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Abstract

In programming languages, reflection is the ability
to discover and manipulate, at runtime, information
about program entities, such as objects. We present
our thoughts on extending the concept of reflection
to behavioral interface specifications. We explain the
benefits of such specification reflection, and discuss
implementation approaches, support tools, and re-
search problems and issues in this area.

1 Introduction

Reflection is becoming more widely used in prac-
tice, as witnessed by its adoption in the very pop-
ular object-oriented programming languages Java [1]
and C# [21]. Reflection refers to the ability to ma-
nipulate programming language constructs as run-
time data, e.g., by representing, or reifying, them
in the language itself [10]. In object-oriented pro-
gramming languages such as Java, this is most often
done by reifying information about objects as runtime
class objects or meta objects, and reifying informa-
tion about classes as runtime meta class objects, etc.
These meta objects and meta class class objects are
accessed and manipulated through the reflective ap-
plication programming interfaces (APIs), often called
Meta-object Protocols (MOPs) [4, 12, 13]. By using
MOPs, for instance, a debugger may access the execu-
tion stack of a program under debugging. Reflection
has been studied by many researchers, in particular,
in the area of programming languages. However, lit-
tle work is found extending the concept of reflection
to specification languages.

Formal behavioral interface specification lan-
guages, such as JML [14, 15], allow one to specify

both the syntactic interface and behavior of Java pro-
gram modules, such as classes and interfaces. JML
does this using preconditions and postconditions for
methods, as well as other features, such as class in-
variants. Interface specification languages such as
JML provide a wide variety of support tools to ma-
nipulate specifications [3, 6, 5, 7]. However, JML’s
tools do not make specifications available at runtime
through well-defined APIs, such as those of MOPs.

In this paper we present our thoughts on the re-
search challenges involved in extending the concept
of reflection to formal behavioral interface specifica-
tion languages, and to JML in particular. We call
the idea of supporting reflection on behavioral inter-
face specifications specification reflection. The over-
all goal of specification reflection is to reify specifica-
tions as first-class objects [9] in the sense that they
can be accessed and manipulated at runtime just like
regular objects. For example, one may query an ob-
ject about its specifications, to discover the pre- or
postconditions of its methods or its invariants. The
specifications discovered may be used for both run-
time assertion checking or as documentation for hu-
man readers. The major engineering challenge is to
support both uses with a single representation.

Specification reflection may have an impact not
just on tools, but also on the semantics of specifi-
cation languages. This is because, in a language, like
JML or Eiffel [17], that uses expressions in its asser-
tions, it is possible to write code that uses specifica-
tion reflection inside assertions. However, we ignore
this possibility in what follows.

The rest of this paper is organized as follows. In
the next section we first define what we mean by spec-
ification reflection. In Section 3, we describe a simple
specification reflection model, suitable for JML. Sec-
tion 4 explains the benefits of specification reflection,
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while Section 5 discusses some research issues. In
Section 6 we briefly describe our research plan, and
then we conclude in Section 7.

2 Specification Reflection

What precisely do we mean by “specification reflec-
tion”? Like code reflection in programming lan-
guages1, we use the term specification reflection very
generally to mean the ability to manipulate specifi-
cations as runtime data. The nature of specification
manipulation may be introspective or may involve
more than just introspection.

Specification introspection is the general term for
discovering information related to specifications at
runtime. Like code introspection [2] this can be used
to discover descriptive information; for example, one
could use specification introspection to discover the
pre- or postconditions of methods. A more interest-
ing facet of specification introspection is the ability
to observe a program’s specification state. The spec-
ification state of a program can involve specification-
only fields of objects, such as JML’s model and ghost
fields, which are abstractions of the program’s normal
(code) fields [8].

Reflective specification execution is the general
term for execution of specifications discovered
through introspection. Reflective specification exe-
cution allows one to program a design by contract
tool [18, 19], like a runtime assertion checker [5, 20],
or to customize it.

Both kinds of specification reflection are useful.
For example, using specification introspection one
can build a system that can retrieve formal specifica-
tions of an object’s methods in a debugger. Reflec-
tive specification execution brings even more benefits,
but also carries with it several challenges. We discuss
these challenges in the following sections.

Yet another possibility in manipulating specifica-
tions is to change or modify the specifications them-
selves at runtime. Such a capability might be useful,
e.g., to dynamically debug specifications at runtime.
However, we will not discuss this aspect further in
this paper.

3 A Specification Reflection
Model

To make our ideas more concrete, we now explore a
basic plan for implementing specification reflection in

1We often use the term “code reflection” to distinguish it
from specification reflection.
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Figure 1: A specification reflection model

JML.
The information needed to support specification re-

flection must be present in the bytecode produced
by the JML compiler (jmlc). This will allow it to
be present at run-time. One way to do this might
be to put the information needed into attributes in
the bytecode file. However, to load the information
at runtime then requires a special class loader. An-
other possibility is to add the information needed into
the classes and interfaces that would be loaded in
any case — for example, as extra fields, methods, or
nested classes or interfaces. In this case, naming con-
ventions would probably be necessary to prevent the
names of such added members from conflicting with
programmer-defined names.

In our basic model of specification reflection, as
shown in Figure 1, for each code (or normal) object
there may be a separate object, called a specification
object, that represents the model and ghost fields of
the code object. (The model and ghost fields are,
as mentioned above, abstractions of the code object
that are used in specifications.) Each code class ob-
ject is also associated with a specification class ob-
ject that represents the specifications written for that
class. The specification class object contains such in-
formation as the class’s invariant and pre- and post-
conditions of methods declared by the class. The
specification class object provides introspection on
the object’s specification, in a similar fashion as the
class object of an object provides introspection on
the object. That is, in addition to the meta-object
protocol, a program object is now provided with a
meta-specification protocol to access the specifica-
tions and specification state represented by its spec-
ification objects. A particular specification may be
queried and checked based on the program and spec-
ification states.

We expect to provide at least the following kinds
of APIs for specification reflection.
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• Retrieving specification objects and classes. The
specification state of an object should be acces-
sible from the object (e.g., getSpecObject()).
In our reflection model, a specification state is
represented by a specification object. In addi-
tion, a specification class should be also available
from both an object and the object’s class (e.g.,
getSpecClass()).

• Querying specification states. It should be pos-
sible to query the specification state represented
by a specification object, e.g., to get the value
of a specification-only field. A similar reflection
facility as referring to a program field in object
reflection may be needed for this.

• Querying about specifications. It should be pos-
sible to query about specifications on a spec-
ification class, e.g., retrieving pre- and post-
conditions of a method, and the invariant of a
class or an interface (e.g., getPrecondition(),
getPostcondition(), and getInvariant()).

• Executing specifications. It should be possible to
execute a retrieved specification, such as a pre- or
postcondition. A similar reflection facility, such
as that used to invoke a program method in code
reflection may be needed for this.

4 Benefits

The followings are some important benefits of spec-
ification reflection that cannot be achieved without
it.

• Runtime access to specifications allows programs
that understand specifications to make decisions
about them. For example, multiagent software
could use specification introspection to commu-
nicate details of a protocol’s semantics between
independently-developed agents; thus allowing
them to decide if they can sensibly communicate.

• Customization of runtime assertion checking.
Using reflective specification execution, one
could write a customized assertion checker, that,
for example, only executed assertion checks when
certain conditions are true (e.g., the 10th time
through a loop).

• Support for more open development of
specification-based tools using the specifi-
cation reflection APIs. These APIs can be seen
as a development framework for tools that use
specifications. Such tools, including runtime

assertion checkers, browsers, and testing tools,
are hard to develop from scratch. In addition,
differences in parsing and representations make
it difficult to share code between tools.

• Easier shipment and location of specifications
by users. If the specifications are in the com-
piled outputs (the bytecode files in Java), then
they are easy to send and locate. They can even
accompany code for which sources are not pro-
vided.

5 Research Issues

In addition to its benefits, specification reflection also
poses several challenges for research, which we discuss
below.

5.1 Reflection for Whom?

The key research issue that we see is how to sup-
port both human readers in specification introspec-
tion and reflective specification execution. The engi-
neering problem here is that the representation that
is most convenient for execution, namely code to eval-
uate assertions directly, is difficult to translate into
human-readable form. Conversely, if a form, such as
an abstract syntax tree (AST) that is closer to the
specification language’s syntax is stored, then there
may be considerable difficulty and expense in execut-
ing the specification.

While it is easy to see the benefits of supporting
reflective specification execution, supporting human
readers is also highly desirable. For example, this
allows humans to browse specifications directly from
bytecode. This would be particularly useful in a dis-
tributed environment where one can dynamically re-
trieve a reusable binary component; its specification
comes automatically with the component. The ap-
proach may also have some advantages in terms of
maintenance, for both specifications and bytecode are
maintained in the same place and at the same time.
We can imagine a wide variety of tools that take ben-
efits of the human readable specification reflection.

The trick is thus to find a representation that is
amenable to both kinds of readers. We can use
some analogies with code reflection support for some
ideas. For example, bytecodes typically have associ-
ated “symbol table” information that can be used
to aid debuggers and provide information that is
not normally present in bytecode (such as variable
names). Another idea is “just in time” compila-
tion, where specifications stored as ASTs and sym-
bol table information might be compiled only when
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needed. It might also be possible, by standardiz-
ing the compilation process, to back-translate byte-
codes that are designed for executing specifications
into human-readable form. Or some blend of such
representations might be used. This is certainly an
engineering challenge.

5.2 Specification States and Inheri-
tance

In our reflection model, a program object may be as-
sociated with special objects called specification ob-
jects (see Section 3). The specification objects repre-
sent the specification state of the object; this includes
model fields and ghost fields for the object. Such
specification-only fields are used to write more ab-
stract assertions in JML2. The question here is how
we model and represent such specification states in
the presence of specification inheritance?

In JML, a subtype inherits specifications from its
supertypes3. In JML a class inherits pre- and post-
conditions, invariants, etc. from both the superclasses
that it extends and the interfaces that it implements.
An interface also inherits specifications from its su-
perinterfaces that it extends. A supertype may in-
troduce a specification state that must be inherited
by a subtype, e.g., by declaring a model field. Such a
specification state may be referred to by a subtype’s
specifications.

In programming languages such as Java, an in-
stance of a subclass has memory slots not only for
fields declared in the subclass but also for those de-
clared in its superclasses. Thus, the state of a class
instance is encapsulated in a single object, regard-
less of where the fields are declared. A similar ap-
proach may be employed to represent the specifica-
tion state. An object’s specification state may be en-
capsulated in a single specification object regardless
of where the specification-only fields are declared. In
this scheme the state of a specification object con-
sists of all specification-only fields declared either in
the corresponding object’s class or in any of its super-
types. This approach, though conceptually simple, is
not modular and might require a challenge for reflec-
tive specification execution due to problems such as
name crashes (see Section 5.3).

Another approach is to distribute the specification
state into several specification objects, e.g., one for
each class or interface [5]. In this approach, an object

2A specification may also refer to program fields (e.g., DBC
specifications written in terms of program variables), thus both
the object itself and its specification objects are needed to eval-
uate a specification.

3We use the term type to denote both classes and interfaces.

may be associated with several specification objects,
one directly and the rest indirectly. The idea is to in-
troduce a separate specification object for each class
and interface. An object is directly associated with
single specification object that represent the speci-
fication state explicitly introduced by the object’s
class. However, the specification object is, in general,
composed of other specification objects, one for each
supertype of the class. Thus, the specification object
graph is the same as inheritance hierarchy. This ap-
proach is modular and does not incur such problems
as name crashes, but the system has to maintain spec-
ification object graphs for specification execution.

5.3 Inheritance of Specifications

In JML there are some difference between inheritance
of code and specifications. In code inheritance, a
subtype’s method overrides (or replaces) its super-
type’s methods of the same signature. However, in
JML’s specification inheritance, a subtype and its su-
pertype’s specifications are conjoined in a way that
forces behavioral subtyping [11, 16]. That is, a sub-
type’s methods must satisfy the specifications of all
methods it overrides.

How should JML’s specification inheritance be sup-
ported by specification reflection? For example, eval-
uating a method’s precondition means evaluating not
only the method’s precondition specified in the class
where the method is declared, but also all the inher-
ited preconditions, such as those inherited from the
class’s superclasses or the interfaces that the class im-
plements. A simple monolithic approach would be to
statically combine all such specifications at compile
time and turn it into an assertion checking code or
method. However, this approach is not modular and
increases the size of bytecode, as the assertion check-
ing code for a supertype’s specification is repeated in
the bytecode of every subtype. A better and modular
approach would be to instrument each specification
into a separate assertion checking code or method and
let the subtype’s bytecode call its supertype’s [5]. On
the other hand, during introspection, one may wish
to know what part of a specification is inherited and
what part is written into the class.

5.4 Evaluating Specifications that Re-
fer to Old States

We expect that exposing the capability of checking
specification assertions (such as pre- and postcondi-
tions and invariants) through reflective specification
execution will greatly improve the usability of spec-
ification reflection, e.g., to such specification-based
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tools as debugging tools and testing tools. These
tools can be built on top of a specification reflection
facility.

An interesting issue in reflective specification exe-
cution is how to provide reflective access to previous
code and specification states. In JML, as in Eiffel,
postconditions can refer to both pre-state and a post-
state. The pre-state value of an expression e can be
referred to using the notation \old(e). The problem
is how to provide access to such pre-state values, so
that post-conditions (for example) can be executed?
Ideally, such a pre-state should be automatically pro-
vided by the specification reflection system. But how
was the reflection system to know that it needed to
save the pre-state value at an earlier time? Doing
this without imposing large overheads is another en-
gineering challenge.

5.5 Support Tools

A wide variety of tools are possible that enable and
use specification reflection.

The most fundamental tool for enabling specifica-
tion reflection is a compiler that translates programs
annotated with JML specifications into bytecode that
supports specification reflection. Also needed is a
runtime library that can interpret the information the
compiler puts in the bytecodes.

Once such an enabling compiler is built, other tools
such as runtime assertion checkers, debugging tools,
and testing tools can be built using the specifica-
tion reflection facility. The research hypothesis is
that building such tools has advantages over building
them without specification reflection. The challenge
is to understand these advantages and to demonstrate
them convincingly.

6 Our Plan

We are currently investigating our idea on specifica-
tion reflection by using Java and JML. Our plan is to
pick a subset of JML, and define a specification re-
flection model and specification meta protocols. Once
our model is refined, we will modify and extend the
current JML tools such as JML compiler (jmlc) to
implement our model and the specification reflection
facility for Java and JML.

As a part of our research effort on specification re-
flection, we are currently implementing a scheme to
encode some aspects of JML specifications into Java
bytecode file. It will be initially used to support mod-
ular typechecking of JML specifications, but later it
will be adapted and extended to support specification
reflection.

The JML compiler (jmlc) already implements a
limited form of specification reification in that speci-
fication states are represented as a part of the corre-
sponding object or as separate specification objects,
and specification assertions such pre- and postcondi-
tions are implemented as separate assertion checking
methods. However, no APIs for specification reflec-
tion (i.e., specification meta protocols) are provided.

7 Summary

We believe that the ability to manipulate specifica-
tions as runtime data, that we call specification reflec-
tion, bring many benefits by extending the notion of
code reflection from programming languages to spec-
ification languages. We proposed a simple specifi-
cation reflection model that would be suitable for a
behavioral interface specification language like JML.
We then explained some of the benefits of using spec-
ification reflection and discussed research problems
and issues.
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