
Observers and Assistants:

A Proposal for Modular Aspect-Oriented Reasoning

by

Curtis Clifton and Gary T. Leavens

TR #02-04a
March 2002, Revised April 2002

Keywords: Observers, assistants, aspect-oriented programming languages, modular reasoning,
specification, composition, AspectJ language, Java language, JML language, MultiJava language.

2002 CR Categories:D.3.3 [Programming Languages] Language Constructs and Features— classes
and objects, control structures, inheritance, modules, packages, procedures, functions, and subroutines,
advice, observers, assistants, aspects; D.3.2 [Programming Languages] Language Classifications—
object-oriented languages, multiparadigm languages, AspectJ, JML; D.1.5 [Programming Techniques]
Object-oriented programming — aspect-oriented programming; D.3.1 [Programming Languages]
Formal Definitions and Theory — semantics.

Copyright © Curtis Clifton and Gary T. Leavens, 2002. All rights reserved.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Observers and Assistants:
A Proposal for Modular Aspect-Oriented Reasoning

Curtis Clifton and Gary T. Leavens
Department of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA
+1 515 294 1580

{cclifton,leavens}@cs.iastate.edu
ABSTRACT
In general, aspect-oriented programs require a whole-program anal-
ysis to understand the semantics of a single method invocation.
This property can make reasoning difficult, impeding maintenance
efforts, contrary to a stated goal of aspect-oriented programming.
We propose some simple modifications to AspectJ that permit mod-
ular reasoning. This eliminates the need for whole-program analy-
sis and makes code easier to understand and maintain.

1. INTRODUCTION
Much of the work on aspect-oriented programming languages
makes reference to the work of Parnas [23]. That work argues that
the modules into which a system is decomposed should be chosen
to provide benefits in three areas. Parnas writes (p. 1054):

�The benefits expected of modular programming are: (1)
managerial�development time should be shortened because
separate groups would work on each module with little need for
communication; (2) product flexibility�it should be possible to make
drastic changes to one module without a need to change others; (3)
comprehensibility�it should be possible to study the system one
module at a time. The whole system can therefore be better
designed because it is better understood.�

While much has been written about aspect-oriented programming
as it relates to Parnas�s second point, his third point is the primary
concern of this paper. We contend that current aspect-oriented pro-
gramming languages do not provide this third benefit in general,
because they require systems to be studied in their entirety.

After describing and motivating the problem in this introduction, in
Section 2 we propose a simple set of restrictions that, we believe,
would bring these languages much closer to Parnas�s ideal without
any practical loss of expressiveness. This proposal is preliminary
work and is presented in the hopes of generating discussion and
feedback.

We begin by defining a notion of modular reasoning corresponding
to Parnas�s third benefit. Subsequent subsections in this introduc-
tion show how such modular reasoning is possible in the Java Pro-
gramming Language� [1, 9] but problematic in the current version
of AspectJ� [11].

For concreteness, our examples are shown in AspectJ. To support
abstract reasoning we specify the examples using new aspect-ori-
ented extensions to the Java Modeling Language (JML) [13, 14].
We believe our ideas are independent of Java and JML. We also
believe that they are independent of the details of AspectJ and are
generally applicable to the class of aspect-oriented languages.

1.1 Modular Reasoning
Before delving into the details, it is useful to define our terms. Mod-

ular reasoning is the process of understanding a system one module
at a time. A language supports modular reasoning if the actions of a
module M written in that language can be understood based solely
on the code contained in M along with the specifications of any
modules referred to by M. For example, in Java a single compila-
tion unit, typically a file declaring a single top-level type (class or
interface), is a module. The specification of that module is the
behavior of objects of that type. Code is one form of specification.
In a more expressive language, such as Eiffel [19] or Java annotated
with JML, a specification can be given explicitly using pre- and
postconditions, frame axioms, and invariants; such specifications
serve as contracts that allow one to separately reason about the
behavior and correctness of an implementation.

Our interest in modular reasoning in aspect-oriented programming
languages is motivated in part by our earlier work on MultiJava [5,
6]. In that work we were concerned with modular static typecheck-
ing and compilation. This is closely related to the issue of modular
reasoning, because the source code of a method body is a very pre-
cise behavioral specification of that method. A language that sup-
ports modular reasoning can therefore also permit separate
compilation, as well as modular implementations of other tools
(e.g., optimizers, verifiers, and model checkers). Thus, mechanisms
that permit modular reasoning would have many benefits.

1.2 Modular Reasoning in Java
Java without aspect-oriented extensions supports modular reason-
ing. We illustrate this after giving some background on JML.

1.2.1. JML Background
Consider the examples in Figure 1 and Figure 2, modified slightly
from Kiczales, et al. [11] and annotated with JML specifications.
Specification annotations are enclosed in special comments; at-
signs (@) at the beginning of lines in annotations are ignored.

In JML, model fields, like xCtr and yCtr in Figure 1, specify the
abstract state of an object. They are specification-only constructs,
but are treated formally as locations. The keyword instance says
that they are considered to be model fields in all classes that imple-
ment the interface. A represents-clause (with keyword repre-
sents, as in Figure 2) says how the values of model fields are
related to the actual, concrete fields of an object; and a depends-
clause (also in Figure 2) allows such concrete fields to be assigned
to when the model fields that depend on them are assignable [15].

In our JML examples, each method�s specification is written pre-
ceding its signature. We use a desugared form of JML method spec-
ifications in this paper, in which a visibility level, which describes
who can see the specification, is followed by the keyword behav-
ior, which introduces a specification case. A specification case
consists of several clauses. The forall-clause introduces logical

Gary T. Leavens
33

variables that are universally quantified over the specification case.
The requires-clause gives the case�s precondition, the assignable-
clause its frame, the ensures-clause its normal postcondition, and
the signals-clause its exceptional postcondition. Postconditions
may use the keyword \result to refer to the value a method
returns. Consider a call to the method being specified; for all
assignments to the universally quantified variables that make the
precondition true, the call may only mutate locations described by
the frame, and if the call returns normally the method must satisfy
the normal postcondition; if the call throws an exception it must sat-
isfy the exceptional postcondition. For brevity we will omit empty
forall-clauses, requires-clauses with the default predicate true, and
assignable-clauses for which the frame has the default value of
\nothing.

The form of method specifications we use in this paper is not the
one users normally write in JML. But it is useful for our semantic
study because it corresponds directly to the semantics. For example,
JML borrows from Eiffel the ability to refer to the pre-state value of
an expression E in a postcondition by writing \old(E). The desug-
aring we assume here is to bind the pre-state values of each variable
referred to in a \old expression to a fresh logical variable intro-
duced in a forall-clause. JML also permits the use of calls to �pure�
(side-effect free) methods in specifications, but in this paper we do
not consider such calls. Instead we assume that calls to such meth-
ods are interpreted using the logical formulas in their normal post-
condit ions. For example, one would normally wri te the
specification of moveNE in Figure 1 as follows.

/*@ public behavior
@ requires dx >= 0 && dy >= 0;
@ assignable xCtr, yCtr;
@ ensures getX() == \old(getX() + dx)
@ && getY() == \old(getY() + dy)
@ && \result == this;
@ signals (Exception z) false;*/

FigureElement moveNE(int dx, int dy);

1.2.2. Java Examples
Suppose one wanted to write code that manipulates objects of type
FigureElement. One could reason about such objects based solely
on the information contained in Figure 1. That is, one would know
the objects support a method named moveNE that takes two argu-
ments of type int and that both arguments must be non-negative.
Also if this precondition is satisfied, then the method will leave the
object in a state where the values returned by getX and getY were
increased by dx and dy, respectively.

Similarly, suppose one wanted to write code that manipulated
instances of Point. One could reason about these instances based
on Figure 2, along with the modules referred to in that code. To rea-
son about Point�s moveNE method we would need to consider the
specification of the FigureElement module since (in JML) meth-
ods inherit the specifications of the methods that they override and
the method signatures that they implement. But this consideration
of FigureElement is still modular because FigureElement is
explicitly referred to by the clause
implements FigureElement

in the declaration of Point.1 The additional specification for
moveNE in the Point module is combined with the inherited speci-
fication from FigureElement to form the effective specification
(i.e., the complete specification that must be satisfied at run-time)

package foal02;

interface FigureElement {

/*@ model instance int xCtr, yCtr; @*/

/*@ public behavior
@ forall int oldx, oldy;
@ requires oldx == xCtr && oldy == yCtr
@ && dx >= 0 && dy >= 0;
@ assignable xCtr, yCtr;
@ ensures xCtr == oldx + dx
@ && yCtr == oldy + dy
@ && \result == this;
@ signals (Exception z) false; @*/

FigureElement moveNE(int dx, int dy);

/*@ public behavior
@ ensures \result == xCtr;
@ signals (Exception z) false; @*/

/*@ pure @*/ int getX();

/*@ public behavior
@ ensures \result == yCtr;
@ signals (Exception z) false; @*/

/*@ pure @*/ int getY();

}

Figure 1: A Java module declaring an interface, with (unsugared)
JML specifications

package foal02;

class Point implements FigureElement {

private int _x = 0, _y = 0;

/*@ private depends xCtr <- _x;
@ private represents xCtr <- _x; @*/

/*@ private depends yCtr <- _y;
@ private represents yCtr <- _y; @*/

/*@ public behavior
@ assignable xCtr, yCtr;
@ ensures xCtr == x && yCtr == y;
@ signals (Exception z) false; @*/

public Point(int x, int y) {
_x = x; _y = y;

}

public /*@ pure @*/ int getX() { return _x; }

public /*@ pure @*/ int getY() { return _y; }

/*@ public behavior
@ assignable xCtr;
@ ensures xCtr == x;
@ signals (Exception z) false; @*/

public FigureElement setX(int x) {
_x = x;

}

/*@ public behavior
@ assignable yCtr;
@ ensures yCtr == y;
@ signals (Exception z) false; @*/

public FigureElement setY(int y) {
_y = y;

}

/*@ also
@ public behavior
@ requires dx < 0 || dy < 0;
@ ensures false;
@ signals (Exception z)
@ z instanceof IllegalArgException;
@*/

public FigureElement moveNE(int dx, int dy) {
if (dx < 0 || dy < 0) {

throw new IllegalArgException();
}
setX(getX() + dx);
setY(getY() + dy);

}
}

Figure 2: A Java module declaring a class

1. In Java every class is implicitly a subclass of java.lang.Ob-
ject. Thus reasoning in Java also requires that one consider Ob-
ject�s specification. However, because it is common to all
classes we do not consider this implicit reference to be non-mod-
ular.

Gary T. Leavens
34

of Point�s moveNE method. Rules for combining inherited specifi-
cations in JML give the following effective specification for
Point�s moveNE method [24]:

public behavior
forall int oldx, oldy;
requires oldx == xCtr && oldy == yCtr

&& dx >= 0 && dy >= 0;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;
also
public behavior

requires dx < 0 || dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException;

JML�s also keyword combines specification cases; it says that
when the precondition of one of the combined cases holds, then the
rest of that specification case must be satisfied. So, in addition to
the specification inherited from FigureElement, this effective
specification says that when a client fails to satisfy the original pre-
condition the implementation must throw an IllegalArgExcep-
tion. (This inheritance enforces behavioral subtyping [7, 18].)

1.3 Non-modular Reasoning in AspectJ
Next we show that modular reasoning is not a general property of
AspectJ by considering an aspect-oriented extension to our previ-
ous example. Figure 3 gives an aspect, PointMoveChecking, that
modifies the behavior of Point�s moveNE method. Point-
MoveChecking declares a piece of before-advice, or code to be
executed before traversing a join point into a method body. A join
point is an arc in the dynamic call graph of a program.2 The before-
advice in PointMoveChecking is applicable to each join point
where a target object of type Point receives a call to the method
with signature FigureElement moveNE(int,int). The target
and args keywords are used to give names to the target object and
arguments of the method call. (AspectJ also has after-advice, exe-
cuted after traversing a join point out of a method body, and
around-advice, which applies to the join points into and out of a
method body.)

The before-advice in PointMoveChecking throws an exception if
the absolute value of both arguments in a call to Point�s moveNE
method is less than 0. In AspectJ this advice is applied by the com-
piler without explicit reference to the aspect from either the Point
module or a client module; so by definition, modular reasoning
about the Point module or a client module does not consider the
PointMoveChecking aspect. Thus, modular reasoning has no way

to detect that the effective specification of the moveNE method
should be changed when the Point module and Point-
MoveChecking are compiled together. However, when they are
compiled together, then intuitively the behavior of Point�s moveNE
method satisfies the following specification3.

public behavior
forall int oldx, oldy;
requires oldx == xCtr && oldy == yCtr

&& dx >= 0 && dy >= 0;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;
also
public behavior

requires dx < 0 || dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException;
also
public behavior

requires dx < 0 && dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException
&& z.getMessage().equals(MOVE_SW);

Unfortunately, this behavior is only available to the programmer via
non-modular reasoning. That is, in AspectJ the programmer must
potentially consider every aspect that refers to the Point class in
order to reason about the Point module. So, in general, a program-
mer cannot �study the system one module at a time� [23].

1.4 Problem Summary
In a paper from ECOOP 2001, arguing for aspect-oriented program-
ming, Kiczales, et al. state [12] (p. 327):

�We would like the modularity of a system to reflect the way �we want
to think about it� rather than the way the language or other tools force
us to think about it.�

However, we have seen that the lack of support for modular reason-
ing can sometimes prevent us from thinking about a system �the
way we want to think about it�. In AspectJ, tool support is provided
to compensate for this lack of modularity. Such tools perform the
necessary whole program analysis to direct the programmer to the
applicable aspects that affect pieces of a module�s source code.
Other tools for processing AspectJ source code (e.g., typecheckers,
compilers, and optimizers) also require a whole program analysis.

We seek a small set of modifications to AspectJ that obviate the
need for this whole program analysis either by the programmer or
by supporting tools.

The remainder of this paper is organized as follows. Section 2 gives
our proposal for modular reasoning. Section 3 evaluates our pro-
posal. Section 4 discusses some limitations of our proposal and
considers separate compilation. Section 5 concludes.

2. A PROPOSAL
We have shown that AspectJ in general does not support modular
reasoning; in general the effective specification of a module can
only be determined by a whole-program analysis. In this section we
propose modifying AspectJ by categorizing aspects into two sorts:
assistants and observers. �Observers� are limited in that they may
not change the effective specifications of the modules they apply to,
�assistants� are not limited in this way. Since observers do not
change effective specifications, they preserve modular reasoning
even when applied without explicit reference by the modules they

2. Join points in AspectJ are actually more general than what we de-
scribe. For example, join points can refer to field references and
exception handlers [2]. We leave generalization for future work.

package foal02;

aspect PointMoveChecking {

private final String MOVE_SW =
�did you mean to call moveSW()?�;

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

if (dx < 0 && dy < 0)
throw new

IllegalArgException(MOVE_SW);
}

}

Figure 3: An AspectJ module providing advice for Point

3. We will formalize this intuition in Section 2.

Gary T. Leavens
35

observe. Hence observers preserve most of the flexibility of the cur-
rent version of AspectJ. Because assistants can change the effective
specification of the modules to which they apply, to maintain mod-
ular reasoning they can only be applied in modules that explicitly
reference them. Assistants also require subtle reasoning techniques.

2.1 Assistants
We call aspects that can change the effective specification of a mod-
ule assistants. The PointMoveChecking aspect of Figure 3 is an
assistant. The term �assistant� is intended to connote a participatory
role for these aspects.

What information is needed to modularly reason about behavior
when assistants are present? Quite simply, a module must explicitly
name those assistants that may change its effective specification or
the effective specifications of modules that it uses. We say that a
module accepts assistance when it names the assistants that are
allowed to change its effective specification or the effective specifi-
cations of modules that it uses. Assistance may be accepted by:

� the module to which the assistance applies, or
� a client of that module.
AspectJ does not currently include syntax for explicitly accepting
assistance. We propose a simple syntax extension for this purpose:

accept TypeName;
where TypeName must be a canonical name of an assistant, i.e., a
fully qualified name of the package containing the assistant, fol-
lowed by a �dot� (.), followed by the assistant�s identifier. Multiple
accept-clauses may appear in a single module, following any
import-clauses. For example, the Point module could accept the
PointMoveChecking assistance by declaring:
accept foal02.PointMoveChecking;

Since Point (the module implementing the moveNE method)
accepts PointMoveChecking�s assistance, this assistance is
applied to every call to Point�s moveNE method, regardless of the
client making the call.

On the other hand, if PointMoveChecking�s assistance was
accepted by a client module, then that assistance would only be
applied to calls from that client to Point�s moveNE method. Other
clients that did not accept the assistance would not have it applied
to their calls.

Figure 4 depicts the control flow of an invocation of moveNE with
PointMoveChecking�s assistance. This depiction shows that there
are multiple paths by which control may return to the client code,
depending on the values of the parameters. The two arrows from
the implementation of moveNE back to the client code correspond to
the two postconditions (normal and exceptional) in the method�s
specification. Dashed lines indicate exceptional control flow.

2.1.1. Composing Advice Specifications
When a client invokes a method for which either the client or

implementation module has accepted assistance, the behavior of
that invocation is based on the sequential composition of the code
along a particular control flow path. We can reason abstractly about
the possible behavior of the invocation by considering specifica-
tions for the method and the assistants. In this subsection we extend
JML to specify advice in AspectJ and we show how to modularly
reason about the effective specification of a method in the presence
of accepted assistance.

A specification language for an aspect-oriented programming lan-
guage must take possible control flow paths into account. Figure 5
gives another version of the PointMoveChecking assistant that
adds a specification for the before-advice. In before-advice an
ensures-clause gives a normal postcondition, which must hold
before control passes to the advised method (or any other applicable
advice). We use the ensures-clause in this way since passing control
to the advised method is the �normal� behavior for before-advice.
So the specification of the before-advice in Figure 5 says that if the
advice is entered with dx > 0 or dy > 0, then control flow must
pass to the advised method. The implicit frame axiom for this case
says that no relevant locations may be assigned when this precondi-
tion holds.

The second specification case in Figure 5 says that if the advice is
entered with dx < 0 and dy < 0 then control flow must return to
the caller by throwing an IllegalArgException whose message
is �did you mean to call moveSW()?�.

When reasoning about a call to Point�s moveNE method from the
client�s perspective we would like to use an effective specification
that abstracts away the details of the control flow and intermediate

// client code
accept
PointMoveChecking;

Point p;
int dx, dy;
...
p.moveNE(dx, dy);
...

PointMoveChecking�s

Points�s moveNE
implementation

before-advice

if dx < 0 && dy < 0

if dx <= 100 && dy <= 100

Figure 4: A depiction of the possible control flows of invocations of moveNE given that the client module
accepts PointMoveChecking�s assistance (dashed lines represent exceptional control flow)

if dx >= 0 && dy >= 0
if dx < 0 || dy < 0

package foal02;

aspect PointMoveChecking {

private final String MOVE_SW =
�did you mean to call moveSW()?�;

/*@ public behavior
@ requires dx > 0 || dy > 100;
@ ensures true;
@ signals (Exception z) false;
@ also
@ public behavior
@ requires dx < 0 && dy < 0;
@ ensures false;
@ signals (Exception z)
@ z instanceof IllegalArgException
@ && z.getMessage().equals(MOVE_SW); @*/

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

if (dx < 0 && dy < 0)
throw new

IllegalArgException(MOVE_SW);
}

}

Figure 5: Assistant from Figure 3 with specification added

Gary T. Leavens
36

state transformations. That is, the effective specification from the
client�s perspective should just concern the preconditions as control
flow leaves the client and the postconditions as control flow returns
to the client, along with the relevant frame axioms.

Just as the effective behavior along any control flow path is the
sequential composition of the code along that path, the effective
specification along any control flow path is formed by a kind of
sequential composition of the specifications along that path. When
a set of paths are in parallel, as in our example, then the effective
specification of the set is a kind of parallel composition of the paral-
lel paths� specifications. To formalize these notions we will begin
by just considering before-advice and after-returning advice.4 Then
we will use the model to determine the effective specification of
moveNE in our running example. Later we will sketch extensions to
our formal model to accommodate around-advice.

We present our model in two stages. We first describe how to con-
struct a specification composition graph, from the specifications of
the implementation module and those of any assistants accepted by
that module or the client module. We then describe how the graph is
used to determine the effective specification of the invocation.

Constructing a Specification Composition Graph
A specification composition graph is a graph whose vertices repre-
sent a single method specification, the specifications of all advice
applicable to the method (and accepted by the method�s implemen-
tation module or the client module), and the prestate and poststate
from the client�s view. The specification composition graph is anal-
ogous to the control flow graph for the corresponding code. The
specification composition graph is used to determine the possible
paths through the advice and method specifications (and hence the
code if the implementation is correct). These paths are used to cal-
culate the effective specification.

In general a module may accept assistance from multiple assistants
and both a client and an implementation module may accept assis-
tance. The specification composition graph is formed respecting the
following order:

1. Apply any before-advice accepted by the client module in the
order that it is accepted.

2. Apply any before-advice accepted by the implementation mod-
ule in the order that it is accepted.

3. Execute the method body.
4. Apply any after-advice accepted by the implementation in the

reverse order from which it is accepted.
5. Apply any after-advice accepted by the client module in the

reverse order from which it is accepted.
This ordering ensures, for example, that the first assistance
accepted by the client is �nearest� to the client and that the last
assistance accepted by the implementation is nearest to the imple-
mentation on any path.

We will denote this ordering of before-advice, the method, and
after-advice by the sequence where through

 represent the before-advice, represents the method, and
 through represents the after-advice.

(For simplicity and modularity we have decided for the present to
confine acceptance of assistance to the module in which it is explic-
itly accepted. For example, if ColorPoint is a subclass of Point,
assistance accepted by Point is not automatically applied to invo-
cations of methods declared in ColorPoint. On the other hand, if
for a particular method ColorPoint does not override Point�s
implementation, then the inherited method carries with it the assis-
tance accepted in the Point module. This approach also provides
flexibility since the programmer can always add an accept-clause to
the subclass module or override a superclass method (gaining assis-
tance in the first case and �shadowing� assistance acceptance in the
second). Similar considerations apply for assistance accepted by a
superclass module of a client class. Also for simplicity we do not
allow interfaces to accept assistance. Future work may reevaluate
these decisions.)

Figure 6 gives the specification composition graph for Point�s
moveNE method with assistance from PointMoveChecking. It is
helpful to refer to this figure while considering the graph construc-
tion algorithm.

Formally, a specification composition graph is a directed acyclic
graph, , where is
the set of vertices and E is the set of edges.

As Figure 6 shows, each vertex in V, except start and end, is anno-
tated with the signature of the corresponding method or advice.
This information is used reason about the passing of parameters.

To define the edges of the specification composition graph, we first
d e f in e a fu n c t i o n n e x t t ha t o r de r s t he ve r t i c es . Le t

, fo r a l l , , and
.

We also need some notation that will be used to label edges in the
graph with information from the advice and method specifications.
We will use to represent the set of all possible program states,
i.e., the set of all legal assignments of values to locations. For each

 in V, let its specification, , be represented by a set of tuples,
, where

is the number of cases in the specification and for all k:, ,
 represents the kth specification case, in which:

� represents its set of quantified variables (from forall),
along with the implicitly bound \result variable for methods
and after-advice and any variables bound in signals-clauses.

� : represents its precondition (requires),
� is a set of variables that represents its frame (assignable),
� : represents its normal postcondition (ensures),

and
� : represents its exceptional postcondition (sig-

nals).5

Each edge in E is represented by a tuple, , with

� indicating normal () or exceptional () control
flow,

� x and y being the beginning and ending vertices of the edge,
� being the kth specification case (as above), and
� being the state of the program when control flow

traverses that edge.
4. AspectJ supports three kinds of after-advice. After-returning ad-

vice is only applicable when the advised method exits normally.
After-throwing advice is only applicable when the advised meth-
od exits by throwing an exception. Regular after-advice, without
a returning- or throwing-clause, is applicable in either case. To
avoid complications in this preliminary proposal we are only con-
sidering after-returning advice. It is a simple matter to modify the
edge construction algorithm, presented below, to accommodate
the other kinds of after-advice.

a1 a2 … an, , ,〈 〉 a1
am 1� am
am 1+ an

5. To avoid unnecessary additional complexity we assume each
specification in this representation already includes the specifica-
tions inherited from its supertypes. Also, typically postconditions
are modeled as relations on two states, but we are assuming a
form for postconditions that cannot refer to pre-state values.

G V E,〈 〉= V start end,{ } ai 1 i n≤ ≤{ }∪=

next start() a1= 1 i≤ n-1≤ next ai() ai 1+=
next an() end=

Σ

ai S ai()
S ai() Sk ai() Sk ai() Qk r, k fk ek sk, , ,〈 〉= 1 k pi≤ ≤,{ }= pi

1 k≤ pi≤
Sk ai()

Qk

rk Σ Bool→
fk
ek Σ Bool→

sk Σ Bool→

ρ x y Sk x() σ, , , ,〈 〉

ρ ν ε,{ }∈ ν ε

Sk x()
σ Σ∈

Gary T. Leavens
37

To model all the possible normal and exceptional control paths,
construct E as follows:

1. Let J be an index set of distinct indexes. These will be used to
label the state information in the edge tuples.

2. Add a directed edge to E, where
 is an unused index. The empty specification ��� is not

used when computing the effective specification.
3. Let x:= .
4. Repeat until :

4.1. For each specification case in , if ek is not
false, add a normal edge to E
and if sk is not false, add an exceptional edge

 to E, where are unused indi-
ces.

4.2. Let x:= .
Figure 6 shows the specification composition graph generated by
this algorithm when Point accepts assistance from Point-
MoveChecking;

Composing Specifications Along A Path
The specification composition graph, G, contains all the informa-
tion needed to calculate the effective specification of a method
invocation. We first describe how to compose specifications along
any single path in G.

Consider a unique path from start to end in the graph. Because of
exceptional return edges this path may not visit every node in the
graph. For simplicity of notation we will sequentially renumber the
states and for each we will write for the specification case
from used on this path. Thus, the path is:

〈
〉,

where there are q+1 edges on the path. (For a path without excep-
tional edges , otherwise throws the exception.)

To prevent capture of the locally bound variables when composing
the specifications, we α-convert the specification cases and related
method and advice signatures so that all bound variable names are

unique. We reserve the method�s formal parameter names for
prestate values, so we must α-convert the signature and out-edges
of the method vertex. We also reserve the \result keyword for the
poststate of the effective specification and so all instances of \result
in the graph must be α-converted. We will use a fresh variable in
signals-clauses of the effective specification. Figure 7 shows the
normal control flow path through the specification control graph of
Figure 6, after α-conversion.

If a given path is traversed in a program execution, then it must be
the case that all the specifications along the path hold. We use this
to reason inductively about the path�s effective specification.

If control flow enters vertex then holds and the formals
in the vertex�s signature must be bound to the actual arguments. We
use the predicate to model the binding of actual argu-
ments, results, or exceptions from vertex x to parameters in the sig-
nature of vertex y. This binding is according to the parameter
passing semantics of AspectJ and Java, a full definition of which is
beyond the scope of this paper. As examples, here are the values of
bind for the path in Figure 7, respecting the α-conversion shown
there:

� = (p1==this && dx1==dx && dy1==dy)
� = (this==p1 && dx2==dx1 && dy2==dy1)
� = (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)

If control flow leaves vertex on edge then the
implementation code corresponding to that vertex must ensure that
the set of possibly mutated locations is and that if then

 holds else if then holds.

I f co n t ro l f l o w ex i t s v e r t e x on a n o rm a l e dg e
, , then the set of possibly mutated

locations is and the following predicate holds:

 ∧

If control flow exits vertex on an exceptional edge, then ,
and the following predicate holds:

Figure 6: The specification composition graph for Point�s moveNE method with assistance accepted from PointMoveChecking
Vertex a1 corresponds to PointMoveChecking�s advice specification, vertex a2 to Point�s moveNE specification; edges are labeled

with the specification case of the start vertex and the name of the state; exceptional edges are shown with dashed lines.

start

end

�,σ0 〈Q=∅,r=dx>0 || dy>0,f=∅,e=true,s=false〉, σ1

〈Q={z},r=dx<0 && dy<0,f=∅,e=false,
s=z instanceof IllegalArgException && z.getMessage().equals(MOVE_SW)〉, σ3

〈Q={z},r=dx<0 || dy<0,f=∅,e=false,
s=z instanceof IllegalArgException〉, σ4

a1
before(Point p, int dx, int dy):
target(p) && args(dx, dy)
&& call(FigureElement moveNE(int,int))

a2
public FigureElement

Point.moveNE(int dx, int dy)

〈Q={oldX,oldY,\result},r=oldX==xCtr && oldY==yCtr && dx>=0 && dy>=0,
f={xCtr,yCtr},e=xCtr==oldX+dx && yCtr==oldY+dy && \result==this,s=false〉, σ2

ν start next start() � σj, , , ,〈 〉
j J∈

next start()
x end=

Sk x() S x()
ν x next x() Sk x() σi, , , ,〈 〉

ε x end Sk x() σj, , , ,〈 〉 i j, J∈

next x()

ai Si
S ai()

ν s, tart a1 � σ0, , ,〈 〉 ρ a1 a2 S1 σ1, , , ,〈 〉 …, ,
… ρ aq end Sq σq, , , ,〈 〉,

q n= aq

a1 r1 σ0()

bind x y,()

bind start a1,()
bind a1 a2,()
bind a2 end,()

a1 ρ a, 1 y S1 σ1, , ,〈 〉

f1 ρ ν=
e1 σ1() ρ ε= s1 σ1()

ai
ν a, i ai 1+ Si σi, , ,〈 〉 1 i q≤ ≤

f1 …∪ fi∪

bind start a1,() … bind ai 1� ai,()∧∧
r1 σ0() … ri σi-1()∧ ∧ e1 σ1() … ei σi()∧ ∧∧

ai i q=

Gary T. Leavens
38

 ∧

This predicate involves most of the normal postconditions; these
just record what happens along the path before the last edge, which
is the only one that throws an exception.

To reason about the effective specification from the client�s per-
spective, we must eliminate the intermediate states from these pred-
icates. One way to do this would be to quantify over the states, like:

(∧
)

However, in JML entire states are not directly expressible, so this
idea has to be used indirectly by quantifying over intermediate val-
ues of each of the variables used in the predicates. Figure 8 gives
the general form of the effective specification along any path. The
first line of this general form is calculated by this indirect quantifi-
cation over intermediate values. Let stand for all the free vari-
ables6 (i.e., field names) in specification cases on a path, and let
be their corresponding types. We subscript the names in to repre-
sent the value of each named variable in the corresponding state.
For example, yCtr2 is a variable whose value is that of the field
yCtr in state . Similarly, we write to represent the vector of
all i-subscripted variables, i.e., the vector of values in state of all
variables named in .

The second line of Figure 8 gives the explicitly quantified variables
of the original specification cases, along with the α-converted
parameters from the advice and method signatures.

The requires-, ensures-, and signals-clauses are based on the predi-
cates derived above, with appropriate substitution for the intermedi-
ate values of the variables. That is, we write for the
precondition ri where for each variable , each free occurrence
of y is changed to yi-1. We use the same kind of abbreviation for

.

The general form of the effective specification also must equate the
prestate to and the poststate to and include the information
provided by the frame axioms. We write for the predi-
cate that asserts the equality of the variables in and , using ==
or .equals as appropriate for their types, and for
the predicate that says that variables not listed in the frame f are

unchanged; this is defined conceptually as follows (although this
quantification is not expressible directly in JML, we can write the
equivalent set of conjunctions in any particular case).

Taken together, we arrive at a single specification case for a single
path through the specification composition graph, as Figure 8
shows. Since each possible parallel path is represented by such a
specification case, we simply conjoin (using JML�s also operator)
the effective specifications for each path to form the effective spec-
ification of the entire invocation (the �parallel composition� alluded
to earlier).

Finding the Effective Specification
We can use this formal model to find the effective specification of
Point�s moveNE method with the PointMoveChecking assistant.

Consider the path shown in Figure 7. On this path, the free variables
are xCtr and yCtr. Counting the initial state, we need to quantify
over 3 states. The effective specification is as shown in Figure 9.
Lines from Figure 8 to Figure 9 relate the terms in the general form
to the terms in the example. This example specification can be sim-
plified to the following by using transitivity of equality (within
clauses), the rule that false is the zero of conjunction, and drop-
ping vacuous quantifiers:

forall int oldx, oldy;
requires dx >= 0 && dy <= 100

&& oldx == xCtr && oldy == yCtr;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;

This is exactly the body of the first specification case arrived at
intuitively in Section 1.3. We can analyze the other paths in the
graph to calculate the other specification cases. Combining them
with also yields the full effective specification.

2.1.2. Composition with Around-Advice
Figure 10 gives another assistant, called PointMoveFixing. It uses
around-advice to change moveNE to accommodate negative argu-
ments. Around-advice in AspectJ can execute both before and after
the execution of the advised method�s body. Unlike before-advice,
around-advice can also skip the execution of the advised method�s
body without throwing an exception. The code (as opposed to the
specification) in the body of the advice in Figure 10 illustrates these
ideas. If dx and dy are both non-negative then the statement6. Though not shown in this paper, JML provides constructs for lo-

cally binding names in expressions, such as quantifiers.

Figure 7: The normal control flow path through the specification composition graph of Figure 6, after α-conversion

start

end

�,σ0 〈Q=∅,r=dx1>0 || dy1>0,f=∅,e=true,s=false〉, σ1

a1
before(Point p1, int dx1, int dy1):
target(p1) && args(dx1, dy1)
&& call(FigureElement moveNE(int,int))

a2
public FigureElement

Point.moveNE(int dx2, int dy2)

〈Q={oldX,oldY,\result2},r=oldX==xCtr && oldY==yCtr && dx2>=0 && dy2>=0,
f={xCtr,yCtr},e=xCtr==oldX+dx2 && yCtr==oldY+dy2 && \result2==this,s=false〉, σ2

bind start a1,() … bind aq 1� aq,()∧∧
r1 σ0() … rq σq-1()∧ ∧ e1 σ1() … eq-1 σq-1() sq σq()∧ ∧ ∧∧

σ1 … σi 1�, ,∀ bind start a1,() … bind aq 1� aq,()∧∧•
r1 σ0() … rq σq-1()∧ ∧ e1 σ1() … eq-1 σq-1() sq σq()∧ ∧ ∧∧

y
T

y

σ2 yi
σi

y

ri y:=yi-1[]
y y∈

ei y:=yi[]

σ0 σq
equal yi yj,()

yi yj
notmod f y, i j,,()

notmod f y, i j,,() y y∈ y f∉ equal⇒• yi yj,()∀()=

Gary T. Leavens
39

proceed(p,dx,dy);

causes control flow to pass to the original moveNE method body
with the same arguments as the original invocation. Otherwise, in
the else-clause the advice calls the setX and setY methods on
Point directly, avoiding the IllegalArgException that would be
thrown if execution continued into moveNE. After the if-statement
an acknowledgment message is printed to System.err.

Figure 10 also includes a JML specification of the around-advice.
As with methods, before-advice, and after-advice, the specification
of around advice consists of one or more specification cases joined
with the keyword also. To specify the additional control flow pos-
sible via proceed in around-advice, we propose adding the AspectJ
proceed-clause to JML as a mechanism for forming compound
specification cases. In a specification the proceed-clause joins a
specification case called the before-part, and a specification case
called the after-part. The before-part specifies the code executed
before proceeding to the original method (and any additional advice
if present). The after-part specifies the code executed after returning
from the original method (and advice).

The first specification case in Figure 10 (from the beginning up to
the also) is such a compound specification consisting of before-
and after-parts. The case is applicable when dx and dy are both
non-negative, as specified by the requires-clause. In general an
ensures-clause in the before-part says that if control flow proceeds

to the original method body then the assistant must ensure that the
clause�s predicate holds. In the example, ensures true indicates
that control flow can always proceed in this manner. The proceed-
clause itself specifies (possibly abstractly) the arguments that will
be passed to the original method. A requires-clause in the after-part
gives a predicate that can be assumed by the implementation of the
after-part. The remainder of the after-part has the usual semantics.

The second specification case, following the also keyword in Fig-
ure 10, is applicable when at least one of the arguments is negative.
The absence of a proceed-clause in this specification case says that
control never proceeds to the original method body when this case�s
precondition is met. The assignable- and ensures-clauses say that
control returns to the original client with possible mutation to p�s
xCtr and yCtr model fields and the system error stream, and with
the given postcondition predicate satisfied.

To reason about effective specifications in the presence of around-
advice we would need to extend our formal model. The extension
would handle the additional control flow information provided by
the proceed-clause. We envision encoding the specification of
around-advice with multiple vertices in the specification composi-
tion graph. For each piece of around-advice one common vertex
would represent the before-parts of all the cases. Separate vertices,
one for each case, would represent the after-parts. The edge cre-
ation algorithm would require extensions to connect the vertices

forall ; ...; forall ;
forall ;...; forall ;

requires /* σ0 equals prestate */
/* and parameter passing completed*/
&& bind(start,a0) &&...&& bind(aq-2,aq-1)
/* and preceding postconditions and frames satisfied */
&& &&

&&...&& &&

/* and all preconditions satisfied */
&& && ... && ;

assignable ;

ensures /* parameter passing completed*/
bind(start,a0) &&...&& bind(aq-1,aq)
/* all postconditions and frames satisfied */
&& &&

&&...&& &&

&& &&

/* and poststate equals σq */

&& ;

signals /* z is fresh */ (Exception z)
/* parameter passing completed*/
bind(start,a0) &&...&& bind(aq-1,aq)
/* all preceding postconditions and frames satisfied */

 &&

&&...&& &&

/* and signals predicate and frame satisfied */
&& &&

/* and poststate equals σq */

&& ;

Figure 8: General form of the composed specification for a path

forall int xCtr0, yCtr0; forall int xCtr1, yCtr1;
forall int xCtr2, yCtr2;

forall int oldx, oldy, \result2;

requires (xCtr == xCtr0 && yCtr == yCtr0)

&& (p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)

&& (dx1>0 || dy1>0)
&& (oldx == xCtr1 && oldy == yCtr1 &&

dx2 >= 0 && dy2 >= 0);

assignable xCtr, yCtr;

ensures (p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)
&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)
&& (xCtr2==oldX+dx2 && yCtr2==oldY+dy2 &&

\result2 == this)

&& (xCtr2 == xCtr && yCtr2 == yCtr);

signals (Exception z)
(p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)

&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)

&& (false)

&& (xCtr2 == xCtr && yCtr2 == yCtr);

Figure 9: Composed specification for the path in Figure 7
Lines between this and Figure 8 show the correspondence of terms.

T y0 T yq 1�
Q1 Qq

equal y y0,()

e1 y:=y1[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

r1 y:=y0[] rq y:=yq 1�[]

f1 …∪ fi∪

e1 y:=y1[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

eq y:=yq[] notmod fq y, q 1� q,,()

equal yq y,()

e1 y:=y2[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

sq y:=yq[] notmod fq y, q 1� q,,()

equal yq y,()

Gary T. Leavens
40

appropriately. The calculation of the composed specification for a
given path in the graph would have to account for the expressions in
proceed-clauses of the specification.

2.1.3. Summary
We have argued that modular reasoning in aspect-oriented program-
ming languages can be achieved for assistants if we require mod-
ules to explicitly accept assistance. We have given a formal model
for advice composition that allows us to determine the effective
specification of a method. This model also illustrates the reasoning
a programmer must undertake even in the absence of formal speci-
fications.

But what impact does our requirement that assistants be explicitly
accepted have on the expressiveness of the language? On the one
hand, assistants are very expressive in that they are given free rein
to change the effective specifications of modules that they assist.
On the other hand, requiring assistance to be explicitly accepted
dramatically curtails the applicability of assistants. To wit, a com-
mon example of the use of aspects is to add tracing capability to an
existing program. In a language that just supported explicitly
accepted assistance, a programmer would need to make an invasive
change to the source code of every module containing a method to
be traced (or alternatively, every module calling a method to be
traced). We would have gained support for modular reasoning at the
expense of modular editing.

2.2 Observers
To resolve this situation we propose that an aspect-oriented pro-
gramming language should also support a category of aspects that
we call observers. An observer is an aspect that does not change the
effective specification of any other module. Equivalently, an
observer may only mutate the state that it owns (in the sense of alias
control systems like [20, 21]). It also seems reasonable to allow
observers to change accessible global state as well, since a Java
module cannot rely on that state not changing during an invocation

(modulo synchronization mechanisms). The term �observer� is
intended to connote the hands-off role of these aspects. We use the
term observation to discuss the �advice� in an observer.

For example, Figure 11 gives an observer called PointMoveTrac-
ing. The observer modifier declares that this aspect must not
change the effective specification of any other module. This
observer mutates its own state by appending to myBuffer and
mutates the global state by printing to System.err. However, it
does not change the effective pre- or postconditions of Point�s
moveNE method. PointMoveTracing merely observes the argu-
ments to the moveNE method and reports them. The arguments are
passed on to the method unchanged and the method�s results are
unchanged.

In addition to cross-cutting concerns like tracing, it seems that
observers should be useful for logging and as the observer in the
observer design pattern [8] (pp. 293�303).

Because observers do not change the effective specifications of the
methods they observe, code outside an existing program can apply
an observer to any join point in the original program without loss of
modular reasoning. In reasoning about the client and implementa-
tion code for a method a maintainer of the original program does
not need any information from the observer.

2.2.1. Verifying Observerness
The primary challenge of implementing this part of our proposal
lies in determining whether a given aspect is really an observer. We
envision a static analysis that conservatively verifies this. This anal-
ysis is closely related to the problem of verifying frame axioms. In
fact we can think of observers as having an implicit frame axiom
that prevents modification of locations that are relevant to the
receiver and arguments of the observed method.

The main difficulty with statically verifying this lack of relevant
side effects is how to deal with aliasing. For example, suppose we
have a logging observer that uses an array to track the elements
added to some Set object. Suppose Set uses an array for its repre-
sentation. If the observer�s array and the Set�s array are aliased, we
might end up with an element being added to the array twice�pos-
sibly violating Set�s invariant and changing its effective specifica-
tion. There is a substantial body of work on alias control that may
be useful in attacking this [20, 21].

3. EVALUATION
This section briefly evaluates the practical consequences of our pro-
posal. Because we have not yet had the opportunity to develop
applications using our proposed restrictions, our evaluation is lim-
ited to a review of existing programs. We first consider the aspect-
oriented programming guidelines suggested in the ATLAS case
study [10]. Then we survey the example aspects from the AspectJ
Programmers Guide [2].

package foal02;

aspect PointMoveFixing {

/*@ public behavior
@ requires dx >= 0 && dy >= 0;
@ ensures true;
@ proceed(p,dx,dy);
@ requires true;
@ assignable System.err.value;
@ ensures true;
@ signals (Exception z) false;
@ also
@ public behavior
@ forall int oldx, oldy;
@ requires (dx < 0 || dy < 0)
@ && oldx == xCtr && oldy == yCtr;
@ assignable p.xCtr, p.yCtr,
@ System.err.value;
@ ensures p.xCtr == oldx + dx
@ && p.yCtr == oldy+ dy;
@ signals (Exception z) false;
@*/

FigureElement around(Point p, int dx, int dy):
target(p) && args(dx, dy)
&& call(FigureElement moveNE(int,int))

{
if (dx >= 0 && dy >= 0) {

proceed(p,dx,dy);
} else {

p.setX(p.getX() + dx);
p.setY(p.getY() + dy);

}
System.err.println(�OK�);

}
}

Figure 10: An AspectJ module giving around-advice to Point

package foal02;

observer aspect PointMoveTracing {
private StringBuffer myBuffer =

new StringBuffer();

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

String message = "Entering Point.moveNE" +
"(" + dx + "," + dy + ")" + "for " + p;

myBuffer.append(message);
System.err.println(message);

}
}

Figure 11: An AspectJ module for tracing method calls.

Gary T. Leavens
41

3.1 ATLAS Case Study
In the ATLAS case study [10], the authors proposed several guide-
lines to make working with aspects easier. These were proposed
since they had discovered that (p. 346):

�[t]he extra flexibility provided by aspects is not always an advantage.
If too much functionality is introduced from an aspect it may be
difficult for the next developer�or the same developer a few months
later�to read through and understand the code base.�

One of Kersten and Murphy�s suggestions is to limit coupling
between aspects and classes to promote reuse. Specifically, they
suggest that one should avoid the case where an aspect explicitly
references a class and that class explicitly references the aspect,
since then the class and aspect are mutually dependent. Such
mutual dependencies prevent independent reuse. Is this suggestion
problematic for our requirement that modules explicitly accept
assistance? No, because the suggestion is concerned with mutual
dependence between aspects and classes. Suppose an implementa-
tion module, M, accepts assistance from an assistant, A, and A
changes M�s effective specification. This says nothing about
whether M and A are mutually dependent. If A explicitly references
M the modules are mutually dependent. However, if A only applies
to M because of wildcard-based pattern matching and does not
explicitly reference M, then the modules are not mutually depen-
dent. Next, suppose a client module, C, accepts assistance from an
assistant, , and only changes the effective specification of
modules referenced by C, but does not change C�s effective specifi-
cation. In this case and C are not mutually dependent. In sum,
programmers can reduce mutual dependency by having clients
accept assistance or by limiting explicit references to classes from
assistants.

Kersten and Murphy also suggest using aspects as factories by hav-
ing them provide only after-returning advice on constructors. This
after-returning advice mutates the state of every object instantiated
to change its default behavior. Limiting the aspects in this way
restricts the scope of object�aspect interaction. In our proposal a
simple assistant can fill the role of a factory aspect.

For aspects that do not act as factories Kersten and Murphy propose
three style rules that restrict the use of aspects (pp. 349�350):

�Rule #1: Exceptions introduced by a weave must be handled in the
code comprising the weave. ... Rule #2: Advise weaves must
maintain the pre- and post-conditions of a method. ... Rule #3:
Before advise weaves must not include a return statement.�

These rules are essentially equivalent to our definition of observers
in that they prevent aspects from changing the effective specifica-
tion of the advised method. Though we propose elevating these
style rules to the level of statically checked restrictions.

3.2 Dynamic Aspects
The ATLAS case study uses dynamic aspects, or the substitution of
different aspect code at runtime to modify the behavior of a pro-
gram. One way to support this technique within the framework of
our proposal would be to have modules accept assistance from
abstract assistants. Specifications would be associated with these
abstract assistants. The various desired behaviors would be imple-
mented as separate assistants, each extending the abstract assistant
and implementing its specification. This approach permits modular
reasoning. The language would also need a mechanism to support
the runtime selection of a particular concrete assistant.

Related to this idea of dynamic aspects is that of a mechanism for
combining observers and other modules. In the current version of
AspectJ aspects and classes are combined by naming their modules
on the command line in a single invocation of ajc, Xerox�s AspectJ

compiler. Thus combination takes place �outside the language�. To
support observation of separately compiled programs, we would
like to have a mechanism in the language for instantiating observ-
ers. It seems that the same language mechanism might support
instantiating observers and selecting concrete assistants.

3.3 Impact of Restrictions
We would like to better understand how our restrictions might limit
the practical expressiveness of AspectJ. For a preliminary evalua-
tion we use the examples in the AspectJ Programming Guide to see
if our restrictions prohibit any recommended idioms. The program-
ming guide�s examples can serve this purpose since they �not only
show the features [of AspectJ] being used, but also try to illustrate
recommended practice� [2] (from Preface). We separate the exam-
ple aspects into categories based on how we would implement them
with our restrictions. An appendix lists the examples by category;
we describe the categories here.

Observers. Many of the example aspects clearly meet our defini-
tion of observer. To satisfy our restrictions these would only require
the new observer annotation.

Assistants. Aspects in the examples that could be implemented as
assistants can be divided into two kinds. Client utilities are used by
client modules to change the effective behavior of objects from
other modules. The changes in effective behavior do not affect the
representation of those objects. To satisfy our restrictions their
assistance would have to be explicitly accepted by the clients. In
fact, some of the client utility assistants are declared as nested
aspects, i.e., aspects declared inside class declarations. These are
similar in spirit to explicitly excepted assistance.

There is one example that could be implemented as an assistant but
that is not a client utility. This example uses an aspect to separate a
simple concern that cross-cuts a single implementation module.
The pointcut, or named join point, for this aspect is declared in the
implementation class and the aspect explicitly references the imple-
mentation class and the pointcut. To satisfy our restrictions the
implementation module would have to explicitly accept the assis-
tance, which would create a mutual dependency. However, this
example can be considered a bad design since the concern only
cross-cuts the one implementation module. This design flaw can be
fixed by nesting the assistant in the implementation module, which
would also avoid the mutual dependency.

Dynamic Aspects. To satisfy our restrictions some example aspects
would require the dynamic aspect mechanisms alluded to in Section
3.2. One such example is a debugging aspect. This aspect would be
an observer, except that it provides after-advice to a GUI frame�s
constructor to add debugging options to the frame�s menu bar. To
support this pattern with our restrictions requires the mechanisms
for dynamic aspects. The GUI frame would have to accept assis-
tance from an abstract assistant, say AdditionalMenuConcern,
that allowed a concrete assistant, instantiated at runtime, to add to
its menu bar. The debugging aspect would become a concrete assis-
tant extending AdditionalMenuConcern. The GUI frame could
then be instantiated with the debugging assistant or with an assis-
tant that did nothing.

4. DISCUSSION
As presented, our formal model for reasoning about explicitly
accepted assistance does not accommodate advice that applies to
join points other than those for method invocations. It seems a sim-
ple matter to extend the model to accommodate some other kinds of
join points, such as those for field access or exception handling.
However, it is not clear whether our model can accommodate
dynamic context join points [2], like cflow(pointcut), which rely
on runtime information for applicability tests. It seems that advice

A′ A′

A′

Gary T. Leavens
42

on dynamic context join points can only be modularly reasoned
about if this advice is confined to observations. There is one aspect
in the AspectJ examples we studied, the Registry.Registra-
tionProtection aspect of the spacewar example, that uses a
dynamic context join point with advice that changes the effective
specification of the advised method. This example is not supported
by the current work.

Because of the generality of aspects without our restrictions and
limitations of the target Java Virtual Machine (or JVM) [17],
AspectJ currently requires whole-program compilation [12]. In our
proposal, because assistance is explicitly accepted, it is a simple
matter to support separate compilation for modules that accept
assistance; the compiler just weaves it into the accepting modules.

On the other hand, observers present interesting challenges for sep-
arate compilation. On the surface, since observers do not change the
effective specifications of other modules, it should be possible to
separately compile them. And indeed this is true�except for the
issue of dispatching to observers. The generality of observers
means that they can potentially be dispatched to from any join
point.

Thus, the only obstacle to separate compilation of AspectJ pro-
grams given our restrictions is that of dispatch to observers. Others
have suggested that separate compilation for AspectJ is possible
using techniques such as specialized class loaders or modified vir-
tual machines [12] (p. 343). With our proposed restrictions the
scope of the problem is reduced, likely making it easier to imple-
ment these solutions.

5. CONCLUSIONS
To summarize, we have shown that with a few simple modifications
AspectJ can support modular reasoning. Our proposal separates
aspects into two categories, assistants and observers, which provide
complementary features. Assistants are extremely powerful, but
require subtle reasoning techniques and are limited in their applica-
bility to maintain modular reasoning. Observers are less powerful
but are easy to reason about and are broadly applicable. This broad
applicability is achieved by placing heavier burdens on the type
system.

A preliminary evaluation showed that for many cases our modifica-
tions to the language provide sufficient flexibility. However, we
also noted that there is a need for some mechanism to support
dynamic aspects.

The other major open problem for our proposal is statically check-
ing that aspects declared as observers meet our definition, as dis-
cussed in Section 2.2.1. To attack this problem we propose:

� developing an aspect-oriented calculus for investigating these
ideas in a formal setting, and

� developing and proving sound a type-system for the calculus that
statically enforces our proposed restrictions on observers.

Other future work on the problem of modular reasoning for aspect-
oriented programming languages includes:

� refining our proposed specification constructs for AspectJ and
formalizing their semantics, perhaps using something like the
refinement calculus [3], and

� investigating behavioral subtyping and formal techniques for
verification of aspect-oriented programs.

We are also interested in demonstrating the utility and effectiveness
of our ideas by:

� programming non-trivial systems using our restrictions,
� integrating the proposed restrictions into AspectJ, and

� understanding the potential benefits of our restrictions for sepa-
rate compilation, static analysis, and optimization.

In this paper we have focused on adding support for modular rea-
soning to the AspectJ language. Future work will also investigate
the relevance of our proposal to other aspect-orientation program-
ming languages and techniques, such as composition filters [4],
adaptive methods [16], and multidimensional separation of con-
cerns as embodied by Hyper-J [22, 25].

ACKNOWLEDGMENTS
We would like to thank Yoonsik Cheon, Todd Millstein, Markus
Lumpe, and Robyn Lutz, for their helpful comments on a draft of
this paper. The work of Leavens was supported in part by the US
National Science Foundation grants CCR-0097907 and CCR-
0113181. The work of both authors was supported in part by a grant
from Electronics and Telecommunications Research Institute
(ETRI) of South Korea.

APPENDIX
Table 1 below lists the aspects from the examples directory of the
Version 1.0.1 release of AspectJ7. The second column of the table
gives the categorization of each example based on the categories of
Section 3.3.

7. Available from http://www.aspectj.org.

Table 1: Example Aspects and their Categories

Example Category

telecom/TimerLog observer

tjp/GetInfo observer

tracing/lib/AbstractTrace observer

tracing/lib/TraceMyClasses observer

tracing/version1/TraceMyClasses observer

tracing/version2/Trace observer

tracing/version2/TraceMyClasses observer

tracing/version3/Trace observer

tracing/version3/TraceMyClasses observer

bean/BoundPoint client utility

introduction/CloneablePoint client utility

introduction/ComparablePoint client utility

introduction/HashablePoint client utility

observer/SubjectObserverProtocol client utility

observer/SubjectObserverProtocolImpl client utility

spacewar/Display.DisplayAspect client utility

spacewar/Display1.SpaceObjectPainting client utility

spacewar/Display2.SpaceObjectPainting client utility

telecom/Billing client utility

telecom/Timing client utility

spacewar/EnsureShipIsAlive assistanta

coordination/Coordinator dynamic

spacewar/Debug dynamic

spacewar/GameSynchronization dynamic

Gary T. Leavens
43

REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes. The Java Programming

Language Third Edition. Addison-Wesley, Reading, MA, third
edition, 2000.

[2] AspectJ Team, the. The AspectJ programming guide. Available
from http://aspectj.org/doc/dist/progguide/index.html, Feb.
2002.

[3] R.-J. Back and J. von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998.

[4] L. Bergmans and M. Aksits. Composing crosscutting concerns
using composition filters. Commun. ACM, 44(10):51�57, Oct.
2001.

[5] C. Clifton. MultiJava: Design, implementation, and evaluation
of a Java-compatible language supporting modular open
classes and symmetric multiple dispatch. Technical Report 01-
10, Department of Computer Science, Iowa State University,
Ames, Iowa, 50011, Nov. 2001. Available from
www.multijava.org.

[6] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In OOPSLA 2000 Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, volume 35(10) of ACM
SIGPLAN Notices, pages 130�145, Oct. 2000.

[7] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th
International Conference on Software Engineering, Berlin,
Germany, pages 258�267. IEEE Computer Society Press, Mar.
1996. A corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition. The Java Series.
Addison-Wesley, Boston, Mass., 2000.

[10] M. A. Kersten and G. C. Murphy. Atlas: A case-study in
building a web-based learning environment using aspect-
oriented programming. In Proceedings of the 1999 ACM
Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA �99), volume 34(10) of
ACM SIGPLAN Notices, pages 340�352, Denver, CO,
November 1999. ACM.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. Commun. ACM,

44(10):59�65, Oct. 2001.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen,
editor, ECOOP 2001 � Object-Oriented Programming 15th
European Conference, Budapest Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 327�353. Springer-
Verlag, Berlin Heidelberg, June 2001.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for
detailed design. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifications of Businesses and Systems,
pages 175�188. Kluwer Academic Publishers, Boston, 1999.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of
JML: A behavioral interface specification language for Java.
Technical Report 98-06p, Iowa State University, Department
of Computer Science, Aug. 2001. See
verb|www.cs.iastate.edu/ leavens/JML.html|.

[15] K. R. M. Leino. Toward Reliable Modular Programs. PhD
thesis, California Institute of Technology, 1995. Available as
Technical Report Caltech-CS-TR-95-03.

[16] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods. Commun. ACM,
44(10):39�41, Oct. 2001.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley Publishing Co., Reading, MA,
second edition, 2000.

[18] B. Liskov and J. Wing. A behavioral notion of subtyping.
ACM Trans. Prog. Lang. Syst., 16(6):1811�1841, Nov. 1994.

[19] B. Meyer. Eiffel: The Language. Object-Oriented Series.
Prentice Hall, New York, NY, 1992.

[20] P. Müller. Modular Specification and Verification of Object-
Oriented programs, volume 2262 of Lecture Notes in
Computer Science. Springer-Verlag, 2002. The author�s PhD
Thesis. Available from http://www.informatik.fernuni-
hagen.de/import/pi5/publications.html.

[21] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
E. Jul, editor, ECOOP �98 � Object-Oriented Programming,
12th European Conference, Brussels, Belgium, volume 1445 of
Lecture Notes in Computer Science, pages 158�185. Springer-
Verlag, July 1998.

[22] H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. Commun. ACM,
44(10):43�50, Oct. 2001.

[23] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053�1058,
Dec. 1972.

[24] A. D. Raghavan and G. T. Leavens. Desugaring JML method
specifications. Technical Report 00-03c, Iowa State University,
Department of Computer Science, Aug. 2001.

[25] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In International Conference on Software
Engineering, pages 107�119, 1999.

spacewar/RegistrySynchronization dynamic

spacewar/Registry.RegistrationProtection unsupportedb

a.The EnsureShipIsAlive aspect considered to be a poor design
in the discussion of Section 3.3.
b.The aspect, Registry.RegistrationProtection, uses dynamic
context join points, which aren�t supported by the current work.

Table 1: Example Aspects and their Categories

Example Category

Gary T. Leavens
44

	ABSTRACT
	1. Introduction
	2. A Proposal
	3. Evaluation
	4. Discussion
	5. Conclusions
	Acknowledgments
	Appendix
	Observers and Assistants: A Proposal for Modular Aspect-Oriented Reasoning

