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EQUATIONAL REASONING WITH SUBTYPES

GARY T. LEAVENS AND DON PIGOZZI

Abstract. Using equational logic as a specification language, we investigate the proof
theory of behavioral subtyping for object-oriented abstract data types with immutable
objects and deterministic methods that can use multiple dispatch. In particular, we
investigate a proof technique for correct behavioral subtyping in which each subtype’s
specification includes terms that can be used to coerce its objects to objects of each of its
supertypes. We show that this technique is sound, using our previous work on the model
theory of such abstract data types. We also give an example to show that the technique is
not complete, even if the methods do not use multiple dispatch, and even if types specified
are term-generated. In preparation for the results on equational subtyping we develop the
proof theory of a richer form of equational logic that is suitable for dealing with subtyp-
ing and behavioral equivalence. This gives some insight into question of when our proof
techniques can be make effectively computable, but in general behavioral consequence is
not effectively computable.

1. Introduction

The concept of behavioral subtyping plays a foundational role in the specification and
verification of object-oriented programs. While we and others have investigated model-
theoretic notions of behavioral subtyping [5, 21, 23, 28], model-theoretic techniques do not
lead directly to effectively computable ways to prove correct behavioral subtyping. For
this purpose one must look to proof-theoretic techniques. The main motivation for our
study is to bridge the gap between more practical proof-theoretic work and our sound and
complete model-theoretic characterization of behavioral subtyping (for immutable types
with deterministic methods that may use multiple dispatch) [23].

In this paper we work with equational specifications and a particular technique for ver-
ifying correct behavioral subtyping. Equational logic [11] is at the heart of many proof-
theoretic techniques for reasoning about programs. Even in a Hoare logic, one often relies
on equational reasoning to prove various facts about expressions. However we must deal
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2 GARY T. LEAVENS AND DON PIGOZZI

with a more complex form of equational logic that is suitable for reasoning about both
subtyping and behavioral equivalence.

We consider equational specifications that are augmented, for each type, by a speci-
fication of how to coerce an object of that type to each of its direct supertypes. Such
a formal system of coercion terms is similar to the system of implicit coercion functions
considered in Reynolds’s category-sorted algebras [32]. These coercions are also present
in the specifications that other authors have used in their work on behavioral subtyping
[2, 5, 10, 26].

In our work, the coercions take the from of equations, and we show that if all the coercion
equations are behavioral consequences of the given equational specification, then the given
specification is necessarily correctly behaviorally subtyped. This is done by applying the
algebraic soundness theorem from our work on the model theory of behavioral subtyping
[23].

We also investigate the limitations of this technique. In particular, we give an equational
specification of an ADT that is correctly behaviorally subtyped, but for which no system
of coercion terms exists. Since we allow multiple dispatch and models that are not term-
generated, we also discuss how our results are affected by more restrictive conditions on
our specification and its models.

The basis of the theory of correct behavioral subtyping is behavioral equivalence. A
systematic development of a part of the theory of behavioral equivalence, in the context
of correct subtyping, is given in [22]. A more extensive development that does not involve
subtyping can be found in a series of papers by Goguen and Malcolm on hidden algebras;
see [15, 16] and the many papers referenced there.

To reason effectively about behavioral equivalence and subtyping, we introduce the con-
cept of behavioral consequence. Coercion allows us to reduce the problem of correct be-
havioral subtyping to one of verifying that certain equations are behavioral consequences
of the given specification. While the completeness and soundness theorems for equational
logic show that ordinary equational consequence is effectively computable, behavioral con-
sequence is in general not [6]. The first part of the paper is devoted to developing a proof
theory for behavioral consequence that in many practical situations does give an effec-
tive method for verifying behavioral consequence, and hence that a given specification is
correctly behaviorally subtyped.

The proof theory of behavioral consequence is based on coinduction. Various methods of
applying coinduction in a reasonably efficient way have been investigated in the literature
(see for example [15, 33, 34]). We focus in this paper on one such method that uses the
notion of a local context. One of the main results is the closure of behavioral consequence
under equational consequence, i.e., that any equation that is provable in ordinary equational
logic from a set of behavioral consequences of an equational specification is itself a behavioral
consequence. This turns out to be an effective method for proving correct behavioral
subtyping in many cases where all the equations associated with a given set of coercion
functions can be proved by the methods of equational logic from just a few judiciously
chosen ones which have been shown to be behavioral consequences directly by coinduction.
An example of this kind is given in some detail. It is part of a running example that includes
the equational specification of an object-oriented type of geometric points with its subtype,
colored points. We return to this example several times throughout the paper to illustrate
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the more important definitions and results as they are obtained. In particular we verify by
means of coercions that the specification is correctly behaviorally subtyped.

In the last part of the paper we discuss some further aspects of this work. For example we
show why, for the study of correct behavioral subtyping, order-sorted algebras do not form
an appropriate basis for the model theory. There is also a discussion of related work and
conclusions. The paper ends with an appendix on the model theory of correct behavioral
subtyping.

2. Equational Logic with Subtyping

In this section, we specify the equational logic that forms the basis of the logic of behav-
ioral equivalence developed in the next section. The novel feature is the way subtyping is
incorporated in the logic.

2.1. Signatures with Subtyping. We use essentially the same notion of a signature
with subtyping from our earlier work [21, 23], which is itself adapted from the signatures
Reynolds uses [32]. However under the influence of the “hidden algebra school” [15, 16] the
separation into visible and hidden parts is made more explicit.

Definition 2.1. A visible data signature Ψ = 〈VIS,OpVIS,AdmisTypeVIS〉 consists of:
(i) A nonempty set VIS of visible types.
(ii) A nonempty set OpVIS of visible operation symbols.
(iii) A function AdmisTypeVIS from OpVIS to VIS+, the set of finite nonempty sequences

of element of VIS. For each g ∈ OpVIS, AdmisType(g) = (V1, . . . , Vn, V ), which is
normally written in the form V1, . . . , Vn → V , is called the admissible type of g.
Moreover, (V1, . . . , Vn) is called the admissible type domain and V the admissible
result type of g. �

Definition 2.2. A hidden signature with subtyping Σ = 〈Ψ,HID,≤,OpHID,ResTypeHID〉
consists of:

(i) A visible signature Ψ = 〈VIS,OpVIS,AdmisTypeVIS〉.
(ii) A nonempty set HID of hidden types disjoint from VIS. By a type we mean either a

visible or hidden type, and the set of all types is denoted by TYPE; thus TYPE =
VIS ∪HID.

(iii) A subtype relation ≤, which is a preorder on HID. If S ≤ T , then S is a subtype
of T , and T is a supertype of S. ≤ is extended to a preordering of all of TYPE by
setting V ≤ V for each V ∈ VIS; thus ≤ is the discrete ordering on VIS.

(iv) An N-indexed family OpHID = 〈OpHID,n : n ∈ N〉 of hidden operation symbols,
where N is the set of natural numbers {0, 1, 2, . . . }. OpHID,n is the set of hidden
operation symbols of rank n; it is assumed to be disjoint from OpVIS for each n.

(v) A N-indexed family ResTypeHID = 〈ResTypeHID,n : n ∈ N〉 of partial functions
ResTypeHID,n : Opn × TYPEn → TYPE for each n ∈ N with the following two
properties.
(a) If ResTypeHID,n(g, S1, . . . , Sn) = S, then at least one of S1, . . . , Sn, S is a hid-

den type.
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(b) Each of the functions ResTypeHID,n : OpHID,n × TYPEn → TYPE is mono-
tonic in its second argument in the sense of the following subtype condition:
(S1, . . . , Sn) ≤ (T1, . . . , Tn) implies

ResType(g, S1, . . . , Sn) ≤ ResType(g, T1, . . . , Tn).

It is implicit in the subtype condition that if ResTypeHID,n(g, T1, . . . , Tn) is
defined, then so is ResTypeHID,n(g, S1, . . . , Sn) if (S1, . . . , Sn) ≤ (T1, . . . , Tn).

�

ResTypeHID gives the nominal result type for a given hidden operation and sequence of
argument types.

The hidden operations of a signature are polymorphic in the sense that each may have
multiple admissible types. A type such as T1, . . . , Tn → T is called an admissible type of
g if ResTypeHID,n(g, T1, . . . , Tn) = T ; in this case (T1, . . . , Tn) is said to be an admissible
type domain, and T an admissible result type of g. The defining properties of ResTypeHID

and the subtyping relation guarantee that, if T1, . . . , Tn → T and S1, . . . , Sn → S are two
admissible types of a hidden operation g and T is visible, then so is S and in fact they are
equal. Similarly for argument types: for each i ≤ n, if Ti is visible, then so is Si and they
are equal.

The combined set of visible and hidden operation symbols is denoted by Op and the range
of ResTypeHID is extended to include visible operations. Thus, for each visible g ∈ Opn,
ResSort(g, T1, . . . , Tn) is defined and equal to T if and only if T1, . . . , Tn → T is the (unique)
admissible type of g.

The hidden operations are also called methods; these are partitioned into attributes, or
deconstructors, whose admissible result type is visible (and hence unique), and construc-
tors, whose admissible result types are all hidden. The methods are also partitioned into
unimethods, those whose admissible type domains contain only one hidden type, and the
multimethods, whose admissible type domains contain two or more hidden types. (As we
have observed, the definition of a signature with subtyping guarantees all admissible type
domains contain the same number of hidden types).

We assume a fixed countably infinite universe Var of (untyped) variable symbols. The
set TmΣ of all (untyped) Σ-terms are defined inductively in the usual way: Var ⊆ TmΣ

and, for every n ∈ N, g ∈ Opn, and t1, . . . , tn ∈ TmΣ , g(t1, . . . , tn) ∈ TmΣ ; in particular,
g ∈ TmΣ for every g ∈ Op0. A term that is not a variable is completely visible if every
operation occurring in it is visible. It is partially hidden otherwise, i.e., if it contains an
occurrence of at least one hidden operation.

Example 2.3. As an example of a signature with subtyping, let Σpt be a hidden signature
with the three types: int, Pt, and CPt. The idea behind this example is that the type Pt
represents two-dimensional points, and the type CPt represents two-dimensional points that
also have a color. In this example, the only visible type is int, and the subtype relation is
such that T ≤ T , for each type T , and also CPt ≤ Pt. The operations and their admissible
types for Σpt are given in Figure 1. The operations on points also work on colored points,
as they must according to the subtype condition. For example, the operation x can be
used to extract the x coordinate from a point or a colored point. Note that when one of
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Visible operations
0 : int, 1 : int,
succ : int→ int, pred : int→ int,
add : int, int→ int, sub : int, int→ int.

Unimethod attributes
x : Pt→ int, y : Pt→ int,
x : CPt→ int, y : CPt→ int,
color : CPt→ int.

Multimethod attributes
xdiff : Pt, Pt→ int, xdiff : CPt, Pt→ int,
xdiff : Pt, CPt→ int, xdiff : CPt, CPt→ int.

Unimethod constructors
PtOrigin :→ Pt, CPtOrigin :→ Cpt,
movex : Pt, int→ Pt, movey : Pt, int→ Pt,
movex : CPt, int→ CPt, movey : CPt, int→ CPt,
changec : CPt, int→ CPt,

Figure 1. Operations and their admissible types for Σpt.

the operations movex or movey is applied to an object of type CPt, it is required by the
signature to return a CPt object. �

A signature with subtyping is capable of modeling “multimethods.” In an object-oriented
(OO) programming language with multimethods, a call to an operation can be dispatched
to a method body based on the types of more than one of its arguments. An example
is the operation xdiff in the signature Σpt above. Many OO languages do not support
multimethods, however, so it is interesting to study more restricted forms of signatures.
Many of these lie within the scope of the following definition. A hidden signature with
subtyping, Σ, has only unary methods, or is a unimethod signature, if every every method
is a unimethod, i.e., if, for every n ∈ N and every g ∈ Opn, if T1, . . . , Tn is an admissible
type domain of g, then Ti /∈ VIS for at most one 1 ≤ i ≤ n.

The signature Σpt above is not a unimethod signature. However, if one deletes the
multimethod xdiff, then it becomes one. Note that movex, movey, add, and sub are unary
methods, because int is a visible type.

In the general development below we assume a fixed signature with subtyping, Σ.

2.2. Typing. An element (t, T ) of TmΣ ×TYPE is called a typing expression or simply a
typing and is written t:T . A finite sequence of typing expressions 〈x1:T1, . . . , xn:Tn〉 such
that x1, . . . , xn are distinct variables is called a type context. H can also be regarded as a
finite function, where H(xi) = Ti, for 1 ≤ i ≤ n, and {x1, . . . , xn} is the domain of H. The
set of all type contexts is denoted by TCON.

H is a type subcontext of another type context K, and K is a type supercontext of H,
in symbols H ⊆ K, if H is a subsequence of K, equivalently, if H as a function is the
restriction of K to some subset of its domain. Type contexts H and K are disjoint if their
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domains are disjoint and they are consistent if H ∪K is a type context (i.e., H(x) = K(x)
for each variable x common to the domains of H and K.

The following are the typing rules for terms [1, 21, 23].

Σ;H ` x:T, if x:T ∈ H(ident)
Σ;H ` t1:T1, . . . , Σ;H ` tn:Tn

Σ;H ` g(t1, . . . , tn):T
, if ResType(g, T1, . . . , Tn) = T ,(op-call)

A term t is of nominal H-type (or simply of H-type) S in Σ, in symbols Σ;H `nom t:S, if
the typing expression t:S is derivable from Σ and H using the two typing rules: (ident) and
(op-call). If the H-type of a term is defined we say that it is well H-typed. For example,
if Hp,x is 〈p: CPt, x: int〉, then movex(p, 1) is well Hp,x-typed, in fact of Hp,x-type CPt
because Σpt;Hp,x `nom movex(p, 1) : CPt. When we use the expression “t[x1:T1, . . . , xn:Tn]”
synonymously for “t” it is understood that we are assuming that t is well H-typed with
H = 〈x1:T1, . . . , xn:Tn〉. If the nominal H-type of a term is defined, it is easy to see that
it is unique. Moreover, if t is well H-typed, it is well H ′-typed for every type supercontext
H ′ of H, and its nominal H- and H ′-types are the same.

When the type context is irrelevant or understood from context we often say simply that
a term is well typed and speak of its nominal type or even just of its type. Clearly each
subterm of a well typed term is well typed. The typing expression “t:T” is often used
synonymously for “t” under the implicit assumption that t is well typed and that T is its
type. For example, movex(p, 1) is well typed, because Σpt; 〈p : CPt〉 `nom movex(p, 1) : CPt.

If t = t[x1:T1, . . . , xn:Tn], (S1, . . . , Sn) ≤ (T1, . . . , Tn), and t1:S1, . . . , tn:Sn, then the
result of simultaneously substituting ti:Si for xi:Ti in t, for each 1 ≤ i ≤ n, is denoted by
t[t1, . . . , tn].

Lemma 2.4 (Subtype Condition for Terms). Suppose Σ;H `nom t[x1:T1, . . . , xn:Tn] : T ,
H ′ is a type context, and Σ;H ′ `nom ti:Si for i ≤ n. If (S1, . . . , Sn) ≤ (T1, . . . , Tn), then
t[t1, . . . , tn] is well H ′-typed, and if it is of nominal H ′-type S, then S ≤ T .

Proof. By structural induction on t using the subtype condition for operations. �

A term t is said to be of subsumptive H-type S in Σ, in symbols Σ;H `sub t:S, if the
typing expression t:S is derivable from Σ and H using the following rule of (subsumption),
in addition to the rules (ident) and (op-call).

(subsumption)
Σ;H ` t:S
Σ;H ` t:T

, if S ≤ T .

For example, besides its nominal type, movex(CPtOrigin(0), 1) : CPt also has subsump-
tive type Pt. According to the following lemma, whose proof is straightforward, a term has
a subsumptive type if and only if it is well typed, and, moreover, its subsumptive types are
exactly the supertypes of its nominal type.

Lemma 2.5 (Subsumption Lemma). If Σ;H `sub t:S, then t is well H-typed, and if T is
its nominal H-type, then T ≤ S. �

Another way of formulating this lemma is that, in the derivation of a subsumptive H-type
of t, the subsumption rule need only be applied once, and as the last step of the derivation.
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2.3. Algebras.

Definition 2.6. A Σ-algebra A =
〈
A, { gA : g ∈ Op }

〉
consists of the following:

• A TYPE-indexed family of sets A = 〈AT : T ∈ TYPE〉 called the carrier of A.
• A partial function gA:

(⋃
S∈TYPE AS

)n →
⋃

S∈TYPE AS for each n ∈ N and g ∈ Opn,
called the interpretation of g, with the property that, for every admissible type
T1, . . . , Tn → S of g and every (a1, . . . , an) ∈ AT1 × · · · × ATn , gA(a1, . . . , an) is
defined and contained in

⋃
U≤S AU . �

We follow Reynolds [32], in contrast to Goguen and Meseguer [13, 17], in not requiring
AS ⊆ AT when S ≤ T . However Reynolds handles subtyping by means of an implicit
coercion mapping between the domains AS and AT when S ≤ T , and this has essentially
the effect of requiring AS and AT to be disjoint when S 6= T . We take a middle ground.
The domains of distinct types S and T need not be disjoint, nor do they have to be
comparable when S ≤ T , and we do not formally require coercion functions. Note that,
if (a1, . . . , an) ∈ (AT1 × · · · × ATn) ∩ (AS1 × · · · × ASn), then there is no ambiguity in the
value of gA(a1, . . . , an) when T1, . . . , Tn and S1, . . . , Sn are both admissible type domains
of an operation symbol g, since the interpretation of g is global and not localized to the
admissible type domains.

Example 2.7. A Σpt-algebra, PT , is formed as follows. The carrier of the sort int, PTint,
is Z, the set {. . . ,−2,−1, 0, 1, 2, . . .} of integers. For the other sorts, the carrier sets are
PTPt = {〈x, y〉 : x ∈ Z, y ∈ Z} and PTCPt = {〈x, y, c〉 : x ∈ Z, y ∈ Z, c ∈ Z}. The
interpretations of the operations are given in Figure 2. Note that the operations movex and
movey change the color when their argument is of type CPt. �

It is convenient, in some contexts, to consider the more restricted notion of Goguen and
Meseguer’s order-sorted algebras [13, 17]. A Σ-algebra A is called order-sorted if AS ⊆ AT

when S ≤ T . Thus, in order-sorted algebras, carrier sets satisfy the following property:⋃
S≤T AS = AT .
The algebra PT is not order-sorted, since ACPt 6⊆ APt. However, it is possible to trans-

form PT , into an order-sorted algebra by means of a general construction, described below.
Let A =

〈
{AT : T ∈ TYPE}, { gA : g ∈ Op }

〉
be an arbitrary Σ-algebra. For each

T ∈ TYPE let A◦
T =

⋃
S≤T AS . Note that, because of the subtype condition, if T1, . . . , Tn

is an admissible type domain of g ∈ Opn, then gA is defined on A◦
T1
× · · · × A◦

Tn
. Thus〈

{A◦
T : T ∈ TYPE}, { gA : g ∈ Op }

〉
is a Σ-algebra that we denote by A◦.1 Clearly A◦

is order-sorted; it is called the order-sorted transform of A. For example, by the above
construction the Σpt-algebra PT ◦ is order-sorted.

Definition 2.8 (dynamic type, virtual type). An element of AT is said to be of dynamic
type T . An element of A◦

T is said to be of virtual type T ; note that each element of dynamic
type S is of virtual type T for every T ≥ S. �

1In our earlier work [23], we used the notation ÂT for what is here defined as A◦
T . The reason for the

change of notation is that the corresponding operation on algebras is different from our earlier work. In

[23], Â is not a Σ-algebra, but a Σ̂-algebra, i.e., an algebra whose signature is discrete in that S ≤ T only
if S = T . However, when forming an order-sorted algebra, we do not wish to eliminate subtyping from the
signature.



8 GARY T. LEAVENS AND DON PIGOZZI

0P T = 0
1P T = 1
succP T (a) = a + 1
predP T (a) = a− 1
addP T (a, b) = a + b
subP T (a, b) = a− b

PtOriginP T = 〈0, 0〉
CPtOriginP T = 〈0, 0, 0〉
xP T (〈x, y〉) = x
xP T (〈x, y, c〉) = x
yP T (〈x, y〉) = y
yP T (〈x, y, c〉) = y
colorP T (〈x, y, c〉) = c
xdiffP T (〈x1, y1〉, 〈x2, y2〉) = x1 − x2

xdiffP T (〈x1, y1, c〉, 〈x2, y2〉) = x1 − x2

xdiffP T (〈x1, y1〉, 〈x2, y2, c〉) = x1 − x2

xdiffP T (〈x1, y1, c〉, 〈x2, y2, c〉) = x1 − x2

movexP T (〈x, y〉, a) = 〈x + a, y〉
movexP T (〈x, y, c〉, a) = 〈x + a, y, x〉
moveyP T (〈x, y〉, a) = 〈x, y + a〉
moveyP T (〈x, y, c〉, a) = 〈x, y + a, y〉
changecP T (〈x, y, c〉, d) = 〈x, y, d〉

Figure 2. Definitions of PT ’s operation interpretations.

An algebra A is nominal if, for each n ∈ N, each g ∈ Opn, each admissible type
T1, . . . , Tn → S of g, and all a1, . . . , an ∈ AT1 ×· · ·×ATn , gA(a1, . . . , an) is of dynamic type
S, i.e., gA(a1, . . . , an) ∈ AS .

If A is order-sorted, then every element of virtual type T is also of dynamic type T ; in
fact this property characterizes order-sorted algebras. Thus every order-sorted Σ-algebra
is nominal. However, there are algebras that are nominal but not order-sorted; PT is one
example. It is also easy to construct algebras that are not nominal (and hence also not
order-sorted); for example, if one changes the algebra PT , by making PtOrigin return
〈0, 0, 0〉, which is an element of the carrier set of CPt, then this modified algebra would not
be nominal.

Definition 2.9 (dynamic and virtual environments). Let A be a Σ-algebra, and also let
H = 〈x1:T1, . . . , xn:Tn〉 be a type context. A dynamic (resp. virtual) H-environment in A
is a sequence ā = 〈a1, . . . , an〉 of elements of A such that ai is of dynamic (resp. virtual)
type Ti, for each i ≤ n.2 �

2In our earlier work [23], we called dynamic environments “nominal.”
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Note that every dynamic H-environment is virtual and that the two kinds of environ-
ments coincide just when the algebra is order-sorted. Although virtual environments are
more general, we will be dealing mainly with dynamic environments, and hence the latter is
taken to be the default kind of environment. Thus when we say “H-environment” without
qualification we mean a dynamic H-environment.

A dynamic or virtual H-environment can also be regarded as a finite function from
the domain of H to the corresponding elements in the environment. For example, if
H = 〈x1:T1, . . . , xn:Tn〉 and ā = 〈a1, . . . , an〉 is a dynamic or virtual H-environment,
then ā(xi) = ai.

For each type context H we define the H-nominal Σ-term algebra

TmΣ(H) =
〈
TmΣ(H), { gTmΣ(H) : g ∈ Op }

〉
as follows. For each T ∈ TYPE, TmΣ(H)T is the set of all well H-typed terms of nominal
H-type T . For each g ∈ Opn, each admissible type domain (T1, . . . , Tn) of g, and each
sequence of well H-typed terms t1:T1, . . . , tn:Tn, gTmΣ(H)(t1, . . . , tn) = g(t1, . . . , tn). Thus
the typing rule (op-call) guarantees that TmΣ(H) is a nominal Σ-algebra. By definition
the elements of TmΣ(H) of dynamic type T are exactly the terms of nominal type T . So
the type context H is itself a dynamic H-environment of TmΣ(H), called the canonical
dynamic environment. Again if, H is irrelevant or understood from context, we refer simply
to the nominal Σ-term algebra, or even more simply the Σ-term algebra.

By the subsumption lemma the elements of TmΣ(H) of virtual type S are exactly the
terms of subsumptive type S. Thus TmΣ(H)◦ is called the subsumptive H-term Σ-algebra.

If H = 〈x1:T1, . . . , xn:Tn〉 is a type context, ā = 〈a1, . . . , an〉 is an H-environment, and
t[x1:T1, . . . , xn:Tn]:S is a well H-typed term, we write tA[ā] for the usual meaning of t in
the environment ā of A, i.e., the value it takes in A when each variable xi takes the value
ai. It is inductively defined by xA

i [ā] = ai and g(t1, . . . , tk)A[ā] = gA(tA1 [ā], . . . , tAk [ā]).

Definition 2.10 (satisfaction and validity of typing expressions). Let A be a Σ-algebra
and H = 〈x1:T1, . . . , xn:Tn〉 a type context. A typing expression t:T is satisfied in a
dynamic or virtual H-environment ā of A if tA[ā] is defined (i.e., t is well H-typed) and
tA[ā] ∈ AT . It is H-valid in A if it is satisfied in every dynamic H-environment of A. In
this case we say that A is an H-model of t:T . �

Theorem 2.11 (Type Soundness and Completeness Theorem). Let Σ be a hidden signature
with subtyping and A a Σ-algebra.

(i) A is nominal if and only if, for every type context H, every type T , and every well
typed term t of nominal H-type T , A is an H-model of t:T .

(ii) A is order-sorted if and only if, for every type context H, every type S, and every
well typed term t of subsumptive H-type S, A is an H-model of t:S.

Proof. In both parts the implications from left to right are proved by induction on the
length of type deductions. The implications in the opposite direction are immediate. �

2.4. Equations and Specifications. An equation over Σ is an ordered triple (H, t, t′)
such that H is a type context and t and t′ are well H-typed terms with the same nominal
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H-type, which we refer to as the nominal type, or simply the type, of (H, t, t′).3 We normally
write equations in the form ∀H(t = t′). If the type context is irrelevant or understood from
context we write t = t′ in place of ∀H(t = t′). Since well typed terms have a unique nominal
type in a given signature and type context, the nominal type of each side of the equation
can be derived from the typing rules. By the subsumption lemma, if t and t′ have the same
nominal type then they have the same subsumptive types, and we take these to be the
subsumptive types of the equation ∀H(t = t′).
Definition 2.12 (equational specification).

(i) A visible equational specification is a pair 〈Ψ,EVIS〉 where Ψ is a visible data signa-
ture and EVIS is a set of equations over Ψ .

(ii) A hidden equational specification is a pair 〈Σ,E〉 where Σ is a hidden signature
over the visible data signature Ψ and and E is the disjoint union of a set EVIS

of equations over Ψ and a set EHID of equations over Σ such that each equation
of EHID is of visible type but is not a Ψ -equation, i.e., it contains at least one
hidden operation symbol. We refer to 〈Σ,E〉 a hidden specification over the visible
specification 〈Ψ,EVIS〉, which is called the visible part of 〈Σ,E〉. �

Example 2.13. For example, let Ept consist of the equations over Σpt presented in Figure 3;
then 〈Σpt, Ept〉 is a hidden equational specification whose visible part is given by the first
group of equations in the figure. �

Example 2.14. The equations in Ept do not require that the operations movex and movey
preserve the color of a CPt argument. However, this can be ensured by adding to Ept the
first two additional equations given in Figure 4. This gives the set of equations Ecpt. �

The restriction to equations of visible type in a hidden equational specification is nonstan-
dard but is natural from the perspective of operational semantics. That is, in operational
terms, one views the equations as specifying the output of programs, which indirectly deter-
mine the behavior of the hidden data objects the programs manipulate. One can imagine
that the program executes by taking visible data as input, forming hidden data objects by
means of the constructors, and finally outputting visible data by means of the attributes.
To reflect the fact that one can only observe the visible outputs of program executions, we
restrict the underlying equational logic so that equality comparisons between hidden data
is not allowed. The only notion of equality appropriate from this perspective is behavioral
equivalence.

The restriction that only equations of visible type are allowed does not guarantee that
an equational specification is consistent, and it does not guarantee that it is a conservative
extension of its visible part. A stronger condition, however, can be used to guarantee
consistency. One such condition is embodied in Goguen and Malcolm’s notion of a local
equation [15]; they prove that if the hidden equations of a specification are local then the
specification is consistent. It can also be shown that it is a conservative extension of its
visible part.

3In the standard formalization of multi-sorted equational logic each variable symbol is assumed to have
an a priori type that never varies, and thus a type context is completely determined by its domain. In the
standard formalization the equation (H, t, t′) would be denoted by ∀X(t = t′) where X is the domain of H.
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for all a : int, b : int, c : int, i : int, p : Pt, p1 : Pt, p2 : Pt,
succ(0) = 1
pred(1) = 0
pred(succ(a)) = a
succ(pred(a)) = a
add(0, a) = a
add(succ(a), b) = succ(add(a, b))
add(pred(a), b) = pred(add(a, b))
sub(a, 0) = a
sub(a, succ(b)) = pred(sub(a, b))
sub(a, pred(b)) = succ(sub(a, b))

(x-PtOrigin) x(PtOrigin) = 0
(y-PtOrigin) y(PtOrigin) = 0
(x-CPtOrigin) x(CPtOrigin) = 0
(y-CPtOrigin) y(CPtOrigin) = 0
(color-CPtOrigin) color(CPtOrigin) = 0

(x-movex ) x(movex(p, i)) = add(x(p), i)
(y-movey) y(movey(p, i)) = add(y(p), i)
(y-movex ) y(movex(p, i)) = y(p)
(x-movey) x(movey(p, i)) = x(p)
(xdiff ) xdiff(p1, p2) = sub(x(p1), x(p2))

Figure 3. The set of equations Ept. Each of these is understood to be an
H-equation where H is the type subcontext obtained from the one given
at top of the figure by restricting to the variables actually occurring in the
equation. For example, the type context of the two equations is empty,
and the type context of the sixth equation is {a: int, b: int}. We label the
equations in the non-visible part for later use.

for all i : int, cp : CPt,
(color-movex ) color(movex(cp, i)) = color(cp)
(color-movey) color(movey(cp, i)) = color(cp)

Figure 4. Equations in Ecpt added to those in Ept. The type context of
each equation is to be understood to be the one given at top of the figure.

2.5. Model Theory. We now relate equations and their algebraic models.

Definition 2.15 (satisfaction and validity of equations). Let A be a Σ-algebra. An equa-
tion ∀H(t = t′) is satisfied in a dynamic or virtual H-environment ā of A if tA[ā] = t′A[ā].
It is valid in A if it is satisfied in every dynamic H-environment of A; we say that A is a
model of ∀H(t = t′) in this event. �

The virtual environments of a Σ-algebra A are exactly the dynamic environments of its
order-sorted transform A◦. Thus an H-equation is satisfied in every virtual H-environment
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movexCP T (〈x, y〉, a) = 〈x + a, y〉
movexCP T (〈x, y, c〉, a) = 〈x + a, y, c〉
moveyCP T (〈x, y〉, a) = 〈x, y + a〉
moveyCP T (〈x, y, c〉, a) = 〈x, y + a, c〉

for all other operations, g 6∈ {movex, movey}, gCP T = gP T .

Figure 5. Definitions of CPT ’s operation interpretations.

of A if it is satisfied by every dynamic H-environment of A◦. Consequently the notion of
the validity of an equation based on virtual environments is subsumed under that of validity
based on dynamic environments only.

For example, PT is a model of the 〈p : Pt, i : int〉-equation, x(movex(p, i)) = add(x(p), i),
since it is true in every 〈p : Pt, i : int〉-environment, in PT , including non-dynamic ones
such as 〈〈18, 47, 342〉, 54〉. Thus this equation is valid in both PT and in PT ◦. However,
equations are not, in general, true in virtual environments even when they hold in all
dynamic environments. That is, an algebra may be a model of an equation without its order-
sorted transform being a model. For example, while PT is a model of the 〈p : Pt〉-equation
movex(p, 0) = p, PT ◦ is not a model of this equation, due to the (intentionally strange)
definition of movex. To see this, consider the non-dynamic environment 〈〈18, 47, 342〉〉,
which binds the variable p : Pt to the colored point 〈18, 47, 342〉; in this environment,
movex(p, 0)P T [〈18, 47, 342〉] = 〈18, 47, 18〉, which is not the same as pP T [〈18, 47, 342〉] =
〈18, 47, 342〉. On the other hand, both the algebra CPT , whose carrier sets are the same as
those in PT and whose operations are described in Figure 5, and its order-sorted transform
are models of this equation.

Definition 2.16 (models; nominal and order-sorted models). Let 〈Σ, E〉 be an equational
specification. The class of models of 〈Σ,E〉, i.e., the class of all Σ-algebras that are models
of every equation in E is denoted by Mod(E). The class of all nominal (resp. order-sorted)
models of E, i.e., nominal (resp. order-sorted) algebras that are models of 〈Σ, E〉, is denoted
by Modnom(E) (resp. Modord(E)). �

The class Mod(E) of all models of 〈Σ,E〉 is called the loose semantics of 〈Σ, E〉.
We note that, in general, Modord(E) ⊆ Modnom(E). For example, PT is a model of

〈Σpt, Ept〉; hence PT is in Mod(Ept). Since PT is both a nominal Σpt-algebra and a model
of each equation in Ept, PT is a nominal model of 〈Σpt, Ept〉, i.e., PT ∈ Modnom(Ept).
But PT is not a model of the additional equations in Ecpt; indeed both of the equations
in Figure 4 are invalid in PT . Therefore PT is not a model of 〈Σpt, Ecpt〉. On the other
hand, CPT is a model of 〈Σpt, Ecpt〉; since CPT is also nominal it is also a nominal model
of 〈Σpt, Ecpt〉; similarly, CPT ◦ is also a nominal model of 〈Σpt, Ecpt〉.

We could have considered also a notion of virtual model, where the equations of E are
required to be satisfied in all virtual environments as well as all dynamic ones. But it is
easy to see that an algebra is a virtual model in this sense if and only if its order-sorted
transform is a model in the sense of Def. 2.16 so the notion is not needed; cf. the remarks
following Def. 2.15.
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Definition 2.17 (nominal and order-sorted consequence). An H-equation ∀H(t = t′) over
Σ is a nominal (resp. order-sorted) consequence of 〈Σ,E〉, in symbols E �nom ∀H(t = t′)
(resp. E �ord ∀H(t = t′)), if it is valid in every nominal (resp. order-sorted) model of
〈Σ, E〉. �

In the theory of specifications additional extra-equational conditions may be imposed in
order to restrict the class of models. One natural restriction is to require all models to be
term-generated; that is one could require that every element of the carrier of a model can
be obtained by applying operations, starting from constants. If in addition the model is
required to be initial in the category of all models, then the class of restricted models would
contain only one algebra up to isomorphism, making it “categorical” [27, 29].

Because OO programming languages contain “abstract” types that are not term-generated,
we do not restrict our study to term-generated models. However, a programming language
will have a fixed set of built-in types, which correspond to our notion of visible types,
and the class of reducts of the restricted models to these types, the visible reducts, will be
categorical; this implies that the class of restricted models of the visible part of a hidden
specification will be categorical. We refer to the class of restricted models of a hidden
equational specification as VIS-categorical when we impose this restriction that the class of
reducts of the visible part of the signature be term-generated and initial. Without any real
loss of generality we will assume that, if the class of restricted models is VIS-categorical,
then the visible reduct is fixed; that is, for every pair of restricted models, the visible reducts
are the same. This so-called fixed data assumption is incorporated into the definition of a
hidden specification in [16, 15], but is relaxed in some of the subsequent work on hidden
algebras, e.g., [6, 34].

2.6. Proof Theory. The formal proof system given in Figure 6 is essentially the one given
in Ehrig and Mahr’s book [11, p. 111] appropriately modified to handle subtyping. In their
book every variable has a preassigned type that is fixed at the beginning and consequently
sets of variables play the role of type contexts; this accounts for most of the difference
between our equational logic and that of Ehrig and Mahr.

The following two type-context-modifying rules, which are often taken as part of the
formalism, are derivable from (invar) and will be used in the sequel.

(abstr)
E ` ∀H ′(t = t′)
E ` ∀H(t = t′)

, where H ′ ⊆ H

(concr)
E ` ∀H ′(t = t′)
E ` ∀H(t = t′)

,
where H = H ′ \ {y:T}, y does not occur in t or t′,
and T is nominally nonvacuous in H ′

A type T is said to be nominally (resp. subsumptively) vacuous in a type context H if
TmΣ(H)T = ∅ (resp. TmΣ(H)◦T = ∅).

Definition 2.18. Let 〈Σ, E〉 be an equational specification. An equation over Σ, ∀H(t =
t′), is nominally (resp. subsumptively) equationally provable from E, in symbols E `nom

∀H(t = t′) (resp. E `sub ∀H(t = t′)), if there is a finite sequence of equations over Σ
terminating in ∀H(t = t′) such that each equation is either in E or is directly derivable
from preceding equations in the sequence by one of the inference rules in Figure 6 using
the nominal (resp. subsumptive) forms of (cong) and (invar). �
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(axiom) E ` ∀H(t = t′), where ∀H(t = t′) ∈ E

(refl) E ` ∀H(t = t)

(sym)
E ` ∀H(t = t′)
E ` ∀H(t′ = t)

(trans)
E ` ∀H(t = t′), E ` ∀H(t′ = t′′)

E ` ∀H(t = t′′)

(cong)nom
E ` ∀H(t1 = t′1), . . . , E ` ∀H(tn = t′n)
E ` ∀H(g(t1, . . . , tn) = g(t′1, . . . , t′n))

,

where ∀H(t1 = t′1), . . . ,∀H(tn = t′n) are of nominal types
T1, . . . , Tn, and T1, . . . , Tn is an admissible domain of g

(cong)sub
E ` ∀H(t1 = t′1), . . . , E ` ∀H(tn = t′n)
E ` ∀H(g(t1, . . . , tn) = g(t′1, . . . , t′n))

,

where ∀H(t1 = t′1), . . . ,∀H(tn = t′n) are of subsumptive types
T1, . . . , Tn, and T1, . . . , Tn is an admissible domain of g

(invar)nom
E ` ∀H ′(t[x1:T1, . . . , xn:Tn] = t′[x1:T1, . . . , xn:Tn])

E ` ∀H(t[t1, . . . , tn] = t′[t1, . . . , tn])
,

where t1, . . . , tn are of nominal H-types T1, . . . , Tn

(invar)sub
E ` ∀H ′(t[x1:T1, . . . , xn:Tn] = t′[x1:T1, . . . , xn:Tn])

E ` ∀H(t[t1, . . . , tn] = t′[t1, . . . , tn])
,

where t1, . . . , tn are of subsumptive H-types T1, . . . , Tn.

Figure 6. Axioms and inference rules for nominal and subsumptive equa-
tional logic with subtyping over a set of equations E. The differences be-
tween the nominal and subsumptive forms of (cong) and (invar) are high-
lighted in boldface.

For example, we have Ept `nom x(movex(CPtOrigin, 1)) = 1.

Theorem 2.19 (Completeness and Soundness Theorem for Equational Logic with Sub-
types). Let 〈Σ,E〉 be an equational specification, and let ∀H(t = t′) be an equation over
Σ.

(i) E �nom ∀H(t = t′) iff E `nom ∀H(t = t′).
(ii) E �ord ∀H(t = t′) iff E `sub ∀H(t = t′).

Proof. (i) ⇐. Assume E `nom ∀H(s = s′) and let A ∈ Modnom(E) and let ā be a dynamic
H-environment of A. We prove ∀H(s = s′) is satisfied in ā by induction on the length of the
derivation of ∀H(s = s′). If ∀H(s = s′) ∈ E this follows from the definition of Modnom(E).
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Suppose ∀H(s = s′) is of the form ∀H(g(t1, . . . , tn) = g(t′1, . . . , t
′
n)) and is obtained from

∀H(t1 = t′1), . . . ,∀H(tn = t′n) of nominal type T1, . . . , Tn, which is an admissible domain of
g, by application of (cong)nom. By the induction hypothesis tAi [ā] = t′Ai [ā] for i ≤ n. Thus
sA[ā] = gA(tA1 [ā], . . . , tAn [ā]) = gA(t′A1 [ā], . . . , t′An [ā]) = s′A[ā].

Suppose now that ∀H(s = s′) is of the form ∀H(t[t1, . . . , tn] = t′[t1, . . . , tn]) and is ob-
tained from ∀H ′(t[x1:T1, . . . , xn:Tn] = t′[x1:T1, . . . , xn:Tn]) by an application of (invar)nom,
where H ′ = 〈x1:T1, . . . , xm:Tn〉 and t1, . . . , tn are nominal H-types T1, . . . , Tn. Let b̄ =
〈tA1 [ā], . . . , tAn [ā]〉 and b̄′ = 〈t′A1 [ā], . . . , t′An [ā]〉. Then b̄ and b̄′ are dynamic H ′-environments,
since A is nominal, and b̄ = b̄′ by the induction hypothesis. So sA[ā] = tA[b̄] = tA[b̄′] =
s′A[ā].

The verifications that ∀H(t = t′) is satisfied in ā when it is obtained using (refl), (sym),
or (trans) are similar.

(ii) ⇐. Assume now that E `sub ∀H(s = s′) and let A ∈ Modord(E) and let ā be a
dynamic H-environment of A. Then the proof is similar to that above with the “nominal”
concepts replaced by the corresponding “subsumptive” ones. The reason the b̄ and b̄′

obtained as above are dynamic H ′-environments, is because in this case A is order-sorted.

(i) ⇒. We prove the contrapositive. Assume E 0nom ∀H(s = s′). We construct a
nominal model of E and an H-environment in which ∀H(s = s′) is not valid. Let Θ =
〈ΘT : T ∈ TYPE 〉 be the sorted binary relation on TmΣ(H) = 〈TmΣ(H)T : T ∈ TYPE 〉
defined by ΘT = { 〈t, t′〉 : E `nom ∀H(t = t′) }. Θ is a equivalence relation by the rules
(refl), (sym), and (trans). To see that Θ is a congruence relation, let g ∈ Opn with
admissible type T1, . . . , Tn → T , and suppose t1, . . . , tn and t′1, . . . , t

′
n are two sequences of

well H-typed terms of nominal type T1, . . . , Tn such that 〈t1, t′1〉 ∈ ΘT1 , . . . , 〈tn, t′n〉 ∈ ΘTn .
Then by definition of Θ, E `nom ∀H(t1 = t′1), . . . , E `nom ∀H(tn = t′n). Thus E `nom

∀H(g(t1, . . . , tn) = g(t′1, . . . , t
′
n)) by (cong)nom. So 〈g(t1, . . . , tn), g(t′1, . . . , t

′
n)〉 ∈ ΘT .

The quotient algebra TmΣ(H)/Θ is nominal since TmΣ(H) is nominal. Let

∀H ′(t[y1:S1, . . . , yn:Sn] = t′[y1:S1, . . . , yn:Sn]) ∈ E,

where H ′ = 〈y1:S1, . . . , yn:Sn〉, and let the equivalence class representatives t1/Θ, . . . , tn/Θ
be of nominal types S1, . . . , Sn in TmΣ(H)/Θ. Then the terms t1, . . . , tn are well H-typed
and of nominal H-type S1, . . . , Sn since TmΣ(H) is nominal. So, by (invar)nom,

tTmΣ(H)/Θ[t1/Θ, . . . , t′n/Θ] = t[t1:T1, . . . , tn:Tn]/Θ

= t′[t1:T1, . . . , tn:Tn]/Θ

= t′TmΣ(H)/Θ[t1/Θ, . . . , tn/Θ].

So ∀H ′(t[t1:T1, . . . , tn:Tn] = t′[t1:T1, . . . , tn:Tn]) ∈ E is valid in TmΣ(H)/Θ and hence
TmΣ(H)/Θ is a nominal model of E.

Let H = 〈x1:T1, . . . , xn:Tn〉 and let H/Θ = 〈x1/Θ, . . . , xn/Θ〉 be the canonical H-
environment of TmΣ(H)/Θ.

sTmΣ(H)/Θ[x1/Θ, . . . , xn/Θ] = s[x1:T1, . . . , xn:Tn]/Θ

6= s′[x1:T1, . . . , xn:Tn]/Θ

= s′TmΣ(H)/Θ[x1/Θ, . . . , xn/Θ],
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where the inequality holds by assumption. So E 2nom ∀H(s = s′).

(ii) ⇒. Assume E 0sub ∀H(s = s′). Let Θ◦ = 〈Θ◦
T : T ∈ TYPE 〉 be the sorted binary

relation on TmΣ(H)◦ = 〈TmΣ(H)◦T : T ∈ TYPE 〉 defined by Θ◦
T = { 〈t, t′〉 : E `sub

∀H(t = t′) }. A verification that ∀H(s = s′) is not valid in TmΣ(H)◦/Θ◦ is obtained from
the one above by making the obvious modifications. �

The completeness and soundness theorem shows that the formal methods of equational
logic alone are adequate for characterizing both the order-sorted and the nominal models
of an equational specification (corresponding respectively to whether or not (subsumption)
is admitted as a typing rule). It is well known, however, that they are not adequate
for those models in which identity coincides with behavioral equivalence and hence inad-
equate for characterizing the correctly behaviorally subtyped models of the specification
(see Section 5). A new equational logic is required with an expanded notion of consequence
[3, 7, 33, 34, 35]. These ideas are developed in the next section.

Before turning to this however, we give an alternative formalization of equational conse-
quence that will prove useful in developing the proof theory of behavioral equivalence.

Definition 2.20. Let E be a set of equations and let Ĕ = { ∀H(t = t′) : ∀H(t′ =
t) ∈ E }. Let H = 〈x1:T1, . . . , xn:Tn〉 be a fixed but arbitrary type context. Define
≡E(H) = 〈≡E(H)T : T ∈ TYPE 〉 to be the TYPE-sorted binary relation on TmΣ(H)
such that, for all H-terms t and t′ of nominal type T , t ≡E(H)T t′ iff there is a Σ-term
r[z:S, x1:T1, . . . , xn:Tn] of type T , with exactly one occurrence of a distinguished variable
z, and an equation ∀K(e[y1:S1, . . . , ym:Sm] = e′[y1:S1, . . . , ym:Sm]) of type S in E ∪ Ĕ
such that

t = r
[
e[u1, . . . , um], x1, . . . , xn

]
and t′ = r

[
e′[u1, . . . , um], x1, . . . , xn

]
,

where ui[x1:T1, . . . , xn:Tn]:Si, for i ≤ n, are arbitrary H-terms.
Define ≡E(H)∗ = 〈≡E(H)∗T : T ∈ TYPE 〉 to be the reflexive and transitive closure of

≡E(H). �

Note that ≡E(H)∗ is symmetric because ≡E(H) is obviously symmetric.

Lemma 2.21 (Alternative Formalization of Equational Deduction). Let 〈Σ, E〉 be an equa-
tional specification and ∀H(t = t′) be an H-equation of type T . Then

E `nom ∀H(t = t′) iff t ≡E(H)∗T t′.

Proof. The proof of the implication from right to left is straightforward and is omitted.
For the implication in the opposite direction we show that t ≡E(H)∗T t′ for every equa-

tion ∀H(t = t′) of type T included in E, and that ≡E(H)∗ is closed under the rules of
equational logic in the sense that the set of equations ∀H(t = t′) such that t ≡E(H)∗T t′,
where T is the type of ∀H(t = t′), is closed under equational deduction. Consider any equa-
tion ∀H(e[x1:T1, . . . , xm:Tm] = e′[x1:T1, . . . , xm:Tm]) in E and let S be its type. Taking
r[z:S, x1:T1, . . . , xm:Tm] to be z:S and ui[x1:T1, . . . , xn:Tn] to be xi:Ti for each i ≤ n we
get

r
[
e[u1, . . . , um], x1, . . . , xn

]
= e and r

[
e′[u1, . . . , um], x1, . . . , xn

]
= e′.

So by definition e ≡E(H)S e′ and hence e ≡E(H)∗S e′.
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The relation ≡E(H)∗ is closed under the rules (refl), (sym), and (trans) by construc-
tion. We now show it is also closed under (cong)nom. For this purpose we first show
that the closure of ≡E(H) under (cong)nom is included in ≡E(H)∗. Let g ∈ Opn and let
T1, . . . , Tn → T be an admissible type of g. Suppose ti ≡E(H)Ti

t′i for i ≤ n. To show
g(t1, . . . , tn) ≡E(H)∗T g(t′1, . . . , t

′
n) it suffices to show that

(1) g(t′1, . . . , t
′
i−1, ti, ti+1, . . . , tn) ≡E(H)T g(t′1, . . . , t

′
i−1, t

′
i, ti+1, . . . , tn)

for each i ≤ n. There is an equation ∀K(e[y1:S1, . . . , ym:Sm] = e′[y1:S1, . . . , ym:Sm]) in
E ∪ Ĕ of type S such that ti = r

[
e[ū], x̄

]
and t′i = r

[
e′[ū], x̄

]
, where ū = u1, . . . , um and

x̄ = x1, . . . , xn. Thus

g(t′1, . . . , t
′
i−1, ti, ti+1, . . . , tn) = g

(
t′1, . . . , t

′
i−1, r

[
e[ū], x̄], ti+1, . . . , tn

)
,

g(t′1, . . . , t
′
i−1, t

′
i, ti+1, . . . , tn) = g

(
t′1, . . . , t

′
i−1, r

[
e′[ū], x̄], ti+1, . . . , tn

)
.

So g(t′1, . . . , t
′
i−1, ti, ti+1, . . . , tn) = s

[
e[ū], x̄] and g(t′1, . . . , t

′
i−1, t

′
i, ti+1, . . . , tn) = s

[
e′[ū], x̄],

where
s[z:Ti, x1:T1, . . . , xn:Tn] = g

(
t′0[x̄], . . . , t′i−1[x̄], z, ti+1[x̄], . . . , tn[x̄]

)
.

So (1) holds.
Suppose now that, g ∈ Opn, T1, . . . , Tn → T is an admissible type of g, and for each

i ≤ n, ti ≡E(H)∗Ti
t′i. Then for each i ≤ n there exist terms s1

i , . . . , s
m
i such that

ti = s1
i ≡E(H)Ti

s2
i ≡E(H)Ti

· · · ≡E(H)Ti
sm−1
i ≡E(H)Ti

sm
i = t′i

(note that he length of the sequences s1
i , . . . , s

m
i can be taken to be the same for all i because

≡E(H)Ti
is reflexive). By the result just established, g(s1

1, . . . , s
1
n) ≡E(H)∗T · · · ≡E(H)∗T

g(sm
1 , . . . , sm

n ). So by transitivity of ≡E(H)∗T , g(t1, . . . , tn) ≡E(H)∗T g(t′1, . . . , t
′
n), as desired.

To show that ≡E(H)∗ is closed under (invar)nom, we first show that ≡E(H) is closed
under (invar)nom. Suppose t[z1:R1, . . . , zp:Rp] ≡E(H ′)R t′[z1:R1, . . . , zp:Rp] for some type
context H ′, and suppose w1, . . . , wp are terms of nominal H-type R1, . . . , Rp. We must show
that t[w1, . . . , wp] ≡E(H)R t′[w1, . . . , wp]. Now, by definition of ≡E(H ′)R, there is a term
r[z:S, z1:R1, . . . , zp:Rp] and an equation ∀K(e[y1:S1, . . . , ym:Sm] = e′[y1:S1, . . . , ym:Sm])
in E ∪ Ĕ of type S such that

t = r
[
e
[
u1[z̄], . . . , um[z̄]

]
, z̄

]
and t′ = r

[
e′

[
u1[z̄], . . . , um[z̄]

]
, z̄

]
,

where z̄ = z1, . . . , zp. Now define vi[x1, . . . , xn] = ui

[
w1[x1, . . . , xn], . . . , wp[x1, . . . , xn]

]
for

every i ≤ m, and consider the term

s[z : S, x1, . . . , xn] = r
[
z : S, w1[x1, . . . , xn], . . . , wp[x1, . . . , xn]

]
.

Thus

t[w1, . . . , wp] = s
[
e[v1, . . . , vm], x1, . . . , xn] and

t′[w1, . . . , wp] = s
[
e′[v1, . . . , vm], x1, . . . , xn],

so by definition of ≡E(H)R, t[w1, . . . , wp] ≡E(H)R t′[w1, . . . , wp].
The closure of ≡E(H)∗ under (invar)nom is an immediate consequence of the closure of

≡E(H). �
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3. The Logic of Behavioral Equivalence

The notion of behavioral equivalence is simple in concept: two hidden objects of the same
type are behaviorally equivalent if any procedure whose parameter is of this type returns the
same visible result when executed with either of the two objects as input. The notion arises
from the alternative view of a data structure as a transition system in which the hidden
objects represent states of the system and the methods that are not attributes induce
transitions between states. (The term “constructors” which we introduced earlier for such
methods is appropriate for the algebraic but not for the transition-system paradigm.) At
a more abstract level the transition-system paradigm can be characterized as coalgebraic
[19, 20, 35] with coinduction as the basis of the corresponding proof theory. (This is in
contrast to the algebraic paradigm where induction forms the basis of the proof theory.)
Behavioral equivalence has proved to be a useful device for importing transition-system and
coalgebraic methods into the algebraic paradigm, and has served as the basis of a formal
theory of subtyping in our earlier work [22, 23].

In the context of logic the basic idea is an old one, going back to the beginnings of
algebraic logic and the Lindenbaum-Tarski process [38]. More recently it has been the
principal feature of abstract algebraic logic (which can also be viewed as coalgebraic logic;
see for instance [4, 8, 30]). In computer science it has also been around for a long time;
see [22] for a systematic development of the non-proof-theoretical part of the theory in
the context of correct subtyping. A more extensive development that includes parts of the
proof theory but not subtyping can be found in the series of papers on hidden algebras; see
[15, 16] and the many papers referenced there.

To reason effectively about behavioral equivalence and subtyping, we introduce the con-
cept of a behavioral consequence—a relation between sets of equations and equations rather
than pairs of hidden objects. The proof theory of behavioral consequence is based on coin-
duction, and various methods of applying coinduction in a reasonably efficient way have
been investigated in the literaure (see for example [15, 33, 34]). We consider one such
method here that uses the notion of a local context. But verifying behavioral consequence
can be a laborious process under the best of circumstances. One of the main things we
prove in this section is the closure of behavioral consequence under nominal equational
consequence; i.e., that any equation that is nominally provable from a set of behavioral
consequences is itself a behavioral consequence. This turns out to be an effective method
for proving correct behavioral subtyping in many cases. It works when all the equations
associated with a given set of coercion functions can be proved by nominal equational logic
from just a few judiciously chosen ones, which then are proved to be behavioral conse-
quences directly by coinduction. An example in this kind is considered in some detail in
the sequel.

As was alluded to in the previous paragraph, the most important application of the
concept of behavioral consequence in this work is to the specification of coercion functions;
correct behavioral subtyping results when the equations for a set of coercion functions are
all behavioral consequences. In short, coinduction gives a sound proof theory for behavioral
consequence, and hence for correct behavioral subtyping via coercion. This is treated in
detail in the next section.
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We begin by giving the definition of behavioral equivalence; it requires an auxiliary
notion, which following Goguen and Malcolm [15] we call context (not to be confused with
a type-context).

Definition 3.1 (Context). Let Σ be a hidden signature and T a type. By a (Σ,T )-context,
we mean a Σ-term of visible type of the form

(2) r[z:T, x1:S1, . . . , xm:Sm],

where z, called the designated variable of the S-context, is distinct from the y1, . . . , ym and
has just one occurrence in r. �

Subtyping does not play a role in the definition of a (Σ,T )-context. Also, we often call
a (Σ, T )-context a “T -context” when the signature Σ is understood.

Definition 3.2 (Behavioral Equivalence). Let Σ be a signature, A a Σ-algebra, and T a
type. Elements a and a′ of A of type T are said to be behaviorally equivalent if, for each
T -context and all (b1, . . . , bm) ∈ AS1 × · · · ×ASm ,

(3) rA[a, b1, . . . , bm] = rA[a′, b1, . . . , bm].

The TYPE-sorted behavioral equivalence relation BE(A) = 〈 BET (A) : T ∈ TYPE 〉 on A
is defined in the obvious way, namely, BET (A) is the set of all behaviorally equivalent pairs
of elements of AT . �

We will write “BE” for “BE(A)” when the algebra A is clear from context. Note that, by
taking r to be the variable z itself, we see that two visible data elements are behaviorally
equivalent iff they are identical.

A context is the formal representation of a procedure that takes an object a of hidden
type T , together with the parameters b1, . . . , bm, as input and, upon execution, outputs the
visible data element rA[a, b1, . . . , bm]. Intuitively, two objects are behaviorally equivalent if
they give the same output for all procedures and all choices of parameters.4

In its most primitive form coinduction amounts to verifying the equalities (3) for all con-
texts r, a potentially infinite set. Many of the methods for effectively managing coinduction
amount to coming up with a relatively small set of contexts that can be used in place of
all of them. We consider one such set now, what Goguen and Malcom call local contexts
[15]. Intuitively, a local context is one that only applies one attribute to the distinguished
context variable.

Definition 3.3. A (Σ, T )-context r[z:T, y1:S1, . . . , ym:Sm] is local if it is of the form

(4) r[z:T, y1:S1, . . . , ym:Sm] = g(h[z, y1, . . . , ym], y1, . . . , ym]),

where g is an attribute and h is a term containing the single occurrence of z in r whose
only non-constant operation symbols are constructors. �

4If the system of parameters is held fixed, we get a related notion of behavioral equivalence localized to
the environment. This local notion of behavioral equivalence relates environments rather than individual
objects and is the one used in our earlier work on the model theory of correct behavioral subtyping [21, 23];
see Appendix A.
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Lemma 3.4. Let A be a Σ-algebra and T a hidden type. Let a, a′ ∈ AT . Then aBE a′ iff
for every local T -context r[z:T, y1:S1, . . . , ym:Sm] and all (b1, . . . , bm) ∈ AS1 × · · · ×ASm,

(5) rA[a, b1, . . . , bm] = rA[a′, b1, . . . , bm].

Proof. The implication from right to left is trivial, since every local context is a priori
a context. For the opposite direction, assume that every local context with arbitrary
choice of parameters returns the same element when evaluated with input a and a′. Let
r[z:T, y1:S1, . . . , ym:Sm] be an arbitrary T -context. Since r is visible and z is hidden, r must
contain at least one operation symbol, and its leading operation symbol must be visible or an
attribute. Let r′[z, y1, . . . , ym] be the smallest subterm of r that includes the lone occurrence
of z, and whose leading operation symbol, say g, is visible or an attribute. Since z is hidden,
g must be an attribute, and r′ must be of the form g[h(z, ȳ), ȳ], where h is a term whose only
non-constant operation symbols are constructors; i.e., r′ is a local context. Moreover, r is of
the form q

[
r′[z, ȳ], ȳ]

]
for some Σ-term q[w, ȳ]. By assumption, for all b̄ ∈ AS1 × · · ·×ASm ,

r′A[a, b̄] = r′A[a′, b̄]. Thus rA[a, b̄] = qA
[
r′A[a, b̄], b̄

]
= qA

[
r′A[a′, b̄], b̄

]
= rA[a′, b̄]. Hence

aBET a′. �

Definition 3.5 (Behavioral Consequence). Let 〈Σ,E〉 be a hidden equational specification
and H a type context. An H-equation ∀H(t = t′) over Σ is a behavioral consequence of E,
in symbols E �beh ∀H(t = t′), if, for every A ∈ Modnom(E) and every H-environment ā of
A, tA[ā] BET t′A[ā], where T is the type of ∀H(t = t′). �

It follows immediately from the definition that �beh is monotonic, i.e., If E �beh F , then
E′ �beh F for every set E′ of equations such that E′ ⊇ E.

Definition 3.6 (Behavioral Provability). Let 〈Σ,E〉 be a hidden equational specification,
and H a type context. An H-equation ∀H(t = t′) of type T over Σ is behaviorally provable
from E, in symbols E `beh ∀H(t = t′), if, for every type context K = 〈y1:S1, . . . , ym:Sm〉
disjoint from H and every T -context r[z:T, y1:S1, . . . , ym:Sm],

E `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym]).

�

The following completeness and soundness theorem is an easy corollary of the definitions
of �beh and `beh.

Theorem 3.7 (Completeness and Soundness Theorem for Behavioral Logic). Let 〈Σ,E〉
be a hidden equational specification and H a type context. Then, for every H-equation
∀H(t = t′),

E �beh ∀H(t = t′) iff E `beh ∀H(t = t′).
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Proof.

E �beh ∀H(t = t′)

iff (by definition of �beh),

for every A ∈ Modnom(E) and every H-environment ā,

tA[ā] BET t′A[ā]

iff (by definition of BE)

for every A ∈ Modnom(E), every H-environment ā,

every type context K, every T -context r[z, ȳ], and every K-environment b̄,

rA
[
tA[ā], b̄

]
= rA

[
t′A[ā], b̄

]
iff (by definition of �nom)

for every type context K and every T -context r[z, ȳ],

E �nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym])

iff (by completeness and soundness theorem of equational logic)

for every type context K and every T -context r[z, ȳ],

E `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym])

iff (by definition of `beh)

E `beh ∀H(t = t′).

�

Thus, in the sequel we use �beh and `beh interchangeably, often referring to the latter as
“behavioral consequence”.

Corollary 3.8. Let 〈Σ, E〉 be a hidden equational specification and ∀H(t = t′) an equation
over Σ. Then E `beh ∀H(t = t′) iff, for every type context K = 〈y1:S1, . . . , ym:Sm〉
disjoint from H and every local T -context r[z:T, y1:S1, . . . , ym:Sm],

E `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym]).

Proof. It suffices to observe that, if ∀H(t = t′) is of visible type, all the equivalences of the
preceding proof continue to hold when r is restricted to local contexts. In this case the
second equivalence is justified by Lem. 3.4. �

Local contexts can be an effective tool for verifying behavioral provability and hence
behavioral consequence in particular cases.

Example 3.9. Each of the three equations

movex(movex(p, i), j) = movex(p, add(i, j))
movey(movey(p, i), j) = movey(p, add(i, j))
movex(movey(p, i), j) = movey(movex(p, j), i)

is behaviorally provable from Ecp and hence also from Ecpt by the monotonicity of `beh.
To verify this for the first equation it suffices by Cor. 3.8 to show both of the following.

E `nom x(h[movex(movex(p, i), j), y1, . . . , ym]) = x(h[movex(p, add(i, j)), y1, . . . , ym]),(6)

E `nom y(h[movex(movex(p, i), j), y1, . . . , ym]) = y(h[movex(p, add(i, j)), y1, . . . , ym])(7)

with
h(z, y1, . . . , ym) = fm(· · · (f2(f1(z, y1), y2) · · · ), ym),
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where f1, . . . , fm is any sequence of movex’s and movey’s. We prove (6) and (7) hold by
induction on the structure of h. If m = 0, i.e., h is a variable, then the two equations take
the form

E `nom x(movex(movex(p, i), j)) = x(movex(p, add(i, j))),

E `nom y(movex(movex(p, i), j)) = y(movex(p, add(i, j))).

We verify the first of them and leave the second to the reader.

x(movex(movex(p, i), j)) =add(x(movex(p, i), j), by axiom (x-movex ) of Ept

=add(add(x(p), i), j), by axiom (x-movex ) of Ept

=add(x(p), add(i, j)), by axioms for integers

=x(movex(p, add(i, j))), by axiom (x-movex ) of Ept.

Assume m > 0, and consider the case fm = movey. Let

h′(z, y1, . . . , ym−1) = fm−1(· · · (f2(f1(z, y1), y2) · · · ), ym−1),

so that h(z, y1, . . . , ym) = movey(h′(z, y1, . . . , ym−1), ym). Then (6) and (7) become

E `nom x(movey(h′[movex(movex(p, i), j), y1, . . . , ym−1], ym))

= x(movey(h′[movex(p, add(i, j)), y1, . . . , ym−1], ym),

E `nom y(movey(h′[movex(movex(p, i), j), y1, . . . , ym−1], ym))

= y(movey(h′[movex(p, add(i, j)), y1, . . . , ym−1], ym)).

We verify the first of them and again leave the second to the reader.

x(movey(h′[movex(movex(p, i), j), y1, . . . , ym−1], ym)

= x(h′[movex(movex(p, i), j), y1, . . . , ym−1], ym), by axiom (x-movey) of Ept

= x(h′[movex(p, add(i, j)), y1, . . . , ym−1], ym), by induction hypothesis

= x(movey(h′[movex(p, add(i, j)), y1, . . . , ym−1], ym)), by axiom (x-movey) of Ept.

This verifies that the equation movex(movex(p, i), j) = movex(p, add(i, j)) is a formal be-
havioral equivalence over Ept. The formal behavioral equivalence of movey(movey(p, i), j) =
movey(p, add(i, j)) and movex(movey(p, i), j) = movey(movex(p, j), i) over Ept can be estab-
lished in a similar way. �

The next theorem gives an alternate proof-theoretic characterization that will be used to
prove the closure of behavioral consequence under nominal equational consequence. Simply
put it says that an equation ∀H(t = t′) is a behavioral consequence of E iff no visible
equation is nominally provable from E together with ∀H(t = t′) that is not provable from
E alone.

Theorem 3.10. Let 〈Σ,E〉 be a hidden equational specification and let F be a set of Σ-
equations. Then the following are equivalent.

(i) For every ∀H(t = t′) ∈ F , E `beh ∀H(t = t′).
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(ii) For all equations ∀K(s = s′) of visible type,

E ∪ F `nom ∀K(s = s′) implies E `nom ∀K(s = s′).

Proof. We first prove that (ii) implies (i). So assume (ii) holds and let ∀H(t = t′)
be an equation in F . We show that E `beh ∀H(t = t′) by verifying the condition
of Defn. 3.6. Let K = 〈y1:S1, . . . , ym:Sm〉 be a type context disjoint from H, and let
r[z:T, y1:S1, . . . , ym:Sm] be a T -context, where T is the type of ∀H(t = t′). By (cong)nom,

E ∪ {∀H(t = t′)} `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym]).

Thus E ∪ F `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym]), and hence by (ii),

E `nom ∀(H ∪K)(r[t, y1, . . . , ym] = r[t′, y1, . . . , ym]).

So, by Defn. 3.6, E `beh ∀H(t = t′) for each ∀H(t = t′) ∈ F , i.e., (i) holds.

Now assume (i) holds. Let ∀K(s = s′) be an equation of visible type V such that E ∪
F `nom ∀K(s = s′). We can assume without loss of generality that K = 〈y1:S1, . . . , ym:Sm〉
is disjoint from H = 〈x1:T1, . . . , xm:Tm〉. By Lem. 2.21, s ≡E∪F (K)∗V s′. Thus there is a
sequence s1, . . . , sn of K-terms of type V such that

s = s1 ≡E∪F (K)V s2 ≡E∪F (K)V · · · ≡E∪F (K)V sn−1 ≡E∪F (K)V sn = s′.

For each i < n we have either si ≡E(K)V si+1 or

(8) si ≡{∀H(t=t′)}(K)
V

si+1 for some ∀H(t[x1, . . . , xn] = t′[x1, . . . , xn]) ∈ F .

In the latter case, by definition of ≡{∀H(t=t′)}(K)
V

, there is a term r[z:T, y1, . . . , ym] and
K-terms u1, . . . , un such that either

si = r
[
t[u1, . . . , un], y1, . . . , ym

]
and si+1 = r′

[
t′[u1, . . . , un], y1, . . . , ym

]
,

or the same equalities hold with the “t” and “t′” interchanged. r[z:T, y1, . . . , ym] is of the
same visible type V as all the sj and hence a T -context. So, because of the assumption (i),
we have by Defn. 3.6 that

E `nom ∀(H ∪K)(r
[
t[x1, . . . , xn], y1, . . . , ym

]
= r

[
t′[x1, . . . , xn], y1, . . . , ym

]
).

Hence E `nom ∀K(si = si−1) by an application of (invar)nom. So in fact we have si ≡E(K)V
si+1 for each i such that (8) holds. Thus s ≡E(K)∗V s′, and hence E `nom ∀K(s = s′) by
Lem. 2.21. We conclude that E `beh F , and hence that (ii) holds. �

Corollary 3.11 (Closure of Behavioral Consequence under Equational Consequence). Let
〈Σ, E〉 be a specification and let F ∪{∀H(t = t′)} be a set of Σ-equations. If E `beh F and
E ∪ F `nom ∀H(t = t′), then E `beh ∀H(t = t′).

Proof. Assume E `beh F and E∪F `nom ∀H(t = t′). In order to show that E `beh ∀H(t =
t′) it suffices by Thm. 3.10 to show that, for every equation ∀K(s = s′) of visible type,

E ∪ {∀H(t = t′)} `nom ∀K(s = s′) implies E `beh ∀K(s = s′).

Assume E ∪ {∀H(t = t′)} `nom ∀K(s = s′). Then, since E ∪ F `nom ∀H(t = t′), we have
E ∪ F `nom ∀K(s = s′) by the transitivity of `nom. Thus, since E `beh F by assumption,
we have by Thm. 3.10 that E `nom ∀K(s = s′). Hence E `beh ∀H(t = t′). �
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Example 3.12. Let F3 be the set of the three equations of Example 3.9. We showed in
example 3.9 that Ept `beh F3 and Ecpt `beh F3. Hence any equation nominally provable
from Ept ∪F3 is a behavioral consequence of Ept, and the same is true with “Ept” replaced
by “Ecpt”. This observation will prove to be useful in the next section in proving that
〈Σpt, Ecpt〉 is correctly behaviorally subtyped. �

As another immediate corollary of Theorem 3.10 we get that the behavioral consequence
relation is coinductive in the sense that its complement is inductive (relative to the com-
plement of the of the visible equational specification).

Corollary 3.13. Let 〈Σ,E〉 be an equational specification. Then, for every Σ-equation
∀H(t = t′), E 0beh ∀H(t = t′) iff there exists a visible equation ∀K(s = s′) such that

E ∪ {∀H(t = t′)} `nom ∀K(s = s′) and E 0nom ∀K(s = s′). �

Note that if `nom is recursively enumerable (RE), in particular, if E is finite, then `beh is
at level

∏0
2 in the arithmetical hierarchy. It is shown in [6] that there are finite equational

specifications such that `beh is
∏0

2-complete. But note also that, if the visible part of `nom

is recursive, then `beh is co-RE.
It will be useful when studying the role of coercion in verifying correct behavioral subtyp-

ing to have an analogue for behavioral consequence of the behavioral equivalence relation
between the elements of an Σ-algebra.

Definition 3.14 (Formal Behavioral Equivalence Relation). Let 〈Σ, E〉 be an equational
specification and let A be a Σ-algebra. By the formal behavioral equivalence relation over
E on A we mean the sorted binary relation

FB(E,A) = 〈 FB(E,A)T : T ∈ TYPE 〉,
where, for each type T , FB(E,A)T is the set of all pairs 〈tA[ā], t′A[ā]〉 such that H is a
type context, ā is an H-environment in A, and ∀H(t = t′) is an equation of type T such
that E `beh ∀H(t = t′). �

As in the case of behavioral equivalence we write “FB(E)” in place of “FB(E,A)” when
the algebra A is understood.

As an immediate consequence of the definition we have that, for every model A of E,
FB(E,A) ⊆ BE(A). It is easy to find examples where the inclusion is proper.

4. Equational Specifications with Coercions

In this section we define coercion systems and relate them to specifications. Coercions
are specified by their actions on variables, and thus are an effective way to equationally
define coercion functions. The next section will show that a specification with coercions
automatically has correct behavioral subtyping.

Let Σ be a signature with subtyping. By a pre-coercion system for Σ we mean a sorted
set of Σ-terms { cS,T [xS :S] : S, T ∈ TYPE, S ≤ T, and Σ; 〈xS :S〉 ` cS,T [xS :S]:T } such
that for each T ∈ VIS, cT,T [xT :T ] is lexically equal to xT . For brevity we usually write
{ cS,T } for a pre-coercion system.
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Example 4.1. We define a pre-coercion system for Σpt, Cpt = {cS,T }, as follows.

cint,int[xint: int] = xint

cPt,Pt[xPt: Pt] = movey(movex(PtOrigin, x(xPt)), y(xPt))
cCPt,Pt[xCPt: CPt] = movey(movex(PtOrigin, x(xCPt)), y(xCPt))

cCPt,CPt[xCPt: CPt] = movey(movex(changec(CPtOrigin, color(xCPt)), x(xCPt)), y(xCPt))

Definition 4.2. Let 〈Σ, E〉 be an equational specification and let C = { cS,T } be a pre-
coercion system.

(i) Then C is a coercion system for 〈Σ,E〉 if, for every n ∈ N, every g ∈ Opn with
admissible type T1, . . . , Tn → T , and for all (S1, . . . , Sn) ≤ (T1, . . . , Tn),

(coer-fbeh) E `beh ∀H(g
(
cS1,T1 [y1], . . . , cSn,Tn [yn]

)
= cS,T [g(y1, . . . , yn)]),

where S = ResType(g, S1, . . . , Sn) and H = 〈y1:S1, . . . , yn:Sn〉.
(ii) We say that 〈Σ,E,C〉 is an equational specification with coercions if 〈Σ,E〉 is an

equational specification and C is a coercion system for 〈Σ,E〉. �

Example 4.3. We show that the pre-coercion system of Example 4.1, Cpt, is not a coer-
cion system for 〈Σpt, Ept〉, and thus 〈Σpt, Ept, Cpt〉 is not an equational specification with
coercions. For this purpose we show that one of the coercion equations, viz., the following
〈cp: CPt, i: int〉-equation, fails to be a formal behavioral equivalence over Ept:

movex(cCPt,CPt[cp], cint,int[i]) = cCPt,CPt[movex(cp, i)]

In view of Def 3.6 it suffices to show that the following equation

(fails-in-pt) color
(
movex(cCPt,CPt[cp], cint,int[i])

)
= color

(
cCPt,CPt[movex(cp, i)]

)
fails to be a nominal equational consequence of Ept, and for this purpose we show that the
〈Σpt, Ept〉-equation (fails-in-pt) is invalid in the model PT of Ept. To see this consider the
〈cp: CPt, i: int〉-environment 〈〈3, 4, 5〉, 6〉; in this environment we can calculate as follows
for the left-hand side of equation (fails-in-pt). It is convenient to present the calculation in
the style of Dijkstra and Gries.

color
(
movex(cCPt,CPt[cp], cint,int[i])

)P T [〈3, 4, 5〉, 6]
= 〈by definition of the coercions〉

color
(
movex(movey(movex(changec(CPtOrigin, color(cp)), x(cp)), y(cp))),i)

)P T

[〈3, 4, 5〉, 6]
= 〈by definition of evaluation〉

colorP T
(
movexP T (moveyP T (movexP T (changecP T (CPtOriginP T , colorP T (〈3, 4, 5〉)),

xP T (〈3, 4, 5〉)), yP T (〈3, 4, 5〉)), 6)
)

= 〈by definition of color, x, and y in PT 〉
colorP T

(
movexP T (moveyP T (movexP T (changecP T (CPtOriginP T , 5), 3), 4), 6)

)
= 〈by definition of CPtOrigin and changec in PT 〉

colorP T
(
movexP T (moveyP T (movexP T (〈0, 0, 5〉), 3), 4), 6)

)
= 〈by definition of movex in PT 〉

colorP T
(
movexP T (moveyP T (〈3, 0, 0〉, 4), 6)

)
= 〈by definition of movey in PT 〉

colorP T
(
movexP T (〈3, 4, 0〉, 6)

)
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= 〈by definition of movex in PT 〉
colorP T

(
〈9, 4, 3〉

)
= 〈by definition of color in PT 〉

3
However, the result obtained above is different than that for the right-hand side of

equation (fails-in-pt) in the same environment, as the following calculation shows.
color

(
cCPt,CPt[movex(cp, i)]P T [〈3, 4, 5〉, 6]

)
= 〈by definition of cCPt,CPt[xCPt: CPt]〉

color
(
movey(movex(changec(CPtOrigin, color(movex(cp, i))), x(movex(cp, i))),

y(movex(cp, i)))P T [〈3, 4, 5〉, 6]
)

= 〈by definition of evaluation〉
colorP T

(
moveyP T (movexP T (changecP T (CPtOriginP T , colorP T (movexP T (〈3, 4, 5〉, 6))),

xP T (movexP T (〈3, 4, 5〉, 6))), yP T (movexP T (〈3, 4, 5〉, 6)))
)

= 〈by definition of movex in PT 〉
colorP T

(
moveyP T (movexP T (changecP T (CPtOriginP T , colorP T (〈9, 4, 3〉),

xP T (〈9, 4, 3〉), yP T (〈9, 4, 3〉)
)

= 〈by definition of color, x, and y in PT 〉
colorP T

(
moveyP T (movexP T (changecP T (CPtOriginP T , 3), 9), 4)

)
= 〈by definition of CPtOrigin and changec in PT 〉

colorP T
(
moveyP T (movexP T (〈0, 0, 3〉, 9), 4)

)
= 〈by definition of movex in PT 〉

colorP T
(
moveyP T (〈9, 0, 0〉, 4)

)
= 〈by definition of movey in PT 〉

colorP T (〈9, 4, 0〉)
= 〈by by definition of color in PT 〉

0 �

Example 4.4. On the other hand, the pre-coercion system of Example 4.1, Cpt, is a
coercion system for 〈Σpt, Ecpt〉, and hence 〈Σpt, Ecpt, Cpt〉 is an equational specification with
coercions. Because the coercion cint,int[xint] is lexically equal to xint, all the equations of
the form (coer-fbeh) that involve only visible operations are lexical identities. Thus it
suffices to consider only operations in the signature that have admissible types that take
arguments of the non-visible types Pt and CPt and to show that the associated equations
(coer-fbeh) are formal behavioral equivalences over Ecpt. Thus, in view of Cor. 3.11 it
suffices to show that each equation in Figure 7 is a nominal equational consequence of Ecpt

with the three formal behavioral equivalences of Example 3.9 adjoined.
The first six formal behavioral equivalences in Figure 7, for the operations x and y, all

have similar proofs. The following proof for the second of these is representative.



EQUATIONAL REASONING WITH SUBTYPES 27

for all p: Pt, p1: Pt, p2: Pt, cp: CPt, cp1: CPt, cp2: CPt, and i: int:

x(cPt,Pt[p]) = cint,int[x(p)]
x(cCPt,Pt[cp]) = cint,int[x(cp)]
x(cCPt,CPt[cp]) = cint,int[x(cp)]
y(cPt,Pt[p]) = cint,int[y(p)]
y(cCPt,Pt[cp]) = cint,int[y(cp)]
y(cCPt,CPt[cp]) = cint,int[y(cp)]
movex(cPt,Pt[p], cint,int[i]) = cPt,Pt[movex(p, i)]
movex(cCPt,Pt[cp], cint,int[i]) = cPt,Pt[movex(cp, i)]
movex(cCPt,CPt[cp], cint,int[i]) = cCPt,CPt[movex(cp, i)]
movey(cPt,Pt[p], cint,int[i]) = cPt,Pt[movey(p, i)]
movey(cCPt,Pt[cp], cint,int[i]) = cPt,Pt[movey(cp, i)]
movey(cCPt,CPt[cp], cint,int[i]) = cCPt,CPt[movey(cp, i)]
xdiff(cPt,Pt[p1], cPt,Pt[p2]) = cint,int[xdiff(p1, p2)]
xdiff(cCPt,Pt[cp], cPt,Pt[p]) = cint,int[xdiff(cp, p)]
xdiff(cPt,Pt[p], cCPt,Pt[cp]) = cint,int[xdiff(p, cp)]
xdiff(cCPt,Pt[cp1], cCPt,Pt[cp2]) = cint,int[xdiff(cp1, cp2)]

Figure 7. Equations to be proved formal behavioral equivalences over Ecpt

to show that the pre-coercion system of Exam. 4.1, Cpt, is a coercion system
for 〈Σpt, Ecpt〉.

x(cCPt,Pt[cp])

= x(movey(movex(PtOrigin, x(cp)), y(cp))), by def. of cCPt,Pt[xCPt: CPt]

= x(movex(PtOrigin, x(cp))), by axiom (x-movey) of Ecpt

= add(x(PtOrigin), x(cp)), by axiom (x-movex ) of Ecpt

= add(0, x(cp)), by axiom in (x-PtOrigin) of Ecpt

= x(cp), by axioms for the integers

= cint,int[x(cp)], by def. of cint,int[xint: int].

The second set of six formal behavioral equivalences in Figure 7, for the operations movex
and movey, all have similar proofs. The following proof for the third of these (which is equa-
tion (fails-in-pt)) is representative. Note the crucial use of the equations from Example 3.9.

movex(cCPt,CPt[cp], cint,int[i])
= 〈by definition of the coercions〉

movex(movey(movex(changec(CPtOrigin, color(cp)), x(cp)), y(cp)), i)
= 〈by the third formal behavioral equivalence in Example 3.9〉

movey(movex(movex(changec(CPtOrigin, color(cp)), x(cp)), i), y(cp))
= 〈by the first formal behavioral equivalence in Example 3.9〉

movey(movex(changec(CPtOrigin, color(cp)), add(x(cp), i)), y(cp))
= 〈by axiom (x-movex ) of Ecpt〉
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movey(movex(changec(CPtOrigin, color(cp)), x(movex(cp, i))), y(cp))
= 〈by axiom (color-movex ) of Ecpt〉

movey(movex(changec(CPtOrigin, color(movex(cp, i))), x(movex(cp, i))), y(cp))
= 〈by axiom (color-movey of Ecpt〉

movey(movex(changec(CPtOrigin, color(movex(cp, i))), x(movex(cp, i))), y(movex(cp, i)))
= 〈by definition of cCPt,CPt[xCPt: CPt]〉

cCPt,CPt[movex(cp, i)]
The last four formal behavioral equivalences in Figure 7 have straight-forward proofs. �

5. Correct Behavioral Subtyping

We show in this section that every specification with coercions is sound in the sense that
it implies correct behavioral subtyping. This requires a few preliminaries.

Recall that we defined an algebra to be a model of an equational specification 〈Σ,E〉, (i.e.,
a member of Mod(E)), if the equations of E are satisfied in every dynamic environment;
an alternative, narrower notion of model requires that the equations of E be satisfied by
every virtual environment. As noted earlier a Σ-algebra is a model in this sense if and
only if its order-sorted transform is model (in the wider sense); so restricting ourselves to
this narrower notion of model is tantamount to considering only order-sorted models. But
order-sorted models are not a suitable framework for developing a useful theory of correct
behavioral subtyping because every class of order-sorted algebras, which meets the criteria
of a specification given in [23], is automatically correctly behaviorally subtyped; this idea
is made precise in Section 7. Therefore, to avoid begging the question of what correct
behavioral subtyping means, we restrict our attention to models of 〈Σ, E〉 in the wider
sense. Moreover, we consider only nominal models.

Definition 5.1. Let 〈Σ, E〉 be an equational specification, Then 〈Σ, E〉 is correctly behav-
iorally subtyped if Modnom(E) is correctly behaviorally subtyped. �

See Appendix A (and our earlier work [23]) for the model-theoretic definition of cor-
rect behavioral subtyping. Instead of using the model-theoretic definition directly, we use a
result from our earlier work that nominal standard simulations are sound for correct behav-
ioral subtyping [21, 23]. The reason for doing this is that standard simulations correspond
directly to coercion systems. We now define the notions of homomorphic standard relation
and nominal standard simulation between algebras.

Definition 5.2 (Standard Homomorphic Relation, VIS-Identical, Nominal [22, 23]). Let A
and B be Σ-algebras. A homomorphic standard relation between A and B is a sorted binary
relation R = 〈RT : T ∈ TYPE,RT ⊆ A◦

T × B◦
T 〉 such that the following homomorphism

condition holds: for all types T and (S1, . . . , Sn) ≤ (T1, . . . , Tn), for every operation g ∈ Opn

such that T = ResType(g, T1, . . . , Tn), and for all (a1, . . . , an) ∈ AS1 × · · · × ASn and
(b1, . . . , bn) ∈ BT1 × · · · ×BTn ,

(a1, . . . , an) RT1 × · · · × RTn (b1, . . . , bn) implies gA(a1, . . . , an) RT gB(b1, . . . , bn).

A homomorphic standard relation R is VIS-identical if the visible reducts of A and B
are identical and RV is included in the identity relation on AV (= BV ) for every visible
type V , i.e., the only visible element that a given visible element can simulate is itself.

A homomorphic standard relation R is nominal if RT ⊆ AT ×BT for every type T . �
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Recall the definition (Def. 3.14) of the formal behavioral equivalence relation FB(E,A)
on A over an equational specification E.

Lemma 5.3. Let 〈Σ, E〉 be an equational specification and let A be a nominal Σ-algebra.
FB(E,A) is a nominal homomorphic standard relation on A and itself. Moreover, if A is
a model of E, then FB(E,A) is VIS-identical.

Proof. We observe first of all that FB(E,A) is nominal because A is nominal, so Def. 3.14
gives a nominal relation. Let g ∈ Opn, and let T1, . . . , Tn → T be an admissible type of g.
Let (a1, . . . , an) and (b1, . . . , bn) be sequences in AT1×· · ·×ATn such that aiFB(E)Ti bi for
each i ≤ n. For each i ≤ n choose a type context Hi, an Hi-environment c̄i in A, and an
Hi-equation ∀Hi(ti = t′i) such that E `beh ∀Hi(ti = t′i) and 〈ai, bi〉 = 〈tAi [c̄i], t′Ai [c̄i]〉 for ev-
ery i ≤ n. Clearly these choices can be made so that the Var(Hi) are pairwise disjoint. Let
H = H1∪· · ·∪Hn and c̄ = c̄1∪· · ·∪c̄n. Then by the fact that behavioral consequence is closed
under equational consequence (Cor. 3.11) we have E `beh ∀H(g(t1, . . . , tn) = g(t′1, . . . , t

′
n)).

Thus 〈gA(a1, . . . , an), gA(b1, . . . , bn)〉 = 〈g(t1, . . . , tn)A[c̄], g(t′1, . . . , t
′
n)A[c̄]〉 ∈ FB(E)T .

And so FB(E) is a homomorphic standard relation on A.
Now assume A is a model of E. Suppose V ∈ VIS and aFB(E)V b. Choose an type

context H, an H-environment c̄, and an H-equation ∀H(t = t′) of type V such that
E `beh ∀H(t = t′) and 〈a, b〉 = 〈tA[c̄], t

′A[c̄]〉. Trivially, E ∪ {∀H(t = t′)} `nom ∀H(t = t′),
and hence, since ∀H(t = t′) is of visible type, E `nom ∀H(t = t′) by Thm. 3.10. Thus
tA[c̄] = t′A[c̄], since A is a model of E, i.e., a = b. Thus FB(E) is VIS-identical. �

It is clear from its definition that FB(E) is sorted equivalence relation on A, it particular
it is transitive.

Definition 5.4 (Nominal Standard Simulation [23]). A standard relation, R, between A
and B is a nominal standard simulation of B by A if R is homomorphic, VIS-identical, and
if for every type T , and for every element a of A of virtual type T (i.e., for every element
a ∈ A◦

T ), there is an element b of B of dynamic type T (i.e., b ∈ BT ), such that a RT b. �

The meaning of “nominal” for a standard simulation is different from that of a homo-
morphic standard relation. For nominal standard simulations, for every element of A and
each of its virtual types, there is an element of B of corresponding dynamic type to which
it is related; however, it may also be related to elements of B that are not of correspond-
ing dynamic type. On the other hand, there may be elements of A that a homomorphic
standard relation relates to no element of B, but each element to which it is related must
be of the same dynamic type. So a nominal standard simulation need not be nominal as a
homomorphic relation and vice-versa.

The statement of the algebraic soundness theorem below uses as a hypothesis the fixed
data assumption that was introduced in Section 2.4 but not actually used up to this
point. This is the assumption that the class of restricted models of a specification is
VIS-categorical, i.e., that their visible reducts are the same.

Theorem 5.5 (Algebraic Soundness Theorem [23]). Let 〈Σ,E〉 be an equational specifi-
cation and let Modnom(E) be VIS-categorical. If for every A ∈ Modnom(E) there exists a
B ∈ Modnom(E) and a nominal standard simulation of B by A, then 〈Σ, E〉 is correctly
behaviorally subtyped.
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The proof of this theorem is given in Section A.1. �

Theorem 5.6 (Proof-Theoretic Soundness Theorem). Let 〈Σ, E,C〉 be an equational spec-
ification with coercions. Then 〈Σ,E〉 is correctly behaviorally subtyped.

Proof. Let C = { cS,T } be the coercion system. Let A ∈ Modnom(E). Let CA = 〈 CA
T : T ∈

TYPE 〉 be the sorted binary relation such that for each type T , CA
T is defined as follows:

CA
T :=

{
〈a, cS,T [xS : S]A[a]〉 : S ≤ T, a ∈ AS

}
.

Note that CA is a sorted function, i.e., CA
T is a function from AS to AT for all S, T ∈ TYPE

such that S ≤ T ; that is, CA
T is a function from A◦

T to AT .
Let CA; FB(E,A) = 〈 CA

T ; FB(E,A)T : T ∈ TYPE 〉 be the composition of the two
relations; that is, a CA

T ; FB(E,A)T b if there exists a d such that a CA
T d and dFB(E,A)T b.

We will show that CA; FB(E,A) is a nominal standard simulation of A by itself.
We note first of all that CA; FB(E,A) is nominal (as a simulation) since A is nominal

and FB(E,A) is nominal (as a homomorphic relation). For each visible type V ∈ VIS, CA
V

is the identity function, because cV,V [xV :V ] is lexically equal to xV , and FB(E,A)V is also
the identity relation, by Lem. 5.3. Thus CA; FB(E,A) is VIS-identical. We now verify the
homomorphism condition.

Let g ∈ Opn with admissible types T1, . . . , Tn → T and S1, . . . , Sn → S with (S1, . . . , Sn) ≤
(T1, . . . , Tn), and hence necessarily also S ≤ T . Let (a1, . . . , an) ∈ AS1 × · · · × ASn and
(b1, . . . , bn) ∈ AT1 × · · · ×ATn such that

(9) ai CA
Ti

; FB(E,A)Ti bi for each i ≤ n.

Then by definition of the composition of relations, there are (d1, . . . , dn) ∈ AT1 × · · · ×ATn

such that

(10) ai CA
Ti

di FB(E,A)Ti bi for each i ≤ n.

So by definition of CA, for each i ≤ n, di = cA
Si,Ti

[ai]. We calculate as follows.

gA(a1, . . . , an) CA
T cS,T [xS :S]A[gA(a1, . . . , an)]

= cS,T

[
g(cS1,T1 [xS1 ], . . . , cSn,Tn [xSn ])

]A[a1, . . . , an]
by definition of evaluation

FB(E,A)T g(cS1,T1 [xS1 ], . . . , cSn,Tn [xSn ])A[a1, . . . , an]
by definition of coercion system

= gA(cA
S1,T1

[a1], . . . , cA
Sn,Tn

[an])
by definition of evaluation

= gA(d1, . . . , dn).

Thus gA(a1, . . . , an) CA
T ; FB(E,A)T gA(d1, . . . , dn). Now from assumption (10) and from

the fact that FB(E,A) is a standard homomorphic relation, we obtain

gA(d1, . . . , dn) FB(E,A)T gA(b1, . . . , bn).
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Putting this together with the above calculation we obtain that

gA(a1, . . . , an) CA
T ; FB(E,A)T ; FB(E,A)T gA(b1, . . . , bn),

and hence gA(a1, . . . , an) CA
T ; FB(E,A)T gA(b1, . . . , bn) since FB(E,A) is transitive.

So CA
T ; FB(E,A)T is a nominal simulation of A by itself. Thus 〈Σ,E〉 is correctly

behaviorally subtyped by the algebraic soundness theorem, Thm. 5.5. �

6. Coercion Systems are not Complete

In this section we give an counterexample to the converse of Theorem 5.6. That is, this
example shows that a coercion system does not always exist for an equational specification
that is correctly behaviorally subtyped.

Example 6.1. Let Σ3 be a signature with the three types: bool, sort, and subsort. The
only visible type is bool, and the subtype relation is such that T ≤ T , for each type T ,
and also subsort ≤ sort. There are four constants: s0 and s1 of type sort, and ss0 and
ss1 of type subsort. The only operation, apart from the standard booleans, is the unary
operation test with ResType(test, sort) = ResType(test, subsort) = bool. The set of
equations, E3, contains only the boolean axioms and the equations shown in Figure 8. (The
constants ss0 and ss1 are not involved in these equations; they are introduced here for
use in the following example.) The class of models, Modnom(E3), consists of all models A
of E3 such that Abool is the two-element boolean algebra {tt,ff}, where trueA = tt and
falseA = ff.

(test-s0 ) test(s0) = false
(test-s1 ) test(s1) = true

Figure 8. Equations in E3; to save space, the standard equations for the
booleans are not shown.

To show that 〈Σ3, E3〉 is correctly behaviorally subtyped, by Theorem 5.5 it suffices to
show that for all restricted models, A in Modnom(E3), there is an B ∈ Modnom(E3) such
that there is a nominal standard simulation R of B by A. So let A be a restricted model
in Modnom(E3). Our choice for B is the algebra A itself. To define the required simulation,
it is helpful to define two data elements bt, bf ∈ Asort such that bf = s0A and bt = s1A.
Note that by the equations in E3, testA(bf) = ff and testA(bt) = tt.

Now define R such that Rbool and Rsubsort are the identity relations on the two-element
boolean algebra and Asubsort, respectively. Rsort ∩ (Asort ×Bsort) is the identity relation,
and Rsort ∩ (Asubsort ×Bsort) is

{ a ∈ Asubsort : testA(a) = tt } × {bt} ∪ { a ∈ Asubsort : testA(a) = ff } × {bf}.
It is easy to see R is a homomorphic. For example, suppose aRsort b, with a ∈ Asubsort

and b ∈ Asort. If testA(a) = tt, then b = bt, and if testA(a) = ff, then b = bf ; in both
case we have testA(a) = testA(b). R is obviously nominal and VIS-identical. So it is a
nominal, standard simulation.

There is however no coercion system for 〈Σ3, E3〉. We show this by contradiction. Sup-
pose that there were a coercion system { cS,T }. The only Σ3-terms of nominal type sort
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are variables and the two constants s0 and s1. So there are only three possibilities for
coercions from subsort to sort.

The first possibility for this coercion is that the coercion defined using a variable of type
sort, such as:

csubsort,sort[xsubsort: subsort] = xsort.

In this case, it follows that

test(csubsort,sort[xsubsort: subsort]) is the term test(xsort)

and because bool is a visible type, cbool,bool is the identity, and thus

cbool,bool[test(xsubsort)] is the term test(xsubsort).

Taking the operation g to be test, S to be subsort and T to be sort in the defining
condition (coer-ident) for a coercion system, we get

E3 ` test(xsort) = test(xsubsort).

But this is invalid. To see this, let D ∈ Modnom(E3), and let d ∈ Dsubsort be given. Then
a counter-example to the validity of this equation is provided by the nominal environment
that maps xsubsort to d and xsort to s1D if testD(d) = ff, and s0D otherwise. For example,
if testD(d) = ff, then the right hand side of this equation is ff, while the left hand side is
test(s1)D = tt.

The second possibility for this coercion is that the coercion defined using the constant
s0 of type sort, such as:

csubsort,sort[xsubsort: subsort] = s0.

As above, it follows that test(csubsort,sort[xsubsort: subsort]) is the term test(s0) and
thus that

E3 ` test(s0) = test(xsubsort).
But this is also invalid, because there are models of E3 in which test returns tt for elements
of the subsort.

Similarly the third possibility for this coercion, that it is defined using the constant s1
of type sort also leads to an invalid equation. Hence there is no coercion system for this
example. �

Note that 〈Σ3, E3〉 in the above example has only unary methods (see Thm. A.3 below),
so the algebraic completeness theorem for specifications with only unary methods does not
lead to a corresponding completeness result for coercion.

Example 6.2. Coercions are also not complete for term-generated specifications. To see
this, restrict the set of models in the previous example to be term-generated. This does
not change the example’s character or its conclusions. �

The above examples are quite underspecified; even though they have constructors for
objects of type sort and subsort, the constructors of type subsort are unconstrained by
the equations in E3. A similar result can be shown if there were no constructors at all. This
is often the case in object-oriented programming; for example, interfaces in Java have no
operations that correspond to constructors. Hence the technique of using coercion functions
seems to be fundamentally incomplete for proving behavioral subtyping.
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One way to address this incompleteness would be to force users to give coercion functions
along with specifications of all subtypes. However, this would prevent one from specifying
some examples, such as those above. An alternative would be to use a more general notion
of coercion relation that reflects at the formal level the nominal standard simulations of
the algebraic completeness theorem, which are not in general functional. We leave this as
future work.

7. Discussion

In this section we discuss some further aspects of our work.

7.1. Order-sorted algebras and correct behavioral subtyping. We make precise the
assertion, made at the beginning of Section 5, that the restriction to order-sorted models
begs the question whether an equational specification is correctly behaviorally subtyped.

Define the class Mod◦nom(E) of order-sorted transforms of nominal models of a set of
equations, E, to be {A◦ : A ∈ Modnom(E)}.

Theorem 7.1. An equational specification 〈Σ,E〉 is correctly behaviorally subtyped iff

Mod◦nom(E) = Modord(E).

Proof. Assume 〈Σ,E〉 is correctly behaviorally subtyped. The inclusion Modord(E) ⊆
Modnom(E) holds in general, and, for any order-sorted Σ-algebra A, trivially A◦ = A. Thus
Modord(E) = Mod◦ord(E) ⊆ Mod◦nom(E). For the reverse inclusion, let A◦ ∈ Mod◦nom(E),
with A ∈ Modnom(A). We must show that A◦ is also a model of 〈Σ,E〉. For this pur-
pose consider any ∀H(t = t′) ∈ E, of type V that is necessarily visible, and let ā be any
H-environment of A◦. Then ā is a virtual H-environment of A. Since 〈Σ, E〉 is correctly
behaviorally subtyped by assumption, Modnom(E) is correctly behaviorally subtyped and
hence there is a B ∈ Modnom(E) such that A is nominally VIS-reducible to B (see Ap-
pendix A, Def. A.1). Thus there is a (dynamic) H-environment b̄ of B such that ā and b̄
are behaviorally equivalent and hence tA[ā] = tB[b̄] and t′A[ā] = t′B[b̄] since ∀H(t = t′) is
visible. But B is a model of 〈Σ,E〉 and b̄ is a dynamic environment. So tB[b̄] = t′B[b̄], and
hence t′A[ā] = t′A

◦
[ā]. Thus A◦ ∈ Modnom(E), and hence Modord(E) ⊆ Mod◦nom(E).

Assume now that Mod◦nom(E) = Modord(E). Let A ∈ Modnom(E). Then by assumption
A◦ is a model of 〈Σ, E〉. Since every H-environment ā of A is automatically a dynamic
H-environment of A◦, A is nominally VIS-behaviorally reducible to A◦ by the identity
relation on environments. So Modnom(E), and hence 〈Σ, E〉, are correctly behaviorally
subtyped (Def. A.1). �

Corollary 7.2. Let 〈Σ,E〉 be an equational specification. The following are equivalent.
(i) 〈Σ, E〉 is correctly behaviorally subtyped;
(ii) For every equation ∀H(t = t′) over Σ, E �nom ∀H(t = t′) iff E �ord ∀H(t = t′);
(iii) For every equation ∀H(t = t′) over Σ, E `nom ∀H(t = t′) iff E `sub ∀H(t = t′).

Proof. The equivalence of (i) and (ii) is just a restatement of Theorem 7.1 in terms of
nominal and order-sorted consequence (Def. 2.17). The equivalence of (ii) and (iii) fol-
lows immediately from the completeness and soundness theorem for equational logic with
subtypes (Thm. 2.19). �
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If 〈Σ,E〉 is correctly behaviorally subtyped then adding the subsumption rule to the
equational logic does not allow one to prove any more equations. Conversely, any equational
specification extended by subsumption is automatically behaviorally correctly subtyped.
This observation also has a proof-theoretic formulation: if the subsumption rule is admitted,
then the identity system {cS,T }, where cS,T [xS :S] = xS is a coercion system.

7.2. A deductive system for behavioral equivalence. As has been observed, the re-
lation of behavioral provability `beh is not in general “inductive” in the sense of being
recursively enumerable, but rather “coinductive”. Its coinductive nature can be expressed
in various ways: compare Cor. 3.8, Thm. 3.10, and Cor. 3.13.

It would be valuable to find useful criteria for determining when formal behavioral equiv-
alence is actually inductive in the above sense; more specifically, when can it be given by
an equational specification? Considerable attention has been paid to this problem in the
literature [3, 7, 33, 34, 35].

The following theorem is one of the main results on behavioral consequence; see [15,
Theorem 25] where it is viewed as a another form of coinduction. It can be obtained as a
corollary of an analogous characterization theorem for the more general notion of behavioral
equivalence between environments described in Appendix A; see [22, Corollary 3.13] and
also [23, Corollary 4.14]. However it can also be obtained with little difficulty directly from
the definition of behavioral equivalence.

Theorem 7.3. For every Σ-algebra A, the behavioral equivalence relation BE(A) is the
largest VIS-identical homomorphic standard relation between A and itself. �

In order to show that two objects a and a′ of the same hidden type are behavioral equiv-
alent it is sufficient to find some VIS-identical homomorphic standard relation on A that
relates a and a′. Using this method directly to show that an equation ∀H(t = t′) is a
behavioral consequence of an equational specification 〈Σ, E〉 is more of a challenge: one
must find, for every model A of E and every H-environment ā, a VIS-identical homomor-
phic relation that relates tA(ā) and t′A(ā). Practically speaking, this can only be done
by exhibiting a system of visible equations that explicitly define the homomorphic relation
uniformly for all models and H-environments. Corollary 3.8 actually provides such a sys-
tem, namely the local contexts. We call a set of local contexts that alone suffices to define
behavioral equivalence a cobasis for an equational specification 〈Σ,E〉. (A closely related
notion is introduced in [33] under the same name.) If the specification has a finite cobasis
then behavioral consequence is clearly inductive. For example, it is easy to see from the
discussion in Example 3.9 that in order to verify than an equation is a behavioral conse-
quence of the specifications Ecp and Ecpt it suffices to consider only the two local contexts
x(z) and y(z).

An analogue of Theorem 7.3 is presented in [22] for the more general notion of behav-
ioral equivalence between environments. (See [23, Corollary 3.13] for a formulation of the
result that more closely resembles that of Theorem 7.3.) There is a proof theory for this
more general notion of behavioral equivalence that parallels that for behavioral equivalence
presented in Section 3 and which leads to proof-theoretic characterizations similar to Corol-
lary 3.8, Theorem 3.10, and Corollary 3.13. It is problematic as to how useful this is for
the specification of correct behavioral subtyping.
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8. Related Work

In regard to the material on behavioral equivalence in the context of equational specifi-
cations that we present here, the most closely related work in the literature is that Goguen
et al. on hidden algebra [15, 16] (see also [14, 33, 34]). Much of the material in Sections 2
and 3 can be found in some form in at least one these papers. However our development is
proof-theoretic while that of hidden algebra is mainly model-theoretic. The characterization
of behavioral equivalence given in Theorem 7.3 can be found in [15, Theorem 25]. Corol-
lary 3.8 is closely related to the notion a cobasis for an equational specification considered
in [33]. Theorem 3.10 and Corollary 3.13 seem to be new.

The genesis for behavioral equivalence in hidden algebra seems to be Reichel [31]. The
idea of behavioral equivalence, in the guise of logical equivalence, as the largest congruence
satisfying a certain property can be traced back to the process of forming the Lindenbaum-
Tarski algebra of the classical propositional calculus by Tarski [38]. A logical analog of
Theorem 7.3 can be found in [36]. Subsequently these ideas formed the basis of abstract
algebraic logic [4, 8, 12, 30]

The dichotomy between behavioral equivalence as a relation between objects and be-
tween environments seems to be novel, although elements of the latter (in the form of
homomorphic generalized relations) can be found in [37] in the context of type theory. As
mentioned above Theorem 7.3 is a consequence of a similar result for the environment ver-
sion of behavioral equivalence in [22]. The latter is just one result in a general theory of
behavior and realization that is developed in [22]. In [23] it is applied to obtain an alge-
braic completeness and soundness theorem for the notion of correct behavioral subtyping
based on environment behavioral equivalence. Theorem 7.3 can be applied in a similar way
to give an analogous completeness and soundness theorem for a more restricted notion of
correct behavioral subtyping that is based on the behavioral equivalence of objects. The
algebraic soundness theorem (Theorem 5.5) that serves as the principal lemma for the main
result of the present paper (Theorem 5.6) is a consequence of both of these theorems, since
object behavioral equivalence implies behavioral equivalence of environments in a natural
sense. However, Theorem 7.1 and Corollary 7.2 suggest that behavioral equivalence of
environments is the more natural of the two.

Techniques for proving correct object behavioral subtyping have been studied by several
authors [2, 5, 9, 10, 21, 24, 25, 26]. While most of these authors have studied the soundness
of their techniques, to the best of our knowledge none have studied their completeness.

In earlier work [21] we showed that the use of nominal standard simulations as de-
scribed above is sound for correct behavioral subtyping based on environment behavioral
equivalence. However, more recently we showed that this technique is complete only for
term-generated specifications and for specifications that do not use multiple dispatch [23].

We have observed that behavioral equivalence can be viewed as a device for introduc-
ing the notion state transitions into the algebraic theory of ADTs. Pure state transition
systems constitute an important alternative to algebras as a basis for the semantics of OO
languages. Gordon and Rees [18] investigate behavioral equivalence and its formalization
in the context of Ob1<:µ, Abadi and Cardelli’s single dispatch first-order calculus of objects
with subtyping and with rewriting rules [1]. In this calculus data elements are identified
with programs, i.e., expressions of the calculus, and logical equivalence (equality) is defined
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as reduction to the same normal form. Gordon and Rees define two programs to be contex-
tual equivalent (their interpretation of behavioral equivalent) if, whenever they are placed
in a larger boolean-valued program, the resulting programs either both converge or both
diverge. Bisimulation is defined in terms of a transition system with the programs as states;
here the fact that the calculus is single dispatch plays an essential role. Analogues of the
algebraic completeness theorem for unary signatures (Thm. A.3) and the proof-theoretic
soundness theorem (Thm. 5.6) are obtained, and the limitations of the method of bisimu-
lation are pointed out; these turn out to be similar to the problems with coercion discussed
above. One advantage of our work compared with Gordon and Rees’s is that our theory is
not limited to single dispatch languages. There seems to be no analogue in their work of the
notion of a local context and the refinement of the process of verifying correct behavioral
subtyping that it leads to.

9. Conclusions

Coercion can be an effective way of verifying that an equational specification is correctly
behaviorally subtyped, provided there is a effective method of verifying behavioral conse-
quence. We studied one such method, local contexts, that seem to work well in many cases.
But there can be no general method of this kind because in general there is no effectively
computable procedure for verifying behavioral consequence.

Coercion does not form a complete method for showing correct behavioral subtyping
however since there is an example of an equational specification that is correctly behav-
iorally subtyped but has no coercion system. Moreover, the specification does use multiple
dispatch, so the incompleteness does not result from the use of multiple dispatch. Further-
more, restriction to term-generated specifications does not give a completeness result for
the coercion method.

Equational logic with subsumption cannot cannot be used for the purpose of verifying
correct behavioral subtyping because its models are essentially all order-sorted and order-
sorted classes of models are automatically correctly behaviorally subtyped.

Appendix A. Model Theory of Correct Behavioral Subtyping

The following is taken from sections 4 and 5 of [23].
Let A and B be Σ-algebras with the same carrier sets for their visible types. Let

H = 〈x1:T1, . . . , xn:Tn〉 be a type context over Σ. Virtual H-environments ā and b̄ in
A and B, respectively, are said to be VIS-behaviorally equivalent if, for every H-term
t[x1:T1, . . . , xn:Tn]:V of visible type V , tA[ā] = tB[b̄].

A is nominally VIS-behaviorally reducible to B if, for each type context H and each
virtual H-environment ā in A, there exists a dynamic H-environment b̄ in B such that ā
and b̄ are VIS-behaviorally equivalent.

Note that if A is order-sorted, then A is nominally VIS-behaviorally reducible to itself,
since every H-environment is is dynamic.

Definition A.1 ([23]). Let 〈Σ, E〉 be an equational specification. A class M of VIS-
categorical models of 〈Σ, E〉 is correctly behaviorally subtyped if every A ∈M is nominally
VIS-behaviorally reducible to some B ∈M. �
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Note that the models A and B in the above definition can be equal. The idea here
is that the correct subtyping means that the objects of subtypes behave just like objects
of supertypes, and that the behavior of a virtual environment of A is determined by the
pattern of values it returns under all observations.

A.1. Proof of the Algebraic Soundness Theorem. The proof of this theorem requires
the following lemma (whose proof is by induction).

Lemma A.2 ([22, 23]). Let A and B be Σ-algebras and assume R is a nominal standard
simulation of B by A. Let T and (S1, . . . , Sn) ≤ (T1, . . . , Tn) be types. Then for all Σ-terms
t[x1:T1, . . . , xn:Tn]:T ,

〈a1, . . . , an〉 RT1 × · · · × RTn 〈b1, . . . , bn〉 implies tA[a1, . . . , an]RT tA[b1, . . . , bn]. �

Recall that the algebraic soundness theorem itself reads as follows.
Theorem 5.5 (Algebraic Soundness Theorem [23]). Let 〈Σ,E〉 be an equational specifi-
cation, and let Modnom(E) be VIS-categorical. If for every A ∈ Modnom(E) there exists a
B ∈ Modnom(E) and a nominal standard simulation of B by A, then 〈Σ,E〉 is correctly
behaviorally subtyped.

Proof. Let A,B ∈ Modnom(E), and let R = 〈RT ⊆ A◦
T × B◦

T : T ∈ TYPE 〉 be a nominal
standard simulation of B by A. Let H = 〈x1:T1, . . . , xn:Tn〉 be a type context over Σ
and let ā = a1, . . . , an be a virtual H-environment in A. Then ā ∈ AS1 × · · · × ASn for
some S1, . . . , Sn ≤ T1, . . . , Tn. Since R is nominal, there exists a dynamic H-environment
b̄ = b1, . . . , bn such that āRT1 × · · · × RTn b̄. We will show that ā is VIS-behaviorally
equivalent to b̄. For this purpose let t[x1:T1, . . . , xn:Tn]:V be an H-term of visible type V .
By Lem. A.2

tA[ā]RV tB[b̄].
Hence tA[ā] = tB[b̄], since R is VIS-identical.

Since ā is VIS-behaviorally equivalent to b̄, Modnom(E) is correctly behaviorally subtyped,
and hence, by definition, 〈Σ,E〉 is correctly behaviorally subtyped. �

A.2. Algebraic Completeness for Unary Signatures. For standard simulations, there
is no algebraic completeness theorem that corresponds to the algebraic soundness theorem.
A equational specification, call it 〈Σ1, E1〉, is given in our previous work [23] that is cor-
rectly behaviorally subtyped but has a restricted model A1 such that A1 is not nominally
behaviorally reducible to any restricted model of 〈Σ1, E1〉, including itself. On the other
hand, in the same previous work we show that no specification of this kind can exist if
the signature in question has only unary methods. Thus the method of nominal standard
simulation is complete for correct behavioral subtyping if only unary methods are allowed.
We restate the theorem here.

Theorem A.3 (Algebraic Completeness Theorem for Unimethod Signatures, [23]). Let
Σ be signature with subtyping that has only unary methods. Let 〈Σ,E〉 be an equational
specification such that Modnom(E) is VIS-categorical. If 〈Σ,E〉 is correctly behaviorally
subtyped, then for every A ∈ Modnom(E) there exists a B ∈ Modnom(E) and a nominal
standard simulation of B by A. �
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A similar result holds for equational specifications for which each restricted model is
term-generated [22, 23].
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