
Spectators and Assistants:
Enabling Modular Aspect-Oriented Reasoning

Curtis Clifton and Gary T. Leavens

TR #02-10
October 2002

Keywords: Spectators, assistants, aspect-oriented programming, modular reasoning, separate compilation, AspectJ lan-
guage.

2002 CR Categories: D.3.1 [Programming Techniques] Object-oriented programming — aspect-oriented programming;
D.3.2 [Programming Languages] Language Classifications — object-oriented languages, Java, AspectJ; D.3.3 [Programming
Languages] Language Constructs and Features — control structures, modules, packages, procedures, functions and subroutines,
advice, spectators, assistants, aspects.

Submitted for publication.

Copyright c© 2002, Curtis Clifton and Gary T. Leavens, All Rights Reserved.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Spectators and Assistants:
Enabling Modular Aspect-Oriented Reasoning

Curtis Clifton and Gary T. Leavens
Department of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA
+1 515 294 1580

{cclifton,leavens}@cs.iastate.edu

ABSTRACT
In current aspect-oriented languages, separate compilation
and modular reasoning are not possible. This detracts from
comprehensibility and impedes maintenance efforts. We de-
scribe language features that would allow aspect-oriented
languages to provide separate compilation and modular rea-
soning. We demonstrate that existing programs written in
AspectJ can be easily rewritten using these features.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—control structures, modules, packages, proce-
dures, functions and subroutines, advice, spectators, assis-
tants, aspects; D.3.2 [Programming Languages]: Lan-
guage Classifications—object-oriented languages, Java, As-
pectJ ; D.3.1 [Programming Techniques]: Object-orient-
ed programming—aspect-oriented programming

Keywords
Spectators, assistants, aspect-oriented programming, mod-
ular reasoning, separate compilation, AspectJ language

1. INTRODUCTION
Much of the work on aspect-oriented programming lan-

guages refers to the work of Parnas [27]. Parnas argues that
the modules into which a system is decomposed should pro-
vide benefits in three areas (p. 1054):

The benefits expected of modular programming
are: (1) managerial—development time should
be shortened because separate groups would work
on each module with little need for communica-
tion; (2) product flexibility—it should be possi-
ble to make drastic changes to one module with-

Copyright c© 2002, Curtis Clifton and Gary T. Leavens, All Rights Reserved

out a need to change others; (3) comprehensibil-
ity—it should be possible to study the system
one module at a time. The whole system can
therefore be better designed because it is better
understood.

While much has been written about aspect-oriented pro-
gramming as it relates to Parnas’s second point, his third
point is the primary concern of this paper. Current aspect-
oriented programming languages do not provide this third
benefit in general, because they require systems to be stud-
ied in their entirety.

In the remainder of this introduction, we begin by defin-
ing a notion of modular reasoning corresponding to Par-
nas’s third benefit, and we show how such modular reason-
ing is possible in the Java Programming Language [1, 11]
but problematic in AspectJ [14]. Following the introduc-
tion, Section 2 describes some language features that are
sufficient for modular reasoning in an aspect-oriented pro-
gramming language, and which would bring these languages
much closer to Parnas’s ideal. Section 3 evaluates our pro-
posal, and shows that our features do not result in any prac-
tical loss of expressiveness. Section 4 discusses some addi-
tional issues related to AspectJ. Section 5 outlines related
work, and Section 6 concludes.

We work with Java and AspectJ for concreteness. How-
ever, we believe our ideas are independent of these languages
and are generally applicable to the class of aspect-oriented
languages.

1.1 Modular Reasoning
Before delving into the details, it is useful to define our

terms. Modular reasoning is the process of understanding a
system one module at a time. A language supports modu-
lar reasoning if the actions of a module M written in that
language can be understood based solely on the code con-
tained in M along with the signature and behavior of any
modules referred to by M . A module M refers to N if M
explicitly names N , if M is lexically nested within N , or if
N is a standard module in a fixed location (such as Object

in Java).
For example, in Java a single compilation unit, typically

a file declaring a single top-level type (class or interface),
is a module. The behavior of a module can be thought of
concretely as its code. Often programmers reason about
modules using informal abstractions, e.g., “This method re-

1

turns true if the given file exists”. (In a more expressive
language, such as Eiffel [21] or Java annotated with JML
[18], the abstract behavior can be specified using pre- and
postconditions, frame axioms, and invariants; such specifica-
tions serve as contracts that allow one to separately reason
about the behavior and correctness of an implementation.)

Our interest in modular reasoning in aspect-oriented pro-
gramming languages is motivated in part by our earlier work
on MultiJava [6, 8]. In that work we were concerned with
modular static type checking and compilation. These tasks
are closely related to the issue of modular reasoning. A
language that supports modular reasoning can also permit
separate compilation, as well as modular implementations of
other tools (e.g., optimizers and static analysis tools). Thus,
mechanisms that permit modular reasoning have many ben-
efits.

1.2 Modular Reasoning in Java
Java without aspect-oriented extensions supports modular

reasoning. Consider the examples in Figure 1 and Figure 2,
motivated by examples in Kiczales, et al. [14] and annotated
with javadoc comments [9].

Suppose one wanted to write code that manipulates ob-
jects of type FigureElement. One could reason about such
objects based solely on the information contained in Fig-
ure 1. For example, one would know the objects support a
method named move that takes two arguments, dx and dy,
of type int and that when invoked the method would leave
the object in a state where the values returned by getX and
getY were increased by dx and dy, respectively.

Similarly, suppose one wanted to write code that manipu-
lated instances of Rectangle. One could reason about these
instances based on Figure 2, along with the modules re-
ferred to in that code. To reason about Rectangle’s getArea
method one would just need to consider the Rectangle mod-
ule. However, to reason about a call to move on an instance
of Rectangle one would have to consider the behavior of
the FigureElement module, since the Rectangle module in-
herits move (and several other methods) from FigureEle-

ment. This consideration of FigureElement is modular be-
cause FigureElement is explicitly referred to by the clause

extends FigureElement

in the declaration of Rectangle.

1.3 Non-modular Reasoning in AspectJ
We show that modular reasoning is not a general property

of AspectJ by considering an aspect-oriented extension to
our previous example. Figure 3 gives an aspect, MoveLimit-
ing, that modifies the behavior of FigureElement instances.
MoveLimiting declares two pieces of before-advice, or code
to be executed before traversing a join point into a method
body. A join point is an arc in the dynamic call graph of
a program.1 The first before-advice in MoveLimiting is ap-
plicable to all join points described by the pointcut , or join
point description, setPC. This pointcut describes the join
point where a method with the signature void set*(int) is
called. The args keyword is used to give names to the argu-
ments of the method call. The asterisk (*) in the signature is

1Join points in AspectJ are actually more general than this.
For example, join points can refer to field references and
exception handlers [2].

package aosd03;

public abstract class FigureElement {

private int _x = 0, _y = 0;

/** Initializes this figure element to be

* at the given coordinates. */

public FigureElement(int x, int y) {

_x = x; _y = y;

}

/** Returns the x-coordinate of this. */

public int getX() { return _x; }

/** Returns the y-coordinate of this. */

public int getY() { return _y; }

/** Returns the area of this. */

public abstract int getArea();

/** Makes the x-coordinate of this figure

* element be as given. */

public void setX(int x) {

_x = x;

}

/** Makes the y-coordinate of this figure

* element be as given. */

public void setY(int y) {

_y = y;

}

/** Changes the x-coordinate of this figure

* element by dx units and the y-coordinate

* by dy units. */

public void move(int dx, int dy) {

setX(getX() + dx);

setY(getY() + dy);

}

/* ... */

}

Figure 1: A Java module declaring an abstract class

2

package aosd03;

public class Rectangle extends FigureElement {

private int _height, _width;

/** Initializes this rectangle. */

public Rectangle(int x, int y, int h, int w) {

super(x,y);

_height = h;

_width = w;

}

public int getArea() {

return _height * _width;

}

/* ... */

}

Figure 2: A Java module declaring a class

a wildcard; wildcards can be used to give very general point-
cuts. The setPC pointcut matches both the setX and setY

methods of FigureElement, and binds the argument of the
method to a variable z that can be used within advice that
references the pointcut. The second piece of before-advice
in MoveLimiting uses the pointcut move. This pointcut uses
the target keyword to give the before-advice access to the
target object of the advised method call.

Both pieces of before-advice shown in Figure 3 throw an
exception if allowing the invocation to continue would result
in either the x- or y-coordinate of the target object becom-
ing negative. If the exception is not thrown, then control
flow is passed on to the advised method. In AspectJ the ad-
vice is applied by the compiler without explicit reference to
the aspect from either the FigureElement module or a client
module. (Instead the classes and aspect are simply passed
as arguments to the same compiler invocation.) Thus, mod-
ular reasoning about the FigureElement module or a client
module has no way to detect that the behavior of the move

method will be changed when the FigureElement module
and MoveLimiting are compiled together. In AspectJ the
programmer must potentially consider every combination of
such aspects and the FigureElement class in order to reason
about the FigureElement module. Some potentially appli-
cable aspects may not even name FigureElement directly,
but instead may use wildcard type patterns. So, in general,
a programmer cannot “study the system one module at a
time” [27].

1.4 Problem Summary
In a paper from ECOOP 2001, arguing for aspect-oriented

programming, Kiczales, et al. state [15, p. 327]:

We would like the modularity of a system to re-
flect the way “we want to think about it” rather
than the way the language or other tools force us
to think about it.

However, we have seen that the lack of support for modu-
lar reasoning can sometimes prevent us from thinking about
a system “the way we want to think about it”. In AspectJ,
tool support is provided to compensate for this lack of mod-

package aosd03;

aspect MoveLimiting {

pointcut setPC(int z)

: args(z) && call(void set*(int));

/** Throws IllegalArgException if argument is

* negative. */

before(int z): setPC(z) {

if (z < 0) {

throw new IllegalArgException();

}

}

pointcut move(FigureElement fe, int dx, int dy)

: target(fe) && args(dx, dy)

&& call(void move(int,int));

/** Throws IllegalArgException if allowing

* move will make either coordinate

* negative. **/

before(FigureElement fe, int dx, int dy):

move(fe, dx, dy) {

int nextX = fe.getX() + dx;

int nextY = fe.getY() + dy;

if (nextX < 0 || nextY < 0) {

throw new

IllegalArgException();

}

}

/* ... */

}

Figure 3: An AspectJ module providing advice for
FigureElement

ularity. Such tools perform the necessary whole-program
analysis to direct the programmer to the applicable aspects
that affect pieces of a module’s source code. Other tools for
processing AspectJ source code (e.g., type checkers, compil-
ers, and optimizers) also require a whole-program analysis.

The problem we address in this paper is to design a small
set of language features that obviate the need for this whole-
program analysis either by the programmer or by supporting
tools.

2. PROPOSED FEATURES
We have shown that AspectJ in general does not sup-

port modular reasoning; the behavior of a module can only
be determined by a whole-program analysis. In this sec-
tion we describe some language features that are sufficient
to support modular reasoning and separate compilation in
an aspect-oriented language. For concreteness we describe
these features as extensions to AspectJ.

The key feature to support modular reasoning in our pro-
posal is to divide aspects into two sorts: assistants and spec-
tators. “Spectators” are limited in that they may not change
the behavior of the modules they apply to (in a way to be
made concrete later), “assistants” are not limited in this

3

way. Since spectators do not change behavior, they pre-
serve modular reasoning even when applied without explicit
reference by the modules they view. Hence spectators pre-
serve most of the flexibility of the current version of AspectJ.
Because assistants can change the behavior of the modules
to which they apply, to maintain modular reasoning they
can only be applied in modules that reference them. Sec-
tion 2.1 below describes assistants and Section 2.2 describes
spectators. Section 2.3 describes how this categorization of
aspects can provide for separate compilation.

2.1 Assistants
We call aspects that can change the behavior of a mod-

ule assistants. The MoveLimiting aspect of Figure 3 is an
assistant. The term “assistant” is intended to connote a
participatory role for these aspects.

What information is needed to modularly reason about
behavior when assistants are present? Quite simply, a mod-
ule must explicitly name those assistants that may change
its behavior or the behavior of modules that it uses. We say
that a module accepts assistance when it names the assis-
tants that are allowed to change its behavior or the behavior
of modules that it uses. Assistance may be accepted by ei-
ther:

• the module to which the assistance applies (called the
implementation module), or

• a client of that module.

2.1.1 Explicit Acceptance of Assistance
AspectJ does not currently include syntax for explicitly

accepting assistance. Explicit acceptance of assistance can,
however, be roughly simulated by the “hyper-cutting” pat-
tern in AspectJ. In this pattern, one creates a marker in-
terface, and the pointcuts of assistants would only apply
to types that implement that interface [16, pp. 214–216].
An implementation module can then implement the marker
interface, and thus indirectly accept the advice of the assis-
tant. However, if a single client declares that the implemen-
tation module is a subtype of the marker interface (using the
declare parent syntax of AspectJ), then the change affects
all clients of the implementation module, but no trace ap-
pears in the implementation module; hence such changes are
not modular.

To automate this hyper-cutting pattern, and to avoid po-
tentially non-modular uses of it, we propose a simple syntax
extension for accepting assistance:

accept TypeName;
where TypeName must be the name of an assistant respect-
ing Java’s usual namespace rules for packages and imports
[11, §6.5]. Multiple accept clauses may appear in a sin-
gle module, following any import clauses. For example, the
FigureElement module could accept the MoveLimiting as-
sistance by declaring:

accept MoveLimiting;

We will generalize this idea with aspect maps below.
When an implementation module accepts assistance, that

assistance is applied to every applicable join point within
the implementation module, regardless of the client making
the call.

On the other hand, if the assistance is accepted by a client
module, then that assistance is only applied to applicable

join points in that client. Other clients that did not accept
the assistance would not have it applied to their join points.

AspectJ includes two sorts of join points that roughly sim-
ulate this behavior. Advice on join points described via call

pointcuts is woven into all client code that is compiled to-
gether with that advice. Advice on join points described
via execution pointcuts is woven into the implementation
code (assuming the implementation and advice are compiled
together). Unfortunately, clients of such an implementa-
tion module have no modular way to know that such advice
will be applied to their calls to the implementation module.
In our proposal clients of such an implementation module
would know about the advice; this is an example of how
explicitly accepted assistance allows modular reasoning.

In general a module may accept assistance from multiple
assistants and both a client and an implementation mod-
ule may accept assistance. The composition of assistant
and implementation code is formed respecting the following
(symmetric) order at each join point:

1. Apply any before-advice accepted by the client module
in the order that it is accepted.

2. Apply the “before-part” (i.e., the code preceding a pro-
ceed expression) of any around-advice accepted by the
client module in the order that it is accepted.

3. Apply any before-advice accepted by the implementa-
tion module in the order that it is accepted.

4. Apply the before-part of any around advice accepted
by the implementation module in the order that it is
accepted.

5. Execute the implementation module code.

6. Apply the “after-part” (i.e., the code following a pro-
ceed expression) of any around advice accepted by
the implementation module in the reverse order from
which it is accepted.

7. Apply any after-advice accepted by the implementa-
tion in the reverse order from which it is accepted.

8. Apply the after-part of any around advice accepted by
the client module in the reverse order from which it is
accepted.

9. Apply any after-advice accepted by the client module
in the reverse order from which it is accepted.

This ordering ensures that the first assistance accepted
by the client is “nearest” to the client and that the last as-
sistance accepted by the implementation is nearest to the
implementation on any control flow path. Multiple applica-
ble advice bodies in a single assistant are accepted in the
order given in the assistant’s declaration, or in the reverse
order for after-advice and the after-part of around-advice.
Inherited advice is considered to appear at the end of the
inheriting aspects; this respects the ordering for inherited
advice defined for AspectJ [15, §3.5]. However, the ordering
of all advice is underspecified in AspectJ. Our symmetric to-
tal ordering differs from the asymmetric ordering of advice
implemented in the current version of ajc [16, p. 182].

In the current version of AspectJ the ordering of advice
from unrelated aspects is determined by the ordering of ar-
guments to ajc, Xerox’s AspectJ compiler, along with any

4

dominates declarations. A dominates declaration allows the
programmer to specify that one aspect is to be executed be-
fore another named aspect. Dominates declarations are lim-
ited in their expressiveness compared to explicitly accepted
assistance, which gives finer control to the programmer. Ex-
plicitly accepted assistance also eliminates the dependence
on command-line arguments to specify ordering, moving this
specification into the language itself.

For simplicity and modularity we have decided to con-
fine acceptance of assistance to the module in which it is
explicitly accepted. For example, assistance accepted by
FigureElement is not automatically applied to invocations
of methods declared in its subclass Rectangle. On the other
hand, if for a particular method Rectangle does not over-
ride FigureElement’s implementation, then the inherited
method carries with it the assistance accepted in the Fig-

ureElement module. This approach also provides flexibility
since the programmer can always add an accept clause to
the subclass module or override a superclass method; this
gains assistance in the first case and “shadows” assistance
acceptance in the second. Also for simplicity we do not allow
interfaces to accept assistance. Future work may reevaluate
these decisions.

2.1.2 Aspect Maps
Modular reasoning in aspect-oriented programming lan-

guages can be achieved if we require modules to explicitly
accept assistance. But some assistants are applicable to code
throughout an entire package or program, for example, a
common exception handler. It would be inconvenient (to
say the least) to include accept clauses for these assistants
in every module, and error prone to have to remember to
add accept clauses for these assistants to every new module.2

We introduce aspect maps to avoid these problems. An
aspect map is a source code construct that specifies a map-
ping from modules in a package, or set of packages, to the
assistance that is accepted by those modules. Each package
may contain at most one aspect map. In file system based
implementations, the aspect map for a package is given in
a file named package.map stored in the directory contain-
ing the package source code. The syntax for aspect maps
is given in Figure 4. An example aspect map is given in
Figure 5.

The type pattern * (preceding the first ‘{’ in Figure 5)
says that all types in the aosd03 package accept the Move-

Limiting assistant. (We do not allow aspect maps to specify
fully qualified names in type patterns; instead we implic-
itly prepend the package name of the map’s package to the
given pattern. We do this because the map should only be
able to specify acceptance of assistance for local types and
types in subpackages.) The Rectangle pattern in the ex-
ample says that, in addition to the MoveLimiting assistant,
aosd03.Rectangle also accepts the AreaStretching assis-
tant.3 As with accept clauses in modules, the identifier in
an accept clause of an aspect map is subject to Java’s usual
namespace rules for packages and imports.

One can think of aspect maps as like an AspectJ “intro-
duction”; they add accepts clauses to modules in the local
package and subpackages.

The assistance accepted via aspect maps still allows mod-
ular reasoning. To wit, the package clause at the beginning

2Such accept clauses would also represent code tangling.
3We omit the AreaStretching assistant from this paper.

AspectMap ::= PackageDecl ImportDeclsopt

MappingListopt
PackageDecl ::= package Identifier ;

MappingList ::= Mapping MappingListopt
Mapping ::= TypePat { AcceptListopt }
AcceptList ::= AcceptClause AcceptListopt
AcceptClause ::= accept Identifier ;

Figure 4: The syntax of aspect maps; TypePat refers
to type patterns in [2, Appendix A], ImportDecls
refers to regular Java import declarations [11, §7.5]

package aosd03;

* {

accept MoveLimiting;

}

Rectangle {

accept AreaStretching;

}

Figure 5: An example aspect map

of a module names all the possible locations where an aspect
map naming that module might appear. The programmer,
or a tool, must only look in that package, or possibly any
outer packages, to find the applicable aspect map. More
specifically, the assistance accepted by a given module con-
sists of:

1. all assistants named in accept clauses in the module,

2. all assistants to which the module is mapped by the
package.map file for the module’s package, and

3. all assistants to which the module is mapped by any
package.map files in packages containing the module’s
package.

To accommodate aspect maps we extend the ordering of
accepted assistance discussed in Section 2.1.1 by letting the
search order described here define the ordering of accep-
tance.

This recursive search for acceptance of assistance in the
module’s package and outer packages allows the programmer
to specify widely-applied assistance in the root of a package
hierarchy, package-specific assistance in the aspect map of
the package it applies to, and module-specific assistance in
the module it applies to. Future work will evaluate inher-
itance mechanisms for aspect maps that would allow finer
grained control than the simple unioning of maps from outer
packages presented here.

2.2 Spectators
Explicitly accepted assistance supports modular reason-

ing. Aspects maps give the programmer flexibility in accept-
ing assistance. But what about “development aspects”[14,
p. 61], like tracing or debugging code, that are only some-
times included in an executing program? In a language that
just supported explicitly accepted assistance, a programmer
would need to edit aspect maps or source code modules to
control the application of development aspects.

5

package aosd03;

spectator aspect DistanceTracking {

/** Tracks total distance moved by all figure

* elements. */

private double _distance;

before(FigureElement fe, int dx, int dy):

MoveLimiting.move(fe, dx, dy)

{

_distance += Math.sqrt(dx*dx + dy*dy);

System.err.println("Total distance: " +

_distance);

}

}

Figure 6: A spectator aspect

To resolve this we propose that an aspect-oriented pro-
gramming language should also support a category of as-
pects that we call spectators. A spectator is an aspect that
does not change the behavior of any other module. Because
it does not change the behavior, we will say that a spectator
views (rather than “advises”) methods.

In concrete terms, a spectator may only mutate the state
that it owns (in the sense of alias control systems like [22,
24]) and it must not change the control flow to or from
a viewed method. In addition to mutating owned state it
seems reasonable to allow spectators to change accessible
global state as well, since a Java module cannot rely on that
state not changing during an invocation (modulo synchro-
nization mechanisms). The term “spectator” is intended to
connote the hands-off role of these aspects.

For example, Figure 6 gives a spectator called Distance-

Tracking. The spectator modifier (in the second line) de-
clares that this aspect must not change the behavior of any
other module. This spectator mutates its own state by incre-
menting distance and mutates the global state by printing
to System.err. However, it does not change the behavior of
FigureElement’s move method. DistanceTracking merely
views the arguments to the move method. The arguments
are passed on to the method unchanged and the method’s
results are unchanged. In addition to cross-cutting concerns
like this tracking example, spectators would also be useful
for logging, tracing, and as the observer in the observer de-
sign pattern [10, pp. 293–303].

Because spectators do not change the behavior of the
methods they view, code outside an existing program can
apply a spectator to any join point in the original program
without loss of modular reasoning. In reasoning about the
client and implementation code for a method a maintainer
of the original program does not need any information from
the spectator.

The primary challenge of implementing this part of our
proposal lies in determining whether a given aspect is really
a spectator. We envision a static analysis that conserva-
tively verifies this. This analysis has two parts—verifying
control flow and verifying that only appropriate locations
are mutated.

In general the problem of verifying that a spectator does
not disrupt control flow is undecidable (by reduction to the
halting problem); however, we can restrict the sort of con-

trol flow allowed in spectators to achieve an approximate
solution. We propose that in spectators:

• before-advice must not explicitly throw an exception
on any control flow path,

• around-advice must proceed, exactly once, to the ad-
vised method on all control flow paths, and

• after-advice must not explicitly throw an exception on
any control flow path.

This solution is approximate because it still allows advice
in spectators to include (possibly infinite) looping constructs
and to call other (possibly non-terminating) methods, pro-
vided any checked exceptions declared by those methods are
caught and handled. A more conservative solution to control
flow might disallow loops, method calls, and synchronized
code within a spectator’s advice. A completely conservative
solution is not possible in a Java-like language since execut-
ing any advice in a spectator requires more memory than
just executing the viewed method. This additional memory
usage could result in an OutOfMemoryError that prevents
control flow from continuing to the advised method. Be-
cause of this, and the draconian nature of the more conser-
vative solution, our approximate solution that disallows all
explicitly thrown exceptions in the advice and handles any
checked exceptions in methods called by the advice seems
reasonable.4

Additionally, the checks for “spectatorness” must verify
that the proceed expression in around-advice passes all ar-
guments to the advised method in their original positions
and without mutation. Any value returned from the advised
method (or exception thrown) must be passed on by the ad-
vice without mutation. The mutation analysis for spectators
is closely related to the problem of verifying frame axioms
[4]. In fact we can think of spectators as having an implicit
frame axiom that prevents modification of locations that are
relevant to the receiver, the arguments, or the value returned
or exception thrown by the viewed method. (Intuitively the
relevant locations are those that, if changed, would change
the abstract state of the object [22, 23].)

The main difficulty with statically verifying this lack of
relevant mutations is how to deal with aliasing. For exam-
ple, suppose we have a logging spectator that uses an array
to track the elements added to some Set object. Suppose
Set uses an array for its representation. If the spectator’s
array and the Set’s array are aliased, the program might
add an element to this array twice—possibly violating Set’s
invariant and changing its behavior. There is a substantial
body of work on alias control that may be useful in attacking
this [22, 24].

2.3 Separate Compilation
Because of the generality of aspects without our restric-

tions and limitations of the target Java Virtual Machine (or
JVM) [20], AspectJ currently requires whole-program com-
pilation [15]. In our proposal, because assistance is explicitly
accepted, it is a simple matter to support separate compi-
lation for modules that accept assistance; the compiler just
weaves it into the accepting modules.

4We imagine that, in many cases, program verification tech-
niques could be used to prove termination and that no
unchecked exceptions are thrown.

6

On the other hand, spectators present an interesting chal-
lenge for separate compilation. On the surface, since specta-
tors do not change the behavior of other modules, it should
be possible to separately compile them. And indeed this
is true—except for the issue of dispatching to spectators.
The generality of spectator application means that they can
potentially be dispatched to from any join point.

A second challenge for separate compilation of spectators
is related to a capability that we would like spectators to
have. Because spectators cannot change the behavior of
other modules, we would like to be able to apply them to a
program that is already running, for example to diagnose a
problem in a long-running server application.

An aspect-oriented virtual machine could address both of
these concerns by including facilities for applying and remov-
ing spectators from already running programs and for dis-
patching to spectators at the appropriate join points.5 Oth-
ers have suggested that separate compilation for AspectJ is
possible using techniques such as modified virtual machines
[15, p. 343]. However, with this approach dynamic dispatch
would be needed for all assistants. In our proposal the
explicit acceptance of assistance allows the separate com-
pilation of assistants by compile-time weaving. Thus the
less-efficient dynamic dispatch is only needed for specta-
tors. Furthermore, spectators that were always used could
be named in accept clauses (or aspect maps) to gain the
efficiency of compile-time weaving.6

3. EVALUATION
This section evaluates the expressiveness of our proposal.

Our evaluation is limited to a review of existing programs.
We first consider the programming guidelines suggested in
the ATLAS case study [13]. Then we survey the example
aspects from the AspectJ Programming Guide [2] and Kise-
lev’s book [16].

3.1 ATLAS Case Study
In the ATLAS case study [13], the authors proposed sev-

eral guidelines to make working with aspects easier. These
were proposed since they had discovered that (p. 346):

The extra flexibility provided by aspects is not
always an advantage. If too much functionality is
introduced from an aspect it may be difficult for
the next developer—or the same developer a few
months later—to read through and understand
the code base.

One of Kersten and Murphy’s suggestions is to limit cou-
pling between aspects and classes to promote reuse. Specif-
ically, they suggest that one should avoid the case where
an aspect explicitly references a class and that class explic-
itly references the aspect, since then the class and aspect
are mutually dependent. Such mutual dependencies pre-
vent independent reuse. Is this suggestion problematic for

5From a goal of generating initial acceptance for aspect-
oriented languages, using the ubiquitous JVM as a target
platform is a reasonable choice. But when anticipating fu-
ture directions in language design we should be free of this
constraint.
6Because of compile-time weaving of accepted assistance,
the code for spectators that were not explicitly accepted
would be executed between steps 2 and 3 and between steps
7 and 8 of the ordering given in Section 2.1.1.

our requirement that modules explicitly accept assistance?
No, because explicit acceptance does not necessarily imply
mutual dependence between aspects and classes. Suppose
an implementation module, M , accepts assistance from an
assistant, A, and A is applicable to M . If A explicitly refer-
ences M , then the modules are mutually dependent. How-
ever, if A only applies to M because of wildcard-based pat-
tern matching and does not explicitly reference M , then the
modules are not mutually dependent. Another option when
A references M is to include A as a nested aspect of M (i.e.,
an aspect declared inside M), confining their dependence to
a single file.

Client acceptance provides another way to avoid mutual
dependence. Suppose a client module, C, accepts assistance
from an assistant, A′, and A′ only changes the behavior of
modules referenced by C, but does not change C’s behav-
ior. In this case A′ and C are not mutually dependent. In
sum, programmers can reduce mutual dependency by hav-
ing clients accept assistance, by limiting explicit references
to classes from assistants, and by using nested aspects.

Kersten and Murphy also suggest using aspects as facto-
ries by having them provide only after-returning advice on
constructors. This after-returning advice mutates the state
of every object instantiated to change its default behavior.
Limiting the aspects in this way restricts the scope of object–
aspect interaction. In our proposal a simple assistant can
fill the role of such a factory aspect.

For aspects that do not act as factories Kersten and Mur-
phy propose three style rules that restrict the use of aspects
(pp. 349–350):

Rule #1: Exceptions introduced by a weave must
be handled in the code comprising the weave.
. . . Rule #2: Advise [sic] weaves must maintain
the pre- and post-conditions of a method. . . . Rule
#3: Before advise [sic] weaves must not include
a return statement.

These rules are essentially equivalent to our definition of
spectators in that they prevent aspects from changing the
behavior of the viewed method. However, we propose el-
evating these style rules to the level of statically checked
restrictions.

3.2 Impact of Restrictions
To better understand how our restrictions might limit the

practical expressiveness of AspectJ, we review several exam-
ples from two separate sources.

3.2.1 AspectJ Programming Guide
We use the examples in the AspectJ Programming Guide

to see if our restrictions prohibit any recommended idioms.
The programming guide’s examples can serve this purpose
since they “not only show the features [of AspectJ] being
used, but also try to illustrate recommended practice” [2]
(from the Preface). We separate the example aspects into
categories based on how we would implement them with
our restrictions. Table 1 lists the examples by category; we
describe the categories here.

Spectators Many of the example aspects clearly meet
our definition of spectator. To satisfy our restrictions these
would only require the spectator annotation.

Assistants Aspects in the examples that could be imple-
mented as assistants can be divided into two kinds. Client

7

Table 1: Example aspects and their categories (from
the examples directory of the Version 1.0.6 release
of AspectJ, available from http://aspectj.org)

Example Category
telecom/TimerLog spectator
tjp/GetInfo spectator
tracing/lib/AbstractTrace spectator
tracing/lib/TraceMyClasses spectator
tracing/version1/TraceMyClasses spectator
tracing/version2/Trace spectator
tracing/version2/TraceMyClasses spectator
tracing/version3/Trace spectator
tracing/version3/TraceMyClasses spectator
bean/BoundPoint client utility
introduction/CloneablePoint client utility
introduction/ComparablePoint client utility
introduction/HashablePoint client utility
observer/SubjectObserverProtocol client utility
observer/SubjectObserverProtocolImpl client utility
spacewar/Display.DisplayAspect client utility
spacewar/Display1.SpaceObjectPainting client utility
spacewar/Display2.SpaceObjectPainting client utility
telecom/Billing client utility
telecom/Timing client utility
spacewar/EnsureShipIsAlive impl. utility
spacewar/GameSynchronization impl. utilitya

spacewar/RegistrySynchronization impl. utilitya

spacewar/Registry.RegistrationProtection impl. utility
coordination/Coordinator assistantb

spacewar/Debug combined

aextends the abstract coordination/Coordinator assistant
brefers only to abstract pointcuts

utilities are used by client modules to change the effective
behavior of objects whose types are declared in other mod-
ules. The changes in effective behavior do not affect the rep-
resentation of those objects. To satisfy our restrictions client
utilities’ assistance would have to be explicitly accepted by
the clients. In fact, some of the client utility assistants are
declared as nested aspects. These are similar in spirit to
explicitly excepted assistance. (In the future, we may wish
to consider nested aspects to be implicitly accepted by their
containing modules.)

Other example aspects that could be implemented as as-
sistants might be considered implementation utilities. These
assistants encapsulate some unit of cross-cutting concern re-
lated to a single module, for example, enforcing a common
precondition across the methods of a class. In our proposal
each implementation utility would be accepted by the mod-
ule that it advises, creating a mutual dependency. However,
in all the examples this mutual dependency could be fixed by
nesting the implementation utility inside the advised mod-
ule. We would also require that the call join points in these
aspects be changed to execution join points.

The Coordinator aspect of the coordination package is
abstract. This abstract aspect modifies the behavior of the
modules to which it refers, making it an assistant in our
terminology. However, Coordinator only refers to abstract
pointcuts. Thus, for the advice in Coordinator to be ap-
plicable to any module a concrete aspect extending Coor-

dinator would have to be declared. This concrete aspect

Table 2: Main example aspects from chapters 5-8
of Kiselev’s book [16]; subheadings give Kiselev’s
categorization of the aspects

Example Category
Development Aspects

Logger spectator
Tracer spectator
Profiler spectatora

CodeSegregation not definedb

Production Aspects
Authentication client utilityc

Exceptions client utility
NullChecker spectatora

Runtime Aspects
OutputStreamBuffering impl. utility
Pooling impl. utility
ConnectionChecking impl. utility
ReadCache impl. utility

not categorized
NewLogging client utility
PaidStories spectator

aMinor changes are needed to make this aspect a spectator.
bThe CodeSegregation aspect introduces warnings and er-
rors, which are outside the scope of the current work.
cThis aspect includes some features (parent declarations)
that are outside the scope of the current work.

would be an assistant and would need to be accepted per our
design. In fact, the two “synchronization” implementation
utilities listed in Table 1 are concrete assistants extending
Coordinator.

Combined To satisfy our restrictions one example as-
pect, the Debug aspect of the spacewar example, would re-
quire a combination of spectators and assistants. This as-
pect would be a spectator, except that it provides after-
advice to a GUI frame’s constructor to add debugging op-
tions to the frame’s menu bar. To support this pattern
with our restrictions the GUI frame would have to accept
assistance from an assistant, say AdditionalMenuConcern.
This assistant would provide methods allowing other code
to add to the GUI frame’s menu bar. The debugging as-
pect would become a spectator viewing the program and
using the methods provided by AdditionalMenuConcern to
display the debugging menu.

To summarize, even with our proposal’s restrictions it is
easy to express AspectJ’s recommended idioms.

3.2.2 Kiselev
While the AspectJ Programming Guide provides many

small examples demonstrating recommended idioms, Kise-
lev’s book Aspect-Oriented Programming with AspectJ [16]
provides an extensive case study. It is the only freely avail-
able case study (that we are aware of) written in AspectJ
that is not the implementation of another aspect-oriented
programming language. The aspects given in the book in
chapters 5-8 are all related to this case study, which con-
cerns a web service that is supposed to store and retrieve
users stories (an “e-zine”). Table 2 gives a summary of these
aspects and how they relate to our categories.

Kiselev categorizes his examples as “development”, “pro-
duction”, or “runtime” aspects [16, Chapter 9]. It is useful

8

to discuss how these categories relate to our division of as-
pects into spectators and assistants.

The development aspects (Logger, Tracer, Profiler and
CodeSegregation) are “used as development aids” (p. 115),
but are not useful during production use of the system. Since
these are optional aspects we would hope that they are spec-
tators in our categorization. This is clearly the case for
Logger and Tracer. The Profiler aspect would be consid-
ered a spectator in our categorization—except for one issue.
Profiler declares before- and after-advice that can change
the control flow by explicitly throwing an exception when
an I/O error occurs while writing profiling data to disk. We
could categorize Profiler as an assistant and use a root-
level aspect map to apply it to the entire project. How-
ever, Profiler is a development aspect; we would like to be
able to switch it off and on without editing the source code.
We can resolve this difficulty by simply changing Profiler

to swallow any I/O exceptions and report the problem to
the developer (via System.err, for example). This would
make Profiler a spectator, as intended. Since it would
be a spectator the developer could remove it from the run-
ning virtual machine, fix the file system problem that pre-
cipitated the exception, and add Profiler back into the
running virtual machine, all without affecting the behavior
of the core application. CodeSegregation uses AspectJ’s
declare error and declare warning constructs to intro-
duce additional compile-time checks. These constructs are
outside the scope of the current work, but are discussed in
Section 4.

The production aspects (Authentication, Exceptions,
and NullChecker) are “absolutely essential to the applica-
tion” [16, p. 115]. Since they are absolutely essential it is
reasonable to include them in the appropriate aspect maps
knowing that these references will not have to be changed.
These aspects do have some interesting properties vis-à-vis
our categorization. The Authentication aspect is, at its
core, a client utility. It is applied to objects which ren-
der web pages and manage the current user session to en-
sure that the user of the session is validated. We say that
this is a client utility because it may be the case that some
clients of these objects wish to allow unauthenticated access
to some pages. In Kiselev’s example the Authentication

aspect is applied broadly. This is easily implemented us-
ing a root-level aspect map. The Authentication aspect
also uses introduction, via AspectJ’s declare parents con-
struct, to add additional methods to the classes it assists.
Introductions are also beyond the scope of the current work,
but are discussed in Section 4.

The Exceptions aspect is a client utility in our catego-
rization, a fact emphasized by Kiselev when he argues for
using a call join point instead of an execution join point
by saying that, with the execution join point, “some other
application would not be able to utilize this class without
the Exceptions aspect attached to it” (p. 76).

We would argue that Kiselev’s third production aspect,
NullChecker, should actually be considered a development
aspect, since it is an aid to contract enforcement that might
not be included in a production system. In Kiselev’s code
NullChecker throws an exception and so would need to be
modified in a similar way as Profiler to be a spectator in
our categorization.

Kiselev’s runtime aspects (ConnectionChecking, Pool-

ing, OutputStreamBuffering, and ReadCache) are all “use-

ful but not critical” [16, p. 115]. These are units of cross-
cutting concern that might not be part of an initial imple-
mentation. But once added to the system they are likely
to remain part of it. They are all implementation utilities
that apply to a single class. Under our proposal, as these
aspects were written and added to the application an accept
clause would be added to the advised class. To use this ap-
proach the call join points in each of these aspects would
be changed to execution join points.

The last two aspects in the table (NewLogging and Paid-

Stories) are not categorized by Kiselev, but should be con-
sidered production aspects. The are used to change the
behavior of the application without invasive editing. Under
our proposal these aspects would be accepted using a root-
level aspect map. PaidStories is an example of code that
qualifies as a spectator but would be named in an aspect
map to gain the efficiency of compile-time weaving.

To summarize, except for the CodeSegregation aspect
and a portion of the Authentication aspect, both of which
use AspectJ features that are outside the scope of the cur-
rent work, all the aspects in Kiselev’s case study can be
easily implemented under our proposal .

4. DISCUSSION
This section discusses several interesting issues raised by

our proposal and its relation to features of AspectJ.
Explicit acceptance of assistance interacts in interesting

ways with call and execution pointcuts. Consider the ex-
amples from Section 1. If FigureElement’s module accepted
the MoveLimiting assistant, but no client did, then the ad-
vice in the assistant would only apply to the calls to setX

and setY within the body of the move method. This is be-
cause the assistant only uses call join points. Invocations
of FigureElement’s setX, setY, or move methods from client
code would not be advised because we are assuming that no
client code accepts the assistance. But if the assistant in-
stead substituted execution join points for the call join
points, then having the FigureElement module accept the
assistance would be sufficient to have the advice apply to
invocations of setX, setY, or move from all client modules.

One might suppose that we could change the semantics
of call join points and eliminate execution join points by
relying on the explicit acceptance of assistance to determine
where to weave the advice code. But where should such
advice go if an assistant is accepted by both a client and an
implementation module? The compiler cannot modularly
know where all accept clauses in a program might appear,
and so there is no modular answer to the question. Thus
both call and execution join points are required in the
language.

The call-execution distinction also impacts the distinc-
tion between client and implementation utilities, discussed
in Section 3.2. An assistant using call join points is not a
viable implementation utility. Conversely, an assistant us-
ing execution join points is not a viable client utility. To
write an assistant that could fill either role one would have
to write pointcuts that used a combination of call and exe-

cution pointcuts, along with the dynamic context pointcut
cflowbelow to prevent duplicate application of the advice.
Something like

(call(S) || execution(S))

&& !cflowbelow(call(S))

9

might suffice. It may be reasonable to define a syntactic
sugar for such pointcuts. However, the cflowbelow point-
cut requires runtime checks whereas call and execution do
not. Thus, restricting a given assistant to being exclusively
a client utility (using call) or an implementation utility
(using execution) is likely to be more efficient.

It seems that ordering advice based on the ordering of
accept clauses might eliminate the need for AspectJ’s dom-
inates declarations, which specify aspect precedence. While
technically this seems to be the case, we are not claiming
that relying on the ordering of accept clauses is any less er-
ror prone than relying on dominates declarations to control
the order of interacting aspects. On the one hand, it is im-
possible to know when writing an aspect all the potential
other aspects that it should dominate. On the other hand,
it would be quite easy to accidentally misorder the accep-
tance of two pieces of interacting advice in an aspect map
or the accept clauses for a module. Compared to dominates
declarations, the use of explicit acceptance also spreads out
and makes less obvious the kind of decisions that dominates
declarations record in one place.

The current work does not address AspectJ’s introduc-
tion mechanisms and declare parents construct. An as-
pect that used introduction to replace an inherited method
of a class with an overriding method would clearly change
the behavior of that class and would therefore be an assis-
tant. But suppose an aspect introduced a new method to
a class such that the method did not override an inherited
method. Since no other code could have called that new
method, this introduction should not change the behavior
of existing code. So such an introduction could be allowed
in a spectator. (This case is similar to the introduction
of external generic functions via MultiJava’s “open class”
mechanism [8, 6].) However, we leave this decision for fu-
ture work, because introduction involves subtle modularity
issues, particularly for avoiding runtime ambiguities. These
issues are made more complex by the possibility that the in-
troduced methods might be advised by pre-existing aspects.

The current work also does not address AspectJ’s de-

clare error and declare warning constructs. But these
constructs do not change the behavior of a program in any
way. Instead they provide advice to the compiler itself,
telling the compiler that if certain join points are detected
at compile-time, then an error or warning should be issued.
Thus these constructs can be allowed in spectator aspects.
It is likely that aspects containing these constructs would
be broadly applied using aspect maps.

An aspect that used the declare soft construct would
clearly change the control flow of a program to which it was
applied. Such an aspect is thus an assistant.

5. RELATED WORK
Katz and Gil [12] suggest that the body of work on “su-

perimposition” for reasoning about distributed algorithms
might provide a fertile ground for ideas in developing aspect-
oriented programming. (Bougé and Francez give an ap-
proachable introduction to superimposition [5].) Katz and
Gil briefly sketch three categories of aspects. Their “specta-
tive” category matches our notion of spectators. The other
two categories of aspects they mention map to our notion
of assistants. However, they do not consider a language
design that might help enforce and exploit these distinc-
tions. Because of this they do not address anything like

our aspect maps and they do not talk about how one might
enforce that declared spectators have no observable side ef-
fects. Their suggestion regarding mining the work on su-
perimposition in developing aspect-oriented programming
seems reasonable. Much of the work on superimposition is
concerned with proving properties of distributed algorithms,
or adding additional provable properties to distributed algo-
rithms without disturbing other underlying properties. Our
work can be viewed as an initial attempt at extending these
more theoretical ideas into practical language designs.

We know of no other published work that attempts to
restore modular reasoning to AspectJ.

6. CONCLUSIONS
To summarize, we have shown that a few additional lan-

guage features are sufficient to support modular reasoning
in a language like AspectJ. Our proposal separates aspects
into two categories, assistants and spectators, which provide
complementary features. Assistants have the full power of
AspectJ’s aspects, but to maintain modular reasoning we re-
quire that assistants be explicitly accepted. Spectators are
constrained to not modify the behavior of the modules that
they view. This allows modular reasoning without requiring
spectators to be explicitly excepted.

Our proposal introduces aspect maps to allow acceptance
of assistance, while avoiding the scattering of duplicate ac-
cept clauses throughout a program.

Explicit acceptance of assistance allows separate compila-
tion by weaving advice declared in assistants into the mod-
ules accepting that assistance. We have also suggested that
an aspect-oriented virtual machine would allow efficient dis-
patch to spectators. Such a virtual machine would also per-
mit spectators to be added to and removed from running
programs.

Our evaluation looked at three sets of AspectJ examples.
The ATLAS case study identified style rules that were equiv-
alent to our definition of spectators. We also studied the ex-
amples from the AspectJ Programming Guide [2] and Kise-
lev’s book [16]. Our language features can handle these ex-
amples with no changes in most cases, and minor changes
otherwise.

The major technical challenge for our proposal is checking
that aspects declared as spectators meet our definition, as
discussed in Section 2.2. We have specified constraints on
spectators that allow modular reasoning about their (lack
of) impact on control flow. A type system that restricts
aliasing and mutation should allow modular reasoning about
spectators (lack of) impact on the relevant state of the mod-
ules they view. The next steps in this area are:

• developing an aspect-oriented calculus for investigat-
ing these ideas in a formal setting (perhaps building
on [29, 25, 17]), and

• developing and proving sound a type-system for the
calculus that statically enforces our proposed restric-
tions on spectators.

We are also interested in demonstrating the utility and
effectiveness of our ideas by:

• further developing and implementing our proposal us-
ing the type system mentioned above,

• programming non-trivial systems with it, and

10

• investigating the use of an aspect-oriented virtual ma-
chine to support adding and removing spectators from
running programs.

In this paper we have focused on adding support for mod-
ular reasoning to the AspectJ language. Future work will
also investigate the relevance of our proposal to other aspect-
orientation programming languages and techniques, such as
composition filters [3], adaptive methods [19], and multidi-
mensional separation of concerns as embodied by Hyper-J
[26, 28].

7. ACKNOWLEDGMENTS
We thank Yoonsik Cheon, Todd Millstein, Markus Lumpe,

and Robyn Lutz, for their helpful comments on an early ver-
sion of this work [7]. We also thank the workshop partic-
ipants at Foundations Of Aspect-oriented Languages 2002,
in particular Gregor Kiczales, Doug Orleans, and Hidehiko
Masushara, for discussions regarding this work. The work
of both authors was supported in part by a grant from Elec-
tronics and Telecommunications Research Institute (ETRI)
of South Korea, and in part by the US National Science
Foundation under grants CCR-0097907 and CCR-0113181.

8. REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language Third Edition.
Addison-Wesley, Reading, MA, third edition, 2000.

[2] AspectJ Team, the. The AspectJ programming guide.
Available from
http://aspectj.org/doc/dist/progguide/index.html,
Feb. 2002.

[3] L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filters. Commun. ACM,
44(10):51–57, Oct. 2001.

[4] A. Borgida, J. Mylopoulos, and R. Reiter. ‘... and
nothing else changes’: The frame problem in
procedure specification. In Proceedings Fifteenth
International Conference on Software Engineering,
Baltimore, May 1993. Preliminary version obtained
from the authors.

[5] L. Bougé and N. Francez. A compositional approach
to superimposition. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 240–249. ACM Press,
1988.

[6] C. Clifton. MultiJava: Design, implementation, and
evaluation of a Java-compatible language supporting
modular open classes and symmetric multiple
dispatch. Technical Report 01-10, Department of
Computer Science, Iowa State University, Ames, Iowa,
50011, Nov. 2001. Available from www.multijava.org.

[7] C. Clifton and G. T. Leavens. Observers and
assistants: A proposal for modular aspect-oriented
reasoning. Technical Report 02-04a, Iowa State
University, Department of Computer Science, Apr.
2002.

[8] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In OOPSLA
2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis,

Minnesota, volume 35(10) of ACM SIGPLAN Notices,
pages 130–145, Oct. 2000.

[9] L. Friendly. The design of distributed hyperlinked
programming documentation. In S. Fräıssè,
F. Garzotto, T. Isakowitz, J. Nanard, and M. Nanard,
editors, Proceedings of the International Workshop on
Hypermedia Design (IWHD’95), Montpellier, France,
1–2 June 1995, pages 151–173. Springer, 1995.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
Mass., 1995.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition. The Java
Series. Addison-Wesley, Boston, Mass., 2000.

[12] S. Katz and Y. Gil. Aspects and superimpositions. In
Int’l Workshop on Aspect-Oriented Programming
(ECOOP 1999), June 1999.

[13] M. A. Kersten and G. C. Murphy. Atlas: A case-study
in building a web-based learning environment using
aspect-oriented programming. In Proceedings of the
1999 ACM Conference on Object-Oriented
Programming Languages, Systems, and Applications
(OOPSLA ’99), volume 34(10) of ACM SIGPLAN
Notices, pages 340–352, Denver, CO, November 1999.
ACM.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Getting started with
AspectJ. Commun. ACM, 44(10):59–65, Oct. 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, Budapest Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer-Verlag, Berlin, June 2001.

[16] I. Kiselev. Aspect-Oriented Programming with AspectJ.
Sams Publishing, Indianapolis, 2003.

[17] R. Lämmel. A semantical approach to method-call
interception. In G. Kiczales, editor, Proc. 1st Int’
Conf. on Aspect-Oriented Software Development
(AOSD-2002), pages 41–55. ACM Press, Apr. 2002.

[18] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report 98-06q, Iowa
State University, Department of Computer Science,
June 2002. See www.jmlspecs.org.

[19] K. Lieberherr, D. Orleans, and J. Ovlinger.
Aspect-oriented programming with adaptive methods.
Commun. ACM, 44(10):39–41, Oct. 2001.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley Publishing Co.,
Reading, MA, second edition, 2000.

[21] B. Meyer. Eiffel: The Language. Object-Oriented
Series. Prentice Hall, New York, NY, 1992.

[22] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.
The author’s PhD Thesis. Available from
http://www.informatik.fernuni-
hagen.de/import/pi5/publications.html.

[23] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens.

11

Modular specification of frame properties in JML.
Technical Report 02-02a, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011,
Oct. 2002. To appear in Concurrency, Computation
Practice and Experience.

[24] J. Noble, J. Vitek, and J. Potter. Flexible alias
protection. In E. Jul, editor, ECOOP ’98 –
Object-Oriented Programming, 12th European
Conference, Brussels, Belgium, volume 1445 of Lecture
Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

[25] D. Orleans. Incremental programming with extensible
decisions. In G. Kiczales, editor, Proc. 1st Int’ Conf.
on Aspect-Oriented Software Development
(AOSD-2002), pages 56–64. ACM Press, Apr. 2002.

[26] H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Commun. ACM, 44(10):43–50, Oct. 2001.

[27] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, Dec. 1972.

[28] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M.
Sutton Jr. N degrees of separation: Multi-dimensional
separation of concerns. In International Conference on
Software Engineering, pages 107–119, 1999.

[29] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron,
editors, FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Languages Workshop at AOSD 2002,
number 02-06 in Technical Report, pages 1–8.
Department of Computer Science, Iowa State
University, Apr. 2002.

12

