e OK

Class typing:

T-CLASS
∀i ∈ {1..n} · fi /∈ dom(fieldsOf (d)) isClass(d) ∀j ∈ {1..p}· ` methj OK in c

` class c extends d { t1 f1 . . . tn fn meth1 . . . methp } OK

Method typing:

T-MET
var1 : t1, . . . , varn : tn, this : c ` e : u u 4 t

CT(c) = class c extends d { . . . } override(m, d, t1 × . . .× tn → t)
` t m( t1 var1, . . . , tn varn ) { e } OK in c

Expression typing:

T-NEW
c ∈ dom(CT)
Γ ` new c() : c

T-OBJ

Γ ` new Object() : Object

T-VAR
Γ(var) = t
Γ ` var : t

T-LOC
Γ(loc) = t
Γ ` loc : t

T-NULL
t ∈ T

Γ ` null : t

T-CALL
Γ ` e0 : t0 ∀i ∈ {1..n} · Γ ` ei : ui

methodType(t0, m) = t1 × . . .× tn → t ∀i ∈ {1..n} · ui 4 ti

Γ ` e0.m( e1, . . . , en ) : t

T-EXEC
Γ, var0 : t0, . . . , varn : tn ` e : s s 4 t

∀i ∈ {0..n} · Γ ` ei : ui ∀i ∈ {0..n} · ui 4 ti τ = t0 × . . .× tn → t
Γ ` ( fun m〈var0, . . . , varn〉.e : τ ( e0, . . . , en ) ) : t

T-GET
Γ ` e : s fieldsOf (s)( f ) = t

Γ ` e. f : t

T-SET
Γ ` e1 : u fieldsOf (u)( f ) = t

Γ ` e2 : s s 4 t
Γ ` e1. f = e2 : s

T-CAST
Γ ` e : s

Γ ` cast t e : t

T-SEQ

Γ ` e1 : s Γ ` e2 : t
Γ ` e1; e2 : t

Figure 6: Static Semantics of MiniMAO0
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The T-EXEC rule is only necessary for the subject-reduction proof, because the lambda applica-
tion form can only appear during evaluation; it cannot be used statically. The rule uses the formal
parameter types to type the body expression. It also ensures that the actual arguments are subtypes
of the formal parameter types.

The T-GET and T-SET rules use the type of the target object expression to look up the field type.
For T-GET, the field type is the type of the whole expression. For field update, T-SET requires that
the right-hand expression, giving the new value of the field, be a subtype of the field type. The type
of the right-hand expression is also the type of the whole update expression.

We choose to use a single rule, T-CAST, for typing casts in MiniMAO0. This is more permissive
than Java, which disallows casting an expression to an unrelated type. As pointed out by Igarashi
et al. [8], we need to allow such “stupid casts” between unrelated types to achieve a proof of subject
reduction for a small-step semantics. This is because an upcast followed by a downcast can reduce
to a stupid cast. Igarashi et al. [8] introduce a technique of splitting the casting rule into three
rules: one for downcasts, one for upcasts, and one for stupid casts. The stupid cast rule allows
for a subject reduction proof while still matching the typing rules of Java: a Featherweight Java
program is a well-typed Java program if its typing derivation does not include a stupid cast. The
three cast typing rules of Featherweight Java also allow a strong safety property: for a program that
can be typed without downcasts or stupid casts, progress is always possible. In our terminology,
they show that evaluation cannot result in a ClassCastException. (Featherweight Java is a functional
calculus and does not include a null value. Hence, NullPointerExceptions are not an issue there.) We
choose to use the simpler single cast rule, since the precise correspondence to Java’s cast typing
rules is not needed for our work and a soundness theorem that admits exceptions is sufficiently
strong.

Finally, the T-SEQ rule simply requires both expressions in a sequence to be well typed and
gives the sequence the type of the second expression.

2.4 Meta-theory of MiniMAO0

The key property of MiniMAO0 is that it is type sound: a well-typed MiniMAO0 program either
converges to a value or exception, or else it diverges. We prove this using the usual subject reduc-
tion and progress theorems. The proofs closely follow those of Flatt et al. [7].

Before stating and proving a subject reduction theorem, we first need a notion of consistency
between a type environment and a store [6, 7]. For the meta-theory, the type environment maps
variables and store locations to types, Γ : (Vthis ∪ L) → T .

Definition 1 (Environment-Store Consistency). A type environment Γ and a store S are consistent,
and we write Γ ≈ S, if all of the following are satisfied:1

1. ∀loc ∈ L · S(loc) = [t � F] =⇒

(a) Γ(loc) = t and

(b) dom(F) = dom(fieldsOf (t)) and

(c) rng(F) ⊆ dom(S) ∪ {null} and

(d) ∀ f ∈ dom(F) · (F( f ) = loc′ and fieldsOf (t)( f ) = u and S(loc′) = [t′ � F′] =⇒ t′ 4 u)

2. ∀loc ∈ L · (loc ∈ dom(Γ) =⇒ loc ∈ dom(S))

3. dom(S) ⊆ dom(Γ)

The following standard substitution lemma will also be useful.

1Using an implication in part 2 of this definition allows the type environment to give types to global constants should
we wish to add basic types to the calculus.
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Lemma 2 (Substitution). If Γ, var1 : t1, . . . , varn : tn ` e : t and ∀i ∈ {1..n} · Γ ` ei : si where si 4 ti then
Γ ` e{|e1/ var1, . . . , en/ varn|} : s for some s 4 t.

Proof. To lighten the notational load, let Γ′ = Γ, var1 : t1, . . . , varn : tn and let {|ē/ var|} represent
{|e1/ var1, . . . , en/ varn|}. The proof proceeds by structural induction on the derivation of Γ ` e : t
and by cases based on the last step in that derivation. The base cases are T-NEW, T-OBJ, T-NULL,
T-LOC, and T-VAR. The first four of these cases are trivial: e has no variables and s = t.

In the T-VAR base case, e = var, and there are two subcases. If var /∈ {var1, . . . , varn} then
Γ′(var) = Γ(var) = t and the claim holds. Otherwise, without loss of generality, let var = var1.
Then e{|ē/ var|} = e1 and, by the assumptions of the lemma, Γ ` e{|ē/ var|} : s1 and s1 4 t1 = t.

The remaining cases cover the induction step. The induction hypothesis is that the claim of the
lemma holds for all sub-derivations of the derivation being considered.

Case 1—T-CALL. Here e = e′0.m( e′1, . . . , e′p ). The last type derivation step has the following form:

Γ′ ` e′0 : u′0 ∀i ∈ {1..p} · Γ′ ` e′i : u′i
methodType(u′0, m) = u1 × . . .× up → t ∀i ∈ {1..p} · u′i 4 ui

Γ′ ` e : t

Let e′′i = e′i{|ē/ var|} for i ∈ {0..p}, then e{|ē/ var|} = e′′0 .m( e′′1 , . . . , e′′p ).
We show that Γ ` e{|ē/ var|} : t by T-CALL. By the induction hypothesis, Γ ` e′′0 : u′′0 , where

u′′0 4 u′0. And methodType(u′′0 , m) = methodType(u′0, m) by the definitions of methodType and override.
Also by the induction hypothesis ∀i ∈ {1..p} · Γ ` e′′i : u′′i and u′′i 4 u′i. Finally, ∀i ∈ {1..p} · u′′i 4 ui
by transitivity and thus the claim holds.

Case 2—T-EXEC. Here e = ( fun m〈var′0, . . . , var′p〉.e′ : τ ( e′0, . . . , e′p ) ), where τ = u′0 × . . .× u′p → t.
The last derivation step is:

Γ, var′0 : u′0, . . . , var′p : u′p ` e′ : s′ s′ 4 t
∀i ∈ {0..p} · Γ ` e′i : ui ∀i ∈ {0..p} · ui 4 u′i τ = u′0 × . . .× u′p → t

Γ ` e : t

As in the preceding case, let e′′i = e′i{|ē/ var|} for i ∈ {0..p}. Also let e′′ = e′{|ē/ var|}, then

e{|ē/ var|} = ( fun m〈var′0, . . . , var′p〉.e′′ : τ ( e′′0 , . . . , e′′p ) ).

By T-EXEC, the induction hypothesis, and transitivity of subtyping, Γ ` e{|ē/ var|} : t.

Case 3—T-GET. Here e = e′. f . The last derivation step is:

Γ′ ` e′ : u fieldsOf (u)( f ) = t
Γ′ ` e′. f : t

Now e{|ē/ var|} = e′{|ē/ var|}. f . By the induction hypothesis, Γ ` e′{|ē/ var|} : u′ where u′ 4 u. By
the definition of fieldsOf and by the first hypothesis of T-CLASS, fieldsOf (u′)( f ) = fieldsOf (u)( f ) =
t. Therefore Γ ` e{|ē/ var|} : t and the claim holds.

Case 4—T-Set. Here e = (e′1. f = e′2) and the last step in the type derivation is:

Γ′ ` e′1 : u′1 fieldsOf (u′1)( f ) = u Γ′ ` e′2 : t t 4 u
Γ′ ` e′1. f = e′2 : t

Now e{|ē/ var|} = (e′1{|ē/ var|}. f = e′2{|ē/ var|}). By the induction hypothesis Γ ` e′1{|ē/ var|} : u′′1 ,
u′′1 4 u′1, Γ ` e′2{|ē/ var|} : t′, t′ 4 t. By definition of fieldsOf and by the first hypothesis of T-CLASS,
we have fieldsOf (u′′1 )( f ) = fieldsOf (u′1)( f ) = u. By transitivity t′ 4 u. Therefore, Γ ` e{|ē/ var|} : t′,
where t′ 4 t and the claim holds.
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Case 5—T-CAST. In this case, e = cast t e′ : t. Here the last derivation step is:

Γ′ ` e : s
Γ′ ` cast t e′ : t

By the induction hypothesis, Γ ` e′{|ē/ var|} : s′, and so Γ ` e{|ē/ var|} : t by T-CAST.

Case 6—T-SEQ. In this case e = e′1; e′2 and the last step in the type derivation is:

Γ′ ` e′1 : s Γ′ ` e′2 : t
Γ′ ` e′1; e′2 : t

Now e{|ē/ var|} = e′1{|ē/ var|}; e′2{|ē/ var|}. By the induction hypothesis, Γ ` e′1{|ē/ var|} : s′, Γ `
e′2{|ē/ var|} : t′, and t′ 4 t. Therefore, Γ ` e{|ē/ var|} : t′, t′ 4 t, and the claim holds.

Thus, for all possible derivations of Γ′ ` e : t we see that Γ ` e{|ē/ var|} : t′ for some t′ 4 t.

We will also need four other standard lemmas: the first pair let us introduce fresh references
into, and remove unused references from, the domain of the type environment; the second pair of
lemmas let us replace subderivations within typing derivations, with or without subtyping. These
lemmas are useful when handling reductions within evaluation contexts.

Lemma 3 (Environment Extension). If Γ ` e : t and a /∈ dom(Γ), then Γ, a : t′ ` e : t.

Proof. The proof is by a straightforward structural induction on the derivation of Γ ` e : t.
For the base case, the last step in the derivation is T-NEW, T-OBJ, T-NULL, T-VAR, or T-LOC. In

the first three cases, the type environment does not appear in the hypotheses of the judgment, so
the claim holds. For the T-VAR case, e = var and Γ(var) = t. But a /∈ dom(Γ), so var 6= a. Therefore
(Γ, a : t′)(var) = t and the claim holds for this case. The T-LOC case is similar.

The remaining typing rules cover the induction step. By the induction hypothesis, changing the
type environment to Γ, a : t′ does not change the types assigned by any hypotheses. Therefore, the
types assigned by each rule are also unchanged and the claim holds.

Lemma 4 (Environment Contraction). If Γ, a : t′ ` e : t and a is not free in e, then Γ ` e : t.

Proof. The proof is by a straightforward structural induction on the derivation of Γ, a : t′ ` e : t.
For the base case, the last step in the derivation is T-NEW, T-OBJ, T-NULL, T-VAR, or T-LOC. In

the first three cases, the type environment does not appear in the hypotheses of the judgment, so
the claim holds. For the T-VAR case, e = var and (Γ, a : t′)(var) = t. But a is not free in e, so var 6= a.
Therefore Γ(var) = t and the claim holds for this case. The T-LOC case is similar.

The remaining typing rules cover the induction step. By the induction hypothesis, changing the
type environment to Γ does not change the types assigned by any hypotheses. Therefore, the types
assigned by each rule are also unchanged and the claim holds.

Lemma 5 (Replacement). If Γ ` E[e] : t, Γ ` e : t′, and Γ ` e′ : t′, then Γ ` E[e′] : t.

Proof. By examining the evaluation context rules and corresponding typing rules, we see that Γ `
e : t′ must be a sub-derivation of Γ ` E[e] : t. Now the typing derivation for Γ ` E[e′] : t′′ must have
the same shape as that for E[e] : t, except for the sub-derivation for Γ ` e′ : t′. However, because
this sub-derivation yields the same type as the sub-derivation it replaces, it must be the case that
t′′ = t.

Lemma 6 (Replacement with Subtyping). If Γ ` E[e] : t, Γ ` e : u, and Γ ` e′ : u′ where u′ 4 u, then
Γ ` E[e′] : t′ where t′ 4 t.

14



Proof. The proof is by induction on the size of the evaluation context E, where the size is the number
of recursive applications of the syntactic rules necessary to build E. In the base case, E has size zero,
E = −, and t′ = u′ 4 u = t.

For the induction step we divide the evaluation context into two parts so that E[−] = E1[E2[−]],
where E2 has size one. The induction hypothesis is that the claim of the lemma holds for all evalu-
ation contexts smaller than the one considered in the induction step. We use a case analysis on the
rule used to generate E2. In each case we show that Γ ` E2[e] : s implies that Γ ` E2[e′] : s′, for some
s′ 4 s, and therefore the claim holds by the induction hypothesis.

Case 1—E2 = −.m( e1, . . . , en ). The last step in the type derivation for E2[e] must be T-CALL:

Γ ` e : u
∀i ∈ {1..n} · Γ ` ei : ui methodType(u, m) = s1 × . . .× sn → s ∀i ∈ {1..n} · ui 4 si

Γ ` E2[e] : s

By the definitions of override and methodType, methodType(u′, m) = methodType(u, m), so T-CALL

gives Γ ` E2[e′] : s.

Case 2—E2 = v0.m( v1, . . . , vp−1,−, ep+1, en ) where p ∈ {1..n}. The last step in the type derivation
for E2[e] must be T-CALL:

Γ ` v0 : u0 ∀i ∈ {1..(p− 1)} · Γ ` vi : ui Γ ` e : u ∀i ∈ {(p + 1)..n} · Γ ` ei : ui
methodType(u0, m) = s1 × . . .× sn → s ∀i ∈ {1..n} \ {p} · ui 4 si u 4 sp

Γ ` E2[e] : s

Now u′ 4 u 4 sp, so by T-CALL Γ ` E2[e′] : s.

Case 3—E2 = ( l ( v0, . . . , vp−1,−, ep+1, en ) ) where p ∈ {0..n}. The last step in the type derivation
for E2[e] must be T-EXEC:

Γ, var0 : s0, . . . , varn : sn ` e′′ : u′′ u′′ 4 s
∀i ∈ {0..(p− 1)} · Γ ` vi : ui Γ ` e : u ∀i ∈ {(p + 1)..n} · Γ ` ei : ui

∀i ∈ {0..n} \ {p} · ui 4 si u 4 sp

Γ ` E2[e] : s

where l = fun m〈var0, . . . , varn〉.e′′ : (s0 × . . . × sn → s). Now u′ 4 u 4 sp, so by T-EXEC Γ `
E2[e′] : s.

Case 4—E2 = −. f . The last step in the type derivation for E2[e] must be T-GET:

Γ ` e : u fieldsOf (u)( f ) = s
Γ ` E2[e] : s

By the first hypothesis of T-CLASS and the definition of field lookup, fieldsOf (u′)( f ) = fieldsOf (u)( f ).
Thus, by T-GET, Γ ` E2[e′] : s.

Case 5—E2 = cast s −. The last step in the type derivation for E2[e] must be T-CAST:

Γ ` e : u
Γ ` E2[e] : s

Because Γ ` e′ : u′, Γ ` E2[e′] : s by T-CAST.
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Case 6—E2 = −; e′′. The last step in the type derivation for E2[e] must be T-SEQ:

Γ ` e : u Γ ` e′′ : s
Γ ` E2[e] : s

Thus, also by T-SEQ, Γ ` E2[e′] : s.

Case 7—E2 = (−. f = e′′). The last step in the type derivation for E2[e] must be T-SET:

Γ ` e : u fieldsOf (u)( f ) = u′′ Γ ` e′′ : s s 4 u′′

Γ ` E2[e] : s

As in Case 4 on the preceding page, fieldsOf (u′)( f ) = fieldsOf (u)( f ). Thus, by T-SET, Γ ` E2[e′] : s.

Case 8—E2 = (v0. f = −). The last step in the type derivation for E2[e] must be T-SET, letting s = u:

Γ ` v0 : u0 fieldsOf (u0)( f ) = u′′ Γ ` e : u u 4 u′′

Γ ` E2[e] : s

Now u′ 4 u 4 u′′, so let s′ = u′ and Γ ` E2[e′] : s′.

Theorem 7 (Subject Reduction). Given a well typed MiniMAO0 program, for an expression e, a stack J,
a store S, and a type environment Γ consistent with S, if Γ ` e : t and 〈e, J, S〉 ↪→ 〈e′, J′, S′〉, then there exist
Γ′ and t′ such that Γ′ ≈ S′, Γ′ ` e′ : t′, and t′ 4 t.

Proof. The proof is by cases on the reduction step applied. Based on the reduction step we can
construct a Γ′ consistent with S′ such that the claim is satisfied.

Case 1—NEW. In this case e = E[new c()], e′ = E[loc], loc /∈ dom(S), and S′ = S ⊕ (loc 7→ [c � F])
where F = { f 7→ null · f ∈ dom(fieldsOf (c))}.

Let Γ′ = Γ, loc : c.
We will see that Γ′ ≈ S′. Because loc /∈ dom(S), (Γ ≈ S) =⇒ loc /∈ dom(Γ) by part 2

of Definition 1 (Environment-Store Consistency) on page 12. Thus part 1 of the definition for Γ′ ≈ S′

holds for all loc′ ∈ L, loc′ 6= loc. Now S′(loc) = [c � F], Γ′(loc) = c, dom(F) = dom(fieldsOf (c)),
rng(F) = {null} ⊆ dom(s)∪ {null}, and 1(d) holds vacuously. So part 1 of Γ′ ≈ S′ holds. Parts 2 and
3 hold because Γ ≈ S, loc ∈ dom(Γ′), and loc ∈ dom(S′).

We will see that Γ′ ` E[loc] : t. By Lemma 3 (Environment Extension) on page 14 and loc /∈
dom(Γ), we have Γ′ ` E[new c()] : t. Now Γ′ ` new c() : c and Γ′ ` loc : c, so by Lemma 5 (Replacement)
on page 14, Γ′ ` E[loc] : t.

Case 2—CALL. Here e = E[loc.m( v1, . . . , vn )], e′ = E[( fun m〈this, var1, . . . , varn〉.e′′ : τ ( loc, v1, . . . , vn ) )]
(where S(loc) = [u � F], methodBody(u, m) = fun m〈this, var1, . . . , varn〉.e′′ : τ, and τ = u′ × t1 × . . .×
tn → um), and S′ = S.

Let Γ′ = Γ.
Clearly Γ′ ≈ S′.
We will see that Γ ` e′ : t. Γ ` e : t implies that loc.m( v1, . . . , vn ) and all its subterms are well

typed in Γ. By part 1(a) of Γ ≈ S, Γ ` loc : u. By the definition of methodBody, u 4 u′. Let Γ ` vi : ui
for all i ∈ {1..n} and let Γ ` loc.m( v1, . . . , vn ) : tm. This last judgment must be by T-CALL with
methodType(u, m) = t1 × . . .× tn → tm where ∀i ∈ {1..n} · ui 4 ti.

By the definition of methodType, rules T-CLASS and T-MET, and the definition of override, we
have (var1 : t1, . . . , varn : tn, this : u′) ` e′′ : u′m where um 4 u′m = tm. By Lemma 3 (Environ-
ment Extension) on page 14 (and appropriate alpha conversion of free variables in e′′), Γ, var1 :

16



t1, . . . , varn : tn, this : u′ ` e′′ : u′m. So

Γ, this : u′, var1 : t1, . . . , varn : tn ` e′′ : u′m u′m 4 tm
Γ ` loc : u ∀i ∈ {1..n} · Γ ` vi : ui

u 4 u′ ∀i ∈ {1..n} · ui 4 ti τ = u′ × t1 × . . .× tn → tm

Γ ` ( fun m〈this, var1, . . . , varn〉.e′′ : τ ( loc, v1, . . . , vn ) ) : tm

Finally, Lemma 6 (Replacement with Subtyping) on page 14 gives Γ ` e′ : t.

Case 3—EXEC. Here e = E[( fun m〈var0, . . . , varn〉.e′′ : τ ( v0, . . . , vn ) )] (where τ = t0 × . . . × tn →
u), e′ = E[e′′{|v0/ var0, . . . , vn/ varn|}], and S′ = S.

Let Γ′ = Γ.
Clearly Γ′ ≈ S′.
We will see that Γ ` e′ : t′ for some t′ 4 t. Γ ` e : t implies that ( fun m〈var0, . . . , varn〉.e′′ :

τ ( v0, . . . , vn ) ) and all its subterms are well typed in Γ. Let Γ ` ( fun m〈var0, . . . , varn〉.e′′ :
τ ( v0, . . . , vn ) ) : u. This must be by T-EXEC:

Γ, var0 : t0, . . . , varn : tn ` e′′ : u′ u′ 4 u
∀i ∈ {0..n} · Γ ` vi : t′i ∀i ∈ {0..n} · t′i 4 ti

τ = t0 × . . .× tn → u
Γ ` ( fun m〈var0, . . . , varn〉.e′′ : τ ( v0, . . . , vn ) ) : u

By Lemma 2 (Substitution) on page 13, Γ ` e′′{|v0/ var0, . . . , vn/ varn|} : u′′ for some u′′ 4 u′ 4 u.
Finally, by Lemma 6 (Replacement with Subtyping) on page 14 Γ ` e′ : t′ for some t′ 4 t.

Case 4—GET. In this case e = E[loc. f ], e′ = E[v] (where S(loc) = [u � F] and F( f ) = v), and S′ = S.
Let Γ′ = Γ.
Clearly Γ′ ≈ S′.
We will see that Γ ` E[v] : t′ for some t′ 4 t. Let Γ ` loc. f : s. The last step in this derivation

must be T-GET. By the first hypothesis of T-GET, by T-LOC, and by Γ ≈ S, we have Γ(loc) = u. By
the second hypothesis of T-GET, fieldsOf (u)( f ) = s. Also by Γ ≈ S, S(v) = [u′ � F′] where u′ 4 s
and Γ(v) = u′.

Thus, Γ ` v : u′ and, by Lemma 6 (Replacement with Subtyping) on page 14, Γ ` E[v] : t′ where
t′ 4 t.

Case 5—SET. In this case e = E[loc. f = v], e′ = E[v], and S′ = S⊕ (loc 7→ [u � F ⊕ ( f 7→ v)]), where
S(loc) = [u � F].

Let Γ′ = Γ.
We will see that Γ ≈ S′. S′ only changes in its mapping for loc. To see that part 1 of the

consistency definition holds, note that S′(loc) = [u � F ⊕ ( f 7→ v)]. For part 1(a) Γ(loc) = u, since
S(loc) = [u � F] and Γ ≈ S. For part 1(b) dom(F ⊕ ( f 7→ v)) = dom(fieldsOf (u)), since loc. f = v is
well typed.

For part 1(c), rng(F ⊕ ( f 7→ v)) = rng(F) ∪ {v}. Now since loc. f = v is well typed, we have
v ∈ dom(Γ) or v = null. In the former case, by Γ ≈ S, we have v ∈ dom(S). v ∈ dom(S) implies
v ∈ dom(S′). So in either case rng(F) ∪ {v} ⊆ dom(S′) ∪ {null}.

Part 1(d) holds for all f ′ ∈ dom(F), f ′ 6= f . Part 1(d) holds vacuously for f if v = null. Otherwise,
(F ⊕ ( f 7→ v))( f ) = v and, by T-SET and T-LOC, Γ(v) 4 fieldsOf (u)( f ).

Parts 2 and 3 hold since dom(S′) = dom(S).
To see that Γ ` E[v] : t, let Γ ` loc. f = v : s. By T-SET, Γ ` v : s and by Lemma 5 (Replacement) on

page 14, Γ ` E[v] : t.

Case 6—CAST. Here e = E[cast t′′ loc], e′ = E[loc], S′ = S, S(loc) = [u � F], and u 4 t′′.
Let Γ′ = Γ.
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Clearly Γ′ ≈ S′.
To see that Γ ` E[loc] : t′ for some t′ 4 t, note that Γ(loc) = u by consistency of Γ with S. Thus

Γ ` loc : u. By T-CAST, Γ ` cast t′′ loc : t′′. Since u 4 t′′, by Lemma 6 (Replacement with Subtyping)
on page 14 we have Γ ` E[loc] : t′ where t′ 4 t.

Case 7—NCAST. Here e = E[cast t′′ null], e′ = E[null], S′ = S.
Let Γ′ = Γ.
Clearly Γ′ ≈ S′.
Now Γ ` cast t′′ null : t′′. By T-NULL, Γ ` null : t′′. So by Lemma 5 (Replacement) on page 14,

Γ ` E[null] : t.

Case 8—SKIP. Here e = E[v; e′′], e′ = E[e′′], S′ = S.
Let Γ′ = Γ.
Clearly Γ′ ≈ S′.
Since Γ ` E[v; e′′] : t, let Γ ` v; e′′ : t′′. This derivation must be by T-SEQ, the second hypothesis

of which says Γ ` e′′ : t′′. By Lemma 5 (Replacement) on page 14, Γ ` E[e′′] : t.

The remaining evaluation rules reduce e to an error condition and are not applicable to the
theorem.

Theorem 8 (Progress). For an expression e, a stack J, a store S, and a type environment Γ consistent with
S, if Γ ` e : t then either:

— e = loc and loc ∈ dom(S),

— e = null, or

— one of the following hold:

– 〈e, J, S〉 ↪→ 〈e′, J′, S′〉
– 〈e, J, S〉 ↪→ 〈NullPointerException, J′, S′〉
– 〈e, J, S〉 ↪→ 〈ClassCastException, J′, S′〉

Proof. If e = loc, then Γ ` loc : t by T-LOC. This means that loc ∈ dom(Γ) and, since Γ ≈ S we have
loc ∈ dom(S).

If e = null, then the claim holds.
Finally, when e is not a value we consider cases based on the current redex of e. Cases where the

redex matches NEW, EXEC, NCAST, SKIP, NCALL, NGET, and NSET are trivial. For the remaining
cases we must show that the side conditions of the appropriate evaluation rules are satisfied.

Case 1—e = E[loc.m( v1, . . . , vn )]. Because e is well typed, Γ ` loc : s for some type s. Thus,
loc ∈ dom(Γ), and part 2 of Γ ≈ S implies loc ∈ dom(S). Let S(loc) = [s′ � F]. Now s′ = s by part 1(a)
of Γ ≈ S.

Because loc.m( v1, . . . , vn ) is well typed, we know by the hypotheses of T-CALL that methodType(s, m)
yields an n-arity method type. By the correspondence between the definitions of methodType and
methodBody, it must be the case that methodBody(s, m) = l for some fun term l. Thus 〈e, J, S〉 evolves
by CALL.

Case 2—e = E[loc. f ]. As in the preceding case, e well typed implies S(loc) = [s � F] where Γ(loc) = s.
Now loc. f well typed implies f ∈ dom(fieldsOf (s)) by the hypotheses of T-GET. Finally, part 1(b) of
Γ ≈ S gives f ∈ dom(F), so 〈e, J, S〉 evolves by GET.

Case 3—e = E[loc. f = v]. Similar to the preceding case.
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Case 4—e = E[cast t′ loc]. As in Case 1 on the previous page, e well typed implies S(loc) =
[s � F], where Γ(loc) = s. If s 4 t′, then 〈e, J, S〉 ↪→ 〈E[loc], J, S〉 by CAST; otherwise 〈e, J, S〉 ↪→
〈ClassCastException, J, S〉 by XCAST.

The soundness property of MiniMAO0 follows from subject reduction and progress.

Theorem 9 (Soundness). Given a program P = decl1 . . . decln e, if ` P OK then either the evaluation of e
diverges or else 〈e, •, ∅〉 ∗

↪→ 〈v, J, S〉 where one of the following holds for v:

— v = loc and loc ∈ dom(S),

— v = null,

— v = NullPointerException, or

— v = ClassCastException

Proof. If e diverges then the claim holds. If e converges, then note that the empty environment
is consistent with the empty store. The proof (by induction on the number of evaluation steps)
is immediate from Theorem 7 (Subject Reduction) on page 16 and Theorem 8 (Progress) on the
previous page.

3 MiniMAO1: Adding Aspects

In this section we add advice binding to MiniMAO0, producing the aspect-oriented core calculus
MiniMAO1. Continuing with the minimalist philosophy, the join point model of MiniMAO1 is
quite simple. The model only includes call and execution join points, the parameter binding forms
this, target, and args, and the operators for pointcut union, intersection, and negation. The omission
of the temporal join points, such as cflow, is an intentional decision. The techniques for dealing
semantically with such join points are well understood [16], and such temporal join points do not
substantially affect the typing rules for aspects.

MiniMAO1 accurately models AspectJ’s semantics for around advice [12], in that it allows ad-
vice to change the target object of a method call or execution before proceeding with the operation.
Moreover, as in AspectJ, changing the target object at a call join point affects method selection for
the call, but changing the target object at an execution join point merely changes the self object of
the already selected method. Changing the target object is useful for such idioms as introducing
proxy objects. Such proxy objects can be used in aspect-oriented implementations of persistence or
for redirecting method calls to remote machines. MiniMAO1 does depart from AspectJ’s semantics
for around advice in two ways: it does not allow changing the this (i.e., the caller) object at a call
join point and it uses a different form of proceed, which syntactically looks like the advised method
call rather than the surrounding advice declaration as in AspectJ. These differences are discussed
more below.

One motivation for the design of MiniMAO1 is to keep pointcut matching, advice execution, and
primitive operations in the base language as separate as possible. This goal causes us to use more
evaluation rules that are strictly necessary. One way to think of MiniMAO1 is as an operational
semantics for an aspect-oriented virtual machine, where each primitive operation may generate a
join point that may trigger other rules for advice matching. Our approach increases the syntactic
complexity of the calculus, but we find that it actually simplifies reasoning. The approach keeps
separate concepts in separate rules that can be analyzed with separate lemmas.

No previous work on formalizing the semantics of an aspect-oriented language deals with the
actual AspectJ semantics of argument binding for proceed expressions and an object-oriented base
language. Our calculus is motivated by the insight of Walker et al. [15] that labeling primitive
operations is a useful technique for modeling aspect-oriented languages. However, to handle the
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decl :: = . . . | aspect a { field∗ adv∗ }
adv :: = t around( form∗ ) : pcd { e }
pcd :: = call( pat ) | execution( pat ) |

this( form ) | target( form ) | args( form∗ ) |
pcd && pcd | ! pcd | pcd —— pcd

pat :: = t idPat(..)

e :: = . . . | e.proceed( e∗ )

a ∈ A, the set of aspect names

idPat ∈ I , the set of identifier patterns

Figure 7: Syntax Extensions for MiniMAO1

run-time changing of the target object and arguments when proceeding from advice, we replace
their simple labels with more expressive join point abstractions. Also, rather than introduce these
join point abstractions through a static translation from an aspect-oriented language to a core lan-
guage, we generate them dynamically in the operational semantics. The extra data needed for
the join point abstractions (versus the simple static labels) is more readily obtained when they are
generated dynamically. (This dynamic generation is also adopted by Dantas and Walker.) Also,
directly typing the aspect-oriented language, instead of just showing a type-safe translation to the
labeled core language, seems to more clearly illustrate the issues in typing advice, though this is a
matter of taste. Our type system is motivated by that of Jagadeesan et al. [10]. We discuss this and
other related work in more detail in Section 4.

3.1 Syntax of MiniMAO1

Figure 7 gives the additional syntax for MiniMAO1. To the declarations of MiniMAO0 we add
aspects, with a ranging over the set, A, of aspect names. As for identifiers in MiniMAO0, we
leave A unspecified, but for examples will draw names from the set of legal Java identifiers. For a
MiniMAO1 program the set of types is T = C ∪ A. An aspect declaration includes a sequence of
field declarations and a sequence of advice declarations.

We only include around advice in MiniMAO. Operationally, around advice can be used to model
both before and after advice. (As noted by Jagadeesan et al. [10], there are some interesting differ-
ences for typing around advice versus before or after advice. We discuss these in more detail later.)

An advice declaration in MiniMAO1 consists of a return type, followed by the keyword around
and a sequence of formal parameters. A pointcut descriptor comes next. The pointcut descriptor
specifies the set of join points—the pointcut—where the advice should be executed. A join point is
any point in the control flow of a program where advice may be triggered. The pointcut descriptor
for a piece of advice also specifies how the formal parameters of the advice are to be bound to the
information available at a join point. The final part of an advice declaration is an expression that is
the advice body.

MiniMAO1 includes a limited vocabulary for pointcut descriptors. The call pointcut descriptor
matches the invocation of a method whose signature matches the given pattern. We restrict method
patterns to a concrete return type plus an identifier pattern that is matched against the name of the
called method. We choose not to include matching against target or parameter types here because
that is just syntactic sugar for the target and args pointcut descriptors.

We leave the set I of identifier patterns underspecified. Generally, we can think of I as a regular
expression language such that all members of M are elements of regular expressions in I . For
examples, we will treat I as the set of all legal Java identifiers, but treating the wildcard character,
*, as a legal identifier character.

The execution pointcut descriptor is like the one for call, except that it matches the join point
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corresponding to a method execution. There are two key differences between method call and
method execution join points:

— at a method call join point the this object is the caller, while at a method execution join point
the this object is the callee, and

— a method call join point is reached before method dispatch is performed, but the correspond-
ing method execution join point is reached after method dispatch.

The this, target, and args pointcut descriptors correspond to the parameter-binding forms of
these descriptors in AspectJ; they bind the named formal parameters to the corresponding in-
formation from the join point. To simplify the operational semantics, the syntax requires a type
and a formal parameter. For example, where one could write this(n) in AspectJ, one must write
this(Number n) in MiniMAO (where Number is the type of the formal parameter n in the advice dec-
laration). This type elaboration could easily be performed automatically; including it in the syntax
clarifies the formalism. Another simplification versus AspectJ is that the args pointcut descriptor
in MiniMAO1 binds all arguments available at the join point; that is, MiniMAO1 does not include
AspectJ’s mechanism for binding arguments when matching methods with differing numbers of
arguments. We do not include any wildcard or subtype matching for this, target, or args pointcut
descriptors.

The final three pointcut descriptor forms represent pointcut negation (!pcd), union (pcd —— pcd),
and intersection (pcd && pcd). Pointcut negation only reverses the boolean (match or mismatch)
value of the negated pointcut. Any parameters bound by the negated pointcut are dropped. Point-
cut union and intersection are “short circuiting”; for example, if pcd1 in the form pcd1 —— pcd2
matches a join point, then the bindings defined by pcd1 are used and pcd2 is ignored.

MiniMAO1 also includes proceed expressions, which are only valid within advice. An expres-
sion such as e0.proceed(e1, . . . , en) takes a target, e0, and sequence of arguments, e1, . . . , en, and
causes execution to continue with the code at the advised join point—either the original method or
another piece of advice that applies to the same method. As noted above, the proceed expression
in MiniMAO1 differs from AspectJ. In MiniMAO1, an expression of the form e0.proceed(e1, . . . , en)
must be such that the type of the target, e0, and the number and types of the arguments, e1, . . . , en,
match those of the advised methods. In AspectJ, the arguments to proceed must match the formal
parameters of the surrounding advice. This design decision matches our intuition for how proceed
should work; it has little effect on expressiveness in a language with type-safe around advice. Our
design also precludes changing the this object at call join points. Such changes would only be visible
from other aspects, not the base program. Precluding these changes eliminates some possibilities
for aspect interference, a useful property for our work on aspect-oriented reasoning. We are not
aware of any use cases demonstrating a need to allow changing the this object.

3.2 Operational Semantics of MiniMAO1

This section gives the changes and additions to the operational semantics for MiniMAO1. Sub-
sections describe the stack in MiniMAO1, new expression forms introduced for the operational
semantics, the new evaluation rules, and pointcut descriptor matching. Another subsection gives
several example evaluations.

3.2.1 The Join Point Stack

The stack in MiniMAO1 is a list of join point abstractions, each of which is a five-tuple denoted by
half-moon brackets, (|. . .|), as shown in Figure 8 on the next page. A join point abstraction records all
the information in a join point that is needed for advice matching and advice parameter bindings,
together referred to as advice binding. A join point abstraction also includes all the information
necessary to proceed from advice to the original code that triggered the join point. A join point
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J :: = j + J | •
j :: = (|k, vopt, mopt, lopt, τopt|)
k :: = call | exec | this

vopt :: = v | −
mopt :: = m | −

lopt :: = l | −
τopt :: = τ | −

Figure 8: The Join Point Stack

abstraction consists of the following parts (most of which are optional and are replaced with “−”
when omitted):

— a join point kind, k, indicating the primitive operation of the join point, or this to record the
self object at method or advice execution (for binding the this pointcut descriptor);

— an optional value indicating the self object at the join point, used for parameter binding by
this pointcut descriptors;

— an optional name indicating the method called or executed at the join point, used for pattern
matching in call and execution pointcut descriptors;

— an optional fun term recording the body of the method to be executed at an execution join
point; and

— an optional function type indicating the type of the code under the join point (or, equiva-
lently, the type of a proceed expression in any advice that binds to the join point). The code
under a join point is the program code that would execute at that join point if no advice
matched the join point. For example, the code under a method execution join point is the
body of the method. The function type includes the type of the target object as the first
argument type.

3.2.2 New Expression Forms

The operational semantics relies on three additional expression forms, as shown in Figure 9 on
the following page. The first, joinpt, reifies join points of a program evaluation into the expression
syntax. A joinpt expression consists of a join point abstraction followed by a sequence of expressions
representing the actual arguments to the code under the join point.

The second expression form that we add for the operational semantics is under. An under ex-
pression serves as a marker that the nested expression is executing under a join point; that is, a join
point abstraction was pushed onto the stack before the nested expression was added to the evalu-
ation context. When the nested expression has been evaluated to a value, then the corresponding
join point abstraction can be popped from the stack. (In a calculus that included after advice, a term
under v (where v is a value) could also serve as an indication that any after advice matching the
stack should be triggered.)

The final additional expression form is chain. A chain expression records a list, B̄, of all the advice
that matches at a join point, along with the join point abstraction and the original arguments to the
code under the join point.

The advice list of a chain expression consists of body tuples, one per matching piece of advice.
For visual clarity, we use “snake-like” brackets, db. . .ce, to denote each body tuple. A body tuple

22



e :: = . . . | joinpt j( e∗ ) | under e | chain B̄, j( e∗ )

B̄ :: = B + B̄ | •
B :: = dbb, loc, e, τ, τce
b :: = 〈α, β, β∗〉
α :: = var 7→ loc | −
β :: = var | −
b ∈ B, the set of advice parameter bindings

Figure 9: Additional Expression Forms for the Operational Semantics of MiniMAO1

is comprised of two parts: operational information and type information. The operational infor-
mation includes three elements: a parameter binding term, b, described below; a location, loc; and
an expression, e. The location is the self object; it is substituted for this when evaluating the advice
body. The expression is the advice body.

The binding term, b, describes how the values of actual arguments should be substituted for for-
mals in the advice body. This substitution is somewhat complex to account for the special binding
of the this pointcut descriptor, which takes its data from the original join point, and the target and
args pointcut descriptors, which take their data from the invocation or proceed expression imme-
diately preceding the evaluation of the advice body. (No previous formalization of AspectJ has
faithfully modeled this binding semantics for target and args.) we give examples of binding terms
in Section 3.2.5 on page 31.

Structurally, a binding term consists of a variable-location pair, var 7→ loc, which is used for
any this pointcut descriptors, followed by a non-empty sequence of variables, which represent the
formals to be bound to the target object and each argument in order. The “−” symbol is used to
represent a hole in a binding term. This might occur, for example, if a pointcut descriptor did not
use this. The set of all possible binding terms is B.

The type information in a body tuple is contained in its last two elements. The first of these is
the declared type of the advice, a function type from formal parameter types to the return type.
The second type element, the last element in the body tuple, is the type of any proceed expression
contained within the advice body. We include the type information in body tuples to simplify the
subject-reduction proof; the type information is not needed for the evaluation rules.

3.2.3 Evaluation Rules for MiniMAO1

Next we give an intuitive description of the new evaluation rules in MiniMAO1. These rules are
given in Figure 10 on the following page. The example evaluations in Section 3.2.5 on page 31
illustrate the rules.

We add new evaluation context rules to handle the joinpt, under, and chain expressions. The
semantics replaces proceed expressions with chain expressions, so we do not need additional rules
for handling proceed.

We replace the CALL rule of MiniMAO0 with a pair of rules, CALLA and CALLB described
below, that introduce join points and handle proceeding from advice respectively. We replace the
EXEC rule similarly. This division exposes join points for call and execution to the evaluation rules.
Just as virtual dispatch is a primitive operation in a Java virtual machine, our semantics models
advice binding as a primitive operation on these exposed join points. This advice binding is done
by the new BIND rule. The new ADVISE rule models advice execution, and an UNDER rule helps
maintain the join point stack by recording when join point abstractions should be popped.

The evaluation of a program in MiniMAO1 does not begin with an empty store as in MiniMAO0.
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Evaluation contexts:

E :: = . . . | joinpt j( v . . . E e . . . ) | under E | chain B̄, j( v . . . E e . . . )

Evaluation relation (additional and replacement rules):

〈E[loc.m( v1, . . . , vn )], J, S〉 ↪→ 〈E[joinpt (|call,−, m,−, τ|)( loc, v1, . . . , vn )], J, S〉 CALLA
where S(loc) = [t � F], methodType(t, m) = t1 × . . .× tn → t′,

origType(t, m) = t0, and τ = t0 × . . .× tn → t′

〈E[chain •, (|call,−, m,−, τ|)( loc, v1, . . . , vn )], J, S〉
↪→ 〈E[( l ( loc, v1, . . . , vn ) )], J, S〉 CALLB

where S(loc) = [t � F] and methodBody(t, m) = l

〈E[( l ( v0, . . . , vn ) )], J, S〉 ↪→ 〈E[joinpt (|exec, v0, m, l, τ|)( v0, . . . , vn )], J, S〉 EXECA
where l = fun m〈var0, . . . , varn〉.e : τ

〈E[chain •, (|exec, v, m, l, τ|)( v0, . . . , vn )], J, S〉
↪→ 〈E[under e{|v0/ var0, . . . , vn/ varn|}], j + J, S〉 EXECB

where l = fun m〈var0, . . . , varn〉.e : τ and j = (|this, v0,−,−,−|)

〈E[null.m( v1, . . . , vn )], J, S〉 ↪→ 〈NullPointerException, J, S〉 NCALLA
〈E[chain •, (|call,−, m,−, τ|)( null, v1, . . . , vn )], J, S〉

↪→ 〈NullPointerException, J, S〉 NCALLB

〈E[joinpt j( v0, . . . , vn )], J, S〉 ↪→ 〈E[under chain B̄, j( v0, . . . , vn )], j + J, S〉 BIND

where adviceBind(j + J, S) = B̄

〈E[chain dbb, loc, e, , ce+ B̄, j( v0, . . . , vn )], J, S〉
↪→ 〈E[under e′{|loc/ this|}{|(v0, . . . , vn)/ b|}], j′ + J, S〉 ADVISE

where e′ = 〈〈e〉〉B̄,j and j′ = (|this, loc,−,−,−|)

〈E[under v], J, S〉 ↪→ 〈E[v], J′, S〉 UNDER

where J = j + J′, for some j

Figure 10: Changes to the Operational Semantics for MiniMAO1
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CT(a) = aspect a { . . . }
a 4 Object

Figure 11: Additional Subtyping Rule for MiniMAO1

Instead, a single instance of each declared aspect is added to the store. The locations of these in-
stances are recorded in the global advice table, AT, which is a set of 5-tuples. Each 5-tuple represents
one piece of advice. The 5-tuple for the advice t around( t1 var1, . . . , tn varn ): pcd { e }, declared in
aspect a, is 〈loc, pcd, e, (t1 × . . .× tn → t), τ〉; in this 5-tuple S(loc) = [a � F] is the aspect instance for
a in the initial store. For a given aspect a, every 5-tuple in AT representing advice from a has the
same location. The function type τ is the type of proceed expressions in e, derived from pcd. (In
AspectJ, τ would be redundant, because the type of proceed expressions in AspectJ advice is de-
rived from the advice signature. That is, τ = (t1 × . . .× tn → t). In MiniMAO1 the type of proceed
expressions is derived from the pointcut descriptor.)

The global class table, CT, is extended in MiniMAO1 to also map aspect names to the aspect
declarations. We extend the subtyping rules with a rule that all aspects are subtypes of Object, as
shown in Figure 11. Treating aspect instances as regular objects allows the rules for field access to
be applied uniformly for aspect and class instances. This treatment also matches the situation in
AspectJ. We also extend the field lookup function, fieldsOf , with an additional rule for aspects as
shown in Figure 12 on the next page.

Next we describe the new evaluation rules in more detail.

Splitting the Call Rule In object-oriented MiniMAO0, a method call is evaluated by applying the
CALL and EXEC rules in turn. In aspect-oriented MiniMAO1, each of these steps is broken into a
series of steps. The CALL step becomes:

— CALLA: creates a call join point

— BIND: finds matching advice

— ADVISE: evaluates each piece of advice

— CALLB: looks up method, creates an application form

A similar division of labor is used for EXEC. We next describe each of these four steps in turn.

Create a Join Point The CALLA rule says that a method call expression with a non-null target
evaluates to a joinpt expression where the join point abstraction carries the information about the
call necessary to bind advice and to proceed with the original call. This information is: the call kind,
the method name, and a function type, τ, for the method. The function type includes a target type
in the first argument position. The function type is determined using a pair of auxiliary functions,
methodType and origType, shown in Figure 12 on the following page.

The methodType function is similar to methodBody discussed above; it searches the class table for
the method declaration and returns a function type. The origType function finds the type of the
“most super” class of the target type that also declares the method m. The target type included in
the call join point abstraction generated by CALLA is this most super class. Using the most super
class allows advice to match a call to any method in a family of overriding methods, by specifying
the target type as this most super class. We discuss this a bit more when describing the target
pointcut descriptor below. Finally, the arguments of the generated joinpt expression are the target
location—again in the first position—and the arguments of the original call, in order.
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Field lookup (additional rule):

CT(a) = aspect a { t1 f1 . . . tn fn adv∗ }
fieldsOf (a) = { fi 7→ ti · i ∈ {1..n}}

Original declaration lookup:

origType(t, m) = max{s ∈ T · t 4 s ∧methodType(s, m) = methodType(t, m)}

Advice binding:

adviceBind :Stack× Store → 〈B ×L× E × (T ∗ → T )× (T ∗ → T )〉

adviceBind(J, S) = B̄, where B̄ is a smallest list satisfying

∀〈loc, pcd, e, τ, τ′〉 ∈ AT · ((matchPCD(J, pcd, S) = b 6= ⊥) =⇒ dbb, loc, e, τ, τ′ce ∈ B̄)

Advice chaining:
〈〈−〉〉B̄,j : E → E

〈〈e0.proceed( e1, . . . , en )〉〉B̄,j = chain B̄, j( 〈〈e0〉〉B̄,j, 〈〈e1〉〉B̄,j, . . . , 〈〈en〉〉B̄,j )

For all other expression forms, the chaining operator is just applied recursively to every subexpres-
sion. For example, the definition of the chaining operator for field set is:

〈〈e. f =e′〉〉B̄,j = 〈〈e〉〉B̄,j. f =〈〈e′〉〉B̄,j

Binding substitution:

e{|〈v0, . . . , vn〉/ 〈var 7→ loc, β0, . . . , βp〉|} = e{|loc/ var|}{|vi/ vari|}i∈{0..n}·βi=vari
where n ≤ p

e{|〈v0, . . . , vn〉/ 〈−, β0, . . . , βp〉|} = e{|vi/ vari|}i∈{0..n}·βi=vari
where n ≤ p

In all other cases, binding substitution is undefined.

Figure 12: Auxiliary Functions for MiniMAO1 Operational Semantics
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Find Matching Advice The BIND rule is the only place in the calculus where advice binding
(lookup) occurs. This rule takes a joinpt expression and converts it to a chain expression that carries
a list of all matching advice for the join point. It also pushes the expression’s join point abstraction
onto the join point stack.

The rule uses the auxiliary function adviceBind to find the (possibly empty) list of advice match-
ing the new join point stack and store. The adviceBind function applies the matchPCD function, de-
scribed in Section 3.2.4, to find the matching advice in the global advice table. (We leave adviceBind
underspecified. In particular, we don’t give an order for the advice in the list. For practical pur-
poses some well-defined ordering is needed, but any consistent ordering, such as the declaration
ordering used in our examples, will suffice.)

Having found the list of matching advice, the BIND rule then constructs a new chain expression
consisting of this list of advice, the original join point abstraction, and the original arguments. The
result expression is wrapped in an under expression to record that the join point abstraction must
later be popped from the stack.

Evaluate Advice The ADVISE rule takes a chain expression with a non-empty list of advice
and evaluates the first piece of advice. The general procedure is to substitute for this in the advice
body with the location, loc, of the advice’s aspect and substitute for the advice’s formal parameters
according to the binding term, b. We describe below how the binding term is used for the sub-
stitution. However, before the substitution occurs the rule uses the 〈〈−〉〉B̄,j auxiliary function to
eliminate proceed expressions in the advice body. This “advice chaining” function rewrites all pro-
ceed expressions, replacing them with chain expressions carrying the remainder of the advice list B̄,
along with the join point abstraction, j, needed to proceed to the original operation once the advice
list has been exhausted. This rewriting is like that used by Jagadeesan et al. [9], though they do not
consider the target object to be one of the arguments to proceed. Advice chaining is illustrated with
an example in Section 3.2.5.

After using the advice chaining function to rewrite the advice body, the ADVISE rule uses vari-
able substitution to bind the formal parameters of the advice to the actual arguments. It substitutes
the aspect location, loc, for this and substitutes the actuals for the formals according to b. We over-
load notation to define this substitution for binding terms (see Figure 12 on the previous page). The
definition says that the variable in the var 7→ loc pair is replaced with the location, unless there is
a hole,“−”, in this position of the binding term. Each element, βi, in the binding term that is not a
hole must be a variable. Each such variable is replaced with the corresponding argument, vi. For
example:

(x.f = y){|〈loc0,loc1〉/ 〈x 7→ loc2, −, y〉|} = (loc2.f = loc1)

The x 7→ loc2 in the binding term does not use data from the arguments 〈loc0,loc1〉; the value loc0 is
not used because of the hole in the binding term; and y is replaced with loc1. The type system rules
out repeated use of a variable in a binding term.

After substitution, the ADVISE rule pushes a this join point abstraction onto the stack—equivalent
to the self reference stored on the call stack in a Java virtual machine—and wraps the result expres-
sion in an under expression, which records that the join point abstraction should be popped from
the stack later.

Finish the Original Operation Once the list of advice has been exhausted, the result is a chain
expression with an empty advice list, the original join point abstraction, and a sequence of argu-
ments. If the BIND rule had found no advice, then the arguments will be the target and arguments
from the original call. Otherwise, the arguments will be whatever was provided by the last piece
of advice. This chain expression is used by the CALLB rule to evaluate the original call.

The CALLB rule looks up the type of the (possibly changed) target object in the store and finds
the method body in the global class table. The rule takes the method name from the join point
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abstraction. The result of the rule is an application expression, just like the result of the CALL rule
in MiniMAO0.

Because both the CALLA and CALLB rules use a target location for method lookup, there are
corresponding rules for null targets. These rules just map to a triple with a NullPointerException.

A General Technique The technique used to convert the CALL rule from the MiniMAO0 calculus
into a pair of rules, with intervening advice binding and execution, is general. The first rule in
the new pair replaces the original expression with a joinpt expression, ready for advice binding.
The second rule in the pair takes a chain expression, exhausted of advice, and maps it to a new
expression like the result expression of the rule from MiniMAO0. This is how the two new EXEC

rules are generated.
The EXECA rule replaces the application expression with a joinpt expression. The join point ab-

straction of this expression includes the exec kind, the method name, the fun term of the application,
and the type of the fun term. The abstraction also includes, in the position reserved for this objects,
the value of the target object from the argument tuple, because target and this objects are the same
at an execution join point. The arguments to the joinpt expression are the arguments to the original
application expression.

The EXECB rule takes a chain expression that has been exhausted of its advice. It applies the fun
term from the chain’s join point abstraction to the argument sequence, substituting the arguments
for the variables in the body of the fun term. Like ADVISE, the EXECB rule pushes a this join point
abstraction onto the stack and wraps its result expression in an under expression.

It would be straightforward to add pointcut descriptors and join points for any of the primitive
operations in the original calculus. One would have to generalize the data carried in the join point
abstractions to accommodate additional information, but the BIND and ADVISE rules would remain
unchanged. Because the call and exec join points are sufficient for our study, we choose not to
include join points for the other primitive operations. To do so would just introduce additional
notation and bookkeeping.

The Under Rule The UNDER rule is the simplest of the new evaluation rules. It just extracts the
value from the under expression and pops one join point abstraction from the stack.

3.2.4 Pointcut Matching

Following Wand et al. [16], we define the matchPCD function for matching pointcut descriptors
to join points using a boolean algebra over binding terms. Our binding terms, as described in
Section 3.2.2 above, are somewhat more complex than theirs, since we model this, target, and args
pointcut descriptors and faithfully model the semantics of proceed from AspectJ with regard to
changing target objects in advice. Nevertheless, the basic technique is the same.

The boolean algebra and the definition of matchPCD are given in Figure 13 on page 30. The
terms of the algebra are drawn from the set B⊥ = B ∪ {⊥}, where binding terms can be thought
of as “true” and ⊥ as “false”. The operators in the algebra are conjunction (∧), disjunction (∨),
and complement (¬). The complement of the complement of an element is not necessarily the
original element, unless we consider all binding terms to be isomorphic; this effect of this detail on
advice binding is discussed below. The binary operators are short circuiting; for example, b∨ r = b,
ignoring the value of r. One difference in our algebra, versus Wand et al. [16], is in the conjunction
of two non-⊥ terms. Our calculus must consider the bindings from both terms, because we have
more than one pointcut descriptor that can bind formal parameters. Sometimes these bindings
must be combined, for example when both a target and args pointcut descriptor are used. The
bindings are combined using a pointwise join (denoted t· ) that extends the shorter binding term
if the two terms do not have the same number of elements. Collisions in the join operator, where
neither binding has a hole at a given position, are resolved in favor of the left-hand term; however,
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the typing rules for pointcut descriptors ensure that such collisions do not occur in well-typed
programs.

The rules defining matchPCD are straightforward. If the pointcut descriptor matches the join
point stack, then the rules construct the appropriate binding term; otherwise they evaluate to ⊥.
The only complications are to accommodate the multiple parameter binding forms. For example,
this and target matching must be done without information on how many additional arguments
might be bound by an args pointcut descriptor. Thus, the length of binding terms must be allowed
to vary.

Call and Execution The call and execution rules only match if the most recent join point is
of the corresponding kind and the return type and name of the method under the join point are
matched by the pattern. Because these pointcut descriptors do not bind formal parameters, a match
is indicated by an empty binding term.

This Two rules are used to handle this pointcut descriptors. Together, these rules find the most
recent join point where the optional self object location is provided in the join point abstraction.
Once found, if the object record in that location is a subtype of the formal parameter type, then the
formal named by the pointcut descriptor is mapped to the location; otherwise the result is ⊥.

Target The target pointcut descriptor is handled similarly to this, but uses the target type from
the join point instead. Unlike the this pointcut descriptor, the location to be bound to the formals
is not available from the join point abstraction. The location may come from a proceed expression
to be evaluated later. Also unlike this, target requires an exact type match. This is necessary for
type soundness, as noted by Jagadeesan et al. [10]. If the descriptor were to match when the target
type was a supertype of the parameter type, then the advice could call a method on the object
bound to the formal that did not exist in the object’s class. On the other hand, if the descriptor
were to match when the target type was a subtype of the parameter type, then the advice could
replace the target object with a supertype before proceeding to a method call. If this supertype did
not declare the method, then a runtime type error would result.2 Thus, for soundness the target
pointcut descriptor must use exact type matching. If advice were not allowed to change the target
object, then less restrictive target type matching could be used.

This restriction to exact type matching is not as severe as it may seem at first. This is because
when the CALLA rule generates the target type for its join point abstraction, it uses the type of the
class declaring the top-most method in the method overriding hierarchy. Thus, the actual target
object for a matched call may be a subtype of the target type that was matched exactly. Using the
declaring class of this top-most method also means that advice can be written to match a call to
any method in a family of overriding methods. Unlike the CALLA rule, the EXECA rule creates a
join point abstraction using the actual target type. Again, this is necessary for soundness. At an
exec join point method selection has already occurred and advice cannot be allowed to change the
target object to a superclass even if that superclass declared an overridden method.

We are also interested in investigating whether a more elaborate type system might permit
more expressive pointcut matching while maintaining soundness. However, this is orthogonal to
our concerns with modular reasoning and so we leave it for future work.

Args The args pointcut descriptor matches if the argument types of the most recent join point
match those of the pointcut descriptor. The resulting binding includes all formals named in the
pointcut descriptor in the corresponding positions. As with the target pointcut descriptor, only
the relative position to be bound, not the actual value, is available until the advice is executed.

2Indeed, in AspectJ 1.2, which includes subtype matching for its target pointcut descriptor, one can generate a run-time
type error in just this way.
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Boolean algebra of bindings (adapted from Wand et al. [16]):

B⊥ = B ∪ {⊥} b ∈ B r ∈ B⊥ b ∨ r = b ⊥∨ r = r ⊥∧ r = ⊥ b ∧⊥ = ⊥

b ∧ b′ = b t· b′ ¬⊥ = 〈−,−〉 ¬b = ⊥

Join of bindings:

〈α, β0, . . . , βn〉 t· 〈α′, β′0, . . . , β′p〉 = 〈α t α′, β0 t β′0, . . . , βq t β′q〉
where q = max(n, p), ∀i ∈ {(n + 1)..q} · (βi = −), and ∀i ∈ {(p + 1)..q} · (β′i = −)

(var 7→ loc) t (var′ 7→ loc′) = var 7→ loc (var 7→ loc) t− = var 7→ loc

−t (var′ 7→ loc′) = var′ 7→ loc′ vart var′ = var vart− = var −t var′ = var′

−t− = −

Pointcut descriptor matching:

matchPCD((|k, , m, , t0 × . . .× tp → t|) + J, call( u idPat(..) ), S)

=

{
〈−,−〉 if k = call, t = u, and m ∈ idPat
⊥ otherwise

matchPCD((|k, , m, , t0 × . . .× tp → t|) + J, execution( u idPat(..) ), S)

=

{
〈−,−〉 if k = exec, t = u, and m ∈ idPat
⊥ otherwise

matchPCD((| , v, , , |) + J, this( t var ), S) =

{
〈var 7→ v,−〉 if v 6= null, S(v) = [s � F], and s 4 t
⊥ otherwise

matchPCD((| ,−, , , |) + J, this( t var ), S) = matchPCD(J, this( t var ), S)

matchPCD((| , , , , s0 × . . .× sn → s|) + J, target( t var ), S) =

{
〈−, var〉 if s0 = t
⊥ otherwise

matchPCD((| , , , ,−|) + J, target( t var ), S) = matchPCD(J, target( t var ), S)

matchPCD((| , , , , t0 × . . .× tp → t|) + J, args( u1 var1, . . . , un varn ), S)

=

{
〈−,−, var1, . . . , varn〉 if p = n and ∀i ∈ {1..n} · (ti = ui)
⊥ otherwise

matchPCD(J, pcd —— pcd′, S) = matchPCD(J, pcd, S) ∨matchPCD(J, pcd′, S)

matchPCD(J, pcd && pcd′, S) = matchPCD(J, pcd, S) ∧matchPCD(J, pcd′, S)

matchPCD(J, ! pcd, S) = ¬matchPCD(J, pcd, S)

matchPCD(J, pcd, S) = ⊥ for any case not matched by the preceding rules

Figure 13: Pointcut Descriptor Matching for MiniMAO1
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Unlike the target rule, which must admit subtypes to match overriding methods, the args rule does
not have to consider subtyping. This is because MiniMAO, like Java, uses invariant subtyping for
overriding methods.

The rules for pointcut descriptor operators simply appeal to the corresponding operators in the
binding algebra: union to disjunction, intersection to conjunction, and negation to complement.
The definition of complement implies that ¬¬pcd 6= pcd. Both would match the same pointcut,
but the former would not bind any formals while the later might. (This is slightly different than
AspectJ, which simply disallows binding pointcut descriptors under negation operators.)

A final rule says that any cases not covered by the preceding rules evaluates to ⊥. This just
serves to make matchPCD a total function, handling cases that do not occur in the evaluation of a
well-typed program (such as matching against an empty join point stack).

3.2.5 Example Evaluations in MiniMAO1

This section gives several example MiniMAO1 programs and their evaluations.

Calls in MiniMAO0 vs. Unadvised Calls in MiniMAO1 The first example compares the evalu-
ation of method calls in MiniMAO0 and MiniMAO1. Consider the following program:

class Simple extends Object {
Object f;
Object m(Object arg) {

this.f = arg
}

}
new Simple().m(new Object())

Figure 14 on the next page shows the evaluation of this program in both MiniMAO0 and
MiniMAO1. The evaluation on the left uses the operational semantics of MiniMAO0. The one
on the right uses that of MiniMAO1. This illustrates the splitting of the CALL and EXEC rules into
pairs with advice look up, by the BIND rule, on the inserted join points. Because this program in-
cludes no advice, the BIND rule creates chain expressions with empty advice lists and the ADVISE

rule is never used. At the end of the MiniMAO1 evaluation, the UNDER rules pop the join point
stack.

Advice Binding The next example illustrates advice binding. The example code is given in Fig-
ure 15 on page 33. Below is the evaluation in MiniMAO1. In the evaluation, the initial store is
S0 = {locA 7→ [Asp � {f1 7→ null, f2 7→ null}]}. The illustrative part of this example is in the ap-
plication of the BIND and ADVISE rules—the last two steps shown. In the BIND rule the binding
term, b is 〈−, s, arg1〉, indicating that the target object will be bound to the formal parameter s and
the argument to arg1. Figure 16 on page 33 shows the matching operation that yields this binding
term. In the ADVISE rule the argument to the original method call, loc1, is substituted for arg1 in the
advice body. The formal parameter s does not appear in the advice body and so the target object of
the original call, loc0, is not bound. The advice never proceeds to the original method, as evidenced
by the dropping of the chain expression in the application of the ADVISE rule.

〈new Simple().m(new Object()), •, S0〉
↪→ 〈loc0.m(new Object()), •, S1〉 (NEW)

where S1 = {locA 7→ [Asp � {f1 7→ null, f2 7→ null}],
loc0 7→ [Simple � {f 7→ null}]}
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aspect Asp {
Object f1;
Object around(Object arg1, Simple s) :

call(Object m(..)) && args(Object arg1) && target(Simple s)
{

this.f1 = arg1;
}

}

class Simple extends Object {class Simple extends Object {
Object f;
Object m(Object arg) {

this.f = arg
}

}
new Simple().m(new Object())

Figure 15: A Sample Program Showing Advice Binding

matchPCD((|call, −, m, −, −, Simple × Object → Object|),
call(Object m(..)) && args(Object arg1) && target(Simple s), S2)

= matchPCD((|call, −, m, −, −, Simple × Object → Object|), call(Object m(..)), S2)
∧matchPCD((|call, −, m, −, −, Simple × Object → Object|), args(Object arg1), S2)
∧matchPCD((|call, −, m, −, −, Simple × Object → Object|), target(Simple s), S2)

= 〈−,−〉 t· 〈−,−, arg1〉 t· 〈−, s〉
= 〈−,−, arg1〉 t· 〈−, s〉
= 〈−, s, arg1〉

Figure 16: Sample Derivation of Pointcut Descriptor Matching

↪→ 〈loc0.m(loc1), •, S2〉 (NEW)
where S2 = {locA 7→ [Asp � {f1 7→ null, f2 7→ null}],

loc0 7→ [Simple � {f 7→ null}],
loc1 7→ [Object � ∅]}

↪→ 〈joinpt (|call, −, m, −, Simple × Object → Object|) (loc0,loc1), •, S2〉 (CALLA)
↪→ 〈under chain

dbb, locA, this.f1=arg1, Object × Simple → Object, Simple × Object → Objectce,
(|call, −, m, −, Simple × Object → Object|) (loc0,loc1), J1, S2〉

(BIND)

where b = 〈−, s, arg1〉
J1 = (|call, −, m, −, −, Simple × Object → Object|)

↪→ 〈under under locA.f1=loc1, J2, S2〉 (ADVISE)
where J2 = (|this, locA, −, −, −|) + J1

↪→ . . .

We omit the remaining steps of the evaluation because similar steps have been shown above.
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aspect Asp {
Object f1;
Object f2;

Object around(Simple s1, Object arg1) :
call(Object m(..)) && target(Simple s1) && args(Object arg1)

{
this.f1 = s1.proceed(arg1);

}

Object around(Simple s2, Object arg2) :
call(Object m(..)) && target(Simple s2) && args(Object arg2)

{
this.f2 = s2.proceed(arg2);

}
}

class Simple extends Object {class Simple extends Object {
Object f;
Object m(Object arg) {

this.f = arg
}

}

new Simple().m(new Object())

Figure 17: A Sample Program Showing Advice Chaining

Advice Chaining The next example illustrates how multiple pieces of advice may bind to a single
join point. It also shows how proceed expressions are converted by the 〈〈−〉〉B̄,j auxiliary function.
We give the full program listing in Figure 17, but only describe the advice chaining part of the
evaluation in detail.

After looking up advice for the method call in this program, the BIND rule produces an expres-
sion that contains a subexpression like the following:

chain db〈−,s1,arg1〉, locA, this.f1=s1.proceed(arg1), τ, τ2ce
+ db〈−,s2,arg2〉, locA, this.f2=s2.proceed(arg2), τ, τ2ce,

(|call, −, m, −, τ2|) (loc0, loc1)

where we assume appropriate values for the store and the type meta-variables, τ and τ2, but omit
those details. This expression is evaluated by the ADVISE rule, which applies the advice chaining
function to the body of the first advice in the chain’s advice list:

〈〈this.f1=s1.proceed(arg1)〉〉db〈−,s2,arg2〉, locA, this.f2=s2.proceed(arg2), τ, τ2ce, (|call, −, m, −, τ2|)

The function replaces the proceed expression with a chain expression, yielding:

this.f1=chain db〈−,s2,arg2〉, locA, this.f2=s2.proceed(arg2), τ, τ2ce, (|call, −, m, −, τ2|) (s1, arg1)

Finally, the ADVISE rule substitutes for this and the formal parameters, and adds an under expres-
sion yielding:
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under locA.f1 =
chain db〈−,s2,arg2〉, locA, this.f2=s2.proceed(arg2), τ, τ2ce, (|call, −, m, −, τ2|) (loc0, loc1)

The next evaluation step is also by ADVISE and reduces the chain expression, exhausting the
advice list, and yielding the expression:

under locA.f1 =
(under locA.f2 = chain •, (|call, −, m, −, τ2|) (loc0, loc1))

The last chain expression has an empty advice list. It will be evaluated by the CALLB rule,
causing evaluation to proceed to the originally called method. Although the target object was not
changed in this example, either piece of advice could have used a different first argument for its
proceed call. The effect of this would be to replace loc0 in the above expression with the location
of the new target object. Because the CALLB rule uses that argument position for method lookup,
changing the target object at a call join point will affect method lookup.

This Binding vs. Target Binding Our final example illustrates the differences between parameter
binding for this and target pointcut descriptors in MiniMAO1. Recall that our semantics for proceed
with respect to the this pointcut descriptor differs from AspectJ’s. AspectJ treats both this- and
target-bound arguments like target-bound arguments in MiniMAO1. That is, AspectJ allows advice
to change the value bound by the this pointcut descriptor in subsequent advice. As discussed in
above, our treatment of this is intended to reduce the interaction of aspects.

Besides contrasting the this and target pointcut descriptors, the example also uses both call and
execution advice. Figure 18 on the next page gives the sample program.

Below is the evaluation in MiniMAO1. In the evaluation, the initial store is S0 = {locA 7→
[Asp � ∅]}. For conciseness, the values of the stores and the derivation of the binding terms are left
as exercises for the reader. We write undern to indicate n instances of the keyword under. Interesting
parts of the evaluation are noted along the way.

〈new Super().run(), •, S0〉
↪→ 〈loc0.run(), •, S1〉 (NEW)
↪→ 〈joinpt (|call,−,run,−,τ0|) (loc0), •, S1〉 (CALLA)

where τ0 = Super→Object
↪→ 〈under chain •, (|call,−,run,−,τ0|) (loc0), J0, S1〉 (BIND)

where J0 = (|call,−,run,−,τ0|)
↪→ 〈under (fun run〈this〉.this.m(new Super()):τ0 (loc0)), J0, S1〉 (CALLB)
↪→ 〈under joinpt (|exec,loc0,run,fun run〈this〉.this.m(new Super()):τ0,τ0|) (loc0), J0, S1〉 (EXECA)
↪→ 〈under2 chain •, (|exec,loc0,run,fun run〈this〉.this.m(new Super()):τ0,τ0|) (loc0), J1, S1〉

(BIND)
where J1 = (|exec,loc0,run,fun run〈this〉.this.m(new Super()):τ0,τ0|) + J0

↪→ 〈under3 loc0.m(new Super()), J2, S1〉 (EXECB)
where J2 = (|this,loc0,−,−,−|) + J1

↪→ 〈under3 loc0.m(loc1), J2, S2〉 (NEW)
↪→ 〈under3 joinpt (|call,−,m,−,τ1|) (loc0,loc1), J2, S2〉 (CALLA)

where τ1 = Super×Super→Object
↪→ 〈under4

chain db〈caller 7→loc0,callee,arg〉, locA, (caller;callee;new Sub().proceed(arg)), τ2, τ1ce
(|call,−,m,−,τ1|) (loc0,loc1), J3, S2〉

(BIND)
where τ2 = Super×Super×Super→Object

J3 = (|call,−,m,−,τ1|) + J2
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aspect Asp {
// call advice
Object around(Super caller, Super callee, Super arg) : call(Object m(..)) &&

this(Super caller) && target(Super callee) && args(Super arg)
{

caller; // these variable references just help illustrate the substitution behavior
callee;
new Sub().proceed(arg) // changes target to subtype, affects method selection

}

// execution advice
Object around(Super caller, Sub callee, Super arg) : execution(Object m(..)) &&

this(Super caller) && target(Sub callee) && args(Super arg)
{

caller; // these variable references just help illustrate the substitution behavior
callee;
new SubSub().proceed(arg) // changes target to subtype, no effect on method selection

}
}

class Super extends Object {
Object run() {

this.m(new Super())
}

Object m(Super arg) {
arg

}
}

class Sub extends Super {
Object m(Super arg) {

arg;
this

}
}

class SubSub extends Sub {
Object m(Super arg) {

this
}

}

new Super().run();

Figure 18: A Sample Program Contrasting this vs. target Binding and call vs. execution Advice
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The binding term above maps caller to the calling object’s location, loc0, and records that callee and
arg should be bound to the target and argument of the chain expression.

↪→ 〈under5 (loc0;loc0;chain • (|call,−,m,−,τ1|) (new Sub(), loc1)), J4, S2〉 (ADVISE)
where J4 = (|this,locA,−,−,−|) + J3

Now the proceed expression in the advice body has been replaced with a chain expression. The
target argument to the chain is new Sub(), not the original target.

↪→ 〈under5 chain • (|call,−,m,−,τ1|) (new Sub(), loc1), J4, S2〉 (SKIP×2)
↪→ 〈under5 chain • (|call,−,m,−,τ1|) (loc2, loc1), J4, S3〉 (NEW)
↪→ 〈under5 (fun m〈this,arg〉.(arg;this):τ3 (loc2, loc1)), J4, S3〉 (CALLB)

where τ3 = Sub×Super→Object

Because the advice changed the target of the call to loc2, the fun term above came from Sub, not
Super.

↪→ 〈under5 joinpt (|exec,loc2,m,fun m〈this,arg〉.(arg;this):τ3,τ3|) (loc2, loc1), J4, S3〉 (EXECA)
↪→ 〈under6

chain db〈caller 7→loc2,callee,arg〉, locA, (caller; callee; new SubSub().proceed(arg)), τ4, τ3ce,
(|exec,loc2,m,fun m〈this,arg〉.(arg;this):τ3,τ3|) (loc2, loc1), J5, S3〉

(BIND)
where τ4 = Super×Sub×Super→Object

J5 = (|exec, loc2, m, fun m〈this,arg〉.(arg;this):τ3, τ3|) + J4

↪→ 〈under7

(loc2; loc2; chain •, (|exec,loc2,m,fun m〈this,arg〉.(arg;this):τ3,τ3|) (new SubSub(),loc1)), J6, S3〉

(ADVISE)
where J6 = (|this,locA,−,−,−|) + J5

Again the proceed expression in the new advice body—new SubSub().proceed(arg)—was replaced
with a chain expression that has a new target object, new SubSub() instead of loc2.

↪→ 〈under7 chain •, (|exec,loc2,m,fun m〈this,arg〉.(arg;this):τ3,τ3|) (new SubSub(),loc1), J6, S3〉
(SKIP×2)

↪→ 〈under7 chain •, (|exec,loc2,m,fun m〈this,arg〉.(arg;this):τ3,τ3|) (loc3,loc1), J6, S4〉 (NEW)
↪→ 〈under8 (loc1;loc3), J7, S4〉 (EXECB)

where J7 = (|this,loc3,−,−,−|) + J6

Unlike for the call advice above, even though the target object was changed to an instance of Sub-
Sub, the already selected method body was used when proceeding to the code under the exec join
point.

↪→ 〈under8 loc3, J7, S4〉 (SKIP)
↪→ 〈loc3, •, S4〉 (UNDER×8)

3.3 Static Semantics of MiniMAO1

Figure 19 on the following page and Figure 21 on page 41 give the additional rules for the static
semantics of MiniMAO1. All of the rules from MiniMAO0 are used unchanged.

For typing MiniMAO1, we extend the domain of Γ to include the keyword proceed, and its range
to include function types. That is, for the static semantics:

Γ : (V ∪ {this, proceed}) → (T ∪ (T ∗ → T ))

This lets us use the type environment to record the type of an advised method so that proceed
expressions in the body of advice may be assigned the appropriate type.
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Aspect typing:

T-ASP
∀i ∈ {1..p}· ` advi OK in a

` aspect a { field1 . . . fieldn adv1 . . . advp } OK

Advice typing:

T-ADV
var1 : t1, . . . , varn : tn ` pcd : � u0 � 〈u1, . . . , up〉 � u � V � V V = {var1, . . . , varn}

var1 : t1, . . . , varn : tn, this : a, proceed : (u0 × . . .× up → u) ` e : s s 4 t 4 u
` t around( t1 var1, . . . , tn varn ) : pcd { e } OK in a

Expression typing:

T-PROC
∀i ∈ {0..n} · Γ ` ei : ui

Γ(proceed) = t0 × . . .× tn → t ∀i ∈ {0..n} · ui 4 ti

Γ ` e0.proceed( e1, . . . , en ) : t

T-UNDER
Γ ` e : t

Γ ` under e : t

T-CHAIN
∀i ∈ {0..n} · Γ ` e′i : u′i ∀i ∈ {0..n} · u′i 4 ti

∀i ∈ {1..p} · Γ, this : Γ(loc), proceed : τ, typeBind(Γ, bi, (t0, . . . , tn)) ` ei : s′i
∀i ∈ {1..p} · Γ ` bi OK ∀i ∈ {1..p} · s′i 4 t τ = t0 × . . .× tn → t

Γ ` chain dbbi, loci, ei, τ′, τcei∈{1..p}, (| , , , , τ|)( e′0, . . . , e′n ) : t

T-JOIN

∀i ∈ {0..n} · Γ ` ei : ui ∀i ∈ {0..n} · ui 4 ti (vopt = loc) =⇒ (loc ∈ dom(Γ))
Γ ` joinpt (| , vopt, , , (t0 × . . .× tn → t)|)( e0, . . . , en ) : t

Binding typing:

T-BIND
(α = var 7→ v) =⇒ (var /∈ V \ var) ∀i ∈ {0..n} · (βi = var) =⇒ (var /∈ V \ {βi})

∀var ∈ V · (V /∈ dom(Γ)) V = var(b) b = 〈α, β0, . . . , βn〉
Γ ` b OK

where var(〈α, β0, . . . , βn〉) =

{
{var} ∪ {βi · i ∈ {0..n}, βi 6= −} if α = var 7→ v
{βi · i ∈ {0..n}, βi 6= −} otherwise

Figure 19: Additions to the Static Semantics for MiniMAO1
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3.3.1 Declaration and Expression Typing Rules

The T-ASP rule says that an aspect declaration is well typed if all of its advice declarations are well
typed. Advice is well typed, as defined by the T-ADV rule, if its pointcut descriptor matches a join
point where the code under the join point has target type u0, argument types u1, . . . , up and return
type u. The “ ” in the hypothesis indicates that we do not care about the type bound by a this
pointcut descriptor here. The pointcut descriptor must also specify bindings for all of the formal
parameters of the advice. These requirements are embodied in the pointcut descriptor typing,
pcd : � u0 � 〈u1, . . . , up〉 � u � V � V, which is discussed in Section 3.3.2 below. The body of the advice
is typed in an environment that gives each formal its declared type, gives this the aspect type, and
gives proceed the type of the code under the join point matched by the advice. In this environment,
the advice body must have a type that is a subtype of the declared return type of the advice. In
turn, this declared return type must be a subtype of the return type of the original code under the
join point. This allows the result of the advice to be substituted for the result of the original code.

Rule T-ADV permits advice to declare a return type that is a subtype of that of the advised
method. This means that advice like:

A around(C targ) : call(B m(..)) && target(C targ) && args() {
targ.proceed()

}

is not well typed if A is a proper subtype of B: the proceed expression has type B, which is not a
subtype of the declared return type of the advice. Wand et al. [16, §5.3] argue that this advice should
be typable, but we disagree. This case is really no different than a super call in a language with
covariant return-type specialization. In such a language, an overriding method that specializes the
return type cannot merely return the result of a super call as its result. The overriding method must
ensure that the result is appropriately specialized.

There are four new typing rules for expressions in MiniMAO1. Only the first, T-PROC, is used
in the static typing of programs. The other three arise in the subject reduction proof to handle
expression forms that are only introduced by the evaluation rules.

The T-PROC rule types proceed expressions. A proceed expression is well typed if its argument
expressions are subtypes of the required types as recorded in the type environment. The type of
the proceed expression is also taken from the type environment.

The T-UNDER rule says that an under expression is well typed if its contained expression is well
typed. The type of the under expression is just that of the contained expression.

The most complex of the typing rules is T-CHAIN. This rule is not used in the static typing of
programs, but arises in the subject reduction proof to handle chain expressions introduced by the
evaluation rules. Our use of chain and joinpt expressions in the semantics of MiniMAO1 allows ad-
vice binding to be localized in a single evaluation rule, and to be separated from advice execution..
The necessary trade-off is the complexity of the T-CHAIN rule, which ensures the advice bound to
a join point is well-behaved.

The first two hypotheses of T-CHAIN require that the argument expressions are subtypes of the
types expected for the code under the join point. The last hypothesis is just a side condition on τ.
The remaining hypotheses ensure the each piece of advice in the advice list satisfies the following
conditions:

— The advice’s binding term is well formed according to the T-BIND rule, which ensures that
only fresh variables are bound and no variable is bound more than once.

— The advice’s body expression is a subtype of the return type of the join point abstraction. This
is also the type given to the entire chain expression. The typing of the body expression uses
an auxiliary function, typeBind, defined in Figure 20 on the following page, that converts the
type environment, the binding term, and the argument types into a type environment. This
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typeBind(Γ, 〈var 7→ loc, β0, . . . , βn〉, 〈t0, . . . , tp〉) = var : Γ(loc), (vari : ti)i∈{0..n}·βi=vari
if n ≤ p

typeBind(Γ, 〈−, β0, . . . , βn〉, 〈t0, . . . , tp〉) = (vari : ti)i∈{0..n}·βi=vari
if n ≤ p

typeBind((Γ, 〈α, β0, . . . , βn〉, 〈t0, . . . , tp〉) is undefined if n > p

Figure 20: Binding for Type Environments

type environment corresponds to the substitution defined by the binding term (see Figure 12
on page 26).

Finally, the T-JOIN rule types joinpt expressions. It simply ensures that all of the arguments are
subtypes of the argument types in the join point abstraction. It also checks that any location given
in the join point abstraction is valid in the type environment.

3.3.2 Pointcut Descriptor Typing Rules

The rules for typing pointcut descriptors are shown in Figure 21 on the following page. These
rules make use of a simple algebra over T ∪ {⊥}, whose only operator, t, is used to combine type
information when pointcuts are intersected. This is also lifted to type sequences. The pointcut
descriptor typing judgment, Γ ` pcd : û � û′ � U � û′′ � V1 � V2, gives:

— û, the this type for any code under a join point matched by this pointcut descriptor, or ⊥ if
the information cannot be determined from the pointcut descriptor;

— û′, the target type for any code under a join point matched by this pointcut descriptor, or ⊥
if the information cannot be determined from the pointcut descriptor;

— U, the argument types for any code under a join point matched by this pointcut descriptor,
or ⊥ if the information cannot be determined from the pointcut descriptor;

— û′′, the return type for any code under a join point matched by this pointcut descriptor, or ⊥
if the information cannot be determined from the pointcut descriptor;

— V1, the set of variables that would definitely be bound by the pointcut descriptor at a matched
join point; and

— V2, the set of variables that might be bound by the pointcut descriptor at a matched join
point.

The two sets of variables represent “must-bind” and “may-bind” sets respectively, which are use-
ful in reasoning about variable bindings in pointcut unions and intersections. Well-typed advice
requires that the must-bind and may-bind sets are identical (see the first hypothesis of T-ADV).

Given this form for the typing judgment, the rules for the primitive pointcut descriptors are
mostly obvious. The only interesting bits are:

— the T-THISPCD, T-TARGPCD, and T-ARGSPCD rules verify that the type annotations for
the bound parameters match the type of the formals as recorded in the type environment;
and

— the second hypothesis of T-ARGSPCD ensures that no formal parameter is bound twice.

The typing rules for pointcut descriptor operators are more interesting. The T-UNIONPCD rule
requires that the two combined pointcut descriptors match join points where the type of the code
under the join points is the same. This allows typing of any proceed expressions within the advice
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Pointcut typing:

U ∈ T ∗ ∪ {⊥} û ∈ T ∪ {⊥} V ∈ P(V) Γ ` pcd : û � û � U � û � V � V

T-CALLPCD

Γ ` call( t idPat(..) ) :⊥ �⊥ �⊥ � t � ∅ � ∅

T-EXECPCD

Γ ` execution( t idPat(..) ) :⊥ �⊥ �⊥ � t � ∅ � ∅

T-THISPCD
Γ(var) = t

Γ ` this( t var ) : t �⊥ �⊥ �⊥ � {var} � {var}

T-TARGPCD
Γ(var) = t

Γ ` target( t var ) :⊥ � t �⊥ �⊥ � {var} � {var}

T-ARGSPCD
∀i ∈ {1..n} · (Γ(vari) = ti) ∀i ∈ {1..n} · (∀j ∈ {1..n} \ {i} · (vari 6= varj))

Γ ` args( t1 var1, . . . , tn varn ) :⊥ �⊥ � 〈t1, . . . , tn〉 �⊥ � {var1, . . . , varn} � {var1, . . . , varn}

T-UNIONPCD
Γ ` pcd1 : û � û′ � U � û′′ � V1 � V′

1 Γ ` pcd2 : û � û′ � U � û′′ � V2 � V′
2

V = V1 ∩V2 V′ = V′
1 ∪V′

2

Γ ` pcd1 —— pcd2 : û � û′ � U � û′′ � V � V′

T-NEGPCD
Γ ` pcd : û � û′ � U � û′′ � V � V′

Γ ` ! pcd :⊥ �⊥ �⊥ �⊥ � ∅ � ∅

T-INTPCD
Γ ` pcd1 : û1 � û′1 � U1 � û′′1 � V1 � V′

1 Γ ` pcd2 : û2 � û′2 � U2 � û′′2 � V2 � V′
2

û = û1 t û2 û′ = û′1 t û′2 U = U1 tU2 û′′ = û′′1 t û′′2
V′

1 ∩V′
2 = ∅ V = V1 ∪V2 V′ = V′

1 ∪V′
2

Γ ` pcd1 && pcd2 : û � û′ � U � û′′ � V � V′

û t⊥ = û ⊥t û = û U t⊥ = U ⊥tU = U

Figure 21: Static Semantics of Pointcuts in MiniMAO1
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regardless of which pointcut in the disjunction was matched. The T-INTPCD rule requires that
the combined pointcut descriptors specify types in disjoint positions. For example, if one of the
combined pointcut descriptors specifies the argument types, then the other must not. This helps
to ensure that no actual argument may be bound to multiple formal parameters. The T-INTPCD
rule also requires that the sets of variables that may be bound by the two pointcut descriptors be
disjoint; this helps to ensure that no formal is bound twice.

3.4 Meta-theory of MiniMAO1

The meta-theory of MiniMAO1 is essentially the same as for MiniMAO0. The key difference in
the theorems and lemmas is that we must deal with a non-empty initial store that contains aspect
instances. Some complications arise in the proofs, which must be extended to deal with the new
typing and evaluation rules. A few additional lemmas are needed to deal with advice binding and
join points.

The statement of the substitution lemma is unchanged. For clarity, we repeat it here with the
updated proof.

Lemma 10 (Substitution). If Γ, var1 : t1, . . . , varn : tn ` e : t and ∀i ∈ {1..n} · Γ ` ei : si where si 4 ti
then Γ ` e{|e1/ var1, . . . , en/ varn|} : s for some s 4 t.

Proof. Let Γ′ = Γ, var1 : t1, . . . , varn : tn and let {|ē/ var|} represent {|e1/ var1, . . . , en/ varn|}. The proof
proceeds by structural induction on the derivation of Γ ` e : t and by cases based on the last step in
that derivation. The base cases are T-NEW, T-OBJ, T-NULL, T-LOC, and T-VAR. In the first four of
these cases, e has no variables and s = t.

In the T-VAR base case, e = var, and there are two subcases. If var /∈ {var1, . . . , varn} then
Γ′(var) = Γ(var) = t and the claim holds. Otherwise, without loss of generality, let var = var1.
Then e{|ē/ var|} = e1, Γ ` e{|ē/ var|} : s1, and s1 4 t1 = t.

The remaining cases cover the induction step. The induction hypothesis is that the claim of the
lemma holds for all sub-derivations of the derivation being considered.

Case 1—T-CALL. Unchanged from original proof of Lemma 2 (Substitution) on page 13.

Case 2—T-EXEC. Unchanged from original proof.

Case 3—T-GET. This case is essentially unchanged from the original proof, except for some details
regarding the extended fieldsOf auxiliary function. We restate the entire case for clarity.

In this case e = e′. f . The last step in the type derivation for e is

Γ′ ` e′ : u fieldsOf (u)( f ) = t
Γ′ ` e′. f : t

Now e{|ē/ var|} = e′{|ē/ var|}. f , and by the induction hypothesis Γ ` e′{|ē/ var|} : u′, where
u′ 4 u. Consider subcases on whether u′ is a class or an aspect. If isClass(u′), then by the definition
of fieldsOf and by the first hypothesis of T-CLASS, fieldsOf (u′)( f ) = fieldsOf (u)( f ) = t. On the
other hand, if u′ is an aspect, then u′ = u (since an aspect is only a subtype of itself and Object, and
u 6= Object because fieldsOf (u) 6= ∅). So again fieldsOf (u′)( f ) = fieldsOf (u)( f ) = t. In either case,
Γ ` e{|ē/ var|} : t and the claim holds.

Case 4—T-SET. Like the previous case, this case is essentially unchanged from Lemma 2 (Substitution)
on page 13, but with the same concession made for the subcases on fieldsOf .

Case 5—T-CAST. Unchanged from original proof.

Case 6—T-SEQ. Unchanged from original proof.
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Case 7—T-PROC. Here e = e′0.proceed( e′1, . . . , e′p ) and the last derivation step is

∀i ∈ {0..p} · Γ′ ` e′i : u′i Γ′(proceed) = u0 × . . .× up → t ∀i ∈ {0..p} · u′i 4 ui

Γ′ ` e′0.proceed( e′1, . . . , e′p ) : t

Let e′′i = e′i{|ē/ var|} for all i ∈ {0..p}. Then e{|ē/ var|} = e′′0 .proceed( e′′1 , . . . , e′′p ). Now
Γ(proceed) = Γ′(proceed) = u0 × . . . × up → t and by the induction hypothesis ∀i ∈ {0..p} · (Γ `
e′′i : u′′i , where u′′i 4 u′i 4 ui). Thus, by T-PROC, Γ ` e{|ē/ var|} : t and the claim holds.

Case 8—T-UNDER. Here e = under e′ and the last derivation step is

Γ′ ` e′ : t
Γ′ ` under e′ : t

The claim is immediate by the induction hypothesis.

Case 9—T-CHAIN. Here e = chain B̄, (|k, vopt, mopt, lopt, (u0 × . . .× up → t)|)( e′0, . . . , e′p ). The last
derivation step for the judgment Γ′ ` e : t is by T-CHAIN, with the first two hypotheses being:

∀i ∈ {0..p} · Γ′ ` e′i : u′i ∀i ∈ {0..p} · u′i 4 ui

Let e′′i = e′i{|ē/ var|} for all i ∈ {0..p}. Then e{|ē/ var|} = chain B̄, (|k, vopt, mopt, lopt, (u0 × . . .× up → t)|)( e′′0 , . . . , e′′p ).
Substitution does not recurse into the advice list, B̄, or the join point abstraction.

As in the T-PROC case, the induction hypothesis gives ∀i ∈ {0..p} · (Γ ` e′′i : u′′i , where u′′i 4
u′i 4 ui). Because substitution does not replace variables within B̄, the remaining hypothesis of
T-CHAIN are unchanged in the type derivation of e{|ē/ var|}, except for using Γ instead of Γ′. This
fact does not change the judgments. Thus, Γ ` e{|ē/ var|} : t.

Case 10—T-JOIN. Here e = joinpt (|k, vopt, mopt, lopt, (u0 × . . .× up → t)|)( e′0, . . . , e′p ). The proof is
like that for Case 9.

The Environment Extension Lemma and Replacement Lemma (Lemma 3 (Environment Extension)
and Lemma 5 (Replacement), respectively) apply to MiniMAO1 without change. The proof of Lemma 6
(Replacement with Subtyping) on page 14 needs two additional cases in the induction step to ac-
count for the new evaluation context rules. We restate it here.

Lemma 11 (Replacement with Subtyping). If Γ ` E[e] : t, Γ ` e : u, and Γ ` e′ : u′ where u′ 4 u, then
Γ ` E[e′] : t′ where t′ 4 t.

Proof. The proof is by induction on the size of the evaluation context E, where the size is the number
of recursive applications of the syntactic rules necessary to build E. In the base case, E has size zero,
E = −, and t′ = u′ 4 u = t.

For the induction step we divide the evaluation context into two parts so that E[−] = E1[E2[−]],
where E2 has size one. The induction hypothesis is that the claim of the lemma holds for all evalu-
ation contexts smaller than the one considered in the induction step. We use a case analysis on the
rule used to generate E2. In each case we show that if Γ ` E2[e] : s then Γ ` E2[e′] : s′ where s′ 4 s,
and therefore the claim holds by the induction hypothesis.

Case 1—E2 = −.m( e1, . . . , en ). Unchanged from original proof of Lemma 6 (Replacement with
Subtyping) on page 14.

Case 2—E2 = v0.m( v1, . . . , vp−1,−, ep+1, en ) where p ∈ {1..n}. Unchanged from original proof.

Case 3—E2 = ( l ( v0, . . . , vp−1,−, ep+1, en ) ) where p ∈ {0..n}. Unchanged from original proof.

Case 4—E2 = −. f . Unchanged from original proof.
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Case 5—E2 = cast s −. Unchanged from original proof.

Case 6—E2 = −; e′′. Unchanged from original proof.

Case 7—E2 = (−. f = e′′). Unchanged from original proof.

Case 8—E2 = (v. f = −). Unchanged from original proof.

Case 9—E2 = joinpt (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|)( v0, . . . , vp−1,−, ep+1, en ) where p ∈ {0..n}.
The last step in the type derivation for E2[e] must be T-JOIN:

∀i ∈ {0..(p− 1)} · Γ ` vi : ui Γ ` e : u ∀i ∈ {(p + 1)..n} · Γ ` ei : ui
∀i ∈ {0..n} \ {p} · ui 4 ti u 4 sp (vopt = loc) =⇒ (loc ∈ dom(Γ))

Γ ` E2[e] : s

Now u′ 4 u 4 sp. So, also by T-JOIN, Γ ` E2[e′] : s.

Case 10—E2 = under −. The proof for this case is immediate from T-UNDER with s = u and
s′ = u′.

Case 11—E2 = chain B̄, j( v0, . . . , vp−1,−, ep+1, en ) where p ∈ {0..n}. The proof is like that for
Case 9, but using T-CHAIN instead of T-JOIN. The additional hypotheses of T-CHAIN, beyond
those of T-JOIN, are unchanged in the type derivations for E2[e] and E2[e′] .

Before stating the Subject Reduction theorem for MiniMAO1, we give a few necessary defini-
tions and lemmas.

We define notions of a consistent stack and a valid store for a given MiniMAO1 program. These
definitions are used to ensure that all locations listed in the stack are bound in the store, and that
the store contains an instance of every aspect declared in the program.

Definition 12 (Stack-Store Consistency). A stack J and a store S are consistent, and we write J ≈ S,
if

∀(| , loc, , , |) ∈ J · loc ∈ dom(S).

Definition 13 (Store Validity). Given a program P, we say that a store S is valid if both of the
following hold:

1. ∀aspect a { . . . } ∈ CT ·(∃loc ∈ L · S(loc) = [a � F])

2. ∃Γ · Γ ≈ S

We will need a lemma that relates advice binding to advice typing. This lemma is used in the
subject reduction proof to argue that the list of advice that matches at a joinpt expression can be
used by the BIND rule to generate a well typed chain expression.

Lemma 14 (Binding Soundness). Let S be a valid store and J = (|. . . , t0 × . . .× tn → t|) + J′ be a stack
consistent with S. If B̄ = adviceBind(J, S), then ∀dbb, loc, e, τ, τ′ce ∈ B̄ the following conditions hold:

1. τ′ = t0 × . . .× tn → t,

2. ∅ ` b OK, and

3. for Γ ≈ S the judgment Γ, this : Γ(loc), proceed : τ′, typeBind(Γ, b, 〈t0, . . . , tn〉) ` e : t′ holds for some
t′ 4 t.
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Advice declaration: s around( s1 var1, . . . , sp varp ): pcd { e )

dbb, loc, e, τ, τ′ce ∈ B̄

τ = s1 × . . .× sp → s

τ′ = u0 × . . .× uq → u

Γ′ = var1 : s1, . . . , varp : sp

Γ′ ` pcd : � u0 � 〈u1, . . . , uq〉 � u � V � V

Figure 22: Meta-variables Used in the Proof of the Binding Soundness Lemma

Proof. We will use some common meta-variables throughout the proof. Pick an arbitrary element
of B̄, dbb, loc, e, τ, τ′ce, and let τ = s1 × . . .× sp → s. Let the advice corresponding to dbb, loc, e, τ, τ′ce
be

s around( s1 var1, . . . , sp varp ): pcd { e }

with advice table entry 〈loc, pcd, e, τ, τ′〉. Let this advice be declared in an aspect a. T-ADV gives

var1 : s1, . . . , varp : sp ` pcd : � u0 � 〈u1, . . . , uq〉 � u � V � V V = {var1, . . . , varp}
var1 : s1, . . . , varp : sp, this : a, proceed : (u0 × . . .× uq → u) ` e : s′ s′ 4 s 4 u

` s around( s1 var1, . . . , sp varp ) : pcd { e } OK in a
(1)

By the construction of AT, τ′ = u0 × . . . × uq → u. To simplify the notation, let Γ′ = var1 :
s1, . . . , varp : sp. For convenience, Figure 22 summarizes the use of these meta-variables in the proof.

Because a well-typed pointcut descriptor in MiniMAO1 must consist of multiple primitive
pointcut descriptors, it is difficult to prove the consequents of the lemma using a single inductive
argument. Instead, we propose and prove a series of simpler subclaims. Each subclaim is proven
via a structural induction on the pointcut type derivation. A well-typed pointcut descriptor that
matches J will satisfy the antecedents of all the subclaims, and the consequents of the subclaims
will imply the consequents of the lemma.

Consequent 1 on the preceding page relates the proceed type of the advice, τ′, to the function
type in the join point abstraction. The proceed type, τ′ = u0 × . . . × uq → u, is constructed from
the pointcut typing for the advice, pcd : � u0 � 〈u1, . . . , uq〉 � V � V. To satisfy the consequent we must
show that τ′ = t0 × . . .× tn → t. We use three separate subclaims, one for each pertinent position
in the pointcut typing. The subclaims let us show:

— u0 = t0,

— q = n, ∀i ∈ {1..n} · ui = ti, and

— u = t

Subclaim 1. Assume Γ′ ` pcd : û � u0 � U � û′ � V′ � V′′ (i.e., the “target type” is not ⊥). Then

matchPCD(J, pcd, S) 6= ⊥ =⇒ u0 = t0

Proof of subclaim.

— pcd = call( t′′ idPat(..) ). Subclaim assumption cannot hold.

— pcd = execution( t′′ idPat(..) ). Subclaim assumption cannot hold.

— pcd = this( . . . ). Subclaim assumption cannot hold.
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— pcd = target( t′′ var′′ ). By T-TARGPCD, t′′ = u0. By the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ t0 = t′′

=⇒ u0 = t0.

— pcd = args( . . . ). Subclaim assumption cannot hold.

— pcd = pcd1 —— pcd2. By T-UNIONPCD, Γ′ ` pcd1 : û1 � u0 � U1 � û′1 � V1 � V′
1 and Γ′ ` pcd2 : û2 �

u0 � U2 � û′2 � V2 � V′
2. By the induction hypothesis, matchPCD(J, pcd1, S) 6= ⊥ =⇒ u0 = t0 and

matchPCD(J, pcd2, S) 6= ⊥ =⇒ u0 = t0. By the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ or matchPCD(J, pcd2, S) 6= ⊥
=⇒ u0 = t0

— pcd = pcd1 && pcd2. By T-INTPCD and the definition of t, one of the following hold:

– Γ′ ` pcd1 : û1 � u0 � U1 � û′1 � V1 � V′
1 and Γ′ ` pcd2 : û2 �⊥ � U2 � û′2 � V2 � V′

2

– Γ′ ` pcd1 : û1 �⊥ � U1 � û′1 � V1 � V′
1 and Γ′ ` pcd2 : û2 � u0 � U2 � û′2 � V2 � V′

2

So the induction hypothesis holds for the type derivation of at least one of pcd1 and pcd2. By
the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ and matchPCD(J, pcd2, S) 6= ⊥
=⇒ u0 = t0

— pcd = ! pcd1. Subclaim assumption cannot hold.

Subclaim-

Subclaim 2. Assume Γ′ ` pcd : û � û′ � 〈u1, . . . , uq〉 � û′′ � V′ � V′′ (i.e., the argument type sequence is not
⊥). Then

matchPCD(J, pcd, S) 6= ⊥ =⇒ (q = n and ∀i ∈ {1..n} · ui = ti)

Proof of subclaim.

— pcd = call( . . . ). Subclaim assumption cannot hold.

— pcd = execution( . . . ). Subclaim assumption cannot hold.

— pcd = this( . . . ). Subclaim assumption cannot hold.

— pcd = target( . . . ). Subclaim assumption cannot hold.

— pcd = args( t′′1 var′′1 , . . . , t′′w var′′w ). By T-ARGSPCD, w = q and ∀i ∈ {1..q} · ui = t′′i . By the
definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ w = n and ∀i ∈ {1..n} · ti = t′′i
=⇒ q = n and ∀i ∈ {1..n} · ui = ti

— pcd = pcd1 —— pcd2. By T-UNIONPCD, Γ′ ` pcd1 : û1 � û′1 � 〈u1, . . . , uq〉 � û′′1 � V1 � V′
1 and Γ′ `

pcd2 : û2 � û′2 � 〈u1, . . . , uq〉 � û′′2 � V2 � V′
2. By the induction hypothesis, matchPCD(J, pcd1, S) 6=

⊥ =⇒ q = n and ∀i ∈ {1..n} · ui = ti and similarly for matchPCD(J, pcd2, S). By the
definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ or matchPCD(J, pcd2, S) 6= ⊥
=⇒ q = n and ∀i ∈ {1..n} · ui = ti
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— pcd = pcd1 && pcd2. By T-INTPCD and the definition of t, one of the following hold:

– Γ′ ` pcd1 : û1 � û′1 � 〈u1, . . . , uq〉 � û′′1 � V1 � V′
1 and Γ′ ` pcd2 : û2 � û′2 �⊥ � û′′2 � V2 � V′

2

– Γ′ ` pcd1 : û1 � û′1 �⊥ � û′′1 � V1 � V′
1 and Γ′ ` pcd2 : û2 � û′2 � 〈u1, . . . , uq〉 � û′′2 � V2 � V′

2

So the induction hypothesis holds for the type derivation of at least one of pcd1 and pcd2. By
the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ and matchPCD(J, pcd2, S) 6= ⊥
=⇒ q = n and ∀i ∈ {1..n} · ui = ti

— pcd = ! pcd1. Subclaim assumption cannot hold.

Subclaim-

Subclaim 3. Assume Γ′ ` pcd : û � û′ � U � u � V′ � V′′ (i.e., the “return type” is not ⊥). Then

matchPCD(J, pcd, S) 6= ⊥ =⇒ u = t

Proof of subclaim.

— pcd = call( t′′ idPat(..) ). By T-CALLPCD, t′′ = u. By the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ t = t′′

=⇒ u = t.

— pcd = execution( t′′ idPat(..) ). Similar to previous case, but by T-EXECPCD.

— pcd = this( . . . ). Subclaim assumption cannot hold.

— pcd = target( . . . ). Subclaim assumption cannot hold.

— pcd = args( . . . ). Subclaim assumption cannot hold.

— pcd = pcd1 —— pcd2. By T-UNIONPCD, Γ′ ` pcd1 : û1 � û′1 � U1 � u � V1 � V′
1 and Γ′ ` pcd2 : û2 �

û′2 � U2 � u � V2 � V′
2. By the induction hypothesis, matchPCD(J, pcd1, S) 6= ⊥ =⇒ u = t and

matchPCD(J, pcd2, S) 6= ⊥ =⇒ u = t. By the definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ or matchPCD(J, pcd2, S) 6= ⊥
=⇒ u = t

— pcd = pcd1 && pcd2. By T-INTPCD and the definition of t, one of the following hold:

– Γ′ ` pcd1 : û1 � û′1 � U1 � u � V1 � V′
1 and Γ′ ` pcd2 : û2 � û′2 � U2 �⊥ � V2 � V′

2

– Γ′ ` pcd1 : û1 � û′1 � U1 �⊥ � V1 � V′
1 and Γ′ ` pcd2 : û2 � û′2 � U2 � u � V2 � V′

2

So the induction hypothesis holds for the type derivation of one of pcd1 and pcd2. By the
definition of matchPCD,

matchPCD(J, pcd, S) 6= ⊥ =⇒ matchPCD(J, pcd1, S) 6= ⊥ and matchPCD(J, pcd2, S) 6= ⊥
=⇒ u = t

— pcd = ! pcd1. Subclaim assumption cannot hold.

Subclaim-
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With these three subclaims we can now prove consequent 1 on page 44. The first hypothesis of
T-ADV (see (1) on page 45) is:

Γ′ ` pcd : � u0 � 〈u1, . . . , uq〉 � u � V � V

Thus, the target type is not ⊥, nor is the argument type sequence, nor the return type. So the
assumptions of the first three subclaims all hold. Furthermore, by the definition of adviceBind,
dbb, loc, e, τ, τ′ce ∈ B̄ implies matchPCD(J, pcd, S) 6= ⊥. Thus:

τ′= u0 × . . .× uq → u by construction of AT
= t0 × u1 × . . .× uq → u by ??subclaim:bindingSoundness:targetType
= t0 × t1 × . . .× tn → u by ??subclaim:bindingSoundness:argTypes
= t0 × . . .× tn → u
= t0 × . . .× tn → t by ??subclaim:bindingSoundness:resultType

We next turn to consequent 2 on page 44. We can this prove consequent with a single subclaim.
We use a subclaim that is stronger than the consequent, partly so that the induction hypothesis is
sufficiently powerful. The stronger subclaim will also be useful in proving consequent 3. In the
subclaim, var(b) means all variables appearing in b (as defined in Figure 19 on page 38).

Subclaim 4. Assume Γ′ ` pcd : û � û′ � U � û′′ � V′ � V′′. Then matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉
implies all of the following:

∅ ` b OK (2a)

V′ ⊆ var(b) ⊆ V′′ (2b)

û = ⊥ ⇐⇒ α = − (2c)

û′ = ⊥ ⇐⇒ β0 = − (2d)

U = ⊥ =⇒ x = 0 (2e)

U 6= ⊥ =⇒ x = n (2f)

U = ⊥ ⇐⇒ ∀i ∈ {1..x} · βi = − (2g)

Proof of subclaim.

— pcd = call( t′′ idPat(..) ). By T-CALLPCD, Γ′ ` pcd :⊥ �⊥ �⊥ � t′′ � ∅ � ∅. By the definition of
matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = 〈−,−〉
=⇒ ∅ ` b OK

V′ = ∅ ⊆ var(b) ⊆ ∅ = V′′

û = ⊥ and α = − so (2c) holds
û′ = ⊥ and β0 = −so (2d) holds
U = ⊥ and x = 0 so (2e) holds
U = ⊥ so (2f) holds
U = ⊥ and ∀i ∈ {1..0} · βi = − vacuously true, so (2g) holds

— pcd = execution( t′′ idPat(..) ). Similar to previous case, but by T-EXECPCD.

— pcd = this( t′′ var′′ ). By T-THISPCD, Γ′ ` pcd : t′′ �⊥ �⊥ �⊥ � {var′′} � {var′′}. By the definition
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of matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = 〈var′′ 7→ v,−〉 for some v ∈ V
=⇒ ∅ ` b OK

V′ = {var′′} ⊆ var(b) ⊆ {var′′} = V′′

û 6= ⊥ and α 6= − so (2c) holds
û′ = ⊥ and β0 = − so (2d) holds
U = ⊥ and x = 0 so (2e) holds
U = ⊥ so (2f) holds
U = ⊥ and ∀i ∈ {1..0} · βi = − vacuously true, so (2g) holds

— pcd = target( t′′ var′′ ). By T-TARGPCD, Γ′ ` pcd : ⊥ � t′′ � ⊥ � ⊥ � {var′′} � {var′′}. By the
definition of matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = 〈−, var′′〉
=⇒ ∅ ` b OK

V′ = {var′′} ⊆ var(b) ⊆ {var′′} = V′′

û = ⊥ and α = − so (2c) holds
û′ 6= ⊥ and β0 6= − so (2d) holds
U = ⊥ and x = 0 so (2e) holds
U = ⊥ so (2f) holds
U = ⊥ and ∀i ∈ {1..0} · βi = − vacuously true, so (2g) holds

— pcd = args( t′′1 var′′1 , . . . , t′′w var′′w ). By T-ARGSPCD, Γ′ ` pcd :⊥ �⊥ � 〈t′′1 , . . . , t′′w〉 �⊥ � V′ � V′′

where V′ = V′′ = {var′′1 , . . . , var′′w}, and all var′′i are unique. By the definition of matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = 〈−,−, var′′1 , . . . , var′′w〉
=⇒ ∅ ` b OK

V′ ⊆ var(b) ⊆ V′′

û = ⊥ and α = − so (2c) holds
û′ = ⊥ and β0 = − so (2d) holds
U 6= ⊥ so (2e) holds
U 6= ⊥ and x = w = n by Subclaim 2, so (2f) holds
U 6= ⊥ and ∃i ∈ {1..0} · βi 6= − so (2g) holds

— pcd = pcd1 —— pcd2. By T-UNIONPCD, let

Γ′ ` pcd1 : û1 � û′1 � U1 � û′′1 � V1 � V′
1

Γ′ ` pcd2 : û2 � û′2 � U2 � û′′2 � V2 � V′
2

Also let matchPCD(J, pcd1, S) = r1 and matchPCD(J, pcd2, S) = r2.

By elementary set theory, V′ = V1 ∩ V2 =⇒ V′ ⊆ V1 and V′ ⊆ V2. Dually, V′
1 ⊆ V′′ and

V′
2 ⊆ V′′. By the definition of matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = r1 6= ⊥ or b = r2 6= ⊥

Without loss of generality, let b = r1. Then the induction hypothesis gives:

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ ∅ ` b OK
V′ ⊆ V1 ⊆ var(b) ⊆ V′

1 ⊆ V′′

(û = ⊥ ⇐⇒ α = −)
(û′ = ⊥ ⇐⇒ β0 = −)
(U = ⊥ =⇒ x = 0)
(U 6= ⊥ =⇒ x = n)
(U = ⊥ ⇐⇒ ∀i ∈ {1..x} · βi = −)
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— pcd = pcd1 && pcd2. By T-INTPCD, let

Γ′ ` pcd1 : û1 � û′1 � U1 � û′′1 � V1 � V′
1

Γ′ ` pcd2 : û2 � û′2 � U2 � û′′2 � V2 � V′
2

Also let matchPCD(J, pcd1, S) = r1 and matchPCD(J, pcd2, S) = r2. By the definition of
matchPCD:

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ r1 6= ⊥, r2 6= ⊥, and b = r1 t· r2

Thus, all the consequents of the subclaim hold for pcd1 and pcd2 Assume matchPCD(J, pcd, S) =
b = 〈α, β0, . . . , βx〉, let

r1 = 〈α1, β0,1, . . . , βx1,1〉
r2 = 〈α2, β0,2, . . . , βx2,2〉

and consider each consequent of the subclaim.

– By T-INTPCD, û = û1 t û2. By the definition of t,

û = ⊥ =⇒ û1 = ⊥ = û2

=⇒ α1 = −, α2 = − by induction hypothesis

=⇒ α = −t− = − by definition of t·

On the other hand,

û 6= ⊥ =⇒ û1 6= ⊥ or û2 6= ⊥, but not both

Without loss of generality, let û2 = ⊥

û1 6= ⊥ and û2 = ⊥ =⇒ α1 6= −, α2 = − by induction hypothesis

=⇒ α = α1 6= − by definition of t·

So û = − ⇐⇒ α = −, and (2c) holds.

– Similarly, û′ = − ⇐⇒ β0 = −, and (2d) holds.

– By T-INTPCD, U = U1 tU2. By the definition of t,

U = ⊥ =⇒ U1 = ⊥ = U2

=⇒ x1 = 0 = x2 by induction hypothesis

=⇒ x = 0 by definition of t·
=⇒ ∀i ∈ {1..x} · βi = −, vacuously

On the other hand,

U 6= ⊥ =⇒ U1 6= ⊥ or U2 6= ⊥, but not both

Without loss of generality, let U2 = ⊥

U1 6= ⊥ and U2 = ⊥ =⇒ x1 = n, x2 = 0, ∃i ∈ {1..n} · βi,1 6= − by induction hypothesis

=⇒ x = n, ∀i ∈ {1..x} · βi = βi,1 by definition of t·
=⇒ ∃i ∈ {1..x} · βi 6= −

So (U = − =⇒ x = 0), (U 6= − =⇒ x = n), and (U = − ⇐⇒ ∀i ∈ {1..x} · βi = −).
Thus, (2e), (2f), and (2g) all hold.
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– The above arguments also demonstrate that var(b) = var(r1) ∪ var(r2), since at each
position at most one of r1 and r2 is not “−”. Thus, there are no collisions that could cause
t· to drop a variable that appears in r2. By the induction hypothesis, V1 ⊆ var(r1) ⊆ V′

1
and V2 ⊆ var(r2) ⊆ V′

2. By T-INTPCD,

V′
1 ∩V′

2 = ∅ =⇒ var(r1) ∩ var(r2) = ∅

=⇒ ∅ ` b OK

Thus, (2a) holds.

– Finally, T-INTPCD, the induction hypothesis, and some set theory gives

V′ = V1 ∪V2 ⊆ var(r1) ∪ var(r2) = var(b).

and
var(b) = var(r1) ∪ var(r2) ⊆ V′

1 ∪V′
2 = V′′

Thus, V′ ⊆ var(b) ⊆ V′′ and (2b) holds.

— pcd = ! pcd1. By T-NEGPCD Γ′ ` pcd :⊥ �⊥ �⊥ �⊥ � ∅ � ∅. By the definition of matchPCD,

matchPCD(J, pcd, S) = b = 〈α, β0, . . . , βx〉 =⇒ b = 〈−,−〉
=⇒ ∅ ` b OK

V′ = ∅ ⊆ var(b) ⊆ ∅ = V′′

û = ⊥ and α = − so (2c) holds
û′ = ⊥ and β0 = −so (2d) holds
U = ⊥ and x = 0 so (2e) holds
U = ⊥ so (2f) holds
U = ⊥ and ∀i ∈ {1..0} · βi = − vacuously true, so (2g) holds

Subclaim-

By T-ADV, the assumption of the subclaim holds. Therefore, consequent 2 on page 44 holds by (2a).
Consequent 3 is more complex. To prove this consequent, it will suffice to show that

typeBind(Γ, b, 〈t0, . . . , tn〉) = var1 : s1, . . . , varp : sp (3)

We will see that this juxtaposition of ti in typeBind and si in the result is resolved by the pointcut
descriptor typing rules and matchPCD, which will impose constraints on the types. We use a final
subclaim.

Subclaim 5. Assume Γ′ ` pcd : û � û′ � U � û′′ � V′ � V′′, where V′′ ⊆ {var1, . . . , varp}. Then

matchPCD(J, pcd, S) = b 6= ⊥
=⇒ ∀var ∈ var(b) · (∃i ∈ {1..p} · (var = vari and typeBind(Γ, b, 〈t0, . . . , tn〉)(vari) = si))

Proof of subclaim. The assumption of this subclaim implies the assumption for Subclaim 4 on
page 48; we will make free use of the earlier result.

— pcd = call( . . . ). By T-CALLPCD, V′ = V′′ = ∅. By (2b) on page 48, matchPCD(J, pcd, S) =
b 6= ⊥ implies var(b) = ∅, satisfying the subclaim.

— pcd = execution( . . . ). Similar to previous case, but by T-EXECPCD.
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— pcd = this( t′′ var′′ ). By T-THISPCD, V′ = V′′ = {var′′}. By the subclaim assumption,
var′′ ∈ {var1, . . . , varp}. Without loss of generality, let var′′ = var1. By the hypothesis of
T-THISPCD and the definition of Γ′, t′′ = s1.

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ b = 〈var1 7→ loc1,−〉

for some loc1 in J, where loc1 ∈ dom(S) by J ≈ S, S(loc1) = [s1 � F] by definition of matchPCD,
and Γ(loc1) = s1 by Γ ≈ S. Thus,

typeBind(Γ, b, 〈t0, . . . , tn〉) = var1 : s1.

— pcd = target( t′′ var′′ ). By T-TARGPCD, V′ = V′′ = {var′′}. By the subclaim assumption,
var′′ ∈ {var1, . . . , varp}. Without loss of generality, let var′′ = var1. By the hypothesis of
T-TARGPCD and the definition of Γ′, t′′ = s1.

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ b = 〈−, var1〉

where t0 = t′′ by definition of matchPCD. So t0 = s1 and

typeBind(Γ, b, 〈t0, . . . , tn〉) = var1 : s1.

— pcd = args( t′′1 var′′1 , . . . , t′′w var′′w ). By T-ARGSPCD and the subclaim assumption, all var′′i are
unique and V′ = V′′ = {var′′1 , . . . , var′′w} ⊆ {var1, . . . , varp}. Thus,

∀i ∈ {1..w} · (∃!j ∈ {1..p} · (t′′i = sj and var′′i = varj)) (4)

The definition of matchPCD gives

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ b = 〈−,−, var′′1 , . . . , var′′w〉

where n = w and ∀i ∈ {1..w} · (t′′i = ti). So

typeBind(Γ, b, 〈t0, . . . , tn〉) = var′′1 : t′′1 , . . . , var′′w : t′′w

Let var ∈ var(b). Without loss of generality, let var = var′′1 . Now

typeBind(Γ, b, 〈t0, . . . , tn〉)(var′′1 ) = t′′1 .

By (4), there exists j such that var′′1 = varj and t′′1 = sj, thus the subclaim holds.

— pcd = pcd1 —— pcd2. By T-UNIONPCD and the subclaim assumption, let

Γ′ ` pcd1 : û1 � û′1 � U1 � û′′1 � V1 � V′
1 matchPCD(J, pcd1, S) = r1

Γ′ ` pcd2 : û2 � û′2 � U2 � û′′2 � V2 � V′
2 matchPCD(J, pcd2, S) = r2

By the definition of matchPCD,

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ b = r1 6= ⊥ or b = r2 6= ⊥

So either
typeBind(Γ, b, 〈t0, . . . , tn〉) = typeBind(Γ, r1, 〈t0, . . . , tn〉)

or
typeBind(Γ, b, 〈t0, . . . , tn〉) = typeBind(Γ, r2, 〈t0, . . . , tn〉).

As noted in the corresponding case of the proof of Subclaim 4, V′
1 ⊆ V′′ and V′

2 ⊆ V′′. Thus,
we can apply the induction hypothesis to the type derivations for pcd1 and pcd2, and the
subclaim holds.
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— pcd = pcd1 && pcd2. By T-INTPCD and the subclaim assumption, let

Γ′ ` pcd1 : û1 � û′1 � U1 � û′′1 � V1 � V′
1 matchPCD(J, pcd1, S) = r1

Γ′ ` pcd2 : û2 � û′2 � U2 � û′′2 � V2 � V′
2 matchPCD(J, pcd2, S) = r2

By the definition of matchPCD,

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ r1 6= ⊥ and r2 6= ⊥

As argued in the corresponding case of Subclaim 4, var(r1) and var(r2) are disjoint. Also,
since V′′ = V′

1 ∪ V′
2, we have V′

1 ⊆ V′′ and similarly for V2. Thus, the induction hypothesis
is applicable to the type derivations for pcd1 and pcd2. Let var ∈ var(b). By definition of the
union of bindings, var is in exactly one of var(r1) and var(r2). In either case, the claim holds
by the induction hypothesis.

— pcd = ! pcd1. By T-NEGPCD and subclaim assumption, V′ = V′′ = ∅.

matchPCD(J, pcd, S) = b 6= ⊥ =⇒ b = 〈−,−〉
=⇒ var(b) = ∅

Subclaim-

With this last subclaim in hand we can now prove the final consequent of the lemma. The first
two hypotheses of T-ADV (see (1) on page 45) are:

Γ′ ` pcd : � u0 � 〈u1, . . . , uq〉 � u � V � V

V = {var1, . . . , varp}

By definition of adviceBind, dbb, loc, e, τ, τ′ce ∈ B̄ implies matchPCD(J, pcd, S) 6= ⊥. We first use
Subclaim 4 and Subclaim 5 to prove equation (3) from page 51.

V = {var1, . . . , varp} by T-ADV

=⇒ var(b) = {var1, . . . , varp} by (2b)
=⇒ ∀i ∈ {1..p}·

(typeBind(Γ, b, 〈t0, . . . , tn〉)(vari) = si) by Subclaim 5

Thus, all var ∈ V are bound appropriately. By examination of the definition of typeBind, we see that

dom(typeBind(Γ, b, 〈t0, . . . , tn〉)) = var(b) = V.

Thus, no additional variables are bound and

typeBind(Γ, b, 〈t0, . . . , tn〉) = var1 : s1, . . . , varp : sp

The third hypothesis of T-ADV gives

var1 : s1, . . . , varp : sp, this : a, proceed : τ′ ` e : s′

=⇒ this : a, proceed : τ′, typeBind(Γ, b, 〈t0, . . . , tn〉) ` e : s′ by ??eq:bindingSoundness:typeBindResult
=⇒ Γ, this : a, proceed : τ′, typeBind(Γ, b, 〈t0, . . . , tn〉) ` e : s′

where the last implication is by Lemma 3 (Environment Extension), with appropriate α-conversion
of b and e. Finally, the last hypothesis of T-ADV gives s′ 4 s 4 u = t. Thus the final consequent
holds.
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The following lemma states that advice chaining, replacing proceed expressions with chain ex-
pressions, does not affect typing judgments given the appropriate assumptions. These assump-
tions are essentially the hypotheses of the T-CHAIN rule, since advice chaining is performed by the
ADVISE evaluation rule on chain expressions. This lemma is used for the ADVISE case in the subject
reduction proof.

Lemma 15 (Advice Chaining). Let Γ, proceed : τ ` e : t, j = (| , , , , τ|), τ = t0 × . . . × tn → t, and
for all B = dbb, loc, e′, τ′, τce ∈ B̄ let

— Γ, this : Γ(loc), proceed : τ, typeBind(Γ, b, (t0, . . . , tn)) ` e′ : s′,

— Γ ` b OK, and

— s′ 4 t.

Then Γ ` 〈〈e〉〉B̄,j : t.

Proof. The proof is by structural induction on the type derivation for e. In the base case, the type
derivation for e is by one of T-NEW, T-OBJ, T-VAR, T-LOC, or T-NULL. For all of these rules e
does not contain a proceed expression. Therefore, 〈〈e〉〉B̄,j = e and the claim holds by Lemma 4
(Environment Contraction) on page 14.

The induction hypothesis is that the claim holds for all type derivations smaller than the one for
e. For all the remaining expression typing rules but T-PROC, the claim follows immediately from
the induction hypothesis. So the only interesting case is for

e = e0.proceed( e1, . . . , en ) and

〈〈e〉〉B̄,j = chain B̄, j( 〈〈e0〉〉B̄,j, . . . , 〈〈en〉〉B̄,j )

Assuming that Γ, proceed : τ ` e : t, we need to show that Γ ` 〈〈e〉〉B̄,j : t. The later must be by
T-CHAIN, so we must establish the hypotheses for that rule. Now the last step in the type derivation
for e must be T-PROC:

∀i ∈ {0..n} · Γ, proceed : τ ` ei : ui ∀i ∈ {0..n} · ui 4 ti

Γ, proceed : τ ` e0.proceed( e1, . . . , en ) : t

By the hypotheses of this judgment, the induction hypothesis, and transitivity of subtyping we
have:

∀i ∈ {0..n} · Γ ` 〈〈ei〉〉B̄,j : u′i where u′i 4 ui 4 ti

The remaining hypotheses of T-CHAIN hold by the assumptions of the lemma regarding B̄ and j,
thus Γ ` 〈〈e〉〉B̄,j : t.

Finally, a simple lemma regarding join point abstractions will be useful in the subject reduction
and progress proofs.

Lemma 16 (Join Point Abstractions). In a MiniMAO1 program evaluation, if a join point abstraction, j,
appears in the expression of an evaluation triple, then one of the following hold:

1. Either j = (|exec, v, m, l, τ|) and l = fun m〈var0, . . . , varn〉.e : τ, or else

2. j = (|call,−, m,−, (t0 × . . .× tn → t)|) and methodType(t0, m) = t1 × . . .× tn → t.

Proof. Join point abstractions are not part of the user syntax of MiniMAO1. By inspection, the only
evaluation rules that can introduce new join point abstractions in the expression of an evaluation
triple are EXECA and CALLA. Only EXECA introduces exec join point abstractions, and these ab-
stractions satisfy part 1 of the lemma. Only CALLA introduces call join point abstractions. By the
definition of origType, these call join point abstractions satisfy the part 2 of the lemma.
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The subject reduction theorem for MiniMAO1 is essentially the same as for MiniMAO0, except
that it requires and maintains stack-store consistency and stack validity. The proof is extended to
account for the new evaluation rules.

Theorem 17 (Subject Reduction). Given a well typed MiniMAO1 program, for an expression e, a valid
store S, a stack J consistent with S, and a type environment Γ consistent with S, if Γ ` e : t and 〈e, J, S〉 ↪→
〈e′, J′, S′〉, then J′ ≈ S′, S′ is valid, and there exist Γ′ and t′ such that Γ′ ≈ S′, Γ′ ` e′ : t′, and t′ 4 t.

Proof. The proof is by cases on the evaluation rule applied. We note that the evaluation rules obey
a monotonicity property with regard to the store: none of evaluation rules remove a location from
the domain of S, nor do they change the type of the object in any store location. Because none
of the evaluation rules inherited from MiniMAO0 modify the stack, J′ ≈ S′ for the proof cases
corresponding to those rules. Also by the monotonicity property, S valid implies that part 1 of Def-
inition 13 (Store Validity) on page 44 holds for S′. Based on the reduction step we can construct a
Γ′ consistent with S′ that witnesses to the validity of S′ and satisfies the claim. The cases for NEW,
GET, SET, CAST, NCAST, and SKIP are unchanged from the original proof of Theorem 7 (Subject
Reduction) on page 16.

Case 1—CALLA. Here e = E[loc.m( v1, . . . , vn )], e′ = E[joinpt (|call,−, m,−, (s0 × . . .× sn → s)|)( loc, v1, . . . , vn )]
(where S(loc) = [u � F], methodType(s0, m) = s1 × . . .× sn → s, and origType(u, m) = s0), J′ = J, and
S′ = S.

Let Γ′ = Γ. Clearly Γ′ ≈ S′ and J′ ≈ S′.
We will see that Γ ` e′ : t. The judgment Γ ` e : t implies that loc.m( v1, . . . , vn ) and all its

subterms are well typed in Γ. Let Γ ` vi : ti for all i ∈ {1..n}. By part 1(a) of Γ ≈ S, Γ ` loc : u.
The type judgment for loc.m( v1, . . . , vn ) must be by T-CALL with ∀i ∈ {1..n} · ti 4 si and Γ `
loc.m( v1, . . . , vn ) : s. By the definition of origType, u 4 s0. T-JOIN gives:3

Γ ` loc : u ∀i ∈ {1..n} · Γ ` vi : ti u 4 s0 ∀i ∈ {1..n} · ti 4 si

Γ ` joinpt (|call,−, m,−, (s0 × . . .× sn → s)|)( loc, v1, . . . , vn ) : s

Therefore, Lemma 5 (Replacement) on page 14 gives Γ ` e′ : t.

Case 2—CALLB. Here e = E[chain •, (|call,−, m,−, τ|)( loc, v1, . . . , vn )], e′ = E[( l ( loc, v1, . . . , vn ) )]
(where S(loc) = [t0 � F] and methodBody(t0, m) = l), J′ = J, and S′ = S.

Let Γ′ = Γ. Clearly Γ′ ≈ S′ and J′ ≈ S′.
We will see that Γ ` e′ : t. Let eleft = chain •, (|call,−, m,−, τ|)( loc, v1, . . . , vn ). The judgment

Γ ` e : t implies that eleft and all its subterms are well typed. Let Γ ` vi : ti for all i ∈ {1..n} and let
Γ ` eleft : s. By part 1(a) of Γ ≈ S, Γ ` loc : t0. The type judgment for eleft must be by T-CHAIN with
τ of arity n + 1 and return type s. Let τ = s0 × . . . × sn → s. Then T-CHAIN gives ti 4 si for all
i ∈ {0..n}.

By Lemma 16 (Join Point Abstractions) on the preceding page, it must be the case that methodType(s0, m) =
s1 × . . . × sn → s. By the correspondence between the definitions of methodType and methodBody,
and by T-CLASS, T-MET, and override, it must be the case that l = methodBody(t0, m) = fun m〈this, var1, . . . , varn〉.e′′ :
(u× s1 × . . .× sn → s) where t0 4 u and Γ, this : u, var1 : s1, . . . , varn : sn ` e′′ : s′ for some s′ 4 s.

Thus, T-EXEC gives

Γ, this : u, var1 : s1, . . . , varn : sn ` e′′ : s′ s′ 4 s
Γ ` loc : t0 ∀i ∈ {1..n} · Γ ` vi : ti t0 4 u ∀i ∈ {1..n} · ti 4 si

Γ ` ( fun m〈this, var1, . . . , varn〉.e′′ : (u× s1 × . . .× sn → s) ( loc, v1, . . . , vn ) ) : s

and Lemma 5 (Replacement) on page 14 gives Γ ` e′ : t.

3We omit the vopt hypothesis because “−” is not a location.
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Case 3—EXECA. Here e = E[( l ( v0, . . . , vn ) )] (where l = fun m〈var0, . . . , varn〉.e′′ : (s0 × . . .× sn →
s)), e′ = E[joinpt (|exec, v0, m, l, (s0 × . . .× sn → s)|)( v0, . . . , vn )], J′ = J, and S′ = S.

Let Γ′ = Γ. Clearly Γ′ ≈ S′ and J′ ≈ S′.
We will see that Γ ` e′ : t. The judgment Γ ` e : t implies that ( l ( v0, . . . , vn ) ) and all its subterms

are well typed. Let Γ ` vi : ti for all i ∈ {0..n}. The type derivation of ( l ( v0, . . . , vn ) ) must be by
T-EXEC with Γ ` ( l ( v0, . . . , vn ) ) : s and ti 4 si for all i ∈ {0..n}. If v0 is a location, then Γ ` v0 : t0
must be by T-LOC, so v0 ∈ dom(Γ). Thus, Γ ` joinpt (|exec, v0, m, l, (s0 × . . .× sn → s)|)( v0, . . . , vn ) :
s by T-JOIN. Lemma 5 (Replacement) on page 14 gives Γ ` e′ : t.

Case 4—EXECB. Here e = E[chain •, (|exec, v, m, l, (s0 × . . .× sn → s)|)( v0, . . . , vn )] (where l =
fun m〈var0, . . . , varn〉.e′′ : (s0× . . .× sn → s)), e′ = E[under e′′{|v0/ var0, . . . , vn/ varn|}], J′ = (|this, v0,−,−,−|)+
J, and S′ = S.

Let Γ′ = Γ. Clearly Γ′ ≈ S′.
We will see that J′ ≈ S′ = S. Let eleft = chain •, (|exec, v, m, l, (s0 × . . .× sn → s)|)( v0, . . . , vn ).

Because e is well typed, it must be the case that eleft and all its subterms are well typed. Let Γ ` vi : ti
for all i ∈ {0..n}. If v0 = null, then J′ ≈ S because J′ has no new location. On the other hand, if v0 is
a location, then then judgment Γ ` v0 : t0 must be by T-LOC with v0 ∈ dom(Γ). By Γ ≈ S, we have
v0 ∈ dom(S). Because J ≈ S and v0 is the only potentially new location in J′, we have that J′ ≈ S.

We will also see that Γ ` e′ : t′ for some t′ 4 t by appealing to the Substitution Lemma. Rule
T-CHAIN must be the last step in the type derivation for eleft with Γ ` eleft : s. The second hypothesis
of T-CHAIN says that ti 4 si for all i ∈ {0..n}.

It remains to be seen that Γ, var0 : s0, . . . , varn : sn ` e′′ : u for some u 4 s. No fun terms may
appear in user programs; they can only be introduced by the evaluation rules. By examination of
the evaluation rules, we see that the only rule that introduces a new fun term is CALLB. The term
it introduces is provided by the methodBody auxiliary function. By the definition of methodBody and
by T-MET it must be the case that var0 : s0, . . . , varn : sn ` e′′ : u for some u 4 s. By α-conversion
and Lemma 3 (Environment Extension) on page 14 we have Γ, var0 : s0, . . . , varn : sn ` e′′ : u. Thus,
by Lemma 10 (Substitution) on page 42, Γ ` e′′{|v0/ var0, . . . , vn/ varn|} : u′ where u′ 4 u 4 s.
So Lemma 11 (Replacement with Subtyping) on page 43 gives Γ ` e′ : t′ for some t′ 4 t.

Case 5—BIND. Here:

e = E[joinpt (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|)( v0, . . . , vn )]
e′ = E[under chain B̄, (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|)( v0, . . . , vn )]
B̄ = adviceBind((|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|) + J, S)
J′ = (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|) + J

S′ = S

Let Γ′ = Γ. Clearly Γ′ ≈ S′.
We will see that J′ ≈ S′. Let eleft = joinpt (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|)( v0, . . . , vn ).

Because e is well typed, it must be the case the eleft and all its subterms are well typed. The typing
derivation for eleft must be by T-JOIN. Thus, if vopt is a location it must be in dom(Γ) and so J′ ≈ S′.

It remains to show that Γ ` e′ : t. Let eright = chain B̄, (|k, vopt, mopt, lopt, (s0 × . . .× sn → s)|)( v0, . . . , vn ).
(By T-UNDER, eright has the same type as under eright, so we can focus on the smaller expression.) The
typing judgment for eright must be by T-CHAIN. So we next show that all the hypotheses of T-CHAIN

are satisfied by eright.
By the well-typedness of eleft and its subterms, let Γ ` vi : ti for all i ∈ {0..n}. By T-JOIN, we

have ti 4 si for all i ∈ {0..n}.
The remaining hypotheses of T-CHAIN are related to the elements of the advice list, B̄. Let

B = dbb, loc, e′′, τ, τ′ce
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be an arbitrary element of B̄. By the definition of adviceBind, it must be the case that there exists a
piece of advice with aspect table entry 〈loc, pcd, e′′, τ, τ′〉 such that matchPCD(J′, pcd, S) = b 6= ⊥.
By Lemma 14 (Binding Soundness) on page 44 we have:

τ′ = s0 × . . .× sn → s

∅ ` b OK

Γ, this : Γ(loc), proceed : τ′, typeBind(Γ, b, 〈s0, . . . , sn〉) ` e′′ : s′ for some s′ 4 s

By appropriate α-conversion of b and e′′, we have Γ ` b OK. The remaining hypotheses of T-CHAIN

are satisfied directly by the results of the lemma. Thus, Γ ` eright : s and by T-UNDER and Lemma 5
(Replacement) on page 14, Γ ` e′ : t.

Case 6—ADVISE. Here

e = E[chain dbb, loc, e′′, τ′, τ′′ce+ B̄, j( v0, . . . , vn )]
e′ = E[under 〈〈e′′〉〉B̄,j{|loc/ this|}{|(v0, . . . , vn)/ b|}]

J′ = (|this, loc,−,−,−|) + J

S′ = S

Let Γ′ = Γ. Clearly Γ′ ≈ S′. Because db−ce terms can only be added to a program by the
auxiliary function adviceBind called by BIND, we know from the definition of adviceBind and the
validity and monotonicity of S that loc ∈ dom(S). By Γ ≈ S, we know loc ∈ dom(Γ). Thus, J′ ≈ S′.

It remains to be shown that Γ ` e′ : t′ for some t′ 4 t. Let

eleft = chain dbb, loc, e′′, τ, τ′ce+ B̄, j( v0, . . . , vn ) and

eright = 〈〈e′′〉〉B̄,j{|loc/ this|}{|(v0, . . . , vn)/ b|}.

Because e is well typed, we know that eleft and all its subterms are also well typed. The type
derivation for eleft must be by T-CHAIN. Let the last element of j be t0 × . . . × tn → tc. Then by
T-CHAIN the proceed type τ′ = t0 × . . .× tn → tc. From the hypotheses of T-CHAIN, we have

Γ, this : Γ(loc), proceed : (t0 × . . .× tn → tc), typeBind(Γ, b, 〈t0, . . . , tn〉) ` e′′ : s

where s 4 tc. The constraints on B̄ and j imposed by T-CHAIN satisfy the conditions of Lemma 15
(Advice Chaining) on page 54, so we have

Γ, this : Γ(loc), typeBind(Γ, b, 〈t0, . . . , tn〉) ` 〈〈e′′〉〉B̄,j : s (5)

Next we will appeal to the Substitution Lemma. To do so, we will need to expand typeBind so
that we can demonstrate that the conditions for the lemma hold. Let b = 〈α, β0, . . . , βp〉. Assume
α = var′ 7→ loc′ and β0 = var0.4 Then (5) expands to

Γ, this : Γ(loc), var′ : Γ(loc′), (vari : ti)i∈{0..p}·βi=vari
` 〈〈e′′〉〉B̄,j : s′.

and the binding substitution in eright expands to give

〈〈e′′〉〉B̄,j{|loc/ this, loc′/ var′, (vi/ vari)i∈{0..p}·βi=vari
|}.

Finally, by the hypotheses of T-CHAIN in the typing of eleft we have ∀i ∈ {0..n} · (Γ ` vi : u′i where u′i 4
ti). Thus, Lemma 10 (Substitution) on page 42 gives Γ ` eright : s′ where s′ 4 s 4 tc. By T-UNDER

and Lemma 11 (Replacement with Subtyping) on page 43, Γ ` e′ : t′ for some t′ 4 t.

4The argument connecting typeBind to binding substitution is similar if α (resp β0) is “−”, but with typings and substitu-
tions for var′ (resp var0) omitted.

57



Case 7—UNDER. Here e = E[under v], e′ = E[v], J = j + J′ for some j, and S′ = S.
Let Γ′ = Γ.
Clearly Γ′ ≈ S′. Since the set of location is J′ is a subset of those in J, J′ ≈ S′.
We will see that Γ ` e′ : t. The judgment Γ ` e : t implies that under v is well typed. Let Γ `

under v : t′. This judgment must be by T-UNDER with the hypothesis Γ ` v : t′. So by Lemma 5
(Replacement) on page 14, we have Γ ` e′ : t.

The remaining evaluation rules reduce e to an error condition and are not applicable to the
theorem.

The progress theorem is slightly modified for MiniMAO1, to include the validity of the store.
Additional proof cases are added for the new and modified evaluation rules.

Theorem 18 (Progress). For an expression e, a valid store S, a stack J consistent with S, and a type
environment Γ consistent with S, if Γ ` e : t then either:

— e = loc and loc ∈ dom(S),

— e = null, or

— one of the following hold:

– 〈e, J, S〉 ↪→ 〈e′, J′, S′〉
– 〈e, J, S〉 ↪→ 〈NullPointerException, J′, S′〉
– 〈e, J, S〉 ↪→ 〈ClassCastException, J′, S′〉

Proof. If e = loc, then Γ ` loc : t by T-LOC. This means that loc ∈ dom(Γ) and, since Γ ≈ S we have
loc ∈ dom(S).

If e = null, then the claim holds.
Finally, when e is not a value we consider cases based on the current redex of e. Cases where the

redex matches NEW, NCAST, SKIP, NGET, NSET, EXECA, NCALLA, and ADVISE are trivial. For
the remaining cases we must show that the side conditions hold and the join point abstractions are
of the correct form. The cases for redexes matched by GET, SET, and CAST are unchanged from the
proof of Theorem 8 (Progress) on page 18.

Case 1—e = E[loc.m( v1, . . . , vn )]. Because e is well typed, Γ ` loc : s for some type s. Thus,
loc ∈ dom(Γ), and part 2 of Γ ≈ S implies loc ∈ dom(S). Let S(loc) = [s′ � F]. Now s′ = s by part 1(a)
of Γ ≈ S.

Because loc.m( v1, . . . , vn ) is well typed, we know by the hypotheses of T-CALL that methodType(s, m)
yields an n-arity method type. Thus, 〈e, J, S〉 evolves by CALLA.

Case 2—e = E[chain B̄, j( v0, . . . , vn )]. If B̄ is non-empty, then 〈e, J, S〉 evolves by ADVISE. Otherwise,
we must consider cases based on the value of j. By Lemma 16 (Join Point Abstractions) on page 54,
there are two cases:

— j = (|exec, v, m, l, τ|): By Lemma 16, l = fun m〈var0, . . . , varn〉.e : τ. Thus, 〈e, J, S〉 evolves by
EXECB.

— j = (|call,−, m,−, τ|): There are two subcases. If v0 = null, then 〈e, J, S〉 evolves by NCALLB
to a triple with a NullPointerException. Otherwise, v0 is a location. Because e is well typed we
have Γ ` v0 : u′0 for some u′0; this is by T-LOC with v0 ∈ dom(Γ). By Γ ≈ S, S(v0) = [u′0 � F].
Let τ = t0 × . . . × tn → t, where the arity is n + 1 by T-CHAIN and the well-typedness of
e. By Lemma 16, methodType(t0, m) = t1 × . . . × tn → t. Also by T-CHAIN, u′0 4 t0. By the
correspondence between the definitions of methodType and methodBody, and by the definitions
of T-CLASS, T-MET, and override, it must be the case that there exists a fun term l such that
methodBody(u′0, m) = l. Therefore, 〈e, J, S〉 evolves by CALLB in this subcase.
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Case 3—e = E[under v]. In this case, we only need to argue that the stack, J, is not empty. Note that
under expressions are not part of the static syntax. These expressions are only introduced during
the evaluation of a program, by rule BIND, EXECB, and ADVISE. Each of those rules also pushes
a join point abstraction onto the stack. The UNDER rule removes the under expression and pops
the stack. Thus, the size of the stack corresponds to the number of under expressions present in the
expression. The presence of an under expression in the evaluation context implies that the stack is
non-empty. Therefore, 〈E[under v], j + J, S〉 ↪→ 〈E[v], J, S〉 by rule UNDER.

Finally, the soundness theorem must be updated to consider the initial, non-empty store.

Theorem 19 (Soundness). Given a program P = decl1 . . . decln e, with ` P OK, and a valid store S0, then
either the evaluation of e diverges or else 〈e, •, S0〉

∗
↪→ 〈v, J, S〉 and one of the following hold for v:

— v = loc and loc ∈ dom(S),

— v = null,

— v = NullPointerException, or

— v = ClassCastException

Proof. If e diverges then the claim holds. If e converges, then note that the empty stack is consistent
with any store and the validity of S0 implies the existence of an initial type environment consistent
with S0. The proof (by induction on the number of evaluation steps) is immediate from Theorem 17
(Subject Reduction) on page 55 and Theorem 18 (Progress) on the previous page.

4 Related Work

No previous work deals with the actual AspectJ semantics of argument binding for proceed expres-
sions and an object-oriented base language. Wand et al. [16] present a denotational semantics for
an aspect-oriented language that includes temporal pointcut descriptors. Our use of an algebra of
binding terms for advice matching is derived from their work. Their semantics binds all advice
parameters at the join point instead of at each subsequent proceed expression. Their calculus is not
object-oriented and so does not deal with the effects on method selection of changing the target
object. Douence et al. [5] present a system for reasoning about temporal pointcut matching. They
do not formalize advice parameter binding and do not include proceed in their language.

Jagadeesan et al. [9] present a calculus for a multithreaded, class-based aspect-oriented lan-
guage. They omit methods, using advice for all code abstraction. The lack of separate methods
simplifies their semantics, but makes their calculus a poor fit for our planned studies of a verifica-
tion logic for AspectJ-like languages. Also, their calculus does not include the ability of advice to
change the target object of an invocation. In an unpublished paper [10] add a sound type system
to their calculus. Our type system is motivated by that work, but extends it to handle the separate
this, target, and args binding forms and the ability of advice to change the target object.

Masuhara and Kiczales [13] give a Scheme-based model for an AspectJ-like language. They do
not include around advice in their model. They do sketch how this could be added, but do not
address the effect on method selection of changing the target object.

Aldrich [2] presents a system called “open modules” that includes advice and dynamic join
points with a module system that can restrict the set of control flow points to which advice may be
attached. The system is not object-oriented, so it does not address the issue of changing the target
of a method call, and it does not include state. Dantas and Walker [4] present a simple object-based
calculus for “harmless advice”. They use a type system with “protection levels” to keep aspects
from altering the data of the base program. In keeping with this non-interference property, they do
not allow advice to change values when proceeding to the base program.
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Bruns et al. [3] describe µABC, a name-based calculus in which aspects are the primitive com-
putational entity. Their calculus does not include state directly, but can model it via the dynamic
creation of advice. However, it is not obvious how such a model of state could be used for our
planned study of aspect-oriented reasoning when aspects may interfere with the base program via
the heap. Also, while their calculus does allow modeling of a form of proceed, It is difficult to see
how it could be used to study the effects of advice on method selection. Finally, their calculus is
untyped and is not class-based.

Walker et al. [15] use an innovative technique of translating an aspect-oriented language into
a labeled core language, where the labels serve as both advice binding sites and targets for goto
expressions, where they are used to translate around advice that does not proceed. While their
work does consider around advice and proceed in an object-oriented setting—the object calculus of
Abadi and Cardelli [1]—it does not consider changing any arguments to the advised code, let alone
the effects on method selection of changing the target object of an invocation.

5 Conclusion

In many respects MiniMAO1 faithfully explains the semantics of AspectJ’s around advice on method
call and execution join points. In particular, MiniMAO1 faithfully models the binding of arguments
and the ability of proceed to change the target object in a call join point. The semantics supports this
ability by breaking the processing of method calls into several steps: (i) creating the join point for
the call, (ii) finding matching advice, (iii) evaluating each piece of advice, and (iv) finally creating
an application form. Since the target object is only used to determine the method called in step
(iv) (the CALLB rule), the advice can change the target by using a different target in the proceed
expression. Such a change affects the application form created, which affects the join point created
for the method’s execution.

In addition to the necessary simplifications, MiniMAO1, also has a few interesting differences
from AspectJ. In particular the typing of proceed and the various pointcut descriptions has a differ-
ent philosophy from AspectJ. Its typing in MiniMAO1 corresponds to the type of the method being
advised, instead of being related to the type of the advice’s formal parameters. This contributes to
a simpler and more understandable semantics for proceed.

MiniMAO1 has a sound static type system, a first for a language with around advice that
can change the target object when proceeding from advice. The key to proving soundness for
MiniMAO1 is a binding soundness lemma, that relates the type of pointcut descriptors to the type
of code that they match.

Future work involves using MiniMAO1 to study the reasoning problems indicated in the intro-
duction.
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[5] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In Reflection 2001,
number 2192 in LNCS. Spring-Verlag, November 2001.

[6] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103:235–271, 1992.

[7] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s reduction
semantics for classes and mixins. In Formal Syntax and Semantics of Java, chapter 7, pages 241–
269. Springer-Verlag, 1999. URL http://citeseer.ist.psu.edu/flatt99programmers.html.

[8] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In Loren Meissner, editor, Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA‘99),
volume 34(10), pages 132–146, N. Y., 1999.

[9] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus of untyped aspect-oriented pro-
grams. In Luca Cardelli, editor, ECOOP 2003, European Conference on Object-Oriented Program-
ming, Darmstadt, Germany, volume 2743, pages 54–73. Springer-Verlag, 2003.

[10] Radha Jagadeesan, Alan Jeffrey, and James Riely. A typed calculus for aspect oriented pro-
grams. Available from ftp://fpl.cs.depaul.edu/pub/rjagadeesan/typedABL.pdf, Feb 2004.

[11] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi Mat-
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