
A Simple and Practical Approach to Unit Testing:
The JML and JUnit Way

Yoonsik Cheon and Gary T. Leavens

TR #01-12c
November 2001; revised March 2002, May 2003, and September 2003.

Keywords: Unit testing, automatic test oracle generation, testing tools, runtime
assertion checking, formal methods, programming by contract, JML language,
JUnit testing framework, Java language.

2000 CR Categories: D.2.1 [Software Engineering] Requirements/ Specifica-
tions — languages, tools, JML; D.2.2 [Software Engineering] Design Tools and
Techniques — computer-aided software engineering (CASE); D.2.4 [Software En-
gineering] Software/Program Verification — Assertion checkers, class invariants,
formal methods, programming by contract, reliability, tools, validation, JML;
D.2.5 [Software Engineering] Testing and Debugging — Debugging aids, design,
monitors, testing tools, theory, JUnit; D.3.2 [Programming Languages] Language
Classifications — Object-oriented languages; F.3.1 [Logics and Meanings of Pro-
grams] Specifying and Verifying and Reasoning about Programs — Assertions,
invariants, pre- and post-conditions, specification techniques.

This version is modified from that appearing in the European Conference
on Object-Oriented Programming (ECOOP), Málaga, Spain, June 10-14, 2002.
Lecture Notes in Computer Science, Copyright c© Springer-Verlag, 2002.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way

Yoonsik Cheon and Gary T. Leavens

Department of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA 50011-1040, USA,

{cheon,leavens}@cs.iastate.edu

Abstract. Writing unit test code is labor-intensive, hence it is often
not done as an integral part of programming. However, unit testing is a
practical approach to increasing the correctness and quality of software;
for example, Extreme Programming relies on frequent unit testing.

In this paper we present a new approach that makes writing unit tests
easier. It uses a formal specification language’s runtime assertion checker
to decide whether methods are working correctly, thus automating the
writing of unit test oracles. These oracles can be easily combined with
hand-written test data. Instead of writing testing code, the programmer
writes formal specifications (e.g., pre- and postconditions). This makes
the programmer’s task easier, because specifications are more concise
and abstract than the equivalent test code, and hence more readable
and maintainable. Furthermore, by using specifications in testing, speci-
fication errors are quickly discovered, so the specifications are more likely
to provide useful documentation and inputs to other tools. We have im-
plemented this idea using the Java Modeling Language (JML) and the
JUnit testing framework, but the approach could be easily implemented
with other combinations of formal specification languages and unit test
tools.

1 Introduction

Program testing is an effective and practical way of improving the correctness
of software, and thereby improving software quality. It has many benefits when
compared to more rigorous methods like formal reasoning and proof, such as
simplicity, practicality, cost effectiveness, immediate feedback, understandabil-
ity, and so on. There is a growing interest in applying program testing to the
development process, as reflected by the Extreme Programming (XP) approach
[3]. In XP, unit tests are viewed as an integral part of programming. Tests are
created before, during, and after the code is written — often emphasized as
“code a little, test a little, code a little, and test a little ...” [4]. The philosophy
behind this is to use regression tests [26] as a practical means of supporting
refactoring.

2

1.1 The Problem

However, writing unit tests is a laborious, tedious, cumbersome, and often dif-
ficult task. If the testing code is written at a low level of abstraction, it may
be tedious and time-consuming to change it to match changes in the code. One
problem is that there may simply be a lot of testing code that has to be ex-
amined and revised. Another problem occurs if the testing program refers to
details of the representation of an abstract data type; in this case, changing the
representation may require changing the testing program.

To avoid these problems, one should automate more of the writing of unit
test code. The goal is to make writing testing code easier and more maintainable.

One way to do this is to use a framework that automates some of the details
of running tests. An example of such a framework is JUnit [4]. It is a simple yet
practical testing framework for Java classes; it encourages the close integration
of testing with development by allowing a test suite be built incrementally.

However, even with tools like JUnit, writing unit tests often requires a great
deal of effort. Separate testing code must be written and maintained in synchrony
with the code under development, because the test class must inherit from the
JUnit framework. This test class must be reviewed when the code under test
changes, and, if necessary, also revised to reflect the changes. In addition, the
test class suffers from the problems described above. The difficulty and expense
of writing the test class are exacerbated during development, when the code
being tested changes frequently. As a consequence, during development there
is pressure to not write testing code and to not test as frequently as might be
optimal.

We encountered these problems ourselves in writing Java code. The code we
have been writing is part of a tool suite for the Java Modeling Language (JML)
[7]. JML is a behavioral interface specification language for Java [30, 29]. In our
implementation of these tools, we have been formally documenting the behavior
of some of our implementation classes in JML. This enabled us to use JML’s
runtime assertion checker to help debug our code [6, 10, 11]. In addition, we have
been using JUnit as our testing framework. We soon realized that we spent a
lot of time writing test classes and maintaining them. In particular we had to
write many query methods to determine test success or failure. We often also
had to write code to build expected results for test cases. We also found that
refactoring made testing painful; we had to change the test classes to reflect
changes in the refactored code. Changing the representation data structures for
classes also required us to rewrite code that calculated expected results for test
cases.

While writing unit test methods, we soon realized that most often we were
translating method pre- and postconditions into the code in corresponding test-
ing methods. The preconditions became the criteria for selecting test inputs, and
the postconditions provided the properties to check for test results. That is, we
turned the postconditions of methods into code for test oracles. A test oracle
determines whether or not the results of a test execution are correct [35, 38, 41].
Developing test oracles from postconditions approach helped avoid dependence

3

of the testing code on the representation data structures, but still required us
to write lots of query methods. In addition, there was no direct connection be-
tween the specifications and the test oracles, hence they could easily become
inconsistent.

These problems led us to think about ways of testing code that would save
us time and effort. We also wanted to have less duplication of effort between
the specifications we were writing and the testing code. Finally, we wanted the
process to help keep specifications, code, and tests consistent with each other.

1.2 Our Approach

In this paper, we propose a solution to these problems. We describe a simple
and effective technique that automates the generation of oracles for unit testing
classes. The conventional way of implementing a test oracle is to compare the test
output to some pre-calculated, presumably correct, output [20, 34]. We take a
different perspective. Instead of building expected outputs and comparing them
to the test outputs, we monitor the specified behavior of the method being tested
to decide whether the test passed or failed. This monitoring is done using the
formal specification language’s runtime assertion checker. We also show how the
user can combine hand-written test inputs with these test oracles. Our approach
thus combines formal specifications (such as JML) and a unit testing framework
(such as JUnit).

Formal interface specifications include class invariants and pre- and postcon-
ditions. We assume that these specifications are fairly complete descriptions of
the desired behavior. Although the testing process will encourage the user to
write better preconditions, the quality of the generated test oracles will depend
on the quality of the specification’s postconditions. The quality of these post-
conditions is the user’s responsibility, just as the quality of hand-written test
oracles would be.

We wrote a tool, jmlunit, to automatically generate JUnit test classes from
JML specifications. The generated test classes send messages to objects of the
Java classes under test; they catch assertion violation exceptions from test cases
that pass an initial precondition check. Such assertion violation exceptions are
used to decide if the code failed to meet its specification, and hence that the
test failed. If the class under test satisfies its interface specification for some
particular input values, no such exceptions will be thrown, and that particular
test execution succeeds. So the automatically generated test code serves as a test
oracle whose behavior is derived from the specified behavior of the target class.
(There is one complication which is explained in Section 4.) The user is still
responsible for generating test data; however the generated test classes make it
easy for the user to add test data.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we describe the
capabilities our approach assumes from a formal interface specification language

4

and its runtime assertion checker, using JML as an example. In Section 3 we
describe the capabilities our approach assumes from a testing framework, using
JUnit as an example. In Section 4 we explain our approach in detail; we dis-
cuss design issues such as how to decide whether tests fail or not, test fixture
setup, and explain the automatic generation of test methods and test classes. In
Section 5 we discuss how the user can add test data by hand to the automati-
cally generated test classes. In Section 6 we discuss other issues. In Section 7 we
describe related work and we conclude, in Section 8, with a description of our
experience, future plans, and the contributions of our work.

2 Assumptions About the Formal Specification Language

Our approach assumes that the formal specification language specifies the in-
terface (i.e., names and types) and behavior (i.e., functionality) of classes and
methods. We assume that the language has a way to express class invariants and
method specifications consisting of pre- and postconditions.

Our approach can also handle specification of some more advanced features.
One such feature is an intra-condition, usually written as an assert statement.
Another is a distinction between normal and exceptional postconditions. A nor-
mal postcondition describes the behavior of a method when it returns without
throwing an exception; an exceptional postcondition describes the behavior of a
method when it throws an exception.

The Java Modeling Language (JML) [29, 30] is an example of such a formal
specification language. JML specifications are tailored to Java, and its assertions
are written in a superset of Java’s expression language.

Fig. 1 shows an example JML specification. As shown, a JML specification
is commonly written as annotation comments in a Java source file. Annotation
comments start with //@ or are enclosed in /*@ and @*/. Within the latter kind
of comment, at-signs (@) on the beginning of lines are ignored. The spec public
annotation lets non-public declarations such as private fields name and weight be
considered to be public for specification purposes1. The fourth line of the figure
gives an example of an invariant, which should be true in each publicly-visible
state.

In JML, method specifications precede the corresponding method declara-
tions. Method preconditions start with the keyword requires, frame axioms
start with the keyword assignable, normal postconditions start with the key-
word ensures, and exceptional postconditions start with the keyword signals
[22, 29, 30]. The semantics of such a JML specification states that a method’s pre-
condition must hold before the method is called. When the precondition holds,
the method must terminate and when it does, the appropriate postconditions
must hold. If it returns normally, then its normal postcondition must hold in
1 As in Java, a field specification can have an access modifier determining its visibility.

If not specified, the visibility defaults to the visibility of the Java declaration; i.e.,
without the spec public annotations, both name and weight could be used only in
private specifications.

5

public class Person {

private /*@ spec_public @*/ String name;

private /*@ spec_public @*/ int weight;

//@ public invariant name != null && name.length() > 0 && weight >= 0;

/*@ public behavior

@ requires n != null && name.length() > 0;

@ assignable name, weight;

@ ensures n.equals(name) && weight == 0;

@ signals (Exception e) false;

@*/

public Person(String n) { name = n; weight = 0; }

/*@ public behavior

@ assignable weight;

@ ensures kgs >= 0 && weight == \old(weight + kgs);

@ signals (IllegalArgumentException e) kgs < 0;

@*/

public void addKgs(int kgs) { weight += kgs; }

/*@ public behavior

@ ensures \result == weight;

@ signals (Exception e) false;

@*/

public /*@ pure @*/ int getWeight() { return weight; }

/* ... */

}

Fig. 1. An example JML specification. The implementation of the method addKgs

contains an error to be revealed in Section 5.1. This error was overlooked in our initial
version of this paper, and so is an example of a “real” error.

the post-state (i.e., the state just after the body’s execution), but if it throws
an exception, then the appropriate exceptional postcondition must hold in the
post-state. For example, the constructor must return normally when called with
a non-null, non-empty string n. It cannot throw an exception because the cor-
responding exceptional postcondition is false.

JML has lots of syntactic sugar that can be used to highlight various prop-
erties for the reader and to make specifications more concise. For example, one
can omit the requires clause if the precondition is true, as in the specification
of addKgs. However, we will not discuss these sugars in detail here.

JML follows Eiffel [32, 33] in having special syntax, written \old(e) to refer
to the pre-state value of e, i.e., the value of e just before execution of the body
of the method. This is often used in situations like that shown in the normal
postcondition of addKgs.

6

For a non-void method, such as getWeight, \result can be used in the
normal postcondition to refer to the return value. The method getWeight is
specified to be pure, which means that its execution cannot have any side effects.
In JML, only pure methods can be used in assertions.

In addition to pre- and postconditions, one can also specify intra-conditions
with assert statements.

2.1 The Runtime Assertion Checker

The basic task of the runtime assertion checker is to execute code in a way that
is transparent, unless an assertion violation is detected. That is, if a method is
called and no assertion violations occur, then, except for performance measures
(time and space) the behavior of the method is unchanged. In particular, this
implies that, as in JML, assertions can be executed without side effects.

We do not assume that the runtime assertion checker can execute all asser-
tions in the specification language. However, only the assertions it can execute
are of interest in this paper.

We assume that the runtime assertion checker has a way of signaling assertion
violations to a method’s callers. In practice this is most conveniently done using
exceptions. While any systematic mechanism for indicating assertion violations
would do, to avoid circumlocutions, we will assume that exceptions are used in
the remainder of this paper.

The runtime assertion checker must have some exceptions that it can use
without interference from user programs. These exceptions are thus reserved for
use by the runtime assertion checker. We call such exceptions assertion violation
exceptions. It is convenient to assume that all such assertion violation exceptions
are subtypes of a single assertion violation exception type.

JML’s runtime assertion checker can execute a constructive subset of JML
assertions, including some forms of quantifiers [6, 10, 11]. In functionality, it is
similar to other design by contract tools [27, 32, 33, 39]; such tools could also be
used with our approach.

To explain how JML’s runtime checker monitors Java code for assertion vio-
lations, it is necessary to explain the structure of the instrumented code compiled
by the checker. Each Java class and method with associated JML specifications
is instrumented, as shown by example in Fig. 2. The original method becomes
a private method, e.g., addKgs becomes internal$addKgs. The checker gener-
ates a new method, e.g., addKgs, to replace it, which calls the original method,
internal$addKgs, inside a try statement.

The generated method first checks the method’s precondition and class in-
variant, if any.2 If these assertions are not satisfied, this check throws either
JMLEntryPreconditionError or JMLInvariantError. After the original method

2 To handle old expressions (as used in the postcondition of addKgs), the instrumented
code evaluates each old expression occurring in the postconditions from within the
checkPre$addKgs method, and binds the resulting value to a private field of the
class. The corresponding private field is used when checking postconditions.

7

public void addKgs(int kgs) {

checkPre$addKgs(kgs); // check precondition

checkInv(); // check invariant

boolean rac$ok = true;

try {

internal$addKgs(kgs);

checkPost$addKgs(kgs); // check normal postcondition

} catch (JMLEntryPreconditionError e) {

rac$ok = false;

throw new JMLInternalPreconditionError(e);

} catch (JMLAssertionError e) {

rac$ok = false;

throw e;

} catch (Throwable e) {

try { // check exceptional postcondition

checkExceptionalPost$addKgs(kgs, e);

} catch (JMLAssertionError e1) {

rac$ok = false; // an exceptional postcondition violation

throw e1;

}

} finally {

if (rac$ok) {

checkInv(); // check invariant

}

}

}

Fig. 2. The top-level of the run-time assertion checker’s translation of the addKgs

method in class Person. (Some details have been suppressed.)

is executed in the try block, the normal postcondition is checked, or, if excep-
tions were thrown, the exceptional postconditions are checked in the third catch
block. To make assertion checking transparent, the code that checks the excep-
tional postcondition re-throws the original exception if the exceptional post-
condition is satisfied; otherwise, it throws a JMLNormalPostconditionError or
JMLExceptionalPostconditionError. In the finally block, the class invariant
is checked again. The purpose of the first catch block is explained below (see
Section 4.1).

Our approach assumes that the runtime assertion checker can distinguish
two kinds of precondition assertion violations: entry precondition violations and
internal precondition violations. The former refers to violations of preconditions
of the method being tested. The latter refers to precondition violations that arise
during the execution of the tested method’s body. Other distinctions among as-
sertion violations are useful in reporting errors to the user, but are not important
for our approach.

8

In JML the assertion violation exceptions are organized into an exception
hierarchy as shown in Fig. 3. The ultimate superclass of all assertion violation
exceptions is the abstract class JMLAssertionError. This class has several sub-
classes that correspond to different kinds of assertion violations, such as precon-
dition violations, postcondition violations, invariant violations, and so on. Our
assumed entry precondition and internal precondition violations are realized by
the types JMLEntryPreconditionError and JMLInternalPreconditionError.
Both are concrete subclasses of the abstract class JMLPreconditionError.

JMLExceptionalPostconditionError

JMLNormalPostconditionError

JMLPostconditionError

JMLPreconditionError

JMLEntryPreconditionError

JMLInternalPreconditionError

JMLInvariantError

java.lang.Error

JMLAssertionError

JMLExceptionalPostconditionErrorJMLExceptionalPostconditionError

JMLNormalPostconditionErrorJMLNormalPostconditionError

JMLPostconditionErrorJMLPostconditionError

JMLPreconditionErrorJMLPreconditionError

JMLEntryPreconditionErrorJMLEntryPreconditionError

JMLInternalPreconditionErrorJMLInternalPreconditionError

JMLInvariantErrorJMLInvariantError

java.lang.Errorjava.lang.Error

JMLAssertionErrorJMLAssertionError

Fig. 3. A part of the exception hierarchy for JML runtime assertion violations.

3 Assumptions About the Testing Framework

Our approach assumes that unit tests are to be run for each method of each
class being tested. We assume that the framework provides test methods, which
are methods used to test the methods of the class under test. For convenience,
we will assume that test methods can be grouped into test classes.

In our approach, each test method executes several test cases for the method
it is testing. Thus we assume that a test method can indicate to the framework
whether each test case fails, succeeds, or was meaningless. The outcome will be
meaningless if an entry precondition violation exception occurs for the test case;
details are given in Section 5.1.

We also assume that there is a way to provide test data to test methods.
Following JUnit’s terminology, we call this a test fixture. A test fixture is a
context for executing a test; it typically contains several declarations for variables
that hold test inputs. The fixture may also contain declarations for variables
holding expected outputs.

For the convenience of the users of our approach, we assume that it is possible
to define a global test fixture, i.e., one that is shared by all test methods in a

9

test class. With a global test fixture, one needs ways to initialize the test inputs,
and to undo any side effects of a test after running the test.

JUnit is a simple, useful testing framework for Java [4, 24]. In JUnit, a test
class consists of a set of test methods. The simplest way to tell the framework
about the test methods is to name them all with names beginning with “test”.
The framework uses introspection to find all these methods, and can run them
when requested.

Fig. 4 is a sample JUnit test class, which is designed to test the class Person.
Every JUnit test class must be a subclass, directly or indirectly, of the framework
class TestCase. The class TestCase provides a basic facility to write test classes,
e.g., defining test data, asserting test success or failure, and composing test
methods into a test suite.

import junit.framework.*;

public class PersonTest extends TestCase {

private Person p;

public PersonTest(String name) {

super(name);

}

public void testAddKgs() {

p.addKgs(10);

assertEquals(10, p.getWeight());

}

protected void setUp() {

p = new Person("Baby");

}

protected void tearDown() {

}

public static Test suite() {

return new TestSuite(PersonTest.class);

}

public static void main(String args[]) {

String[] testCaseName = {PersonTest.class.getName()};

junit.textui.TestRunner.main(testCaseName);

}

}

Fig. 4. A sample JUnit test class.

One uses methods like assertEquals, defined in the framework, to write test
methods, as in the test method testAddKgs. Such methods indicate test success
or failure to the framework. For example, when the arguments to assertEquals
are not equal, the test fails. Another such framework method is fail, which
directly indicates test failure. JUnit assumes that a test succeeds unless the test
method throws an exception or indicates test failure. Thus the only way a test
method can indicate success is to return normally.

10

JUnit thus does not provide a way to indicate that a test execution was
meaningless. This is because it is geared toward counting executions of test
methods instead of test cases, and because hand-written tests are assumed to
be meaningful. However, in our approach we need to extend JUnit to allow the
counting of test case executions and to track which test cases were meaningful.
We extended the JUnit framework to do this by writing a class JMLTestRunner,
which tracks the meaningful test cases executed.

JUnit provides two methods to manipulate the test fixture: the setUp method
creates objects and does any other tasks needed to run a test, and the tearDown
method undoes otherwise permanent side-effects of tests. For example, the setUp
method in Fig. 4 creates a new Person object, and assigns it to the test fixture
variable p. Both methods can be omitted if they do nothing. JUnit automatically
invokes the setUp and tearDown methods before and after each test method is
executed (respectively).

The static method suite creates a test suite, i.e., a collection of test methods.
To run tests, JUnit first obtains a test suite by invoking the method suite, and
then runs each test method in the suite. A test suite can contain several test
methods, and it can contain other test suites, recursively. Fig. 4 uses Java’s
reflection facility to create a test suite consisting of all the test methods of class
PersonTest.

4 Test Oracle Generation

This section presents the details of our approach to automatically generating a
JUnit test class from a JML-annotated Java class. We first describe how test
outcomes are determined. Then we describe the convention and protocol for the
user to supply test data to the automatically generated test oracles in the test
classes. After that we discuss in detail the automatic generation of test methods
and test classes.

4.1 Deciding Test Outcomes

A test class has one test method, testM , for each method, M , to be tested in the
original class. The method testM runs M on several test cases. Conceptually,
a test case for an instance method consists of a pair of a receiver object (an
instance of the class being tested) and a sequence of argument values; for testing
static methods and constructors, a test case does not include the receiver object.

The outcome of a call to M for a given test case is determined by whether
the runtime assertion checker throws an exception during M ’s execution, and
what kind of exception is thrown. If no exception is thrown, then the test case
succeeds (assuming the call returns), because there was no assertion violation,
and hence the call must have satisfied its specification.

Similarly, if the call to M for a given test case throws an exception that
is not an assertion violation exception, then this also indicates that the call
to M succeeded for this test case. Such exceptions are passed along by the

11

runtime assertion checker because it is assumed to be transparent. Hence if the
call to M throws such an exception instead of an assertion violation exception,
then the call must have satisfied M ’s specification, specifically, its exceptional
postcondition. With JUnit, such exceptions must, however, be caught by the
test method testM , since any such exceptions are interpreted by the framework
as signaling test failure. Hence, the testM method must catch and ignore all
exceptions that are not assertion violation exceptions.

If the call to M for a test case throws an assertion violation exception, how-
ever, things become interesting. If the assertion violation exception is not a
precondition exception, then the method M is considered to fail that test case.

However, we have to be careful with the treatment of precondition violations.
A precondition is an obligation that the client must satisfy; nothing else in the
specification is guaranteed if the precondition is violated. Therefore, when a test
method testM calls method M and M ’s precondition does not hold, we do
not consider that to be a test failure; rather, when M signals a precondition
exception, it indicates that the given test input is outside M ’s domain, and
thus is inappropriate for test execution. We call the outcome of such a test
execution “meaningless” instead of calling it either a success or failure. On the
other hand, precondition violations that arise inside the execution of M should
still be considered to be test failures. To do this, we distinguish two kinds of
precondition violations that may occur when testM runs M on a test case, tc:

– The precondition of M fails for tc, which indicates, as above, that the test
case tc is outside M ’s domain. As noted earlier, this is called an entry pre-
condition violation.

– A method f called from within M ’s body signals a precondition violation,
which indicates that M ’s body did not meet f ’s precondition, and thus that
M failed to correctly implement its specification on the test case tc. (Note
that if M calls itself recursively, then f may be the same as M .) Such an
assertion violation is an internal precondition violation.

The JML runtime assertion checker converts the second kind of precondi-
tion violation into an internal precondition violation exception. Thus, testM
decides that M fails on a test case tc if M throws an internal precondition vio-
lation exception, but rejects the test case tc as meaningless if it throws an entry
precondition violation exception. This treatment of precondition exceptions was
the main change that we had to make to JML’s existing runtime assertion checker
to implement our approach. The treatment of meaningless test case executions
is also the only place where we had to extend the JUnit testing framework.

To summarize, the outcome of a test execution is “failure” if an assertion vio-
lation exception other than an entry precondition violation is thrown, is “mean-
ingless” if an entry precondition violation is thrown, and “success” otherwise.

4.2 Setting Up Test Cases

In our approach, various initialization methods are responsible for constructing
test data, i.e., constructing receiver objects and argument objects. For example,

12

a test case for the method addKgs of class Person (see Fig. 1) requires one object
of type Person and one value of type int. The first object will be the receiver of
the message addKgs, and the second will be the argument. In our approach, there
is no need to construct expected outputs, because success or failure is determined
by observing the runtime assertion checker, not by comparing results to expected
outputs.

Where does the user define the test data that are used in the generated test
methods? There are several possibilities:

– Separate test fixture. Each test method has a separate set of test fixture vari-
ables, resulting in a very flexible and customizable configuration. However,
defining such fixture variables becomes complicated and requires more work
from the user.

– Global test fixture. All test methods share the same set of test fixture vari-
ables. The approach is simple and intuitive, and thus defining fixture vari-
ables requires less work from the user. However, the user has less control in
that, because of shared fixture variables, it becomes hard to supply specific
test cases to specific test methods.

– Combination. Some combination of the above two approaches, which has a
simple and intuitive test fixture configuration, and yet to gives the user more
control.

Our earlier work [12] adopted the global test fixture approach. The rationale
was that the more test cases would be the better and the simplicity of use would
outweigh the benefit of more control. There would be no harm to run test meth-
ods with test cases of other methods (if test cases are type-compatible). Some of
test cases might violate the precondition; however, entry precondition violations
are not treated as test failures, and so such test cases cause no problems. How-
ever, our experience showed that more control was sometimes necessary.3 Thus
a combination approach is used in the current implementation.

In the combination approach we adopted, a global test fixture array variable
is declared for each formal parameter type. In addition, a global fixture array
variable is declared for the receivers. Thus, as in the global fixture approach, the
fixture variables are shared by all test methods, and all test methods share the
receiver array. Methods with the same parameter type share the same fixture
array for arguments of that type. However, if a method has two arguments of the
same type, our test drivers maintain (potentially) separate arrays for each argu-
ment, which can avoid interference between test data for different arguments.

The fixture variables for a particular test method are those that correspond
to the method’s parameter types plus the receiver, and the test cases for the
method are all possible combinations of the array elements found in these fix-
ture variables. The test fixture variables are declared as protected fields of the
test class so that users can initialize them in subclasses of the automatically
3 Also, in our earlier implementation, all of the test fixture variables were reinitialized

for each call to the method under test, which resulted in very slow testing. Most of
this reinitialization was unnecessary.

13

generated test classes (see Section 5 for details). To let test fixtures be shared
by all test methods, we adopt a simple naming convention. Aside from the name
“receivers,” which holds the receiver objects for instance methods, a fixture
variable’s name is the name of its type prefixed by the character v4, e.g., vint
for type int. Thus, if C is a class to be tested and T1, T2, . . . , Tn are the formal
parameter types of all the methods to be tested in the class C, then, the test
fixture for the class C is:

protected C[] receivers;

protected T1[] vT1; ... ; protected Tn[] vTn;

If an instance method has formal parameter types A1, . . . , Am, where each
Ai is drawn from the set {T1, . . . , Tn}, then in general its test cases are:

{〈receivers[i], vA1[j1], . . . , vAm[jm]〉 | 0 ≤ i < receivers.length,
0 ≤ j1 < vA1.length, . . . , 0 ≤ jm < vAm.length}

For example, the class Person will have the following test fixture variables;
its methods have only two formal parameter types, String in the constructor
and int in the method addKgs.

protected Person[] receivers;
protected String[] vString;
protected int[] vint;

The set of test cases for the method addKgs is thus:

{〈receivers[i], vint[j]〉 |
0 ≤ i < receivers.length, 0 ≤ j < vint.length}

whereas the set of test cases for the method getWeight is:

{〈receivers[i]〉 | 0 ≤ i < receivers.length}.

In addition to the test fixture variables, the combination approach generates
a pair of initialization and uninitialziation methods for each test fixture variable5

(see Figure 5). The user must override the init receivers and init vT meth-
ods to initialize the corresponding test fixture array variables, thus supplying
test cases to test methods (see Section 5 for details). The user can also override
the corresponding uninit methods to undo any permanent side-effects from
the use of such variables, but usually this is not necessary. The generated test
4 For an array type, the character $ is used to denote its dimension, e.g., vint $ $ for
int[][]. Also to avoid name clashes, the jmlunit tool uses fully qualified names for
reference types; for example, instead of vString, the actual declaration would be
for a variable vjava lang String. To save space, we do not show the fully qualified
names.

5 We thank David Cok for pointing out problems with the earlier approach and dis-
cussing such an extension.

14

methods call the initialization and uninitialziation methods of its test fixture
variables before and after each test execution (respectively, see Section 4.3 for
more details).

The name of method under test is passed as an argument to these initial-
ization and uninitialization methods. This gives the user some primitive control
over what test data is used for each testing method. For example, the user can
avoid test data that would cause a time-consuming method to run for a long
time by using different test data for just that method.

protected abstract void init_receivers(String forMethodName);

protected void uninit_receivers(String forMethodName) {}

protected abstract void init_vString(String forMethodName);

protected void uninit_vString(String forMethodName) {}

protected abstract void init_vint(String forMethodName);

protected void uninit_vint(String forMethodName) {}

Fig. 5. Test fixture methods for the class Person.

4.3 Test Methods

Recall that there will be a separate test method, testM for each target method,
M , to be tested. The purpose of testM is to determine the outcome of calling M
with each test case and to give an informative message if the test execution fails
for that test case. The method testM accomplishes this by invoking M with each
test case and indicating test failure when the runtime assertion checker throws
an assertion violation exception that is not an entry precondition violation. Test
methods also note when test cases were rejected as meaningless.

To describe our implementation, let C be a Java class annotated with a JML
specification and C JML Test the JUnit test class generated from the class C.
For each instance (i.e., non-static) method of the form:

T M(A1 a1,. . ., An an) throws E1,..., Em { /* ... */ }

of the class C, a corresponding test method testM is generated in the test class
C JML Test. The generated test method testM has the code skeleton shown in
Fig. 6.

The code for this method uses local variables with the same names as M ’s
formal parameters. These local variables are used to avoid the sharing of mu-
table objects between distinct formal parameters with the same type; in such a
case the initialization method should reinitialize the array on each call, and the
assignment of the array to the second variable of the same type will thus receive
a fresh copy of the array. These local variables may also make the resulting code
more comprehensible than using the test fixture names, which are based solely
on the types of the formal parameters.

15

public void testM() {

this.init receivers("M");

for (int i0 = 0; i0 < receivers.length; i0++) {

this.init vA1("M");

final A1[] a1 = vA1;

for (int i1 = 0; i1 < a1.length; i1++) {

. . .
this.init vAn("M");

final An[] an = vAn;

for (int in = 0; in < an.length; in++) {

if (receivers[i0] == null) {

/* ... tell framework test case was meaningless ... */

} else {

try {

receivers[i0].M(a1[i1], . . ., an[in]);
}

catch (JMLEntryPreconditionError e) {

/* ... tell framework test case was meaningless ... */

continue;

}

catch (JMLAssertionError e) {

String msg = /* a String showing the test case */;

fail(msg + NEW LINE + e.getMessage());

}

catch (java.lang.Throwable e) {

continue; // success for this test case

}

}

}

this.uninit vAn("M");

. . .
}

this.uninit vA1("M");

}

this.uninit receivers("M");

}

Fig. 6. A skeleton of generated test methods.

16

The nested for loops in Fig. 6 loop over all test cases. Each loop iterates
over a single array corresponding to the receiver or to a formal parameter. Be-
fore each such loop the corresponding init method is invoked with the name
of the method being tested; following each such loop the corresponding uninit
method is invoked, also with the name of the method being tested. Inside the
innermost loop, the method being tested itself is called, using the test case given
by using the surrounding loop variables to index into the arrays corresponding
to the formal parameters. For each such test case, the test method then invokes
the method under test in a try statement and sees if the JML runtime assertion
checker throws an exception. As described above, an assertion violation excep-
tion (JMLAssertionError) other than an entry precondition violation exception
means a failure of the test execution; thus an appropriate error message is com-
posed and printed. The message contains the failed method name, the failed
test case (i.e., the values of receiver and argument objects), and the exception
thrown by the JML runtime assertion checker.

A similar form of test method is generated for static methods. For static
methods, however, test messages are sent to the class itself, therefore, the outer-
most for loop is omitted and the body of the try block is replaced with
C.M(a1[i1], . . ., an[in]). Constructors are tested in a similar way.

By default, the jmlunit tool only generates test methods for public methods
in the class or interface being tested. It is impossible to test private methods
from outside the class, but users can tell the tool whether they would like to also
test protected and package visible methods. Also, test methods are not generated
for a static public void method named main; testing the main method seems
inappropriate for unit testing.

Fig. 7 is an example test method generated for the method addKgs of the class
Person. We use a very simple convention to name the generated test methods.
We prefix the original method name with the string “test” and capitalize the
initial letter of the method name.6

4.4 Test Classes

In addition to test fixture definition, the text fixture initialization and uninitial-
ization methods, and the test methods described in the previous sections, the
generated JUnit test class has several other methods. These are described in this
section.

Let C be a Java class or interface annotated with a JML specification and
C JML Test the JUnit test class generated from the class C.

As a JUnit test class, C JML Test inherits from the JUnit framework’s class
TestCase. The package and import definitions for C JML Test are copied ver-
batim from the type C. As a result, the generated test class will reside in the
same package. This allows the test class to access package-visibility members of
the class under test.
6 If necessary, the tool appends a unique suffix to prevent a name clash due to method

overloading.

17

public void testAddKgs() {

this.init receivers("addKgs");

for (int i = 0; i < receivers.length; i++) {

this.init vint("addKgs");

final int[] kgs = vint;

for (int j = 0; j < kgs.length; j++) {

if (receivers[i] == null) {

/* ... tell framework test case was meaningless ... */

} else {

try {

receivers[i].addKgs(kgs[j]);

}

catch (JMLEntryPreconditionError e) {

/* ... tell framework test case was meaningless ... */

continue;

}

catch (JMLAssertionError e) {

String msg = /* a String showing the test case */;

fail(msg + NEW_LINE + e.getMessage());

}

catch (java.lang.Throwable e) {

continue;

}

}

}

}

Fig. 7. Code generated for testing the method addKgs of the class Person. Details of
generating the error messages and telling the framework about meaningless test cases
are suppressed.

The test class includes several boilerplate methods that are the same in
all the generated test classes. These consist of a method used to check on the
initialization of test fixture variables, a method used to check that the code
under test was compiled by JML’s runtime assertion checker, and a constructor,
as shown in Fig. 8.

The first boilerplate method, test$FixtureInitialization, is intended to
catch errors in which the user-supplied init methods do not properly initialize
variables in the test fixture. This method calls each of the init methods and
tests that they each initialize the corresponding fixture variable to a non-empty
array. This is something we added to the jmlunit tool as we gained experience
with it, because we found that when we added new methods to the type being
tested, the tool would sometimes add new fixture variables and the we would

18

public void test$FixtureInitialization() {

this.init_receivers("init_receivers");

if (receivers == null) {

junit.framework.Assert.fail("Fixture variable "

+ "‘receivers’" + " was not initialized by init_receivers.");

}

if (receivers.length == 0) {

junit.framework.Assert.fail("Fixture variable "

+ "‘receivers’" + " has no data elements.");

}

. . .
}

public void test$IsRACCompiled() {

junit.framework.Assert.assertTrue("code for class C"

+ " was not compiled with jmlc"

+ " so no assertions will be checked!",

org.jmlspecs.jmlrac.runtime.JMLChecker.isRACCompiled(C.class));

}

public C_JML_Test(String name) {

super(name);

}

protected void setUp() { }

protected void tearDown() { }

Fig. 8. Boilerplate methods for JUnit test class for testing class C.

forget to initialize them properly.7 If a fixture variable has zero length, the
corresponding for loop that uses it does not execute its body, and thus no tests
are done for methods using its type; hence this check is important in preventing
a user from thinking that testing has been adequate when in fact it has not.
With the check, any such errors are caught and the tests cannot pass unless all
fixture variables are initialized.

The second boilerplate method, test$IsRACCompiled checks to make sure
that the type being tested was compiled with JML’s assertion checking compiler.
This prevents the user from thinking that all tests have passed when in fact no
testing was done because no assertions were checked.

5 Supplying and Running Test Cases

To perform actual test executions, the user must provide a subclass that overrides
the init methods, thus providing the test data that initializes the test fixture
variables. A subclass of the test class is used so that the user does not lose the test
7 The compiler catches errors that occur when there are more initializations than

fixture variables generated by the jmlunit tool; this can happen when the user
deletes a method from a class.

19

data when the test class is regenerated. In addition, the user can tune the testing
by adding hand-written test methods to this subclass. The JUnit framework
collects and exercises the added test methods together with the automatically
generated methods when the user runs the subclass.

The jmlunit tool produces a skeleton subclass of the test case class au-
tomatically, if one does not exist. For testing a type C, the subclass is called
C JML TestCase. E.g., the subclass for Person is called Person JML TestCase,
and is shown in Fig. 9.

Test inputs are supplied by overriding the init methods for each test fixture
variable. The responsibility of each method, init vT is to initialize the protected
array variable, vT , with elements of type T for use as test inputs to the method
whose name is passed to it in the formal parameter methodName.

As can be seen in Fig. 9, a test input can be any type-correct value. For
example, we can initialize the test fixture variables for the class Person by
overriding the corresponding init methods as shown in the figure. Recall that
the test class for the class Person has three test fixture variables: receivers,
vString, and vint, of types Person[], String[], and int[], respectively. With
the initialization methods shown in the figure, the addKgs method is tested 18
times, one for each pair of receivers[i] and vint[j], where 0 ≤ i < 3 and
0 ≤ j < 6.

As shown by the initialization of vString, test inputs can even be null. As
might be expected, we have found that the use of null as a test input is very
helpful in making sure the preconditions of methods that take reference types
as parameters protect the method against null pointer exceptions.

It is possible, and sometimes desirable, that there is aliasing among the test
fixture variables, although this is not shown in our example. This can be arranged
by using private variables and by having some initialization methods invoke
others.

5.1 Running Test Cases

It is very simple to perform test execution with user-defined test cases such as
the class Person JML TestCase shown in Fig. 9. This is done in the following
steps.

1. Generate instrumented Java byte code for the type, C to be tested using the
jmlc script; e.g., jmlc Person.java.

2. Generate a JUnit test class, C JML Test, and, if necessary, a skeleton of
the JUnit test case class, C JML TestCase, using the jmlunit script; e.g.,
jmlunit Person.java.

3. Write initialization code in the JUnit test case class, C JML TestCase; e.g.,
write code for init receivers, init vString, and init vint in the test
case class Person JML TestCase.java.

4. Compile the user-defined test and test case classes using a Java compiler
(other than jmlc); e.g., javac Person JML Test*.java.

20

public class Person_JML_TestCase extends Person_JML_Test

{

public Person_JML_TestCase(java.lang.String name) {

super(name);

}

public static void main(java.lang.String[] args) {

org.jmlspecs.jmlunit.JMLTestRunner.run(suite());

}

public static junit.framework.Test suite() {

return new junit.framework.TestSuite(Person_JML_TestCase.class);

}

protected void init_receivers(java.lang.String methodName) {

receivers

= new Person[] {

new Person("Baby"),

new Person("Cortez"),

new Person("Isabella"),

};

}

protected void init_vjava_lang_String(java.lang.String methodName) {

// elements of an immutable type only need to be initialized once

if (vjava_lang_String == null) {

vjava_lang_String

= new java.lang.String[] {

null,

"Baby",

"Martin",

"Martina",

};

}

}

protected void init_vint(java.lang.String methodName) {

// elements of an immutable type only need to be initialized once

if (vint == null) {

vint

= new int[] {

0, 10, -22, 1, 55, 3000,

};

}

}

}

Fig. 9. The user-defined class that defines the test fixture for the class Person,
Person JML TestCase.

21

5. Run the test case class’s tests, using the JML runtime assertion checking
libraries, as provided by the jml-junit script or the jmlrac script; e.g.,
jml-junit Person JML TestCase or jmlrac Person JML TestCase.

Fig. 10 shows the result of running the test cases of Fig. 9, i.e., the class
Person JML TestCase. It reveals the error that we mentioned in the caption of
Fig. 1.

% jmlrac Person_JML_TestCase

....F..

Time: 0.141

There was 1 failure:

1) testAddKgs(Person_JML_TestCase)junit.framework.AssertionFailedError:

Method ’addKgs’ applied to

Receiver receivers[0]: Person("Baby",-12)

Argument ’kgs’ (vint[2]): -22

Caused org.jmlspecs.jmlrac.runtime.JMLNormalPostconditionError

by method Person.addKgs regarding specifications at

Person.java:16:25 when

’\old(weight + kgs)’ is -12

’kgs’ is -22

’this’ is Person("Baby",-12)

at Person_JML_Test.testAddKgs(Person_JML_Test.java:199)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(...)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(...)

at Person_JML_Test.run(Person_JML_Test.java:22)

at org.jmlspecs.jmlunit.JMLTestRunner.doRun(JMLTestRunner.java)

at org.jmlspecs.jmlunit.JMLTestRunner.run(JMLTestRunner.java)

at Person_JML_TestCase.main(Person_JML_TestCase.java:17)

FAILURES!!!

Tests run: 6, Failures: 1, Errors: 0

JML test runs: 12/13 (meaningful/total)

Fig. 10. Output from running the tests in Person JML TestCase.

As the output in the figure shows, one test failure occurred for the method
addKgs. The test data that caused the failure is also printed, i.e., the receiver,
an object of class Person with name Baby, and the argument of value -22.
More information is printed in the assertion violation message by JML’s runtime
assertion checker, including the file, line number, and column number where the
violated assertion is located.

A corrected implementation of the method addKgs is shown in Fig. 11. (Com-
pare this with the specification and the faulty implementation shown in Fig. 1.)

22

public void addKgs(int kgs) {

if (kgs >= 0)

weight += kgs;

else

throw new IllegalArgumentException("Negative Kgs");

}

Fig. 11. Corrected implementation of method addKgs in class Person.

To report the numbers of test successes or failures, the framework counts
the number of test methods. This is not the right measure in our approach,
because each test method runs the method under test with all possible combi-
nations of test data. To get more accurate report, one can use our specialized
test runner class, JMLTestRunner, instead of a JUnit’s test runner class such as
junit.framework.textui.TestRunner. (The JMLTestRunner is invoked auto-
matically from the main method of the generated test case class, see Fig. 9). The
class JMLTestRunner reports the number of meaningful test runs and the total
number of test runs in terms of test data, as shown in the last line of Fig. 10.
Such a report prevents the user from having a wrong impression that the class
under test satisfied all tests when in fact no test has actually be executed due
to all test cases being inapplicable.8

6 Discussion

What should the outcome of a test case be if a method detects an invariant is
violated in at the beginning of a method’s execution? Such a situation can arise
if clients can directly write an object’s fields, or if aliasing allows clients to ma-
nipulate the object’s representation without calling its methods. The question
is whether such invariant violations should be treated as a test failure or as a
rejection of the test data (i.e., as a “meaningless” test). One reason for rejecting
the test data is that one can consider the invariant to be part of the precon-
dition. One may also consider an object malformed if it does not satisfy the
invariant. However, treating such violations as if the test case were meaningless
seems to mask the underlying violation of information hiding, and so our current
implementation treats these as test failures.

7 Related Work

There are now quite a few runtime assertion checking facilities developed and
advocated by many different groups of researchers. One of the earliest and most
popular approaches is Meyer’s view of Design By Contract (DBC) implemented
in the programming language Eiffel [31–33]. Eiffel’s success in checking pre- and

8 We thank an anonymous referee for pointing out this problem.

23

postconditions and encouraging the DBC discipline in programming partly con-
tributed to the availability of similar facilities in other programming languages,
including C [39], C++ [16, 19, 37, 42], Java [2, 17, 18, 25, 27], .NET [1], Python
[36], and Smalltalk [8]. These approaches vary widely from a simple assertion
mechanism similar to the C assert macros, to full-fledged contract enforcement
capabilities. Among all that we are aware of, however, none uses its assertion
checking capability as a basis for automated program testing. Thus, our work is
unique in the DBC community in using a runtime assertion checking to automate
program testing.

Another difference between our work and that of other DBC work is that
we use a formal specification language, JML, whose runtime assertion checker
supports manipulation of abstract values. As far as we know, all other DBC tools
work only with concrete program values. However, in JML, one can specify be-
havior in terms of abstract (specification) values, rather than concrete program
values [6, 29, 30]. So-called model variables — specification variables for hold-
ing not concrete program data but their abstractions — can be accompanied
by represents clauses [13, 29]. A represents clause specifies an abstraction
function (or relation) that maps concrete values into abstract values. This ab-
straction function is used by the runtime assertion checker in JML to manipulate
assertions written in terms of abstract values [10].

The traditional way to implement test oracles is to compare the result of a
test execution with a user supplied, expected result [20, 34]. A test case, therefore,
consists of a pairs of input and output values. In our approach, however, a test
case consists of only input values. And instead of directly comparing the actual
and expected results, we observe if, for the given input values, the program under
test satisfies the specified behavior. As a consequence, programmers are freed
from not only the burden of writing test programs, often called test drivers,
but also from the burden of pre-calculating presumably correct outputs and
comparing them. The traditional schemes are constructive and direct whereas
ours is behavior observing and indirect.

Several researchers have already noticed that if a program is formally speci-
fied, it should be possible to use the specification as an oracle [35, 38, 41]. Thus,
the idea of automatically generating test oracles from formal specifications is not
new, but the novelty lies in employing a runtime assertion checker as the test or-
acle engine. This aspect seems to be original and first explored in our approach.
Peters and Parnas discussed their work on a tool that generates a test oracle
from formal program documentation [35]. The behavior of program is specified
in a relational program specification using tabular expressions, and the test or-
acle procedure, generated in C++, checks if an input and output pair satisfies
the relation described by the specification. Their approach is limited to check-
ing only pre and postconditions, thus allowing only a form of black-box tests.
In our approach, however we also support intra-conditions, assertions that can
be specified and checked within a method, i.e., on internal states [29]; thus our
approach supports a form of white-box tests. As mentioned above, our approach
also support abstract value manipulation. In contrast to other work on test or-

24

acles, our approach also supports object-oriented concepts such as specification
inheritance.

There are many research papers published on the subject of testing using
formal specifications [5, 9, 14, 23, 26, 38, 40]. Most of these papers are concerned
with methods and techniques for automatically generating test cases from for-
mal specifications, though there are some addressing the problem of automatic
generation of test oracles as noted before [35, 38, 41]. A general approach is to
derive so-called test conditions, a description of test cases, from the formal spec-
ification of each program module [9]. The derived test conditions can be used to
guide test selection and to measure comprehensiveness of an existing test suite,
and sometimes they even can be turned into executable forms [9, 14]. The degree
of support for automation varies widely from the derivation of test cases, to the
actual test execution and even to the analysis of test results [14, 38]. Some ap-
proaches use existing specification languages [21, 23], and others have their own
(specialized) languages for the description of test cases and test execution [9, 14,
38, 40]. All of these works are complementary to the approach described in this
paper, since, except as noted above, they solve the problem of defining test cases
which we do not attempt to solve, and they do not solve the problem of easing
the task of writing test oracles, which we partially solve.

8 Conclusion and Future Work

We have presented a simple but effective approach to implementing test oracles
from formal behavioral interface specifications. The idea is to use the runtime
assertion checker as the decision procedure for test oracles. We have implemented
this approach using JML, but other runtime assertion checkers can easily be
adapted to work with our approach. There are two complications. The first is
that the runtime assertion checker has to distinguish two kinds of precondition
violations: those that arise from the call to a method and those that arise within
the implementation of the method; the first kind of precondition violations is
used to reject meaningless test cases, while the second indicates a test failure.
The second is that the unit testing framework needs to distinguish three possible
outcomes for test cases: a test execution can either be a success, a failure, or it
can be meaningless.

Our approach trades the effort one might spend in writing code to construct
expected test outputs for effort spent in writing formal specifications. Formal
specifications are more concise and abstract than code, and hence we expect
them to be more readable and maintainable. Formal specifications also serve as
more readable documentation than testing code, and can be used as input to
other tools such as extended static checkers [15].

Most testing methods do not check behavioral results, but focus only on
defining what to test. Because most testing requires a large number of test cases,
manually checking test results severely hampers its effectiveness, and makes re-
peated and frequent testing impractical. To remedy this, our approach auto-
matically generates test oracles from formal specifications, and integrates these

25

test oracles with a testing framework to automate test executions. This helps
make our implementation practical. It also makes our approach a blend of formal
verification and testing.

In sum, the main goal of our work —to ease the writing of testing code—
has been achieved.

A main advantage of our approach is the improved automation of testing
process, i.e., generation of test oracles from formal behavioral interface specifi-
cations and test executions. We expect that, due to the automation, writing test
code will be easier. Indeed, this has been our experience. However, measuring
this effect is future work.

Another advantage of our approach is that it helps make formal methods
more practical and concretely usable in programming. One aspect of this is that
test specifications and target programs can reside in the same file. We expect
that this will have a positive effect in maintaining consistency between test
specifications and the programs to be tested, although again this remains to be
empirically verified.

A third advantage is that our approach can achieve the effect of both black-
box testing and white-box testing. White-box testing can be achieved by speci-
fying intra-conditions, predicates on internal states in addition to pre- and post-
conditions. Assertion facilities such as the assert statement are an example
of intra conditions; they are widely used in programming and debugging. JML
has several specification constructs for specifying intra-conditions which support
white-box testing.

Finally, in our approach a programmer may extend and add his own testing
methods to the automatically generated test oracles. This can be done easily by
adding hand-written test methods to a subclass of the automatically generated
test class.

Our approach frees the programmer from writing unit test code, but the
programmer still has to supply actual test data by hand. In the future, we
hope to partially alleviate this problem by automatically generating some of
test inputs from the specifications. There are several approaches proposed by
researchers to automatically deriving test cases from formal specifications. It
would be very exciting to apply some of the published techniques to JML. JML
has some features that may make this future work easier, in particular various
forms of specification redundancy. In JML, a redundant part of a specification
does not itself form part of the specification’s contract, but instead is a formalized
commentary on it [28]. One such feature are formalized examples, which can be
thought of as specifying both test inputs and a description of the resulting post-
state. However, for such formalized examples to be useful in generating test data,
they would: (a) have to be specified constructively, and (b) it would have to be
possible to invert the abstraction function, so as to build concrete representation
values from them.

Another area of future work is to gain more experience with our approach.
The application of our approach so far has been limited to the development of
the JML support tools and examples that are shipped with JML, but our initial

26

experience seems very promising. We were able to perform testing as an integral
part of programming with minimal effort and to detect many kinds of errors.
Almost half of the test failures that we encountered were caused by specification
errors; this shows that our approach is useful for debugging specifications as well
as code. However, we have yet to perform significant, empirical evaluation of the
effectiveness of our approach.

JML and a version of the tool that implements our approach can be obtained
through the JML web page at http://www.jmlspecs.org.

Acknowledgments

The work of both authors was supported in part by a grant from Electron-
ics and Telecommunications Research Institute (ETRI) of South Korea, and by
grants CCR-0097907 and CCR-0113181 from the US National Science Founda-
tion. Thanks to Curtis Clifton and Markus Lumpe for comments on an earlier
draft of this paper.

References

1. Karine Arnout and Raphael Simon. The .NET contract wizard: Adding design
by contract to languages other than Eiffel. In Proceedings of TOOLS 39, 29 July
-3 August 2001, Santa Barbara, California, pages 14–23. IEEE Computer Society,
2001.

2. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with assertions.
In Workshop on Runtime Verification held in conjunction with the 13th Conference
on Computer Aided Verification, CAV’01, 2001.

3. Kent Beck. Extreme Programming Explained. Addison-Wesley, 2000.
4. Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java

Report, 3(7), July 1998.
5. Gilles Bernot, Marie Claude Claudel, and Bruno Marre. Software testing based on

formal specifications: a theory and a tool. Software Engineering Journal, 6(6):387–
405, November 1991.

6. Abhay Bhorkar. A run-time assertion checker for Java using JML. Technical Report
TR #00-08, Department of Computer Science; Iowa State University, Ames, IA,
May 2000.

7. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and appli-
cations. In Thomas Arts and Wan Fokkink, editors, Eighth International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS 03), volume 80 of
Electronic Notes in Theoretical Computer Science (ENTCS), pages 73–89. Elsevier,
June 2003.

8. Manuela Carrillo-Castellon, Jesus Garcia-Molina, Ernesto Pimentel, and Israel
Repiso. Design by contract in Smalltalk. Journal of Object-Oriented Program-
ming, 9(7):23–28, November/December 1996.

9. Juei Chang, Debra J. Richardson, and Sriram Sankar. Structural specification-
based testing with ADL. In Proceedings of ISSTA 96, San Diego, CA, pages 62–70.
IEEE Computer Society, 1996.

27

10. Yoonsik Cheon. A runtime assertion checker for the Java Modeling Language.
Technical Report 03-09, Department of Computer Science, Iowa State Univer-
sity, Ames, IA, April 2003. The author’s Ph.D. dissertation. Available from
archives.cs.iastate.edu.

11. Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun, editors,
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-27, 2002, pages 322–328.
CSREA Press, June 2002.

12. Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit test-
ing: The JML and JUnit way. In Boris Magnusson, editor, ECOOP 2002 — Object-
Oriented Programming, 16th European Conference, Máalaga, Spain, Proceedings,
volume 2374 of Lecture Notes in Computer Science, pages 231–255, Berlin, June
2002. Springer-Verlag.

13. Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards. Model
variables: Cleanly supporting abstraction in design by contract. Technical Report
03-10, Department of Computer Science, Iowa State University, April 2003. Avail-
able from archives.cs.iastate.edu.

14. J. L. Crowley, J. F. Leathrum, and K. A. Liburdy. Isues in the full scale use
of formal methods for automated testing. ACM SIGSOFT Software Engineering
Notes, 21(3):71–78, May 1996.

15. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. SRC Research Report 159, Compaq Systems Research Center, 130
Lytton Ave., Palo Alto, Dec 1998.

16. Carolyn K. Duby, Scott Meyers, and Steven P. Reiss. CCEL: A metalanguage for
C++. In USENIX C++ Technical Conference Proceedings, pages 99–115, Portland,
OR, August 1992. USENIX Assoc. Berkeley, CA, USA.

17. Andrew Duncan and Urs Holzle. Adding contracts to Java with Handshake. Techni-
cal Report TRCS98-32, Department of Computer Science, University of California,
Santa Barbara, CA, December 1998.

18. Robert Bruce Findler and Matthias Felleisen. Behavioral interface contracts for
Java. Technical Report CS TR00-366, Department of Computer Science, Rice
University, Houston, TX, August 2000.

19. Pedro Guerreiro. Simple support for design by contract in C++. In Proceedings
of TOOLS 39, 29 July -3 August 2001, Santa Barbara, California, pages 24–34.
IEEE Computer Society, 2001.

20. R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, 3(4):279–290, July 1977.

21. Teruo Higashino and Gregor v. Bochmann. Automatic analysis and test case
derivation for a restricted class of LOTOS expressions with data parameters. IEEE
Transactions on Software Engineering, 20(1):29–42, January 1994.

22. Bart Jacobs and Eric Poll. A logic for the Java modeling language JML. In
Fundamental Approaches to Software Engineering (FASE’2001), Genova, Italy,
2001, volume 2029 of Lecture Notes in Computer Science, pages 284–299. Springer-
Verlag, 2001.

23. Pankaj Jalote. Specification and testing of abstract data types. Computing Lan-
guages, 17(1):75–82, 1992.

24. JUnit. Http://www.junit.org.
25. Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A reflective Java

library to support design by contract. In Pierre Cointe, editor, Meta-Level Archi-

28

tectures and Reflection, Second International Conference on Reflection ’99, Saint-
Malo, France, July 19–21, 1999, Proceedings, volume 1616 of Lecture Notes in
Computer Science, pages 175–196. Springer-Verlag, July 1999.

26. Bogdan Korel and Ali M. Al-Yami. Automated regression test generation. In
Proceedings of ISSTA 98, Clearwater Beach, FL, pages 143–152. IEEE Computer
Society, 1998.

27. Reto Kramer. iContract – the Java design by contract tool. TOOLS 26: Technology
of Object-Oriented Kanguages and Systems, Los Alamitos, California, pages 295–
307, 1998.

28. Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition tech-
nique for more expressive specifications. In J. Davies J.M. Wing, J. Woodcock,
editor, FM’99 - Formal Methods, World Congress on Formal Methods in the De-
velopment of Computing Systems, Toulouse, France, September 1999. Proceedings,
Volume II, volume 1708 of Lecture Notes in Computer Science, pages 1087–1106.
Springer-Verlag, September 1999.

29. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report 98-
06p, Iowa State University, Department of Computer Science, August 2001. See
www.jmlspecs.org.

30. Gary T. Leavens, Albert L. Baker, and Clye Ruby. JML: A notation for detailed
design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral
Specifications of Businesses and Systems, chapter 12, pages 175–188. Kluwer, 1999.

31. B. Meyer. Applying design by contract. IEEE Computer, 25(10):40–51, October
1992.

32. Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, New
York, NY, 1992.

33. Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
NY, second edition, 1997.

34. D.J. Panzl. Automatic software test driver. IEEE Computer, pages 44–50, April
1978.

35. Dennis Peters and David L. Parnas. Generating a test oracle from program docu-
mentation. In Proceedings of ISSTA 94, Seattle, Washington, August, 1994, pages
58–65. IEEE Computer Society, August 1994.

36. Reinhold Plosch and Josef Pichler. Contracts: From analysis to C++ implemen-
tation. In Proceedings of TOOLS 30, pages 248–257. IEEE Computer Society,
1999.

37. Sara Porat and Paul Fertig. Class assertions in C++. Journal of Object-Oriented
Programming, 8(2):30–37, May 1995.

38. Debra J. Richardson. TAOS: Testing with analysis and oracle support. In Pro-
ceedings of ISSTA 94, Seattle, Washington, August, 1994, pages 138–152. IEEE
Computer Society, August 1994.

39. David R. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, January 1995.

40. Sriram Sankar and Roger Hayes. ADL: An interface definition language for spec-
ifying and testing software. ACM SIGPLAN Notices, 29(8):13–21, August 1994.
Proceedings of the Workshop on Interface Definition Language, Jeannette M. Wing
(editor), Portland, Oregon.

41. P. Stocks and D. Carrington. Test template framework: A specification-based
test case study. In Proceedings of the 1993 International Symposium on Software
Testing and Analysis (ISSTA), pages 11–18. IEEE Computer Society, June 1993.

29

42. David Welch and Scott Strong. An exception-based assertion mechanism for C++.
Journal of Object-Oriented Programming, 11(4):50–60, July/August 1998.

