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Abstract

Writing unit test code is labor-intensive, hence it is often not done as an integral part of
programming. However, unit testing is a practical approach to increasing the correctness and
quality of software; for example, Extreme Programming relies on frequent unit testing.

In this paper we present a new approach that makes writing unit tests easier. It uses a
formal specification language’s runtime assertion checker to decide whether methods are work-
ing correctly; thus code to decide whether tests pass or fail is automatically produced from
specifications. Our tool combines this testing code with hand-written test data to execute tests.
Therefore, instead of writing testing code, the programmer writes formal specifications (e.g., pre-
and postconditions). This makes the programmer’s task easier, because specifications are more
concise and abstract than the equivalent test code, and hence more readable and maintainable.
Furthermore, by using specifications in testing, specification errors are quickly discovered, so the
specifications are more likely to provide useful documentation and inputs to other tools. In this
paper we describe an implementation using the Java Modeling Language (JML) and the JUnit
testing framework, but the approach could be easily implemented with other combinations of
formal specification languages and unit testing tools.

1 Introduction

Program testing is an effective and practical way of improving the correctness of software, and
thereby improving software quality. It has many benefits when compared to more rigorous meth-
ods like formal reasoning and proof, such as simplicity, practicality, cost effectiveness, immediate
feedback, understandability, and so on. There is a growing interest in applying program testing to
the development process, as reflected by the Extreme Programming (XP) approach [6]. In XP, unit
tests are viewed as an integral part of programming. Tests are created before, during, and after the
code is written — often emphasized as “code a little, test a little, code a little, and test a little ...”
[7]. The philosophy behind this is to use regression tests [33] as a practical means of supporting
refactoring.

∗An earlier version of this work, with a different implementation, was described in our ECOOP 2002 paper [15].
The work of both authors was supported in part by a grant from Electronics and Telecommunications Research
Institute (ETRI) of South Korea, and by grants CCR-0097907 and CCR-0113181 from the US National Science
Foundation.
Authors’ addresses: Department of Computer Science, The University of Texas at El Paso, 500 W. University Ave., El
Paso, Texas 79902; email: cheon@cs.utep.edu; Department of Computer Science, Iowa State University, 226 Atanasoff
Hall, Ames, Iowa 50011; email: leavens@cs.iastate.edu.
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1.1 The Problem

However, writing unit tests is a laborious, tedious, cumbersome, and often difficult task. If the
testing code is written at a low level of abstraction, it may be tedious and time-consuming to change
it to match changes in the code. One problem is that there may simply be a lot of testing code that
has to be examined and revised. Another problem occurs if the testing program refers to details of
the representation of an abstract data type; in this case, changing the representation may require
changing the testing program.

To avoid these problems, one should automate more of the writing of unit test code. The goal is
to make writing testing code easier and more maintainable.

One way to do this is to use a framework that automates some of the details of running tests.
An example of such a framework is JUnit [7]. It is a simple yet practical testing framework for Java
classes; it encourages the close integration of testing with development by allowing a test suite be
built incrementally.

However, even with tools like JUnit, writing unit tests often requires a great deal of effort. Sep-
arate testing code must be written and maintained in synchrony with the code under development,
because the test class must inherit from the JUnit framework. This test class must be reviewed
when the code under test changes, and, if necessary, also revised to reflect the changes. In addition,
the test class suffers from the problems described above. The difficulty and expense of writing the
test class are exacerbated during development, when the code being tested changes frequently. As
a consequence, during development there is pressure to not write testing code and to not test as
frequently as might be optimal.

We encountered these problems ourselves in writing Java code. The code we have been writing
is part of a tool suite for the Java Modeling Language (JML) [10]. JML is a behavioral interface
specification language for Java [37, 36]. In our implementation of these tools, we have been formally
documenting the behavior of some of our implementation classes in JML. This enabled us to use
JML’s runtime assertion checker to help debug our code [9, 13, 14]. In addition, we have been using
JUnit as our testing framework. We soon realized that we spent too much time writing test classes
and maintaining them. In particular we had to write many query methods to determine test success
or failure. We often also had to write code to build expected results for test cases. We also found
that refactoring made testing painful; we had to change the test classes to reflect changes in the
refactored code. Changing the representation data structures for classes also required us to rewrite
code that calculated expected results for test cases.

While writing unit test methods, we soon realized that most often we were translating method
pre- and postconditions into the code in corresponding testing methods. The preconditions became
the criteria for selecting test inputs, and the postconditions provided the properties to check for
test results. That is, we turned the postconditions of methods into code for test oracles. A test
oracle determines whether or not the results of a test execution are correct [44, 47, 50]. Developing
test oracles from postconditions helped avoid dependence of the testing code on the representation
data structures, but still required us to write many query methods. In addition, there was no
direct connection between the specifications and the test oracles, hence they could easily become
inconsistent.

These problems led us to think about ways of testing code that would save us time and effort.
We also wanted to have less duplication of effort between the specifications we were writing and the
testing code. Finally, we wanted the process to help keep specifications, code, and tests consistent
with each other.

1.2 Our Approach

In this paper, we propose a solution to these problems. We describe a simple and effective technique
that automates the generation of oracles for testing classes. The conventional way of implementing a
test oracle is to compare the test output to some pre-calculated, presumably correct, output [26, 42].
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We take a different perspective. Instead of building expected outputs and comparing them to the
test outputs, we monitor the specified behavior of the method being tested to decide whether the test
passed or failed. This monitoring is done using the formal specification language’s runtime assertion
checker. We also show how the user can combine hand-written test inputs with these test oracles.
Our approach thus combines formal specifications (such as JML) and a unit testing framework (such
as JUnit).

Formal interface specifications include class invariants and pre- and postconditions. We assume
that these specifications are fairly complete descriptions of the desired behavior. Although the
testing process will encourage the user to write better preconditions, the quality of the generated
test oracles will depend on the quality of the specification’s postconditions. The quality of these
postconditions is the user’s responsibility, just as the quality of hand-written test oracles would be.

We wrote a tool, jmlunit, to automatically generate JUnit test classes from JML specifications.
The generated test classes send messages to objects of the Java classes under test; they catch assertion
violation exceptions from test cases that pass an initial precondition check. Such assertion violation
exceptions are used to decide if the code failed to meet its specification, and hence that the test
failed. If the class under test satisfies its interface specification for some particular input values, no
such exceptions will be thrown, and that particular test execution succeeds. So the automatically
generated test code serves as a test oracle whose behavior is derived from the specified behavior
of the target class. (There is one complication which is explained in Section 4.) The user is still
responsible for generating test data; however the generated test classes make it easy for the user to
add test data.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we describe the capabilities our
approach assumes from a formal interface specification language and its runtime assertion checker,
using JML as an example. In Section 3 we describe the capabilities our approach assumes from a
testing framework, using JUnit as an example. In Section 4 we explain our approach in detail; we
discuss design issues such as how to decide whether tests fail or not, test fixture setup, and explain
the automatic generation of test methods and test classes. In Section 5 we discuss how the user can
add test data by hand to the automatically generated test classes. In Section 6 we discuss other
issues. In Section 7 we describe related work and we conclude, in Section 8, with a description of
our experience, future plans, and the contributions of our work.

2 Assumptions About the Formal Specification Language

Our approach assumes that the formal specification language specifies the interface (i.e., names and
types) and behavior (i.e., functionality) of classes and methods. We assume that the language has
a way to express class invariants and method specifications consisting of pre- and postconditions.

Our approach can also handle specification of some more advanced features. One such feature
is an intra-condition, usually written as an assert statement. Another is a distinction between
normal and exceptional postconditions. A normal postcondition describes the behavior of a method
when it returns without throwing an exception; an exceptional postcondition describes the behavior
of a method when it throws an exception.

The Java Modeling Language (JML) [36, 37] is an example of such a formal specification lan-
guage. JML specifications are tailored to Java, and its assertions are written in a superset of Java’s
expression language.

Figure 1 shows an example JML specification. As shown, a JML specification is commonly
written as annotation comments in a Java source code file. Annotation comments start with //@

or are enclosed in /*@ and @*/. Within the latter kind of comment, at-signs (@) on the beginning
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public class Person {

private /*@ spec_public @*/ String name;

private /*@ spec_public @*/ int weight;

//@ public invariant name != null && name.length() > 0 && weight >= 0;

/*@ public behavior

@ requires n != null && name.length() > 0;

@ assignable name, weight;

@ ensures n.equals(name) && weight == 0;

@ signals (Exception e) false;

@*/

public Person(String n) { name = n; weight = 0; }

/*@ public behavior

@ assignable weight;

@ ensures kgs >= 0 && weight == \old(weight + kgs);

@ signals (IllegalArgumentException e) kgs < 0;

@*/

public void addKgs(int kgs) { weight += kgs; }

/*@ public behavior

@ ensures \result == weight;

@ signals (Exception e) false;

@*/

public /*@ pure @*/ int getWeight() { return weight; }

/* ... */

}

Figure 1: An example JML specification. The implementation of the method addKgs contains an
error to be revealed in Section 5.3. This error was overlooked in our initial version of this paper,
and so is an example of a “real” error.

of lines are ignored. The spec public annotation lets non-public declarations such as private fields
name and weight be considered to be public for specification purposes1. The fourth line of the figure
gives an example of an invariant, which should be true in each publicly-visible state.

In JML, method specifications precede the corresponding method declarations. Method pre-
conditions start with the keyword requires, frame axioms start with the keyword assignable,
normal postconditions start with the keyword ensures, and exceptional postconditions start with
the keyword signals [28, 36, 37]. The semantics of such a JML specification states that a method’s
precondition must hold before the method is called. When the precondition holds, the method must
terminate and when it does, the appropriate postconditions must hold. If it returns normally, then
its normal postcondition must hold in the post-state (i.e., the state just after the body’s execution),
but if it throws an exception, then the appropriate exceptional postcondition must hold in the post-
state. For example, the constructor must return normally when called with a non-null, non-empty
string n. It cannot throw an exception because the corresponding exceptional postcondition is false.

JML has lots of syntactic sugar that can be used to highlight various properties for the reader

1As in Java, a field specification can have an access modifier determining its visibility. If not specified, the visibility
defaults to the visibility of the Java declaration; i.e., without the spec public annotations, both name and weight

could be used only in private specifications.
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and to make specifications more concise. For example, one can omit the requires clause if the
precondition is true, as in the specification of addKgs. However, we will not discuss these sugars in
detail here.

JML follows Eiffel [39, 40] in having special syntax, written \old(E) to refer to the pre-state
value of the expression E, i.e., the value of E just before execution of the body of the method. This
is often used in situations like that shown in the normal postcondition of addKgs.

For a non-void method, such as getWeight, \result can be used in the normal postcondition
to refer to the return value. The method getWeight is specified to be pure, which means that its
execution cannot have any side effects. In JML, only pure methods can be used in assertions.

In addition to pre- and postconditions, one can also specify intra-conditions with specification
statements such as the assert statement.

2.1 The Runtime Assertion Checker

The basic task of the runtime assertion checker is to execute code in a way that is transparent, unless
an assertion is violated. That is, if a method is called and no assertion violations occur, then, except
for performance measures (time and space) the behavior of the method is unchanged. In particular,
this implies that, as in JML, assertions can be executed without side effects.

We do not assume that the runtime assertion checker can execute all assertions in the specification
language. However, only the assertions that it can execute are of interest in this paper.

We assume that the runtime assertion checker has a way of signaling assertion violations to the
callers of a method. In practice this is most conveniently done by using exceptions. While any
systematic mechanism for indicating assertion violations would do, to avoid circumlocutions, we will
assume that exceptions are used in the remainder of this paper.

The runtime assertion checker must have some exceptions that it can use without interference
from user programs. These exceptions are thus reserved for use by the runtime assertion checker. We
call such exceptions assertion violation exceptions. It is convenient to assume that all such assertion
violation exceptions are subtypes of a single assertion violation exception type.

JML’s runtime assertion checker can execute a constructive subset of JML assertions, including
some forms of quantifiers [9, 13, 14]. In functionality, it is similar to other design by contract tools
[34, 39, 40, 48]; such tools could also be used with our approach.

To explain how JML’s runtime assertion checker monitors Java code for assertion violations, it
is necessary to explain the structure of the instrumented code compiled by the JML compiler. Each
Java class and method with associated JML specifications is instrumented, as shown by example in
Figure 2. The original method becomes a private method, e.g., addKgs becomes internal$addKgs.
The checker generates a new method, e.g., addKgs, to replace it, which calls the original method,
internal$addKgs, inside a try statement.

The generated method first checks the method’s precondition and class invariant, if any.2 If
these assertions are not satisfied, this check throws either a JMLEntryPreconditionError or a
JMLInvariantError. After the original method is executed in the try block, the normal postcon-
dition is checked, or, if exceptions were thrown, the exceptional postcondition is checked in the
third catch block. To make assertion checking transparent, the code that checks the exceptional
postcondition re-throws the original exception if the exceptional postcondition is satisfied; other-
wise, it throws a JMLNormalPostconditionError or JMLExceptionalPostconditionError. In the
finally block, the class invariant is checked again. The purpose of the first catch block is explained
below (see Section 4.1).

Our approach assumes that the runtime assertion checker can distinguish two kinds of precon-
dition violations: entry precondition violations and internal precondition violations. The former

2To handle old expressions (as used in the postcondition of addKgs), the instrumented code evaluates each old
expression occurring in the postconditions from within the checkPre$addKgs method, and binds the resulting value
to a private field of the class. The corresponding private field is used when checking postconditions.

5



public void addKgs(int kgs) {

checkPre$addKgs(kgs); // check precondition

checkInv(); // check invariant

boolean rac$ok = true;

try {

internal$addKgs(kgs);

checkPost$addKgs(kgs); // check normal postcondition

} catch (JMLEntryPreconditionError e) {

rac$ok = false;

throw new JMLInternalPreconditionError(e);

} catch (JMLAssertionError e) {

rac$ok = false;

throw e;

} catch (Throwable e) {

try { // check exceptional postcondition

checkExceptionalPost$addKgs(kgs, e);

} catch (JMLAssertionError e1) {

rac$ok = false; // an exceptional postcondition violation

throw e1;

}

} finally {

if (rac$ok) {

checkInv(); // check invariant

}

}

}

Figure 2: The top-level of the run-time assertion checker’s translation of the addKgs method in class
Person. (Some details have been suppressed.)

refers to violations of preconditions of the method being tested. The latter refers to precondition
violations that arise during the execution of the body of the method under test (refer to Section 4.1
for a detailed explanation). Other distinctions among assertion violations are useful in reporting
errors to the user, but are not important for our approach.

In JML the assertion violation exceptions are organized into an exception hierarchy as shown
in Figure 3. The abstract class JMLAssertionError is the ultimate superclass of all assertion
violation exceptions. It has several subclasses that correspond to different kinds of assertion vio-
lations, such as precondition violations, postcondition violations, invariant violations, and so on.
Our assumed entry precondition and internal precondition violations are realized by the types
JMLEntryPreconditionError and JMLInternalPreconditionError. Both are concrete subclasses
of the abstract class JMLPreconditionError.

3 Assumptions About the Testing Framework

Our approach assumes that separate tests are to be run for each method of each class being tested.
We assume that the framework provides test objects, which are objects with at least one method
that can be called to execute a test. We call such methods of a test object test methods. We also
assume that one can make composites of test objects, that is, that one can group several test objects
into another test object, which, following JUnit’s terminology, we will call a test suite.
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JMLExceptionalPostconditionError

JMLNormalPostconditionError

JMLPostconditionError

JMLPreconditionError

JMLEntryPreconditionError

JMLInternalPreconditionError

JMLInvariantError

java.lang.Error

JMLAssertionError

JMLExceptionalPostconditionErrorJMLExceptionalPostconditionError

JMLNormalPostconditionErrorJMLNormalPostconditionError

JMLPostconditionErrorJMLPostconditionError

JMLPreconditionErrorJMLPreconditionError

JMLEntryPreconditionErrorJMLEntryPreconditionError

JMLInternalPreconditionErrorJMLInternalPreconditionError

JMLInvariantErrorJMLInvariantError

java.lang.Errorjava.lang.Error

JMLAssertionErrorJMLAssertionError

Figure 3: A part of the exception hierarchy for JML runtime assertion violations.

We further assume that a test method can indicate to the framework whether each test case
fails, succeeds, or is meaningless. Following JUnit, a test failure means that a bug or other problem
was found, success means that the code was not found to be incorrect. The outcome of a test is
said to be meaningless or rejected if an entry precondition violation occurs for the test case. Such a
test case is inappropriate to test the method, as it is outside the domain of the method under test;
details are Section 5.3.

By assuming that the framework provides test objects, which can execute a test, we are also
assuming that there is a way to provide test data to test objects.

JUnit is a simple, useful testing framework for Java [7, 30]. In the simplest way to use JUnit, a
test object is an object of a subclass of the framework class TestCase that is written with several
test methods. By convention, each test method has a name beginning with “test”, returns nothing
and takes no arguments. When this is done, the framework can then use Java’s introspection API
to find all such test methods, and can run them when requested.

Figure 4 is a sample JUnit test class, which is designed to test the class Person. A subclass
of TestCase, such as PersonTest, functions both as a class describing a test object and as one
describing a test suite. The methods inherited from TestCase provides basic facilities for asserting
test success or failure and dealing with global test state. TestCase also provides facilities for its
subclasses to act as composites, since it allows them to contain a number of test methods and
aggregate the test objects formed from them into a test suite.

In direct use of JUnit, one uses methods like assertEquals, defined in the framework, to write
test methods, as in the test method testAddKgs. Such methods indicate test success or failure to
the framework. For example, when the arguments to assertEquals are not equal, the test fails.
Another such framework method is fail, which directly indicates test failure. JUnit assumes that
a test succeeds unless the test method throws an exception or indicates test failure. Thus the only
way a test method can indicate success is to return normally.

JUnit thus does not provide a way to indicate that a test execution was meaningless. This is
because it is geared toward counting executions of test methods instead of test cases, and because
hand-written tests are assumed to be meaningful. However, in our approach we need to extend
JUnit to allow the counting of test case executions and to track which test cases were meaningful.
We extended the JUnit framework to do this by writing a class JMLTestRunner, which tracks the
meaningful test cases executed.

JUnit provides two methods to manipulate the global data or state associated with running
tests: the setUp method creates objects and does any other tasks needed to run a test, and the
tearDown method undoes otherwise permanent side-effects of tests. For example, the setUp method
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import junit.framework.*;

public class PersonTest extends TestCase {

private Person p;

public PersonTest(String name) {

super(name);

}

public void testAddKgs() {

p.addKgs(10);

assertEquals(10, p.getWeight());

}

protected void setUp() {

p = new Person("Baby");

}

protected void tearDown() {

}

public static Test suite() {

return new TestSuite(PersonTest.class);

}

public static void main(String args[]) {

String[] testCaseName = {PersonTest.class.getName()};

junit.textui.TestRunner.main(testCaseName);

}

}

Figure 4: A sample JUnit test class.

in Figure 4 creates a new Person object, and assigns it to the test fixture variable p. Both methods
can be omitted if they do nothing. JUnit automatically invokes the setUp and tearDown methods
before and after each test method is executed (respectively).

The static method suite creates a test suite, i.e., a collection of test objects created from the test
methods found in a subclass of TestCase. To run tests, JUnit first obtains a test suite by invoking
the method suite, and then runs each test in the suite. Besides tests, a test suite can also contain
several other test suites. Figure 4 uses Java’s reflection facility to create a test suite consisting of
all the test methods of class PersonTest.

Our goal in automatically generating test oracle code was to preserve as much of this functionality
as possible. In particular, it is important to run the user’s setUp and tearDown methods before and
after each test. However, instead of writing test methods as methods with names beginning with
“test”, the automatically generated code makes very heavy use of the ability to create test suites
from generated test objects.

4 Test Oracle Generation

This section presents the details of our approach to automatically generating JUnit tests from a
JML-annotated Java class or interface. We will use the term type to mean either a class or an
interface.

Our tool, jmlunit, produces two Java classes, in two files, for each JML-annotated Java type, C.
The first is named C JML TestData. It is a subclass of the JUnit framework class TestCase. The
C JML TestData class supplies the actual test data for the tests; more precisely, in the current tool,
users edit this class to supply the test data. The second is the class C JML Test, which is a test oracle
class; it holds the code for running the tests and for deciding test success or failure. For example, run-
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ning our tool on the class Person produces two classes, a skeleton of the class Person JML TestData,
and its subclass, Person JML Test. However, the file Person JML TestData.java, would not be
generated if it already exists, otherwise the user’s test data might be lost.

In the rest of this section, we describe the contents of the class C JML Test generated by the tool.
The presentation is bottom-up. Subsection 4.1 describes how test outcomes are determined. Subsec-
tion 4.2 describes the methods used to access test data, which allows its superclass, C JML TestData,
to supply the test data used. (Users might want to skip to Section 5 after reading Subsection 4.2.)
After that we discuss in detail the automatic generation of test objects, test methods, and test suites.
Section 5 describes the details of supplying test data in the C JML TestData class.

4.1 Deciding Test Outcomes

In JUnit, a test object implements the interface Test and thus has one test method, run(), which
can be used to run a test consisting of several test methods. In our use of JUnit, each test method
runs a single test case and tests a single method or constructor. Conceptually, a test case for an
instance method consists of a pair of a receiver object (an instance of the class being tested) and a
tuple of argument values; for testing static methods and constructors, a test case does not include
the receiver object.

The outcome of a call to a method or constructor, M , for a given test case, is determined
by whether the runtime assertion checker throws an exception during M ’s execution, and what
kind of exception is thrown. If no exception is thrown, then the test case succeeds (assuming the
call returns), because there was no assertion violation, and hence the call must have satisfied its
specification.

Similarly, if the call to M for a given test case throws an exception that is not an assertion
violation exception, then this also indicates that the call to M succeeded for this test case. Such
exceptions are passed along by the runtime assertion checker because it is assumed to be transpar-
ent. Hence if the call to M throws such an exception instead of an assertion violation exception,
then the call must have satisfied M ’s specification, specifically, its exceptional postcondition. With
JUnit, such exceptions must, however, be caught by the test method, since any such exceptions are
interpreted by the framework as signaling test failure. Hence, the test method must catch and ignore
all exceptions that are not assertion violation exceptions.3

If the call to M for a test case throws an assertion violation exception, however, things become
interesting. If the assertion violation exception is not a precondition exception, then the method M

is considered to fail that test case.
However, we have to be careful with the treatment of precondition violations. A precondition

is an obligation that the client must satisfy; nothing else in the specification is guaranteed if the
precondition is violated. Therefore, when a test method calls a method M and M ’s precondition
does not hold, we do not consider that to be a test failure; rather, when M signals a precondition
exception, it indicates that the given test input is outside M ’s domain, and thus is inappropriate for
test execution. We call the outcome of such a test execution “meaningless” instead of calling it either
a success or failure. On the other hand, precondition violations that arise inside the execution of M

should still be considered to be test failures. To do this, we distinguish two kinds of precondition
violations that may occur when a test method runs M on a test case, say tc:

• The precondition of M fails for tc, which indicates, as above, that the test case tc is outside
M ’s domain. As noted earlier, this is called an entry precondition violation.

3Catching and ignoring exceptions does interact with some of JML’s syntactic sugars, however. We found that
if the user does not specify an exceptional postcondition, it seems best to treat exceptions as if they were assertion
violations, instead of using a default that allows them to be treated as test successes. The JML compiler (jmlc) has
an option (-U) to compile files with this behavior.
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• A method N called from within M ’s body signals a precondition violation, which indicates
that M ’s body did not meet N ’s precondition, and thus that M failed to correctly implement
its specification on the test case tc. (Note that if M calls itself recursively, then N may be the
same as M .) Such an assertion violation is an internal precondition violation.

The JML runtime assertion checker converts the second kind of precondition violation into an
internal precondition violation exception. Thus, a test method decides that M fails on a test case tc
if M throws an internal precondition violation exception, but rejects the test case tc as meaningless
if it throws an entry precondition violation exception. This treatment of precondition exceptions was
the main change that we had to make to the JML’s existing runtime assertion checker to implement
our approach. The treatment of meaningless test case executions is also the only place where we
had to extend the JUnit testing framework.

Our implementation of this decision process is shown in the method runTest in Figure 5. The
user is informed of what is happening during the testing process by the JUnit framework’s use of the
observer pattern. Most of this is done by the JUnit framework, but the call to the addMeaningless
method also informs listeners of what is happening during testing (see Section 4.4). The doCall

method is an abstract method that, when overridden in a particular test object, will call the method
being tested with the appropriate arguments for that test case. The test’s outcome is recorded as
discussed above. There are only two tricky aspects to this. The first is adjusting the assertion
failure error object so that the information it contains is of maximum utility to the user. This is
accomplished by deleting the stack backtrace that would show only the test harness methods, which
happens in the call to the setStackTrace method, and adding the original exception as a “cause”
of this error. The second tricky aspect that the runtime assertion checker must be turned off when
indicating test failure, and turned back on again after that is done. This is needed because the
report about the problem can call toString methods of the various receiver and argument objects
without finding the same violations (for example, invariant violations) that caused the original test
failure.

To summarize, the outcome of a test execution is “failure” if an assertion violation exception
other than an entry precondition violation is thrown, is “meaningless” if an entry precondition
violation is thrown, and “success” otherwise.

4.2 Test Data Access

In this section we describe the interface that a C JML Test class uses to access user-provided test
data. Recall that this test data for testing a class C is defined in a class named C JML TestData

that is a superclass of C JML Test; thus the interface described in this subsection describes how
these classes communicate. In this section we describe only that interface; the ways that the user
can implement it in the C JML TestData class are described in Section 5.

Test data provided in the C JML TestData class are used to construct receiver objects and
argument objects that form test cases for testing various methods. For example, a test case for the
method addKgs of class Person (see Figure 1) requires one object of type Person and one value
of type int. The first object will be the receiver of the message addKgs, and the second will be
the argument. In our approach, there is no need to construct expected outputs, because success
or failure is determined by observing the runtime assertion checker, not by comparing results to
expected outputs.

What interface is used to access the test data needed to build test cases for testing a method
M? There are several possibilities:

• Separate test data. For each method M to be tested, there is a separate set of test data.
This results in a very flexible and customizable configuration. However, defining such fixture
variables becomes complicated and requires more work from the user.

10



public void runTest() throws Throwable {

try {

// The call being tested!

doCall();

}

catch (JMLEntryPreconditionError e) {

// meaningless test input

addMeaningless();

} catch (JMLAssertionError e) {

// test failure

int l = JMLChecker.getLevel();

JMLChecker.setLevel(JMLOption.NONE);

try {

String failmsg = this.failMessage(e);

AssertionFailedError err = new AssertionFailedError(failmsg);

err.setStackTrace(new StackTraceElement[]{});

err.initCause(e);

result.addFailure(this, err);

} finally {

JMLChecker.setLevel(l);

}

} catch (Throwable e) {

// test success

}

}

Figure 5: Template method abstraction of running a test case, showing how failure, success, and
meaningless tests are decided.

• Global test data. All test methods share the same set of test data. The approach is simple and
intuitive, and thus defining the test data requires less work from the user. However, the user
has less control in that, because of shared test data, it becomes hard to supply specific test
cases for testing specific methods.

• Combination. Some combination of the above two approaches, which has a simple and intuitive
test fixture configuration, and yet to gives the user more control.

Our earlier work [15] adopted the global test data approach. The rationale was that the more
test cases would be the better and the simplicity of use would outweigh the benefit of more control.
There would be no harm to run test methods with test cases of other methods (when these are
type-compatible). Some of test cases might violate the precondition; however, entry precondition
violations are not treated as test failures, and so such test cases cause no problems.

However, our experience showed that more control was necessary, in particular to make it possible
to produce clones of test data so that test executions do not interfere with each other.4 Thus a
combination approach is used in the current implementation.

In the combination approach we have adopted, there is an abstract interface between the test
driver and the user-supplied C JML TestData class that defines the test data.5 The exact in-
terface used depends on whether the type of data, T , is a reference type or a primitive value

4Also, in our earlier implementation, all of the test fixture variables were reinitialized for each call to the method
under test, which resulted in very slow testing; most of this reinitialization was unnecessary.

5We thank David Cok for pointing out problems with the earlier approach and discussing such extensions.
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/** Return a new, freshly allocated indefinite iterator that

* produces test data of type T. */

public IndefiniteIterator vTIter(String methodName, int loopsThisSurrounds);

Figure 6: Methods used for accessing test data of a reference type T by the test oracle class.

type. For a reference type T , the user must define the method shown in Figure 6. The type
IndefiniteIterator is a special iterator type for supplying test data, and is defined in a package
org.jmlspecs.jmlunit.strategies. Iterators are convenient for supplying test data because they
are easy to combine, filter, etc. The indefinite iterator interface is shown in Figure 7.

For primitive value types, such as int, short, float char, and boolean, the interface used is
slightly different, since boxing primitive values into objects, and unboxing them later, would be
inefficient. Thus, for example, to access data of type int, the drivers require the user to define the
method shown in Figure 8. The type intIterator is an extension of IndefiniteIterator that
provides direct access to the values of type int, using the method getInt() instead of get().

To give the user control over what test data is used to test what methods and for which arguments
of those methods, the test data access method in Figure 6 has two arguments. The first argument,
the string methodName, gives the name of the method being tested; this allows different data to
be used for different test methods. For example, the user can avoid test data that would cause a
time-consuming method to run for a long time by using different test data for just that method. The
second argument, loopsThisSurrounds, allows the program to distinguish between data generated
for different arguments of a method that takes multiple arguments of a given type. It can also be
used to help control the number of tests executed. The user that does not want such control simply
ignores one or both of these arguments.

To let these test data access methods be shared by all test methods in the test oracle class, we
adopt a simple naming convention. Each method’s suffix is the name of its type prefixed by the
character ‘v’, e.g., vint for type int.6 If C is a class to be tested and T1, T2, . . . , Tn are the set
of other formal parameter types of all the methods to be tested in the class C, then the test data
access methods need to be provided for each distinct type in C, T1, . . ., Tn.

The test cases used are, in general, the cross product of the set of test data supplied for each type.
However, to give the user more control over the test cases, the factory methods shown in Figure 9 is
called to create the test suites that are used both to accumulate all the tests and the tests for each
method M . The user can override the emptyTestSuiteFor method to provide a test suite that, for
example, limits the number of tests run for each method to 10. By overriding the overallTestSuite
method, one can, for example, use only 70% of the available tests. Users not wanting such control
can simply use the defaults provided, as shown in Figure 9, which use all available tests.

For example, for the class Person, the programmer will have to define the test data access
methods shown in Figure 10. These are needed because Person’s methods have receivers of type
Person, and take arguments of types String (in the constructor) and int (in the constructor and
in the method addKgs).

The set of test cases for the method addKgs is thus all tuples of the form (r, i) where r is a non-null
object returned by vPersonIter("addKgs",1), and i is an element returned by vintIter("addKgs",
1-1). The second argument, loopsThisSurrounds, is used to distinguish between data generated
for different arguments of a method that takes multiple arguments of a given type. Similarly, the set
of test cases for the method getWeight consists of all tuples of the form (r) consisting of a non-null
object r returned by vPersonIter("getWeight",0).

6For an array type, the character $ is used to denote its dimension, e.g., vint $ $Iter for int[][]. Also to avoid
name clashes, the jmlunit tool uses fully qualified names for reference types; for example, instead of vStringIter,
the actual declaration would be for a method named vjava lang StringIter. To save space, we do not show the fully
qualified names.
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package org.jmlspecs.jmlunit.strategies;

import java.util.NoSuchElementException;

/** Indefinite iterators. These can also be thought of as cursors

* that point into a sequence. */

public interface IndefiniteIterator extends Cloneable {

/** Is this iterator at its end? I.e., would get() not work? */

/*@ pure @*/ boolean atEnd();

/** Return the current element in this iteration. This method may

* be called multiple times, and does not advance the state of the

* iterator when it is called. The idea is to permit several

* similar copies to be returned (e.g., clones) each time it is

* called.

* @throws NoSuchElementException, when atEnd() is true.

*/

/*@ public behavior

@ assignable \nothing;

@ ensures_redundantly atEnd() == \old(atEnd());

@ signals (Exception e) e instanceof NoSuchElementException && atEnd();

@*/

/*@ pure @*/ Object get();

/** Advance the state of this iteration to the next position.

* Note that this never throws an exception. */

/*@ public normal_behavior

@ assignable objectState;

@*/

void advance();

/** Return a new iterator with the same state as this. */

/*@ also

@ public normal_behavior

@ assignable \nothing;

@ ensures \fresh(\result) && \result instanceof IndefiniteIterator;

@*/

/*@ pure @*/ Object clone();

}

Figure 7: The indefinite iterator interface.

/** Return a new, freshly allocated indefinite iterator that

* produces test data of type int. */

public intIterator vintIter(String methodName, int loopsThisSurrounds);

Figure 8: Methods used for accessing test data of the primitive value type int by the test oracle
class.
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/** Return the overall test suite for testing; the result

* holds every test that will be run.

*/

public TestSuite overallTestSuite() {

return new TestSuite("Overall test suite");

}

/** Return an empty test suite for accumulating tests for the

* named method.

*/

public TestSuite emptyTestSuiteFor(String methodName) {

return new TestSuite(methodName);

}

Figure 9: Factory methods used for producing test suites, with their default implementations.

public IndefiniteIterator vPersonIter(String methodName, int loopsThisSurrounds);

public IndefiniteIterator vStringIter(String methodName, int loopsThisSurrounds);

public IntIterator vintIter(String methodName, int loopsThisSurrounds);

Figure 10: Test data access methods the programmer must define for testing the class Person.

4.3 Test Objects

For each test case, a test object is automatically created to hold the test case’s data and run
the corresponding test method. These test objects are created in the C JML Test class. Their
creation starts with a call to the suite() method of that class. As shown in Figure 11, this
method accumulates test objects into the test suite created by the overallTestSuite() factory
method described earlier. The addTestSuite() method is used to add a test suite consisting of
all the custom testing methods, named testX, that the user may have defined.7 Then test suites
consisting of test objects for testing each method are also added to this test suite. It is the generation
of these test suites, one for each method M to be tested, that will concern us in the remainder of
this subsection.

To describe our implementation, let C be a Java type annotated with a JML specification and
C JML Test the JUnit test class generated from the type C. Recall that C JML Test is a subclass
of C JML TestData. For each instance (i.e., non-static) method of the type C with a signature
involving only reference types (where n ≥ 0 and m ≥ 0):

T M(A1 a1,. . ., An an) throws E1,..., Em;

the method shown in Figure 13 is used to generate the test objects and add them to the corresponding
test suite. It appears, once for each such method M , in the body of the test class.

The nested for loops in Figure 13 loop over all test cases for method M . Each loop iterates over
all test inputs that correspond to the receiver or a formal parameter. The iterators used in the loop
are created by calling the vCIter or vAiIter methods. The vCIter iterator, which is used to pro-
vide the receivers, is filtered to take out null elements, using the class NonNullIteratorDecorator.

Each iterator used is checked to see that it is not already at its end. This is done to ensure that
there is some testing to be done for the method M . If one of the loops had no test data, then no
testing would be done for that method.

7Such methods may be written by the user as usual in JUnit.
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public static Test suite() {

C_JML_Test testobj = new C_JML_Test("C_JML_Test");

TestSuite testsuite = testobj.overallTestSuite();

// Add instances of Test found by the reflection mechanism.
testsuite.addTestSuite(C_JML_Test.class);

testobj.addTestSuiteForEachMethod(testsuite);

return testsuite;

}

public void addTestSuiteForEachMethod(TestSuite overallTestSuite$) {

〈 A copy of the code from Figure 12 for each method and constructor M 〉
}

Figure 11: The method suite and addTestSuiteForEachMethod. These are part of the C JML Test

class used to test type C.

this.addTestSuiteFor$TestM(overallTestSuite$);

Figure 12: The call to the addTestSuiteFor$TestM for adding tests for the method or constructor
M .

The test data in the test case, is passed to the constructor of a specially created, nested subclass,
TestM ;8 this constructor stores the data away for the call to the test method. The test object thus
created is added to the method’s test suite. If the method’s test suite is full, then this exception
causes the loops to terminate early, saving whatever work is needed to generate the test data. At
the end of Figure 13, the method’s test suite is added to the overall test suite.

Figure 13 shows the code generated when all of the argument types, Ai are reference types. If
some of the types Ai are primitive value types, then the appropriate iterator type is used instead
of IndefiniteIterator in Figure 13, and instead of calling get(), the argument is obtained by
calling the getAi() method appropriate for the type Ai.

If the method being tested is a static method, then the outermost while loop in Figure 13 is
omitted, since there is no need for a receiver object. Constructors (for non-abstract classes) are
tested in a similar way.

By default, the jmlunit tool only generates test methods for public methods in the class or
interface being tested. It is impossible to test private methods from outside the class, but users can
tell the tool whether they would like to also test protected and package visible methods. Normally,
the tool only tests methods for which there is code written in the class being tested. However, the
tool also has an option to test inherited methods that are not overridden. This is useful because
in JML one can add specifications to a method without writing code for it; this can happen, for
example, if one inherits specifications through an interface for a method inherited from a superclass.
Also, test methods are not generated for a static public void method named main; testing such
a main method seems inappropriate for unit testing.

Figure 14 is an example of the code used to generate test objects for the testing of the addKgs

method of the class Person.

8In the implementation, the initial character of M is capitalized in TestM , e.g., TestAddKgs; this follows the Java
conventions for class names.
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/** Add tests for the M method to the overall test suite. */
private void addTestSuiteFor$TestM(TestSuite overallTestSuite$) {

methodTests$ = emptyTestSuiteFor("M");

IndefiniteIterator receivers$iter

= new NonNullIteratorDecorator(vCIter("M",1));

check has data(receivers$iter,"receiversIter(\"M\",n)");

try {

while (!receivers$iter.atEnd()) {

IndefiniteIterator vA1$1$iter = vA1Iter("M",n-1);

check has data(vA1$1$iter,"vA1Iter(\"M\",n-1)");

while (!vA1$1$iter.atEnd()) {

. . .

IndefiniteIterator vAn$n$iter = vAnIter("M",n-n);

check has data(vAn$n$iter,"vAnIter(\"M\",n-n)");

while (!vAn$n$iter.atEnd()) {

final C receiver$ = (C) receivers$iter.get();

final A1 a1 = vA1$1$iter.get();
. . .

final An an = vAn$n$iter.get();

methodTests$.addTest(new TestM(receiver$,a1,. . .,an));

vAn$n$iter.advance();

}

. . .

vA1$1$iter.advance();

}

receivers$iter.advance();

}

} catch (TestSuiteFullException e$) {

// methodTests$ doesn’t want more tests

}

overallTestSuite$.addTest(methodTests$);

}

Figure 13: Code that generates test objects for method M .

4.4 Test Object Classes

For each method M of class C to be tested, the test driver class C JML Test contains a nested class
TestM that describes the test objects that hold the data for a test case and the test method that
calls M for that test case. Suppose again that M is an instance method of class C with a signature
involving types:

T M(A1 a1,. . ., An an) throws E1,..., Em;

Then the code shown in Figure 15 describes the class TestM used to hold the data and test method
for testing M . The constructor shown in Figure 15 simply records its arguments in the object’s
fields; it is used in Figure 13. The doCall method calls method M with these arguments; it is used
in Figure 5. The other method, fail, is used in formatting the output for the user; it is tailored to
M in the sense that it displays the test case’s data in the message passed to the JUnit framework’s
fail method.

16



/** Add tests for the addKgs method to the overall test suite. */

private void addTestSuiteFor$TestAddKgs(TestSuite overallTestSuite$) {

methodTests$ = this.emptyTestSuiteFor("addKgs");

IndefiniteIterator receivers$iter

= new NonNullIteratorDecorator(vPersonIter("addKgs", 1));

check_has_data(receivers$iter,

"new NonNullIteratorDecorator(vPersonIter(\"addKgs\",1))");

try {

while (!receivers$iter.atEnd()) {

IntIterator vint$1$iter = vintIter("addKgs", 1-1);

check_has_data(vint$1$iter,"vintIter(\"addKgs\", 1-1)");

while (!vint$1$iter.atEnd()) {

final Person receiver$ = (Person) receivers$iter.get();

final int kgs = vint$1$iter.getInt();

methodTests$.addTest(new TestAddKgs(receiver$, kgs));

vint$1$iter.advance();

}

receivers$iter.advance();

}

} catch (TestSuiteFullException e$) {

// methodTests$ doesn’t want more tests

}

overallTestSuite$.addTest(methodTests$);

}

Figure 14: Test object generation code for the method addKgs of the class Person.

For example, the nested class TestAddKgs that describes the test objects used for testing the
method addKgs is shown in Figure 16.

Each of these nested classes named TestM in C JML Test is a subclass of the class OneTest.
The class OneTest is also nested within the test driver class, C JML Test. The class OneTest is an
abstract class that is a subclass of the class C JML Test in which it is nested. It holds common
code for the test object classes. Figure 17 shows the code of OneTest that is generated inside
Person JML Test. (The code for the general case is the same, except that the superclass of OneTest
is, in general, C JML Test.)

The code for the method runTest in OneTest was given already, in Figure 5. The override of the
runmethod is only needed to squirrel away the test result object into a field of OneTest, so that it can
be used in the runTest method. Most of run’s work is done by the inherited method which is super-
called from within run. This run method of the JUnit framework is the one that calls back down to
the runTest method to actually run the test. The private method addMeaningless in Figure 17 is
called by runTest, and adds extra information to the result object if it is a JMLTestResult object.
The extra information containing the meaningfulness of test cases becomes available if the tests are
run with the JML extension of the JUnit’s test runner class (see Section 5.3 for an example).

4.5 Test Driver Classes

The form of the test driver class, C JML Test, is shown in outline in Figure 18.
As mentioned above, C JML Test, is a subclass of C JML TestData, which in turn is a subclass of

the JUnit framework’s class TestCase. Since the nested class OneTest inherits from C JML Test, and
since the nested TestM classes all inherit from OneTest, this allows the test objects (of type TestM
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protected static class TestM extends OneTest {

/** The receiver */

private C receiver$;

/** Argument a1 */

private A1 a1;

. . .

/** Argument an */

private An an;

/** Initialize this TestM instance. */

public TestM(C receiver$, A1 a1, . . ., An an) {

super("M");

this.receiver$ = receiver$;

this.a1 = a1;

. . .

this.an = an;

}

protected void doCall() throws Throwable {

receiver$.M(a1, . . ., an);

}

protected void failMessage(JMLAssertionError e$) {

String msg = "\n\tMethod ’M’ applied to";

msg += "\n\tReceiver: " + this.receiver$;

msg += "\n\tArgument a1: " + this.a1;

. . .

msg += "\n\tArgument an: " + this.an;

return msg;

}

}

Figure 15: Code that generates test objects for method M .

for some M) to inherit the setUp and tearDown methods written by the user in C JML TestData.
This complicated inheritance structure is designed just for that purpose, since setUp and tearDown

play a prominent role in JUnit testing.
The package definition for C JML Test is copied verbatim from the type C. As a result, the

generated test class will reside in the same package. (This can be changed, however, with an option
to the jmlunit tool.) Having the test class in the same package as C allows the test class to
access C’s package-visibility members during testing. In this paper we act as if the packages in our
implementation were imported into the code, but this is just for the sake of brevity; the generated
code uses fully-qualified names.

In addition to the static suite and mainmethods described in Section 4.3 above, the C JML Test,
has one other prominent method. As shown in Figure 18, this is the method test$IsRACCompiled.
This method checks that the code under test was compiled by the JML compiler, thus enabling
runtime assertion checking. This test prevents the user from thinking that the other tests have
passed when in fact no testing was done because no assertions were checked.
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protected static class TestAddKgs extends OneTest {

/** The receiver */

private Person receiver$;

/** Argument kgs */

private int kgs;

/** Initialize this TestAddKgs instance. */

public TestAddKgs(Person receiver$, int kgs) {

super("addKgs");

this.receiver$ = receiver$;

this.kgs = kgs;

}

protected void doCall() throws Throwable {

receiver$.addKgs(kgs);

}

protected void failMessage(JMLAssertionError e$) {

String msg = "\n\tMethod ’addKgs’ applied to";

msg += "\n\tReceiver: " + this.receiver$;

msg += "\n\tArgument kgs: " + this.kgs;

return msg;

}

}

Figure 16: Class describing test objects for testing the method addKgs of the class Person.

5 Supplying Test Data and Running Test Cases

To provide test data for testing a type C, the user must write code into the class C JML TestData.
The test data is provided by implementing methods described in Section 4.2 above; we will give
more details and examples of how this is done in this section.

Besides providing test data, the user can tune the testing by adding hand-written test methods
to the C JML TestData class. The framework collects all test methods whose names begin with
“test”, putting them into the test suite as described in Section 4.3.

The jmlunit tool produces a skeleton subclass of the test data class automatically, if one does
not exist. For example, if the file Person JML TestData.java does not exist, then when the tool is
run on the type Person, it produces a test data class skeleton shown in outline in Figure 19. The
methods of Figure 9 are the factory methods that the user can change to customize the test suites
used, as described in Section 4.3.

5.1 Supplying Test Data

The actual test inputs are supplied by overriding the test data access methods declared in the test
oracle class for each type of data (see Figures 6 and 8). Test data are ultimately supplied as indefinite
iterator objects (see Figure 7). How these indefinite iterator objects are constructed is ultimately
up to the programmer of the test data class; however the tool generates skeletons corresponding to
a few standard strategies for providing access to test data.
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/** A JUnit test object that can run a single test method. */

protected static abstract class OneTest extends Person_JML_Test {

protected TestResult result;

public OneTest(String name) { super(name); }

public void run(TestResult result) {

this.result = result;

super.run(result);

}

〈 The runTest() method from Figure 5 〉

protected abstract void doCall() throws Throwable;

protected abstract void failMessage(JMLAssertionError e);

private void addMeaningless() {

if (result instanceof JMLTestResult) {

((JMLTestResult)result).addMeaningless(this);

}

}

}

Figure 17: The nested class OneTest inside Person JML Test.

〈 Package directive from C 〉
import junit.framework.*;

import org.jmlspecs.jmlunit.strategies.*;

public class C_JML_Test extends C_JML_TestData {

public C_JML_Test(String name) { super(name); }

public static void main(String[] args) {

org.jmlspecs.jmlunit.JMLTestRunner.run(suite());

}

〈 The suite method from Figure 11 〉
〈 The class TestM from Figure 15 for each method M 〉
〈 The superclass OneTest, as in Figure 17 〉

public void test$IsRACCompiled() {

junit.framework.Assert.assertTrue("code for class C"

+ " was not compiled with jmlc"

+ " so no assertions will be checked!",

org.jmlspecs.jmlrac.runtime.JMLChecker.isRACCompiled(C.class) );

}

}

Figure 18: Outline of the C JML Test class used to test type C.
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import junit.framework.*;

import org.jmlspecs.jmlunit.strategies.*;

public abstract class Person JML TestData extends TestCase {

public Person JML TestData(String name) {

super(name);

}

〈 Factory methods from Figure 9 〉
〈 Test data access methods shown in Figures 21 to 24 〉

}

Figure 19: The test data for the class Person, Person JML TestData.

package org.jmlspecs.jmlunit.strategies;

/** Strategies for providing test data. These simply consist of a

* method iterator(), which can be called to return a new

* IndefiniteIterator object. */

public interface StrategyType {

/** Compute a fresh indefinite iterator, which can be used to

* provide test data of some reference type. */

//@ assignable objectState;

//@ ensures \fresh(\result);

public IndefiniteIterator iterator();

}

Figure 20: The interface StrategyType.

5.1.1 Strategies

In the following, we use the word “strategy” in the narrow, technical sense of the strategy pattern
[24]. In particular, a strategy object is an object that has the interface given in Figure 20. A
strategy type is a type that satisfies this interface. As can be seen in the interface declaration, a
strategy object can be called upon to deliver an iterator that can provide test data. For example, the
package org.jmlspecs.jmlunit.strategies has a class StringStrategy, which implements the
StrategyType interface, and whose iterator method can deliver a new indefinite iterator object
that supplies strings for testing.

The interface StrategyType is designed for providing test data of some reference type. For
providing test data of primitive value types, the package org.jmlspecs.jmlunit.strategies has
interfaces that provide the appropriately specialized indefinite iterator type. For example, the type
IntStrategyType has a method, intIterator that returns a new IntIterator.

The main responsibilities of a strategy object’s iterator method are to:

• construct an indefinite iterator that can return the test data, and

• to return a new, freshly allocated iterator each time the iterator() method is called.

Strategy types are an improvement over our earlier design for providing test data [15], because they
allow users to avoid duplication of code that supplies test data.
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protected IntStrategyType vintStrategy

= new IntStrategy() {

protected int[] addData() {

return new int[] { 10, -22, 55, 3000 };

}

};

Figure 21: An example of providing test data of type int; this code is part of Person JML TestData.

public IntIterator vintIter(String methodName, int loopsThisSurrounds) {

return vintStrategy.intIterator();

}

Figure 22: Implementation of vintIter, from the class Person JML TestData.

5.1.2 Choosing a Strategy

From the user’s perspective, the choice of a strategy depends on the kind of test data to be provided,
and on whether the user wishes to avoid observable aliasing among the data being used for testing.

Usually it is sensible to avoid observable aliasing among different test cases. If a mutable object
is shared among different test cases, then the execution of one test can affect the starting condition
of another test. That can make understanding the results of the second test difficult. Although such
aliasing is actually desirable or necessary in some circumstances (such as when a singleton object
is being used, e.g., as in a centralized log object), because of the potential for confusion it should
not be entered into lightly. Thus the strategies discussed below try to avoid such aliasing. (We will,
however, mention how such aliasing can be achieved if desired.)

On the other hand, when the objects involved are not mutable, observable aliasing is not possible,
so sharing may be used freely. Similarly, when the test data is of a primitive value type, aliasing is
not possible at all.

Once the question of whether to allow observable aliasing is settled, the user is left with a choice
of strategies based on the kind of data to be supplied. We now describe these choices.

5.1.3 Strategies for Primitive Values

For Java’s primitive value types, the package org.jmlspecs.jmlunit.strategies provides prede-
fined and easily extensible strategies. For each primitive value type, such as int one can use one of
two predefined strategies, such as IntStrategy or IntBigStrategy. The first of these, for example,
IntStrategy, provides only a very small set of test data; for example, IntStrategy only provides
0, 1, and -1. IntBigStrategy is slightly more extensive, as it includes the maximum and minimum
int values, and a few others. However, all these predefined strategies are intended to provide small
sets of test data, since it is easy to enlarge the set of test data provided, but hard to make it smaller.

Users can add test data to one of the predefined strategies by defining a subclass that overrides
the addData() method to provide the additional test data. The addData() method is overridden to
return an array of objects. As shown in Figure 21, which extends the IntStrategy class, this can
be easily accomplished by using an anonymous subclass and an array allocation expression, in the
body of the method override.

To complete this example, the strategy can then be connected to the required interface method,
as shown in Figure 22. The connection is accomplished by implementing the vintIterator method,
and returning the result of calling the strategy’s intIterator method.

The jmlunit tool automatically generates code that uses the smallest predefined strategy for a
primitive value type. Comments in the generated code indicate how the user can extend the strategy,
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protected StrategyType vStringStrategy

= new StringStrategy() {

protected Object[] addData() {

return new String[] { "Baby", "Cortez", "Yoonsik" };

}

};

public IndefiniteIterator vStringIter

(String methodName, int loopsThisSurrounds)

{

return vStringStrategy.iterator();

}

Figure 23: An example of providing test data of type String, also from the class
Person JML TestData.

if desired.

5.1.4 Strategies for Immutable Types

An immutable type is a type whose objects are immutable. Immutable objects can be treated in
much the same way as primitive values, since sharing among immutable objects does not cause
interference among tests.

The package org.jmlspecs.jmlunit.strategies provides an easily extensible strategy, the
class StringStrategy, that can supply test data of type String. Again, StringStrategy only
provides the bare minimum of test data: null and the empty string (""). Users would normally
extend this strategy, which is extended in the same way as the strategies for primitive value types.
For example, Figure 23 shows how to make a subclass of StringStrategy that provides three
additional pieces of test data appropriate for testing the Person class.

For types with immutable objects for which no predefined strategy is provided, the user can
subclass the class ImmutableObjectAbstractStrategy. This class provides the same extension
mechanism as illustrated for the class String; indeed, the class StringStrategy is a subclass of
ImmutableObjectAbstractStrategy.

The jmlunit tool has a list of reference types that it considers to be immutable. The type
java.lang.String is treated as a special case, since it has predefined strategy, in the generated
code. For other immutable types, the generated code uses ImmutableObjectAbstractStrategy,
and indicates with comments how the user should extend the test data.

5.1.5 Supplying Cloneable Data

For types with mutable objects that have a publicly visible clone() method, one can make a
subclass of the abstract strategy class CloneableObjectAbstractStrategy, and provide test data
by overriding the addData() method, as described above. This strategy clones each object in the
array of objects provided as it is returned by the get() method. By default the strategy only iterates
over the null object.

Because Java does not provide a standard interface with a clone() method, the subclass
of CloneableObjectAbstractStrategy, must also override the abstract cloneElement(Object)

method, which is used by the get()method to clone each element of the array. However, the tool can
generate a suitable override of the cloneElement method automatically, when the C JML TestData

class is first created, so this is not difficult for users, but merely an annoyance of the Java type
system.
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protected StrategyType vPersonStrategy

= new NewObjectAbstractStrategy() {

protected Object make(int n) {

switch (n) {

case 0:

return new Person("Baby");

case 1:

return new Person("Cortez");

case 2:

return new Person("Isabella");

default:

break;

}

throw new java.util.NoSuchElementException();

}

};

public IndefiniteIterator vPersonIter

(String methodName, int loopsThisSurrounds)

{

return vPersonStrategy.iterator();

}

Figure 24: An example of providing test data of type Person, again from the class
Person JML TestData.

Having the tool treat types with a clone() method in this way greatly extends the number of
types for which one can use the simple extension mechanism shown in the previous subsections. The
idea is that, even if the test data is not immutable, side-effects on the clones will not affect each
other, and so all the tests will stay independent of each other.

5.1.6 Supplying Mutable, Non-Cloneable Data

Some types have mutable objects but do not have a clone method. The class Person from our
example is one such type. Supplying test data for such a type is slightly more complicated than
for types with immutable or cloneable objects, since, to avoid observable aliasing one must freshly
create an object each time the get() method is called. The abstract strategy for such types in
the org.jmlspecs.jmlunit.strategies package is NewObjectAbstractStrategy. This strategy
by default only provides null as test data.

The way that one extends NewObjectAbstractStrategy is to make a subclass that overrides
the make(int) method to provide test data. This method uses its integer argument as an index to
decide what object to create. An example is given in Figure 24, which uses anonymous subclass of
the abstract new object strategy class. Note that, although null is included as one of the objects
returned by this strategy, null is not used as a receiver, because the process of making test data
filters out null receivers (see Section 4.3 above).

For types with mutable objects that are not cloneable, the jmlunit tool automatically generates
a skeleton of the code like that in Figure 24.

Although the example and normal use of the NewObjectAbstractStrategy creates new objects
to avoid observable aliasing among the test data, observable aliasing can be created if desired by not
creating new objects each time the make method is called. One way to do this is to use a private
field in the test data class, for example, an array of test objects of the appropriate type.
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5.2 Discussion

Besides the strategies we have described above, we also have implemented some “higher-order”
strategies in the package org.jmlspecs.jmlunit.strategies. The most straightforward of these
are various kinds of composite [24] strategies, which can be used to sequence the test data provided
by two or more strategies. There are also filtering strategies, which can filter test data based on
some predicate (supplied as a method override).

Sometimes it is convenient to use test data of one type when building test data of another type.
This can be accomplished by using the iterators of the other type in a loop when constructing data
of the desired type.

As can be seen from the above examples, test data can be any object of the appropriate type.
As shown in Figures 23 and 24, null is perfectly valid as test data for reference types. As might
be expected, we have found that the use of null as a test input is very helpful in making sure the
preconditions of methods that take reference types as parameters protect the method against null
pointer exceptions.

The user must take care to either supply small amounts of test data for methods with many
arguments or to limit the number of tests allowed in a test suite, since the number of test cases
executed for a method is the product of each of the number of test items available for each argument.
For example, with the test data access methods shown in Figures 24 and 21 the addKgs method is
tested 21 times, since 21 is the product of the 3 non-null receivers and the 7 integers available for
testing.9

The org.jmlspecs.jmlunit.strategies package has a predefined class, LimitedTestSuite,
that can be used to limit the number of tests for a method. If an object of this type is returned by
the emptyTestSuiteFor method (see Figure 9), then the number of tests for each method tested
will be limited as specified by the argument to LimitedTestSuite’s constructor.

5.3 Running Test Cases

It is easy to perform test execution in our approach. This is done in the following steps.

1. Generate instrumented Java byte code for the type, C to be tested using the jmlc script; e.g.,
jmlc -Q -U Person.java.

2. Generate a JUnit test class, C JML Test, and, if necessary, a skeleton of the JUnit test case
class, C JML TestData, using the jmlunit script; e.g., jmlunit Person.java.

3. Fill in the bodies of the test data access methods in the test data class, C JML TestData, to
supply the test data.

4. Compile the user-defined test data and test driver classes using a Java compiler (other than
jmlc); e.g., javac Person JML Test*.java.10

5. Run the tests, using the JML runtime assertion checking libraries, as provided by the jml-junit
script or the jmlrac script; e.g., jml-junit Person JML Test or jmlrac Person JML Test.

5.3.1 Test Output

Figure 25 shows the result of running the tests for the Person exmaple, i.e., the class Person JML Test.
It reveals the error that we mentioned in the caption of Figure 1.

As the output in the figure shows, six tests failed for the method addKgs. For each failure, the test
data that caused the failure is also printed. For example, in the first failure, the receiver, an object

9The 7 integers come from the 3 pieces of default data in IntStrategy and the 4 defined in the extension given in
Figure 21.

10For this step, various JUnit and JML jar files have to be in the user’s CLASSPATH.
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% jmlrac Person_JML_Test

.........F..F.....F..F.....F..F........

Time: 0.17

There were 6 failures:

1) addKgs(Person_JML_Test$TestAddKgs)junit.framework.AssertionFailedError:

Method ’addKgs’ applied to

Receiver: Person("Baby",-1)

Argument kgs: -1

Caused by: org.jmlspecs.jmlrac.runtime.JMLNormalPostconditionError:

by method Person.addKgs regarding specifications at

File "Person.java", line 16, character 25 when

’\old(weight + kgs)’ is -1

’kgs’ is -1

’this’ is Person("Baby",-1)

at Person.checkPost$addKgs$Person(Person.java:497)

at Person.addKgs(Person.java:610)

at Person_JML_Test$TestAddKgs.doCall(Person_JML_Test.java:263)

at Person_JML_Test$OneTest.runTest(Person_JML_Test.java:85)

at Person_JML_Test$OneTest.run(Person_JML_Test.java:75)

at org.jmlspecs.jmlunit.JMLTestRunner.doRun(JMLTestRunner.java:170)

at org.jmlspecs.jmlunit.JMLTestRunner.run(JMLTestRunner.java:145)

at Person_JML_Test.main(Person_JML_Test.java:22)

2) addKgs(Person_JML_Test$TestAddKgs)junit.framework.AssertionFailedError:

Method ’addKgs’ applied to

Receiver: Person("Baby",-22)

Argument kgs: -22

Caused by: org.jmlspecs.jmlrac.runtime.JMLNormalPostconditionError:

by method Person.addKgs regarding specifications at

File "Person.java", line 16, character 25 when

’\old(weight + kgs)’ is -22

’kgs’ is -22

’this’ is Person("Baby",-22)

at Person.checkPost$addKgs$Person(Person.java:497)

at Person.addKgs(Person.java:610)

at Person_JML_Test$TestAddKgs.doCall(Person_JML_Test.java:263)

...

FAILURES!!!

Tests run: 33, Failures: 6, Errors: 0

JML test runs: 31/33 (meaningful/total)

Figure 25: Part of the output from running the tests in Person JML Test. The output is truncated
where ... appears near the end.
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public void addKgs(int kgs) {

if (kgs >= 0) {

weight += kgs;

} else {

throw new IllegalArgumentException("Negative Kgs");

}

}

Figure 26: Corrected implementation of method addKgs in class Person.

of class Person has name Baby and has had its weight changed to -1, due to the argument value of
-1 passed to addKgs. For the second failure, the argument was -22. More information is printed
in the assertion violation message by the JML’s runtime assertion checker, including the file name,
line number, and column number where the violated assertion is located. From this information it
is evident that the method returned normally, but violated its normal postcondition, since it is not
supposed to return normally when the argument is negative. (It is supposed to throw an exception
in that case.)

5.3.2 Fixing the Example

A corrected implementation of the method addKgs is shown in Figure 26. (Compare this with the
specification and the faulty implementation shown in Figure 1.)

5.3.3 Counting Test Successes and Failures

To report the numbers of test successes or failures, the JUnit framework counts the number of
tests run. However, the framework itself does not distinguish between meaningless tests and those
that were successful. To get more accurate report, one can use our specialized test runner class,
JMLTestRunner, instead of a JUnit’s test runner class such as junit.framework.textui.TestRunner.
(The JMLTestRunner is invoked automatically from the main method of the generated test case class,
see Figure 19). The class JMLTestRunner reports the number of meaningful test runs and the total
number of test runs in terms of test data, as shown in the last line of Figure 25. Such a report
prevents the user from having a wrong impression that the class under test satisfied all tests when
in fact no test has actually been executed due to all test cases being meaningless.11

Note that the total number of tests counted by JML differs from that counted by JUnit. The
JML tests do not include the custom tests written by the user and the test$isRACCompiled test
from Figure 18. In our example, we have no other custom tests, so the counts differ by just one.

6 Discussion

What should be the outcome of a test case if an invariant violation is detected even before the
execution of the method body? Such a situation can arise if clients can directly write an object’s
fields, or if aliasing allows clients to manipulate the object’s representation without calling its meth-
ods. The question is whether such invariant violations should be treated as a test failure or as a
rejection of the test data (i.e., as a “meaningless” test). One reason for rejecting the test data is
that one can consider the invariant to be part of the precondition. One may also consider an object
malformed if it does not satisfy the invariant. However, treating such violations as if the test case
were meaningless seems to mask the underlying violation of information hiding, and so our current
implementation treats these as test failures.

11We thank an anonymous referee of ECOOP 2002 for pointing out this problem.
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7 Related Work

The traditional approach to implementing test oracles is to compare the result of a test execution
with a user supplied, expected result [26, 42]. A test case, therefore, consists of a pair of input
and output values. In our approach, however, a test case consists of only input values. And
instead of comparing the actual and expected results, we observe if, for the given input values, the
program under test satisfies the specified behavior. As a consequence, programmers are freed from
not only the burden of writing test programs, often called test drivers, but also from the burden
of pre-calculating presumably correct outputs and comparing them. The traditional schemes are
constructive and direct whereas ours is behavior observing and indirect.

Several researchers have already noticed that if a program is formally specified, it should be
possible to use the specification as an oracle [44, 47, 50]. Thus, the idea of automatically generating
test oracles from formal specifications is not new, but the novelty lies in employing a runtime assertion
checker as the test oracle engine. Peters and Parnas discussed their work on a tool that generates
a test oracle from formal program documentation [44]. The behavior of program is specified in a
relational program specification using tabular expressions, and the test oracle procedure, generated
in C++, checks if an input and output pair satisfies the relation described by the specification.
Their approach is limited to checking only pre and postconditions, thus allowing only a form of
black-box tests. In our approach, however we also support intra-conditions, assertions that can be
specified and checked within a method, i.e., on internal states [36]; thus our approach supports a
form of white-box tests. Our approach also supports abstract value manipulation (see below) and
object-oriented concepts such as specification inheritance.

Parasoft’s commercial testing tool called Jtest [43] is perhaps most related to our work. The tool
takes a similar approach as in ours in that it also uses pre- and postconditions as test oracles and relies
on a runtime assertion checker to decide test successes or failures. The tool is also integrated with
JUnit and, in addition, can automatically generate sample test cases from pre- and postconditions.
However, due to its commercial nature, not much is published on its approach and implementation.
One weak point of the Jtest tool, however, is that one cannot write pre and postconditions in terms of
abstract values; assertions must be written in terms of concrete, implementation values or methods.
In JML, one can manipulate abstract values (see below). This has an important consequence because
one can write specifications for Java interfaces in a model-oriented style. Since an interface provides
a perfect place to attach contracts between service providers and clients, it is paramount to be able
to write specifications for interfaces. Without abstract value manipulation, however, one has to
write interface specifications in terms of other methods declared in the interfaces, thus leading to
algebraic-style specifications, which we found hard to Java programmers. Another advantage of our
approach is that the iterator approach to supplying test data allows one to manipulate test cases in
various ways, e.g., combining or filtering them.

Antoy and Hamlet describe an approach to checking the execution of an abstract data type’s
implementation against its specification [1]. Their approach is similar to the technique of multi-
version programming [32] except that one version is an algebraic specification, serving as a test oracle.
The algebraic specification is executed by (term) rewriting, and is compared with the execution of
the implementation. For the comparison, the user has to provide an abstraction function that maps
implementation states to abstract values. In our approach, no separate (specification) program needs
to run in parallel with the implementation. Interestingly, however, the multi-version approach can
be simulated to some extent in JML by using ghost variables. A ghost variable is a specification-
only variable that is manipulated in specifications by using specification statements such as the set
statement [36].

The Abstract State Machine Language (AsmL) [3] takes a similar approach of specification-
based, multi-version programming. In AsmL, specifications are written as abstract programs that
manipulate only abstract values. AsmL specifications are usually kept separate from program code,
and thus they don’t directly constrain program code. As in the approach of Antoy and Hamlet,
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specifications are normally executed separately from programs when doing runtime assertion check-
ing, and violations are detected by comparing the two outputs [4]. This separation of specifications
from programs is thus a paradigm shift from the so-called Design By Contract that our approach is
based on.

Both the Jtest tool and ours are based on runtime assertion checking. There are now quite
a few runtime assertion checking facilities developed and advocated by many different groups of
researchers. One of the earliest and most popular approaches is Meyer’s view of Design By Contract
(DBC) embodied in the programming language Eiffel [38, 39, 40]. Eiffel’s success in checking pre-
and postconditions and encouraging the DBC discipline partly contributed to the availability of
similar facilities in other programming languages, including C [48], C++ [19, 25, 46, 51], Java
[5, 20, 23, 31, 34], .NET [2], Python [45], and Smalltalk [11]. These approaches vary widely from
a simple assertion mechanism similar to the C assert macros, to full-fledged contract enforcement
capabilities. Among all that we are aware of, however, none uses its assertion checking capability as
a basis for automating program testing. Thus, the work of Jtest and ours are unique in the DBC
community in using a runtime assertion checker to automate program testing. This aspect seems to
be original and first explored independently in both the Jtest approach and ours.

Another difference between our work and other DBC work is that we use a formal specification
language, JML, whose runtime assertion checker supports manipulation of abstract values. As far
as we know, all other DBC tools work only with concrete program values. (Outside DBC, there
are some specification languages that also support abstract values, notably the RESOLVE family
[21, 22, 41] and the Abstract State Machine Language (AsmL) [3].) However, in JML, one can
specify behavior in terms of abstract (specification) values, rather than concrete program values
[9, 36, 37]. The so-called model variables — specification variables for holding not concrete program
data but their abstractions — can be accompanied by represents clauses [16, 36]. A represents

clause specifies an abstraction function (or relation) that maps concrete values into abstract values.
This abstraction function is used by the runtime assertion checker to manipulate assertions written
in terms of abstract values [13].

There are many research papers published on the subject of testing using formal specifications
[8, 12, 17, 29, 33, 47, 49]. Most of these papers are concerned with techniques and methods for
automatically generating test cases from formal specifications, though there are some addressing the
problem of automatic generation of test oracles as noted before [44, 47, 50]. A general approach is
to derive so-called test conditions, a description of test cases, from the formal specification of each
program module [12]. The derived test conditions can be used to guide test selection and to measure
comprehensiveness of an existing test suite, and sometimes they even can be turned into executable
forms [12, 17]. The degree of support for automation varies widely from the derivation of test cases,
to the actual test execution and even to the analysis of test results [17, 47]. Some approaches use
existing specification languages [27, 29], and others have their own (specialized) languages for the
description of test cases and test execution [12, 17, 47, 49]. All of these works are complementary
to the approach described in this paper, since, except as noted above, they solve the problem of
defining test cases which we do not attempt to solve, and they do not solve the problem of easing
the task of writing test oracles, which we partially solve.

8 Conclusion and Future Work

We have presented a simple but effective approach to implementing test oracles from formal be-
havioral interface specifications. The idea is to use the runtime assertion checker as the decision
procedure for test oracles. We have implemented this approach using JML, but other runtime asser-
tion checkers can easily be adapted to work with our approach. There are two complications. The
first is that the runtime assertion checker has to distinguish two kinds of precondition violations:
those that arise from the call to a method and those that arise within the implementation of the
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method; the first kind of precondition violations is used to reject meaningless test cases, while the
second indicates a test failure. The second is that the unit testing framework needs to distinguish
three possible outcomes for test cases: a test execution can either be a success, a failure, or it can
be meaningless.

Our approach trades the effort one might spend in writing code to construct expected test outputs
for effort spent in writing formal specifications. Formal specifications are more concise and abstract
than code, and hence we expect them to be more readable and maintainable. Formal specifications
also serve as more readable documentation than testing code, and can be used as input to other
tools such as extended static checkers [18].

Most testing methods do not check behavioral results, but focus only on defining what to test.
Because most testing requires a large number of test cases, manually checking test results severely
hampers its effectiveness, and makes repeated and frequent testing impractical. To remedy this, our
approach automatically generates test oracles from formal specifications, and integrates these test
oracles with a testing framework to automate test executions. This helps make our implementation
practical. It also makes our approach a blend of formal verification and testing.

In sum, the main goal of our work —to ease the writing of testing code— has been achieved.
A main advantage of our approach is the improved automation of testing process, i.e., generation

of test oracles from formal behavioral interface specifications and test executions. We expect that,
due to the automation, writing test code will be easier. Indeed, this has been our experience.
However, measuring this effect is future work.

Another advantage of our approach is that it helps to make formal methods more practical and
usable in programming. One aspect of this is that test specifications and target programs can reside
in the same file. We expect that this will have a positive effect in maintaining consistency between
test specifications and the programs to be tested, although again this remains to be empirically
verified.

A third advantage is that our approach can achieve the effect of both black-box testing and
white-box testing. White-box testing can be achieved by specifying intra-conditions, predicates
on internal states in addition to pre- and postconditions. Assertion facilities such as the assert

statement are an example of intra conditions; they are widely used in programming and debugging.
JML has several specification constructs for specifying intra-conditions.

Finally, in our approach a programmer may extend and add his own testing methods to the
automatically generated test oracles. This can be done easily by adding hand-written test methods
to a subclass of the automatically generated test class. Since iterators are used to supply test data,
the programmer can also manipulate test cases in various ways, e.g., to combine, filter, etc.

Our approach frees the programmer from writing unit test code, but the programmer still has
to supply actual test data by hand. In the future, we hope to partially alleviate this problem by
automatically generating some of test inputs from the specifications. There are several approaches
proposed by researchers to automatically deriving test cases from formal specifications. It would be
very exciting to apply some of the published techniques to JML. JML has some features that may
make this future work easier, in particular various forms of specification redundancy. In JML, a
redundant part of a specification does not itself form part of the specification’s contract, but instead
is a formalized commentary on it [35]. One such feature are formalized examples, which can be
thought of as specifying both test inputs and a description of the resulting post-state. However, for
such formalized examples to be useful in generating test data, they would: (a) have to be specified
constructively, and (b) it would have to be possible to invert the abstraction function, so as to build
concrete representation values from them.

Another area of future work is to gain more experience with our approach. The application of
our approach so far has been limited to the development of the JML support tools and examples that
are shipped with JML, but our initial experience seems very promising. We were able to perform
testing as an integral part of programming with minimal effort and to detect many kinds of errors.
Almost half of the test failures that we encountered were caused by specification errors; this shows
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that our approach is useful for debugging specifications as well as code. However, we have yet to
perform significant, empirical evaluation of the effectiveness of our approach.

JML and a version of the tool that implements our approach can be obtained through the JML
web page at http://www.jmlspecs.org.
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