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Abstract

In design by contract (DBC), assertions are typically written using program vari-
ables and query methods. The lack of separation between program code and asser-
tions is confusing, because readers do not know what code is intended for use in
the program and what code is only intended for specification purposes. This lack
of separation also creates a potential runtime performance penalty, even when run-
time assertion checks are disabled, due to both the increased memory footprint of
the program and the execution of code maintaining that part of the program’s state
intended for use in specifications. To solve these problems, we present a new way
of writing and checking DBC assertions without directly referring to concrete pro-
gram states, using “model”, i.e., specification-only, variables and methods. The use
of model variables and methods does not incur the problems mentioned above, but
it also allow one to write more easily assertions that are abstract, concise, and in-
dependent of representation details, and hence more readable and maintainable. We
implemented these features in the runtime assertion checker for the Java Modeling
Language (JML), but the approach could also be implemented in other DBC tools.

1 Introduction

Design by contract (DBC) is useful for checking the correctness of a program with respect
to its specification [19, 20, 21]. In DBC, a class and its clients have a contract with each
other. The client must guarantee, before calling a method m implemented by the class,
that m’s precondition holds, and the class must guarantee that m’s postcondition holds
after such a call. The predicates or assertions found in pre- and postconditions are usually
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public abstract class SortedIntListApprox {

public int size = 0;

//@ ensures size == \old(size + 1);

public void add(int elem) { size++; /* ... */ }

}

Figure 1: The helper variable approach. In the JML notation used in this and subsequent
examples, a method’s specification precedes its signature, and annotations are contained
in comments that start with at-signs (@). As in Eiffel, \old(e) means the value of e in
the pre-state.

written in a form that can be compiled, so that violations of the contract can be detected
at runtime.

It is important that the precondition of a method m should not directly mention
program fields, methods, and types that have less visibility than m, because doing so would
make it impossible for clients to determine whether a call to m is correct [21, pp. 357-9].
This rule is enforced by Eiffel [20, Sec. 9.8]. Unfortunately, Eiffel and several other DBC
tools allow private features to appear in postconditions for public methods [20, 21]. Doing
so leads to coupling between assertions and implementation details, making it difficult for
clients to understand assertions. To avoid these coupling and understanding problems,
the following conventional approaches have been proposed to avoid using private details
in public specifications [22]:

• Helper variables. This approach introduces additional variables (i.e., fields) to help
specify state changes. For example, in Figure 1 the add() method of a sorted list
type is specified in terms of a helper field, size, that counts the number of elements
in the list.

• Query methods. This approach introduces query methods to help write assertions.
A query method is a side-effect-free method that observes the program’s state. For
example, Figure 2 uses two query methods, contains() and size(), to specify the
behavior of add().

• Immutable types. This approach introduces new types, with immutable objects, to
store the (abstract) state of an object; the behavior of each method is then specified
in terms of this state. Figure 3 uses the type JMLEqualsSequence to specify the
abstract state of a sorted list object.

The immutable type approach cannot be used in isolation, but must always be com-
bined with either the helper variable or query method approaches. This is beneficial, since
both the helper variable and the query method approaches tend to underspecification, and
supplementing these approaches with the immutable type approach often helps fix such
underspecification problems. For example, the specification for add() in Figure 1 does
not constrain the contents of the list in its post-state. An implementation that satisfies
this specification might insert a random integer (instead of elem), and would not have
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public abstract class SortedIntListQuery {

/** Is the given element in this list? */

public abstract boolean contains(int elem);

/** Return the size of this list. */

public abstract int size();

//@ ensures contains(elem) && size() == \old(size() + 1);

public void add(int elem) { /* ... */ }

}

Figure 2: The query method approach.

import org.jmlspecs.models.JMLEqualsSequence;

public abstract class SortedIntListImmutType {

public JMLEqualsSequence theList = new JMLEqualsSequence();

/*@ public invariant theList != null

@ && (\forall int i; 0 <= i && i < theList.size();

@ theList.itemAt(i) instanceof Integer)

@ && (\forall int i; 0 < i && i < theList.size();

@ ((Integer)theList.itemAt(i - 1))

@ .compareTo(theList.itemAt(i)) <= 0);

@*/

/*@ ensures theList.isInsertionInto(\old(theList),

@ new Integer(elem));

@*/

public void add(int elem) {

/* ... */

theList = /* ... recompute theList’s value ... */;

}

}

Figure 3: The immutable type approach. This example uses the type JMLEqualsSequence,
whose objects are immutable. It also uses an invariant and quantifiers. Quantifiers in JML
start with \forall or \exists and are followed by a declaration; after the declaration
is an optional range predicate, which is followed by a body predicate. Many quantifiers
with finite ranges, such as the ones in this example, can be executed by JML’s runtime
assertion checker.
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to leave the list in sorted order. While the query method approach can be used to write
complete specifications, one has to use some discipline, such as that described by Guttag
and Horning [7], to avoid underspecification. Indeed, Figure 2 also would allow an im-
plementation that inserts random integers (this can happen, for example, if contains()

always returns true) or one that does not sort the list. Our experience has shown that
the easiest way to avoid these underspecification problems is to use the immutable type
approach, as illustrated in Figure 3.

The helper variable approach is simple and direct, but in standard DBC tools it has
two additional problems. The first problem is that if the introduced field is public, then it
is unsafe to allow clients to change it. For example, in Figure 1, clients must not change
size.1 The second problem with the helper variable approach is that languages like C#
and Java do not allow non-constant fields to be declared in interfaces. Thus, one has to
write specifications for interfaces using the query method approach. For example, consider
using a Java interface instead of an abstract class in Figure 3. In an interface, the field
theList could not be declared. Thus, uses of theList in assertions would have to be
replaced by uses of an abstract method that returns its intended value. Furthermore,
because interfaces do not contain constructors, even using the query method approach
does not allow one to describe the initial values of an interface’s objects.

The three approaches summarized here suffer from software engineering and perfor-
mance problems. While all of them attempt to avoid implementation details in specifica-
tions, they remain deficient because the introduced helpers become regular program fields,
methods, and types even though they are intended only for writing assertions. As a result,
the roles of fields, methods, and types become ambiguous.

Further, because there is no declaration of what public features are intended purely for
specification purposes, these helpers are open to use in client code just like all other public
fields, methods, and types. Public fields are a special cause for concern, since clients
can use them to break invariants and cause other uncontrolled changes to the abstract
state of objects. Together these problems compromise ease of software understanding and
maintenance.

The lack of any distinction between code intended for specification and implementation
leads to a performance penalty as well, even when runtime assertion checks are disabled.
This is because helper fields are still maintained and manipulated. For example, it is
easy to see in Figures 1 and 3 that the helper fields are manipulated in the bodies of
methods such as add(). However, even in Figure 2 add() must update some storage to
track the list’s size. Since helpers might be used by clients, they are difficult to remove
via conditional compilation or other approaches when assertion checks are disabled.

2 Model Variable Approach

To overcome the software engineering and performance problems of previous approaches,
we explain how to extend DBC languages with specification-only declarations. In this
paper, we limit ourselves to the simplest kinds of specification-only declarations—model
variables and model methods. The qualifier “model” is used to distinguish declarations

1Java, and similar languages, could make this automatic if they allowed a class to declare fields that
its clients could only read, but not write.
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that are intended only for specification. We also limit our attention to languages such
as C# and Java, where the main kind of variable is a field. Therefore, in the remainder
of this paper we only discuss model fields. A model field is a specification-only field that
describes the abstract state of some program fields [15]. A model method is a specification-
only method [13].

Model fields and model methods are recognized as specification-only declarations by
DBC tools, avoiding code-specification confusion. Since the assertions are written with
model fields that are independent of representation details, our experience shows that they
are easier to read and modify.

Specification-only assertions can also be manipulated more easily in formal reasoning
and runtime assertion checking. A class that implements a specification with model fields
can specify abstraction functions, which say how to map from values in the class’s pro-
gram fields to the “abstract values” in model fields [10, 17]. If an abstraction function
is executable, then assertions written using model fields become executable, and can be
used in runtime assertion checking. If convenient, abstraction functions can be specified
using model methods. Similarly, if a model method m has a body, then calls to m become
executable, and can be used in runtime assertion checking. Notably, the use of executable
abstraction functions also eliminates the need for methods like add() to continually update
the state stored in immutable variables (Figure 3).

It is not necessary to abandon the traditional approaches of helper variables, query
methods, and immutable types to use model fields and model methods in DBC. Indeed,
model fields can be used with the helper variable approach, since they can be made public
without the danger of being changed by client program code. Furthermore, model vari-
ables can be combined with the immutable type approach to yield all the benefits of that
approach without the corresponding ambiguity of purposes.

We have implemented model fields and methods in JML’s runtime assertion checker [5].
JML is a formal interface specification language for sequential Java; it has sophisticated
features for writing abstract, precise, and complete behavioral descriptions of Java classes
and interfaces [13, 14]. However, it can also be used as a DBC language. The JML
runtime assertion checker generates Java bytecode from JML annotated Java code. As
is usual in DBC tools, unless an assertion is violated, assertion checking is transparent;
except for performance measures (time and space), the behavior of the original program
is unchanged.

It is also possible to mark program elements as usable both in program code and in
specifications. This is the idea behind the spec public and pure modifiers in the Java
Modeling Language (JML) [13]. The spec public modifier says that a non-public field is
public for specification purposes; this has the effect of making the field be read-only by
clients for specification purposes. For example, the size field in Figure 1 would be better
if declared private and spec public. The pure modifier says that a method has no side
effects, which allows it to be used in assertions in JML (as in Figure 2). These annotations
make it clear that such program elements are playing two roles, whereas model elements
can only be used in assertions. On the other hand, private fields that are not spec public

cannot be used in public JML specifications; furthermore, program methods that are not
pure cannot be used in assertions. Hence, JML allows one to clearly state the purpose of
a field or method.

While we use JML to explain our approach, the ideas could be implemented in other

5



interface specification languages or DBC tools. The contribution of this paper is a descrip-
tion of a language-independent idea and its implementation: namely, specification-only
declarations.

2.1 Interface Specification Example

To illustrate the use of specification-only declarations, Figure 4 shows the Java interface
SortedIntListType. This interface is specified in JML using a combination of the helper
variable and the immutable type approaches, facilitated by a model field. As an interface, it
can be implemented by several different classes, using arrays or binary search trees as their
data structures. The specification starts with an annotation that does a model import of
the types in org.jmlspecs.models; these are immutable types, like JMLEqualsSequence,
that JML provides for describing abstract values in the immutable types approach. Since
this is a model import in an annotation, the import is not part of the program as seen by
a traditional Java compiler.

The key feature of this example is found in the next annotation, which declares a model
field. This field, theList, contains the abstract value of a sorted list, and cannot be used
in the body of a normal Java method, such as add(). The modifier instance in this
declaration is used to state that theList is a non-static field, because Java fields declared
in an interface are static by default. Therefore, each object of this interface has its own
separate storage for the model field. The modifier non null is a shorthand way of saying
that theList is never null. The initially clause specifies constraints on the initial value
of theList [23].

The model field theList is intended to be a sorted sequence of integers, with the
values in ascending order. The invariant specifies the details of this model. It says that,
all objects in the sequence are instances of the type Integer (and thus not null), and that
the sequence is sorted in ascending order. JML enforces information hiding by ensuring
that public invariants can only mention publicly visible names.

The model field is used to write the specifications of the methods size(), get(), and
contains(). All of these methods are declared to be pure, which says that they cannot
have side effects. This allows them to be used in the specifications as query methods.
To see how using a model helps in writing more complete specifications, compare the
specifications of size() and contains() in Figure 4 with those in Figure 2, where, using
the query method approach, size() and contains() have no postconditions of their own.
The specification of the get() method demonstrates a precondition, which is given by a
requires clause in JML.

The specification of the method add() also uses the model, where the pure method
isInsertionInto() is provided by the immutable type JMLEqualsSequence. Note, how-
ever, that the model field theList does not have to be maintained by the code the program-
mer writes; this is an advantage versus the helper variable approach. The postcondition
does not mention that the resulting list is in sorted order, because that has already been
stated in the invariant.
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//@ model import org.jmlspecs.models.JMLEqualsSequence;

public interface SortedIntListType {

/*@ public model instance non_null JMLEqualsSequence theList;

@ public initially theList.isEmpty();

@ public instance invariant

@ (\forall int i; 0 <= i && i < theList.size();

@ theList.itemAt(i) instanceof Integer)

@ && (\forall int i; 0 < i && i < theList.size();

@ ((Integer)theList.itemAt((int)(i - 1)))

@ .compareTo(theList.itemAt(i)) <= 0);

@*/

//@ ensures \result == theList.length();

/*@ pure @*/ int size();

/*@ requires 0 <= index && index < size();

@ ensures \result

@ == ((Integer)theList.itemAt(index)).intValue();

@*/

/*@ pure @*/ int get(int index);

//@ ensures \result == theList.has(new Integer(elem));

/*@ pure @*/ boolean contains(int elem);

/*@ ensures theList.isInsertionInto(\old(theList),

@ new Integer(elem));

@*/

void add(int elem);

}

Figure 4: An interface specification with model fields.
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2.2 Implementation Example

To give an example of an abstraction function, consider Figure 5. In this figure, the class
SortedIntList implements the SortedIntListType interface from Figure 4. The code
in Figure 5 uses four private fields to form binary search trees. The isEmpty field tells
whether the other fields are defined. As the invariant states, isEmpty is true if and only
if the left and right subtrees are null.

The abstraction function is specified in the represents clause of Figure 5. It says that
the value of the model field theList is determined by the expression abstractValue()

that appears on the right hand side of the represents clause. Following this clause, the
model method abstractValue() is given. As a model method, it can only be called
from within specifications. The code for this method can access types that were imported
by model imports. Otherwise, its body is a regular Java method body that uses the
type JMLEqualsSequence. JML’s runtime assertion checker can execute model methods
that have bodies. Thus, given an object of type SortedIntList, the runtime assertion
checker can compute the value of the model field theList using this abstraction function.
This approach, in turn, enables the execution of the other assertions in SortedIntList

and those inherited from the SortedIntListType interface, such as the invariant and the
postcondition of add().

2.3 Summary of the Approach

Using model features in specifications fixes the problems we noted earlier in DBC. Because
a model field or method is not a program feature, it does not confuse readers about its
intended use. The declaration itself clearly reveals its intended role. Model features
cause no runtime penalty, in either time or space, when runtime assertion checks are
turned off; with checks disabled, model features are simply not compiled into bytecode
by the JML compiler. The use of model fields in particular facilitates maintenance. A
change in a type’s private fields does not require a change in its client-visible specification,
because specifications are written in terms of its model fields (and other public features).
Changes to private fields thus only affect represents clauses (i.e., definitions of abstraction
functions). In JML, represents clauses must be private if they refer to private fields (as in
Figure 5), so such a change will not affect any prior reasoning about the specification done
by clients. Finally, using model fields allows one to write specifications for Java interfaces
in a model-oriented style.

3 Implementation of Model Features

This section explains the implementation of model methods and model fields in the JML
compiler [5].

3.1 Model Methods

The JML compiler translates each model method with a body, like abstractValue() in
Figure 5, into bytecode for a Java method. This allows model methods to be called when
checking assertions.
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//@ model import org.jmlspecs.models.JMLEqualsSequence;

public class SortedIntList implements SortedIntListType {

private boolean isEmpty;

private int val;

private SortedIntList left, right;

//@ private invariant isEmpty == (left == null && right == null);

//@ private represents theList <- abstractValue();

/*@ private model pure JMLEqualsSequence abstractValue() {

@ JMLEqualsSequence ret = new JMLEqualsSequence();

@ if (!isEmpty) {

@ ret = left.abstractValue()

@ .insertBack(new Integer(val))

@ .concat(right.abstractValue());

@ }

@ return ret;

@ }

@*/

//@ ensures theList.isEmpty();

public SortedIntList() { isEmpty = true; }

/* ... */

public void add(int elem) {

if (isEmpty) {

isEmpty = false; val = elem;

left = new SortedIntList();

right = new SortedIntList();

} else {

if (elem <= val) { left.add(elem); }

else { right.add(elem); }

}

}

}

Figure 5: An example implementation with JML-annotated Java code.
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public JMLEqualsSequence model$theList$SortedIntListType() {

JMLEqualsSequence rac$v0 = null;

rac$v0 = this.abstractValue();

return rac$v0;

}

Figure 6: Code generated for theList’s access method in the concrete class
SortedIntList.

When compiling a call to a model method, the main complication has to do with
support for separate compilation. Separate compilation implies that some classes or in-
terfaces may not be compiled with the JML compiler, and hence the bytecode for those
model methods may not be available at runtime. To make calls to potentially unavailable
methods work, the compiled code calls model methods via Java’s reflection facility [5,
Chapter 7]. Otherwise the treatment of model methods calls is relatively straightforward.

3.2 Model Fields Overview

The JML compiler does not allocate storage for model fields, and instead the value of a
model field is determined by calling an access method—a generated method that returns
the field’s value. Each reference to a model field is thus compiled into a call to its access
method.

The access method for a model field, x, encapsulates the abstraction function for x,
given in x’s represents clause. For example, the JML compiler generates the access method
shown in Figure 6 for the represents clause of the model field theList (from Figure 5).
The body of the model field access method in Figure 6 simply evaluates the expression
part of the represents clause and returns the resulting value. The example also shows
that the runtime assertion checker can evaluate an abstraction function written in terms
of model methods (e.g, abstractValue()). If the abstraction function were defined in
terms of other model fields, then calls to their access methods would appear in the body
of the access method in the same way. This allows one to write assertions using layers of
abstractions.

If a type does not inherit or define an abstraction function for a model field x, then the
compiler generates a default implementation for its access method. An example is shown in
Figure 7 for the model field theList declared in the interface SortedIntListType (from
Figure 4). In Figure 7, the default access method’s body makes an indirect downcall,
using techniques which we explain below, that searches for an overriding implementation
of the model field’s access method. If no such overriding implementation is provided,
for example, in a class implementing SortedIntListType in which there is no functional
represents clause for theList, then this method throws a pre-defined exception to indicate
an occurrence of a non-executable specification construct. (The runtime assertion checker
in JML catches these exceptions, and interprets the smallest, enclosing boolean expression
as being either true or false, depending on the context [5, Chapter 3].)

The indirect interpretation of model field accesses by assertions is one of the main
complications in implementing model fields. That is, even though specifications in the
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public JMLEqualsSequence model$theList$SortedIntListType() {

java.lang.String cn = self.getClass().getName();

java.lang.Object obj

= rac$invoke(cn, self,

"model$theList$SortedIntListType",

null, null);

return ((JMLEqualsSequence)obj);

}

Figure 7: Code generated for theList’s access method in the interface
SortedIntListType.

SortedIntListType interface refer to the model field theList, the meaning of this model
field is determined by a represents clause that appears in some concrete class, such as
SortedIntList that implements the interface. Typically each different implementation
of the SortedIntListType interface provides a different represent clause for the model
field. Indeed, this will be the case whenever an interface or abstract class declares a model
field, x, but does not declare program fields to represent x; each concrete class would then
have its own abstraction function mapping the state of its concrete fields to the abstract
value of x. Hence it is necessary to dispatch to the right access method at runtime. This
dispatching process is especially complex for interfaces.

3.3 Interface Model Fields and Surrogate Classes

A model field declared in an interface, as in Figure 4, is called an interface model field.
Two problems with interface model fields are where their access methods are defined (in
the compiled output) and how these access methods refer to the program state.

The compilation of an interface in JML places access methods in a static inner class,
called a surrogate class. The compiler cannot add assertion checking methods directly
to an interface because in Java all interface methods must be abstract. To work around
this, the compiler generates a surrogate class, as a static inner class of the interface, for
each interface it compiles. This surrogate class hosts the methods that are needed for
runtime assertion checking; these methods include both model field access methods, and
other methods, such as methods that encapsulate pre- and postconditions.

To access the concrete state of an object that implements the interface, the methods
of the surrogate class need to call the proper overrides of model field access methods.
These overriding methods are found, using Java’s reflection mechanism in a way described
in the next subsection, via a field (i.e., self in Figure 7) in the surrogate class that
references the current object being checked. This field is initialized to the current object;
the constructor of the surrogate class takes the current object (the one implementing
the interface) as an argument. The runtime assertion checker also maintains a mapping
from the current object to its surrogate objects to allow dynamic calls from the current
object to the interface’s assertion checking methods and model field access methods. The
references from the surrogate object back to the current object allow calls to the model
field access methods from the surrogate object’s methods to find the overrides needed to
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access the concrete program state in the current object. In sum, the responsibilities for
both assertion checking and access to model fields are distributed over the object being
checked and various surrogate objects for interfaces.

3.4 Dispatch for (Multiple) Inheritance

JML supports multiple inheritance of specifications, since a class inherits specifications
from its superclasses and all the interfaces that it implements. Similarly, an interface
inherits specifications from all its superinterfaces. Since Java only supports single inher-
itance, this raises a problem. How can multiple inheritance, and in particular overriding
of multiply inherited model field access methods, be accomplished?

To illustrate how multiple inheritance is accomplished in JML, we first consider a
simple case, where an implementing class provides an abstraction function for an inherited
interface model field. This is the case for the class SortedIntList. The access methods
of the field theList for the class SortedIntList and the interface SortedIntListType

are shown in Figure 6 and 7 respectively. How are these access methods called to support
inheritance of the model field theList? In particular, how is an inherited assertion written
in terms of theList, e.g., the postcondition of the add() method, interpreted with the
abstraction function provided by SortedIntList? Figure 8 answers these questions by
showing the sequence of internal method calls that happen when a client calls the add()

method on an instance of SortedIntList. Essentially two dynamic calls are made in
opposite directions. The first dynamic call occurs from the object being checked to its
surrogate object to evaluate the inherited postcondition of add(). The occurrence of
theList in the add()’s postcondition leads to a call to the model field access method of
SortedIntListType that in turn triggers the second dynamic call. The second dynamic
call occurs in the opposite direction and retrieves the abstract value of theList from the
current program state. Thus, the inherited assertion is evaluated in the proper state using
the appropriate abstraction function.

The general situation is more complicated than the one illustrated by the simple ex-
ample here. A subinterface may specify an abstraction function for an inherited interface
model field (e.g., in terms of other model fields). That abstraction function must be used
to interpret any occurrence of the model field, both in the superinterface and the imple-
menting class. Our approach is to code method dispatch explicitly by making the assertion
checking methods play the role of either a delegation or dispatch method (see Figure 9)
[5, Chapter 7]. A model field access method in an interface where no abstraction function
is defined plays the delegation role, since it delegates to the current object implementing
the interface. A model field access method in a class with no abstraction function defined
for that field plays a dispatch role, when it dispatches to some interface that does define
an abstraction function for a model field it inherits. An example is model$v$I1() of the
class S of Figure 9. This dispatch method calls the correct model field access method (e.g.,
model$v$I1() of the interface I2), if it exists. Of course, the invoked access method is to
be generated from an interface’s represents clause and added to the surrogate class of the
interface. As the dispatch method is generated for an implementing class, it is possible to
determine statically whether an applicable interface represents clause exists. If there is no
such represents clause in the interface, then the compiler issues a warning message and at
runtime the dispatch method throws a pre-defined exception to indicate non-executability.
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self: SortedIntListself: SortedIntList

add(i)

checkPost$add(i)

rac$check(…)

:SortedIntListType.JmlSurrogate
«surrogate object for self»

checkPost$add(i, …)

v := model$theList$SortedIntListType()

rac$invoke(…, self, …)

v := model$theList$SortedIntListType()

v := abstractValue()

Dynamic call for
inheritance, starts
here.

The actual
dynamic call.
The actual
dynamic call.

The dispatch
method call.
The dispatch
method call.

Another
dynamic call.
Another
dynamic call.

Access method
call.
Access method
call.

internal$add(i)

Code written by
the programmer

Figure 8: Dynamic calling of model field access methods.

This default dispatch method may be overridden by a subclass, i.e., if a subclass provides
an abstraction function for the model field.

Figure 9 shows an example of the more general case of specification inheritance. The
class S inherits a model field, v, from the interface I1 and a represents clause from the
subinterface I2. The use of the model field v in the interface I1—e.g., in the precondition,
P (v), of the method m()—is translated into a call to the model field access method, which
in this case forwards the call to the dispatch method added to the implementing class S.
In turn the dispatch method calls the appropriate access method, i.e., the one added to
the subinterface I2. Thus, the use of the model field v in the interface I1 is appropriately
interpreted by objects of the class S by calling the abstraction function given in the
subinterface I2.

4 Related Work

The use of abstract values in specification is not new, as shown by the immutable type
approach described in the introduction. Furthermore the use of abstract values has been
a feature of several formal specification languages.

Anna [18], an annotation language for Ada, makes a distinction between program code
and specification-only declarations with its “virtual text” mechanism. Besides variables, it
is possible to declare procedures and types in virtual text; JML allows similar declarations,
but does not currently compile types declared in this way for runtime assertion checking.
As in JML, variables declared as virtual text in Anna can be used only in annotations,
e.g., in assertions. However, the main difference is that variables declared in virtual text in
Anna are explicitly assigned to by statements in virtual text. JML has a similar feature,
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Figure 9: Inheritance of interface model fields and represents clauses.

called “ghost variables” and “set statements” that appear only in JML annotations that
manipulate them. However, Anna does not have the equivalent of JML’s model variables,
which are specification-only variables whose values are implicitly given by user-declared
abstraction functions. Anna also does not have the equivalent of JML’s spec public

modifier.
In Larch family of interface specification languages [8], specifications are written solely

in terms of abstract values, specified algebraically, and no explicit mapping is specified
between abstract and representation values.2 What distinguishes our approach from work
on Larch is the use of specification-purpose declarations to hold abstract values that can
be used in runtime assertion checking. This is primarily due to the explicit specification
of abstraction functions in JML.

The RESOLVE family [23] is similar to the Larch family in that it also is a family of
interface specification languages. Unlike most Larch-style languages, however, RESOLVE
features a way to specify abstraction functions. Hegazy has discussed the use of abstraction
and mathematical models in component-based software testing [9]. More recent work by
Edwards et al. [6] shares our objective of employing abstraction in assertion checking, using
model-based RESOLVE specifications [26] and C++ implementations. Their assertion
checking approach uses abstraction functions (and in general, abstraction relations) that
are given in implementations, as we do in our approach. However, the focus of this previous
work has been on automatically generating wrappers to check assertions. The code for
checking the assertions must be supplied by programmers and the underlying tool merely
incorporates them at appropriate places. We present a more comprehensive approach and
a Java-based tool in this paper whereby much of the assertion checking is automated.
Combining the idea of wrappers with the JML checker is part of our current research.

The Abstract State Machine Language (AsmL) [1] supports executable specifications
written using abstract variables. However, the abstract variables in AsmL are not asso-
ciated with program variables through abstraction functions directly (although this can
be done). Instead, most AsmL specifications are written as abstract programs that ma-

2However, Larch/C++ also has some of the features found in JML [12].
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nipulate abstract variables directly. Instead of constraining program code, as is done in
DBC, AsmL specifications are usually kept separate from program code. Specifications are
normally executed separately from programs when doing runtime assertion checking, and
violations are detected by comparing the two outputs [2]. This separation of specifications
from programs is thus a paradigm shift from DBC.

In Eiffel [20, 21], there are no specification-only declarations. Partly based on our
work, Schoeller [25] recently proposed to introduce a set of immutable model types for the
purpose of writing contracts. Eiffel’s design has been influential in the DBC community;
for example, aside from JML, other design by contract tools for Java, such as iContract
[11] and Jass [3], have no explicit support for abstract values. As a result, Eiffel-based
approaches make it more difficult to write abstract specifications and keep them distinct
from code.

For specification-only fields, JML builds on the work of Leino and his co-authors [15,
16]. Leino’s work clarified the semantics of specification-only variables, particularly with
respect to frame axioms [4] (i.e., modifies or assignable clauses). Leino introduced
specification-only variables to solve the problem of information hiding while still being
able to specify and verify programs in a model-oriented style. However, Leino and his co-
authors have not employed these ideas in runtime assertion checking or DBC tools. Their
focus is on connecting specification-only variables to the program’s concrete variables.
JML’s “represents” clause is taken directly from their work [16]. The importance of this
result for the present paper is that JML’s semantics builds on this work, which allows
JML to be used not only as a DBC tool, but also as a formal specification and verification
language [14, 24].

5 Discussion

In addition to model fields and model methods, JML also has model classes and model
interfaces. These specification-only classes and interfaces are a natural extension of other
model declarations. However, the JML compiler does not yet generate any bytecode for
model classes or model interfaces, although we hope to implement these in future work.
At present, the JML compiler treats any reference to a model type as non-executable.

In general, JML takes the approach of allowing a specifier to use an unrestricted syntax
with some non-executable features, and its runtime assertion checker only executes a sub-
set of the language, albeit a large subset. An example of such a non-executable construct
is a reference to a model field for which there is no represents clause. Non-executable
expressions are handled in a systematic way by JML’s contextual interpretation of expres-
sions [5, Chapter 3], which also deals with undefinedness resulting from exceptions that
may occur during expression evaluation [14]. The contextual interpretation ensures that
such non-executable constructs do not lead to spurious assertion violations.

Our approach to evaluating assertions written with model fields has a shortcoming in
terms of performance. Each reference to a model field results in the construction of a
new abstract value for the model field. For model fields of class types, this may incur a
runtime performance penalty in terms of memory and speed. For example, in our sorted list
example (see Figure 5 on page 9), each reference to the model field theList creates a new
JMLEqualsSequence from the program fields isEmpty, val, left, and right. Frequent
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construction of abstract values from concrete representations may adversely affect the
speed of runtime assertion checking, especially for large container-style data structures.

Additional costs associated with recomputing abstract values could be reduced in prin-
ciple by caching. These costs exist primarily as a result of choosing the simplest generation
strategy for the current implementation. Model field values need only be generated once
within a given assertion (or a sequence of assertions checked adjacently), since evaluation
of assertions cannot change the state of the underlying object in JML [14] (and hence can-
not change the state stored in model variables, once these values have been computed).
We are exploring caching strategies that allow the runtime checker to avoid redundant
construction of abstract values.

6 Conclusions

The use of abstract, specification-only features is an evolutionary advance over DBC ap-
proaches that use query methods and immutable types. In the query method approach,
specifiers add side-effect free methods to be used in specifications, but it is difficult to
distinguish methods intended only for use in specifications. Thus program code might use
added query methods, and they may take up memory at runtime. Similarly, in the im-
mutable type approach, the program maintains state for specification purposes, but there
is no easy way to avoid maintaining this state when assertion checking is disabled. We
have explained how these problems are solved in JML by distinguishing model fields and
model methods from program fields and program methods.

A similar distinction between model and program entities could be added to other
DBC notations and tools. Tools can be built to recognize this distinction and keep the
two kinds of declarations separate. Other languages could also adopt notations such as
spec public and pure, to mark declarations for use in both specification contexts and
program contexts.

Together, the ideas described in this paper subsume and extend DBC: everything that
can be specified in a language like Eiffel can be written in JML, whether one uses the
helper variable approach, the query method approach, the immutable type approach, or
some combination. In return for marking the purposes of various declarations, there is
less confusion between specification-only code and code intended for use by clients, and
the JML compiler can produce more efficient code when assertion checks are turned off.
Furthermore, it is easier to write more abstract specifications, since in production code
there is no longer any runtime cost associated with using the immutable type approach.
Ultimately, model-oriented specifications for interfaces need model fields and methods.

An implementation of the JML compiler along with other JML tools is available from
the JML home page at http://www.jmlspecs.org.

Acknowledgements

The work of both Cheon and Leavens was supported in part by the US National Science
Foundation under grants CCR-0097907. In addition, the work of all authors was supported
in part by US NSF grant CCR-0113181. Any opinions, conclusions or recommendations

16



expressed in this paper are those of the authors and do not necessarily reflect the views
of NSF. Thanks to David Cok and Curtis Clifton for comments on earlier drafts of this
paper.

References

[1] Mike Barnett and Wolfram Schulte. The ABCs of specification: AsmL, behavior, and
components. Informatica, 25(4):517–526, November 2001.

[2] Mike Barnett and Wolfram Schulte. Runtime verification of .NET contracts. The
Journal of Systems and Software, 65(3):199–208, March 2003.

[3] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with assertions.
In Workshop on Runtime Verification held in conjunction with the 13th Conference
on Computer Aided Verification, CAV’01, 2001. Published in Electronic Notes in
Theoretical Computer Science, K. Havelund and G. Rosu (eds.), 55(2), 2001. Available
from www.elsevier.nl.

[4] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame problem in
procedure specifications. IEEE Transactions on Software Engineering, 21(10):785–
798, October 1995.

[5] Yoonsik Cheon. A runtime assertion checker for the Java Modeling Language. Techni-
cal Report 03-09, Department of Computer Science, Iowa State University, Ames, IA,
April 2003. The author’s Ph.D. dissertation. Available from archives.cs.iastate.

edu.

[6] Stephen H. Edwards, Gulam Shakir, Murali Sitaraman, Bruce W. Weide, and Joseph
Hollingsworth. A framework for detecting interface violations in component-based
software. In Proceedings of the Fifth International Conference on Software Reuse,
pages 46–55. IEEE Computer Society Press, June 1998.

[7] J. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta
Informatica, 10(1):27–52, 1978.

[8] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New
York, NY, 1993.

[9] W. A. Hegazy. The Requirements of Testing a Class of Reusable Software Modules.
PhD thesis, Ohio State University, 1989.

[10] C. A. R. Hoare. Notes on data structuring. In E. Dijkstra Ole-J. Dahl and C. A. R.
Hoare, editors, Structured Programming, pages 83–174. Academic Press, Inc., New
York, NY, 1972.

[11] Reto Kramer. iContract – the Java design by contract tool. TOOLS 26: Technology
of Object-Oriented Languages and Systems, Los Alamitos, California, pages 295–307,
1998.

17



[12] Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition tech-
nique for more expressive specifications. In Jeannette M. Wing, Jim Woodcock, and
Jim Davies, editors, FM’99 — Formal Methods: World Congress on Formal Meth-
ods in the Development of Computing Systems, Toulouse, France, September 1999,
Proceedings, volume 1709 of Lecture Notes in Computer Science, pages 1087–1106.
Springer-Verlag, 1999.

[13] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed
design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 175–188. Kluwer Academic Publish-
ers, Boston, 1999.

[14] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
How the design of JML accommodates both runtime assertion checking and for-
mal verification. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem-Paul de Roever, editors, Formal Methods for Components and Objects: First
International Symposium, FMCO 2002, Lieden, The Netherlands, November 2002,
Revised Lectures, volume 2852 of Lecture Notes in Computer Science, pages 262–284.
Springer-Verlag, Berlin, 2003.

[15] K. Rustan M. Leino. Data groups: Specifying the modification of extended state.
In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices,
pages 144–153. ACM, October 1998.

[16] K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding.
ACM Transactions on Programming Languages and Systems, 24(5):491–553, Septem-
ber 2002.

[17] Barbara Liskov and John Guttag. Program Development in Java. The MIT Press,
Cambridge, Mass., 2001.

[18] David Luckham. Programming with Specifications: An Introduction to Anna, A Lan-
guage for Specifying Ada Programs. Texts and Monographs in Computer Science.
Springer-Verlag, New York, NY, 1990.

[19] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, October
1992.

[20] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, New
York, NY, 1992.

[21] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
NY, second edition, 1997.

[22] Richard Mitchell and Jim McKim. Design by Contract by Example. Addison-Wesley,
Indianapolis, IN, 2002.

[23] William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben. Part
I: The RESOLVE framework and discipline — a research synopsis. ACM SIGSOFT
Software Engineering Notes, 19(4):23–28, October 1994.

18



[24] Erik Poll, Joachim van den Berg, and Bart Jacobs. Formal specification of the Java
Card API in JML: the APDU class. Computer Networks, 36(4):407–421, 2001.

[25] Bernd Schoeller. Strengthening Eiffel contracts using models. In Proceedings of the
Workshop on Formal Aspects of Component Software (FACS 2003), pages 143–158,
September 2003. UNU/IIST Report No. 284.

[26] Murali Sitaraman and Bruce W. Weide. Special feature: Component-based software
using RESOLVE. ACM SIGSOFT Software Engineering Notes, 19(4):21–22, Oct
1994.

19


