
A Runtime Assertion Checker for the Java Modeling Language (JML)
Yoonsik Cheon and Gary T. Leavens

TR #02-05a
March 2002, revised April 2002

Keywords: runtime assertion checking, formal methods, formal interface specification, programming by contract, JML
language, Java language

2000 CR Categories:D.2.1 [Software Engineering] Requirements/ Specifications — languages, tools, JML; D.2.2 [Software
Engineering] Design Tools and Techniques — computer-aided software engineering (CASE); D.2.4 [Software Engineering]
Software/Program Verification — Assertion checkers, class invariants, formal methods, programming by contract, reliability,
tools, validation, JML; D.2.5 [Software Engineering] Testing and Debugging — Debugging aids, design, monitors, testing
tools, theory; D.3.2 [Programming Languages] Language Classifications — Object-oriented languages; F.3.1 [Logics and
Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, invariants, pre- and post-
conditions, specification techniques.

To appear inInternational Conference on Software Engineering Research and Practice (SERP) 2002, Las Vegas, Nevada,
USA, June 24-27, 2002. Copyright c© Computer Science Research, Education, and Applications (CSREA) Press, 2002.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

A Runtime Assertion Checker for the Java Modeling Language (JML)

Yoonsik Cheon and Gary T. Leavens∗

Department of Computer Science, Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040, USA
{cheon,leavens}@cs.iastate.edu

Abstract

Debugging is made difficult by the need to precisely de-
scribe what each piece of the software is supposed to do,
and to write code to defend modules against the errors of
other modules; if this is not done it is difficult to assign
blame to a small part of the program when things go wrong.
Similarly, unit testing also needs precise descriptions of be-
havior, and is made difficult by the need to write test ora-
cles. However, debugging and testing consume a significant
fraction of the cost of software development and mainte-
nance efforts. Inadequate debugging and testing also con-
tribute to quality problems. We describe a runtime assertion
checker for the Java Modeling Language (JML) that helps
in assigning blame during debugging and in automatic gen-
eration of test oracles. It represents a significant advance
over the current state of the art, because it can deal with
very abstract specifications which hide representation de-
tails, and other features such as quantifiers, and inheritance
of specifications. Yet JML specifications have a syntax that
is easily understood by programmers. Thus, JML’s runtime
assertion checker has the potential for decreasing the cost
of debugging and testing.

Keywords:runtime assertion checking, formal interface specifi-
cation, design by contract, specification inheritance, Java Model-
ing Language (JML)

1. Introduction

Writing formal interface specifications of program mod-
ules such as classes and interfaces can improve the qual-
ity of software designs and thus contribute to the quality of
software. This process can help clarify the assumptions that
a module makes about its clients and environment; it also

∗The work of both authors was supported in part by a grant from
Electronics and Telecommunications Research Institute (ETRI) of South
Korea, and by the US National Science Foundation under grants CCR-
0097907 and CCR-0113181.

helps one identify the module’s responsibilities and obli-
gations to its clients [2, 18, 20]. Identifying and precisely
specifying responsibilities of modules often leads to a better
design that is less-coupled and more cohesive. The result-
ing formal specification is a detailed design document that
is abstract, precise, and concise; besides its value during
development, such detailed design documentation is espe-
cially valuable at the maintenance phase. Some form of
specification is also necessary for deciding the success or
failure of tests [20].

However, formal interface specifications are seldom used
by software practitioners. Although this is not the only rea-
son, one problem is that the payoff for writing formal spec-
ifications is not immediate. So, our goal is to allow pro-
grammers to reap benefits from specifications as soon as the
specifications are written. In particular, we aim to provide
programmers with benefits in debugging and unit testing,
costly activities that consume much of the time and effort
in writing and maintaining software. When this is done, we
believe that some of the other side benefits of formal spec-
ifications, in particular their value as documentation and as
an aid in reasoning, will become apparent. In turn this may
also help lower costs and improve software quality.

One technique that helps to produce an immediate pay-
off for writing formal interface specifications is to check
specification assertions during the execution of programs.
A formal interface specification is just a mathematical for-
mula, but it becomes useful for testing and debugging when
it can be executed to check the validity of an implementa-
tion. Checking assertions at runtime is a practical and ef-
fective means for debugging programs, as Meyer and others
have emphasized [20, 22]. It also helps one debug the spec-
ifications themselves, and thus improves the quality and ac-
curacy of documentation. Also, checking assertions at run-
time can help automate parts of testing [3]. Finally, execut-
ing formal specifications is much more practical than using
them for formal verification of correctness.

In this paper, we describe our experience developing a
runtime assertion checker for the Java Modeling Language

1

(JML). JML is a formal interface specification language for
Java and has many fairly sophisticated features to facilitate
writing abstract, precise, and complete behavioral descrip-
tions of Java classes and interfaces [15, 16]. The runtime
assertion checker generates Java bytecode from Java classes
and interfaces with JML specifications. Runtime assertion
checking is transparent in that, unless a specification asser-
tion is violated, except for performance measures (time and
space) the behavior of original program is unchanged.

Our main goal in developing a runtime assertion checker
for JML is to leverage the power of formal interface speci-
fications by providing an immediate and tangible payoff to
programmers writing specifications in JML. This will con-
tribute to making formal interface specifications practical
and applicable in programming. Another goal is to provide
the runtime assertion checker as a basis for other support
tools such as specification-based automated testing and de-
sign by contract for Java [3].

JML is an extension to Java in the sense that it uses Java
expressions for assertions. In this respect it follows the lead
of Eiffel [19]. However, JML also incorporates many ideas
and concepts from the model-oriented approach to specifi-
cations such as VDM [11] and Larch [9]. As thus, it offers
many interesting challenges for implementing runtime as-
sertion checker. These challenges include: notational com-
plexity, several forms of quantifiers, specification inheri-
tance [5] (through subclassing, interfaces, and refinement),
specification-only (model) fields [17], and visibility control
that is separate from Java’s visibility control. In addition,
the use of expressions in assertions raises the problem of
undefinedness of assertions.

1.1. Related Work

Eiffel is a landmark programming language that inte-
grates executable specifications into the language and its
tools [19, 20]. The tools feature sophisticated ways to
turn assertions on and off, and several levels of checking.
Meyer’s writings about Eiffel and its approach helped pop-
ularize the the concept ofdesign by contract(DBC). DBC
is rooted in formal methods, but because Eiffel uses expres-
sions of the programming language in assertions, it is less
intimidating (for many programmers) than languages that
use lots of special-purpose mathematical notation, like Z
[23].

However, Eiffel has several disadvantages for our pur-
poses. First, it makes complete specifications more difficult
because it does not allow specification-only (model) fields
in objects, and because it does not support specification-
only methods. It also does not feature a collection of built-in
classes that represent immutable versions of collections that
are useful in specifications, such as sets, sequences and ta-
bles. (Of course, Eiffel has such types, but they do not have

immutable objects, and so are dangerous to use in speci-
fications due to the possibility of side-effects.) Eiffel also
does not permit the use of quantifiers in assertions, which
are sometimes important for giving more complete specifi-
cations. Relatively complete specifications are needed if the
specifications are to fulfill their role as test oracles [3].

Eiffel’s popularization of DBC partly contributed to the
availability of similar facilities in other programming lan-
guages, including Java. We know of several DBC tools for
Java [1, 6, 7, 12, 13]. The approaches vary from a sim-
ple assertion mechanism similar to the Cassert macro to
full-fledged contract enforcement capabilities. Jass [1] and
iContract [13] focus on the practical use of DBC in Java.
Handshake and jContractor focus on implementation tech-
niques such as library-based on-the-fly instrumentation of
contracts [6, 12]. Contract Java focuses on properly blam-
ing contract violations [7, 8]. These tools suffer from the
same problems as Eiffel; that is, none of them has support
for specification-only fields and methods, complete quanti-
fiers, and they are not built around a set of immutable types
designed for specification. They thus make it difficult to
write complete specifications that are useful as test oracles.

A different kind of specification-based technique for de-
tecting errors in programs is static analysis. An interesting
example of such a tool is ESC/Java [4]. ESC/Java uses a
theorem prover to find possible errors such as null pointer
dereferences and array bounds violations. ESC/Java actu-
ally uses a subset of the JML specification notation but does
not come with a runtime assertion checker, and so cannot be
used in unit testing.

1.2. Outline

In the following sections, we describe our solutions to
these challenges, and their rationale. We begin by describ-
ing how the runtime assertion checker deals with potential
undefinedness and with quantifiers in JML’s extension to
Java’s expression language. Section 3 describes how the
runtime assertion checker deals with the sophisticated parts
of JML’s method specifications, and gives an overview of
the compilation of specifications into runtime checks. Sec-
tion 4 describes the strategy used to support specification
inheritance in the runtime assertion checker. Section 5 de-
scribes how the checker supports specification-only model
features of specifications. Finally, Section 6 offers a discus-
sion and some conclusions.

2. Expressions and Assertions

2.1. Undefinedness

Assertions in JML are written in an extension to a side-
effect free subset of Java expressions. The use of Java ex-

2

pressions in assertions leads to problems with potential un-
definedness, for example, when an expression throws an ex-
ception. The JML’s semantics for undefinedness is to sub-
stitute an arbitrary expressible value (of the correct type)
for an undefined expression [16]. The challenge is to make
the runtime assertion checker’s handling of undefinedness
faithful to the semantics of JML.

The runtime assertion checker has a unified framework
for handling undefinedness in assertions, caused by vari-
ous reasons such as exceptions, runtime errors, and non-
executable specifications. We call our approach alocal,
contextual interpretation. It is a local interpretation in
that an occurrence of an exception is interpreted locally —
only by the smallest boolean subexpression that covers the
exception-throwing expression. This supports abstract rea-
soning with standard logical laws; for example, the order of
assertions in a conjunction or disjunction does not matter.

Our approach is alsocontextualin that, if a subexpres-
sion throws an exception, then the value used by the run-
time assertion checker is determined by the subexpression’s
context. Since the runtime assertion checker wants to help
detect errors, its goal is to falsify the overall assertion in
which this subexpression occurs, whenever possible (while
respecting the rules of logic). Falsifying the overall asser-
tion allows the runtime assertion checker to signal an asser-
tion violation to the user, and since the rules of logic are
always respected, this assertion violation is a real violation
that would otherwise go undetected.

To accomplish this we use both positive and negative
contexts. To start with the overall assertion is considered
to be in a positive context; in a positive context the checker
tries to make an assertion false when it has the opportu-
nity (because of exceptions from sub-expressions). In a
negative context the checker tries to make assertions true.
Negative contexts occur within expressions such as!(E) ,
where the polarity of the sub-expressionE is reversed from
that of the surrounding context. For example, assuming the
surrounding context is positive, in the assertion!(a[i]
== null) , the subexpression(a[i] == null) is in
a negative context; thus ifa[i] throws a null pointer ex-
ception, the checker usestrue as the value of the subex-
pression(a[i] == null) , which makes the overall as-
sertion false. Contexts for subexpressions are recursively
defined according to the operators used.

Figure 1 shows the translation rule for universally quan-
tified expressions that shows the contextual interpretation
of undefinedness (see Section 2.2 for explanation). In our
notation[[E, r, p]] denotes the translation — a piece of Java
source code — that evaluates the expressionE and stores
the result into a variable namedr. The translation is done in
a context with polarity goalp, which is eitherfalse (for
positive contexts) ortrue (otherwise). As shown, if an
exception other thanJMLNonExecutableException

[[(\forall ~T ~v; E1; E2) , r, p]]
def
=

try {
r = true;
Iterator i1 = Q1.iterator();
while (r && i1.hasNext()) {

T1 v1 = (T1) i1.next();
· · ·
Iterator in = Qn.iterator();
while(r && in.hasNext()) {

Tn vn = (Tn) in.next();
[[E1 ==> E2, r, p]]

}
· · ·

}
}
catch (JMLNonExecutableException e) {

r = ! p;
}
catch (java.lang.Exception e) {

r = p;
}

Figure 1. An example translation rule.

occurs while executing the translated code, the result is set
to the current polarity goal.

An interesting side-benefit of our contextual interpreta-
tion is that the checker is able to determine whether some
assertions are executable at runtime, instead of requiring
such determinations to be made statically. This flexibility
is implemented by having the non executable subexpres-
sion throw aJMLNonExecutableException ; when
that happens, the result variable is set to the opposite of the
current polarity goal, to make the overall assertion true if
possible. The reason for this is that, since the actual value
of a non-executable assertion is unknown, the checker must
be conservative. Without knowing the polarity goal of the
context, however, it would be impossible to allow this de-
termination to be made at runtime.

2.2. Quantified Expressions

The runtime assertion checker supports all three forms
of JML’s quantified expressions:universalandexistential
quantifiers(\forall and\exists), generalized quanti-
fiers(\sum , \product , \min , and\max), and anumeric
quantifier(\num of).

An extensible framework is provided to host different ap-
proaches to evaluating quantified expressions. In the current
implementation, two evaluation strategies are supported: a
pattern-based static analysis approachandtype-extension-
based approach. In the first approach, the runtime assertion
checker statically analyzes a quantified expression and de-
termines the set of objects or values that are necessary to

3

decide the result of the quantification. (In the translation
rule in Figure 1, this set is denoted asQi for quantified vari-
ablevi.) The expression part is executed at runtime with
the quantified variable bound to each element of the set.
For a quantification over an integral type, patterns for in-
tervals are identified. For example, the quantified expres-
sion (\sum int x; x > 1 && x < 5; x) defines
the interval between 1 and 5, with both ends excluded, and
thus can be evaluated by the runtime assertion checker. For
a quantification over a reference type, patterns for collec-
tions are identified. For example, the quantified expres-
sion (\forall Student p; ta.contains(p) ||
ra.contains(p); p.credits() <= 12)) defines
a set consisting of elements of the collectionsta andra ,
and thus can be evaluated by the runtime assertion checker.
If the static analysis fails to determine an interval or a col-
lection, then the runtime assertion checker resorts to the
extension-based approach.

In the extension-based approach, a quantified expression
is evaluated for each “existing” object of the quantified type.
The runtime assertion checker can generate code for auto-
matically managing type extensions. One technique is to
usereference objects, which hold on to referents (other ob-
jects)1.

In addition to quantified expressions, the runtime asser-
tion checker supports JML’s set comprehension notation,
which has a similar flavor to quantified expressions. This
notation is implemented in a similar way to quantifiers.

3. Method Specifications

JML provides a rich set of syntactic sugars for specifying
behaviors of methods — multiple clauses, nested specifica-
tions, case analysis, etc. [14, 16]. We desugar method spec-
ifications into a form that consists of only one occurrence of
each kind of specification clause; for example the desugared
specification only contains onerequires clause (which is
the method’s precondition) [21]. A desugared method spec-
ification is used to generate severalassertion check meth-
ods. The original method becomes a private method with a
new name; it is replaced by awrapper methodthat is auto-
matically generated. The wrapper method delegates client
method calls to the original method with appropriate asser-
tion checks.

• Precondition check methods. When called, a precon-
dition check method evaluates a method’s precondition
and throws a precondition violation exception if it does
not hold.

• Postcondition check methods. When called, a postcon-
dition check method evaluates the postcondition of the

1A reference object is garbage collected at the discretion of the JVM,
e.g., when the memory is low.

method and throws a postcondition violation exception
if it does not hold. There are two kinds of postcon-
dition check methods,normal and exceptional post-
condition check methods. The first checks the normal
postcondition specified by theensures clause, and
the second checks a method’s exceptional postcondi-
tion specified by JML’ssignals clause.

Figure 2 shows a simplified skeleton of wrapper meth-
ods. The wrapper method first checks preconditions and
class invariants, if any, in the pre-state by calling appro-
priate assertion check methods; as noted above, violations
result in appropriate exceptions being thrown. If both asser-
tions hold, the original method is invoked in atry state-
ment and the return value, if exists, is saved into a local
variable. The saved return value is used in checking the
postcondition. The firstcatch block is for re-throwing
an assertion violation detected during the execution of the
original method2. If the control reaches the secondcatch
block, it means that the execution of the original method
has thrown an exception, thus the exceptional postcondition
is checked by calling the exceptional postcondition check
method. To make assertion checks transparent, the excep-
tional postcondition check method re-throws the original
exception if the exceptional postcondition is satisfied. Fi-
nally, thefinally block checks class-level post-state as-
sertions such as invariants and history constraints3.

In JML, anold expression, written as\old(e) , refers
to the pre-state value of an expression,e. This is useful
when specifying the behavior of a method with side effect
[20]. The runtime assertion checker handles old expres-
sions by evaluating them in the pre-state inside the precon-
dition check method and caching the results in private fields.
When the postcondition check method is called to evaluate
expressions with old expressions, the corresponding private
fields are used in place of the original old expressions.

An assertion can contain calls to methods with their own
specifications. As in Eiffel, the runtime assertion checker
recognizes this situation and does not check a method’s as-
sertions if the method is being called while checking asser-
tions of another method (including the method itself).

4. Inheritance of Specifications

JML supports several ways of inheriting specifications:
subclassing, interface extension and implementation, and

2In JML the assertion violation exceptions are organized into a hierar-
chy and the abstract classJMLAssertionException is the ultimate
superclass of all assertion violation exceptions. Also, technically, precon-
dition violation exceptions need to be translated into internal precondition
violation exceptions as described in [3].

3A local flag is used to perform these checks only when no assertion
violation such as precondition or postcondition violations has occurred.

4

T m(T1 x1, ..., Tn xn) {
checkPre$m(x1, ..., xn);
checkInv();
T r = init_T; // initial value of T
try {

r = orig$m(x1, ..., xn);
checkPost$m(x1, ..., xn, r);

}
catch (JMLAssertionException e) {

throw e;
}
catch (Exception e) {

checkXPost$m(x1, ..., xn, r, e);
}
finally {

if (...) {
checkInv();
checkConstraint();

}
}

}

Figure 2. Simplified structure of wrapper
methods.

refinement [5, 14, 16]. A subtype inherits from its super-
types such specifications as pre- and postconditions, type
invariants, history constraints, etc.

The main difficulty implementing specification inheri-
tance is that a subtype’s assertion check method can’t stati-
cally determine the existence of the corresponding assertion
check method in its supertypes, due to separate compilation.
That is, if the supertype was compiled without enabling run-
time assertion checks, then its bytecode will not have the
corresponding assertion check method.

4.1. Dynamic Delegation

To overcome this difficulty the runtime assertion checker
implements specification inheritance using the Java’s reflec-
tion facility. A call made using Java’s reflection facility is
termed adynamic call. Thus a subtype’s assertion check
methods make dynamic calls to the corresponding assertion
check methods of its supertype(s).4 Dynamic calls are used
even though the the names of supertypes and their assertion
check methods are statically determined.

Thus, each assertion check method performs the follow-
ing steps in order:

1. Check the assertions defined locally (i.e., in the given
class), if they exist.

4Although Java has only single inheritance, specifications can also be
inherited from interfaces.

static delegation

<<dynamic delegation>>

interface

I

<<inner>>

Checker
C

Figure 3. A class structure to support inheri-
tance of interface specifications.

2. Check inherited assertions if any. For each statically
determined pair of class and method names, perform
the following steps by using the Java’s reflection API.

(a) Look up the assertion check method in the target
class.

(b) Invoke the target method, if it exists.

(c) Combine the results appropriately, e.g., dis-
junction for preconditions and conjunction for
class-level assertions such as invariants and con-
straints.

3. Report an assertion violation by throwing an assertion
exception if the combined result becomes false.

To minimize runtime performance overhead due to dy-
namic delegation, the step 2 is performed only when neces-
sary. For example, dynamic calls to pre- and postcondition
checking methods are attempted only for a subtype’s over-
riding methods; no dynamic delegation code is generated
for the subtype’s additional methods (those which do not
override its supertype’s methods).

4.2. Interface Specifications

In JML, specifications can also be written in interfaces.
However, the checker cannot add an assertion check method
directly to an interface because in Java an interface method
must be abstract. For an interface, therefore, we generate a
separate checker class, called asurrogate class, as a static
inner class of the interface. The surrogate class is responsi-
ble for checking all the assertions specified in the interface.

A subtype of an interface inherits the interface’s spec-
ifications by making dynamic calls to the assertion check
methods defined in the interface’s surrogate class. As
shown in Figure 3, for specification inheritance, a classC
implementing an interfaceI collaborates withI ’s surrogate
class,I.Checker , in two ways:

5

• Dynamic delegation. To inherit assertions specified in
the interfaceI, objects of the classC make dynamic
calls to the corresponding assertion check methods de-
fined inI ’s surrogate class,I.Checker , by creating
surrogate objects as necessary. We often refer to these
dynamic callsup calls.

• Static delegation. The surrogate class,I.Checker ,
implements the interfaceI by delegating to the cor-
responding methods of the classC. We refer to these
static calls asdown calls. The reason for implementing
down calls is that assertions in the interfaceI may re-
fer to methods specified inI. But the implementations
of interface methods are found in the classC.

5. Model Specifications

JML provides several features that improve the level of
abstraction in specifications. The ability to specifymodel
elements such as model fields, model methods, and model
types are the most distinguishing such feature of JML. Such
model elements are only used in specifications; they cannot
be used in normal Java programs. Model elements allow
one to specify the abstract values of types [10]; these corre-
sponds roughly to values at the conceptual (domain) level,
and are abstract in the sense that one is not concerned with
their (time or space) efficiency.

The runtime assertion checker can handle model fields
provided that their correspondence to concrete fields (i.e.,
those in the actual Java program) is specified with an ab-
straction function. An abstraction function is specified with
one form of JML’srepresents clause. For example, the
following is a simple specification with a model field,el-
ems, and an abstraction function.

import java.util.List;
public class Stack {

private List contents;

/*@ public model Object[] elems;
@ public depends elems <- contents;
@ private represents
@ elems <- contents.toArray();
@*/

/*@ old int l = elems.length;
@ requires e != null;
@ modifies elems;
@ ensures elems[0] == e &&
@ elems.length == l + 1 &&
@ (\forall int i; 0 <= i && i < i;
@ elems[i+1] == \old(elems[i]));
@*/

public void push(Object e) { /* ... */ }
/* ... */

}

A represents clause says how the value of a model
variable is related to concrete program fields. (Adepends
clause allows such program fields to be modified when the
model variable is modifiable [17].) This particularrep-
resents clauses says that the value of the model variable
elems equals the expressioncontents.toArray() .
Thus, given the concrete value ofcontents , the runtime
assertion checker can calculate (retrieve) the abstract value
of elems .

The runtime assertion checker generates amodel field ac-
cess methodfor each model field. A reference to a model
field in assertions, e.g.,elems in the specification of the
methodpush , is replaced with a call to the correspond-
ing model field access method. The default form of model
field access methods throws aJMLNonExecutableEx-
ception . However, an access method generated from a
represents clause calculates an abstract value from con-
crete values and returns the result. For example, the above
represents clause generates the following model field
access method.

public Object[] model$elems() {
return contents.toArray();

}

Model fields andrepresents clauses are also inher-
ited by subtypes. The inheritance mechanism is similar to
that of discussed in Section 4 and uses both dynamic and
static forms of delegations. However, sincerepresents
clauses can be present in different types from where the cor-
responding model fields are declared, the implementation is
more complex than we have space to explain here.

6. Discussion

It is important to give an informative message when an
assertion is violated so that programmers can identify the
source of the error. This is particularly true in JML because
an assertion violation can be due to failures of assertions in
many different places, sometimes in different files. For ex-
ample, a postcondition violation may be caused by one of
severalensures clauses or one of many inherited specifi-
cations (see Section 4). Similarly, a precondition violation
occurs if all therequires clauses, perhaps inherited, fail
to hold. The runtime assertion checker keeps track of the
location information (file name, line number and column
number) of assertions when desugaring and inheriting spec-
ifications. An assertion exception object stores a set of lo-
cations for constituents of the violated assertion in addition
to the location of method call that causes the violation. It
also stores the kind, the class name, and the method name
of the violated assertion.

The use of dynamic calls to implement specification in-
heritance is modular and faithful to the JML’s semantics.

6

The main drawback of this approach, however, is the run-
time performance; it is slow due to the use of reflection fa-
cility. Tests reveal that the performance of dynamic method
calls is marginally worse than that of static method calls,
but introspection, i.e., dynamically looking up target classes
and methods, is very costly. For example, our timing result
shows that the dynamic inheritance approach is slower than
the static approach (e.g., a textual copy approach) by a fac-
tor of 2.21 (or 221%). But, with a simple method lookup
cache, the ratio drops to 1.25 (or 125%).

There are several areas for future work. One is to for-
malize the translation rules and to show the soundness of
the translation with respect to the semantics of JML. An-
other is to improve the current implementation, for example,
improving runtime efficiency and directly generating byte-
code. We also plan to apply the runtime assertion checker
in actual programming for empirical study of its effective-
ness, and for developing other JML-based support tools to
support unit testing [3] and design by contract for Java.

The JML runtime assertion checker described in this pa-
per will be available from the JML web page at the URL:
http://www.jmlspecs.org . An earlier implementa-
tion with many of these features is already available there.

References

[1] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass
- Java with assertions. InWorkshop on Runtime Verification
held in conjunction with the 13th Conference on Computer
Aided Verification, CAV’01, 2001.

[2] J. P. Bowen and M. G. Hinchey. Seven more myths of formal
methods.IEEE Software, 12(4):34–41, July 1995.

[3] Y. Cheon and G. T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. Techni-
cal Report 01-12a, Department of Computer Science, Iowa
State University, Mar. 2002. To appear in ECOOP 2002.

[4] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. SRC Research Report 159, Com-
paq Systems Research Center, 130 Lytton Ave., Palo Alto,
Dec 1998.

[5] K. K. Dhara and G. T. Leavens. Forcing behavioral sub-
typing through specification inheritance. InProceedings of
the 18th International Conference on Software Engineering,
Berlin, Germany, pages 258–267. IEEE Computer Society
Press, Mar. 1996. A corrected version is Iowa State Univer-
sity, Dept. of Computer Science TR #95-20c.

[6] A. Duncan and U. Holzle. Adding contracts to Java with
Handshake. Technical Report TRCS98-32, Department of
Computer Science, University of California, Santa Barbara,
CA, Dec. 1998.

[7] R. B. Findler and M. Felleisen. Contract soundness for
object-oriented languages. InOOPSLA ’01 Conference Pro-
ceedings, Object-Oriented Programming, Systems, Lanu-
gages, and Applications, October 14-18, 2001, Tampa Bay,
Florida, USA, pages 1–15, Oct. 2001.

[8] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. InProceedings of Joint
8th European Software Engineering Conference (ESEC) and
9th ACM SIGSOFT International Symposium on the Foun-
dations of Software Engineering (FSE), Spetember 10-14,
2001, Vienna, Austria, Sept. 2001.

[9] J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet,
and J. Wing.Larch: Languages and Tools for Formal Spec-
ification. Springer-Verlag, New York, NY, 1993.

[10] C. A. R. Hoare. Proof of correctness of data representations.
Acta Informatica, 1(4):271–281, 1972.

[11] C. B. Jones.Systematic Software Development Using VDM.
International Series in Computer Science. Prentice Hall, En-
glewood Cliffs, N.J., second edition, 1990.

[12] M. Karaorman, U. Holzle, and J. Bruno. jContractor: A
reflective Java library to support design by contract. In
P. Cointe, editor,Meta-Level Architectures and Reflection,
Second International Conference on Reflection ’99, Saint-
Malo, France, July 19–21, 1999, Proceedings, volume 1616
of Lecture Notes in Computer Science, pages 175–196.
Springer-Verlag, July 1999.

[13] R. Kramer. iContract – the Java design by contract tool.
TOOLS 26: Technology of Object-Oriented Kanguages and
Systems, Los Alamitos, California, pages 295–307, 1998.

[14] G. T. Leavens and A. L. Baker. Enhancing the pre- and post-
condition technique for more expressive specifications. In
J. M. Wing, J. Woodcock, and J. Davies, editors,FM’99 —
Formal Methods: World Congress on Formal Methods in
the Development of Computing Systems, Toulouse, France,
September 1999, Proceedings, volume 1709 ofLecture
Notes in Computer Science, pages 1087–1106. Springer-
Verlag, 1999.

[15] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A no-
tation for detailed design. In H. Kilov, B. Rumpe, and
I. Simmonds, editors,Behavioral Specifications of Busi-
nesses and Systems, pages 175–188. Kluwer Academic Pub-
lishers, Boston, 1999.

[16] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification lan-
guage for Java. Technical Report 98-06p, Iowa State Uni-
versity, Department of Computer Science, Aug. 2001. See
www.jmlspecs.org .

[17] K. R. M. Leino. Toward Reliable Modular Programs. PhD
thesis, California Institute of Technology, 1995. Available
as Technical Report Caltech-CS-TR-95-03.

[18] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, Oct. 1992.

[19] B. Meyer. Eiffel: The Language. Object-Oriented Series.
Prentice Hall, New York, NY, 1992.

[20] B. Meyer. Object-oriented Software Construction. Prentice
Hall, New York, NY, second edition, 1997.

[21] A. D. Raghavan and G. T. Leavens. Desugaring JML method
specifications. Technical Report 00-03c, Iowa State Univer-
sity, Department of Computer Science, Aug. 2001.

[22] D. S. Rosenblum. A practical approach to programming
with assertions.IEEE Transactions on Software Engineer-
ing, 21(1):19–31, Jan. 1995.

[23] J. M. Spivey.The Z Notation: A Reference Manual. Interna-
tional Series in Computer Science. Prentice-Hall, New York,
NY, second edition, 1992.

7

