Alias-free Parameters in C
for Better Reasoning and Optimization

Medhat G. Assaad and Gary T. Leavens

TR #01-11
November 2001

Keywords: Aliasing, multibody procedures, dynamic dispatch, static dispatch, program verification, alias-free programs,
compiler optimizations, ACL approach, C/ACL language, C language.

2000 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — formal methods; D.3.3 [Programming
Languages] Language Constructs and Features — control structures, procedures, functions, and subroutines; D.3.4 [Pro-
gramming Languages] Processors — compilers, measurement, optimization, performance; D.3.m [Programming Languages]
Miscellaneous — dynamic dispatch, multiple dispatch; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and
Reasoning about Programs — logics of programs; F.3.3 [Logics and Meanings of Programs] Studies of Program Constructs
— control primitives, functional constructs.

Submitted for publication.
Copyright © 2001 by Medhat G. Assaad and Gary T. Leavens. All rights reserved.

Department of Computer Science
226 Atanasoff Hall
Towa State University
Ames, Towa 50011-1040, USA

Alias-free Parameters in C
for Better Reasoning and Optimization

Medhat G. Assaad*
Department of Computer Science
lowa State University
226 Atanasoff Hall, Ames, IA 50011 USA
+1 608 271 9000

medhat_assaad@yahoo.com

ABSTRACT

Aliasing among formal parameters and among formals and
globals causes problems for both reasoning and optimiza-
tion. Whole-program static analysis could provide some
knowledge about such aliasing, but this is not usually done,
and in any case would have to be conservative. All alias-
ing patterns that are not ruled out by an analysis have to
be considered possible both by a person reasoning about
correctness and by a compiler trying to optimize code. For
compilers, the conservative nature of the static analysis leads
to missed optimization opportunities.

We have designed and implemented a small extension to
C that partially solves the reasoning problem and leads to
significantly better optimization. The extension guaran-
tees that there will be no direct aliasing among arguments
and globals inside procedure bodies, and yet allows aliasing
among arguments and globals at the call site. This is done
by having multiple bodies for each procedure, up to one
for each aliasing pattern. Procedure calls are automatically
dispatched to the body that matches the run-time aliasing
pattern among the actual parameters and the globals.

We present experimental evidence that this approach is prac-
tical. It is easy to convert existing C code, because not every
procedure in a program has to be converted, and because
converted code can call code that has not been converted
and vice versa. By following simple guidelines, one can con-
vert a program in a way that usually makes it run faster
than before. In our experiments with 6 of the SPEC 2000
integer benchmarks we found an average speedup of about
5%. In one case, we had a speedup of about 29%.

*Currently at Epic Systems Corp., 5301 Tokay Blvd., Madi-
son, WI 53711 USA.

Gary T. Leavens
Department of Computer Science
lowa State University
226 Atanasoff Hall, Ames, 1A 50011 USA
+1 515 294 1580

leavens@cs.iastate.edu

Keywords

Aliasing, verification, optimization, C/ACL language

1. INTRODUCTION

Aliasing adds to the complexity of a program, making it
more difficult to reason about. For example, one must con-
sider many cases to verify the correctness of a procedure
when its formals may be aliased [12, 21, 32, 33].

Aliases also limit the amount of optimization a compiler can
do. This is especially true of compilers that do not do high-
quality, whole-program alias analysis [23, p. 293]. Such
analysis is costly, and in any case, must be conservative.

In this paper we are only concerned with direct aliases be-
tween pointers and between pointers and global variables.®
Two pointer variables p and g are direct aliases if the point-
ers contained in p and ¢ both point to the same storage cell
in memory. A pointer variable p and a global x are direct
aliases if p points to the location named by z. If p and ¢
are direct aliases, then modifications to the storage that p
points to can be seen through q. Other kinds of aliases are
possible: overlaps between array elements and arrays, and
indirect aliases resulting from pointers inside distinct mem-
ory locations. However, indirect aliases are outside of the
scope of the reasoning problem that motivates our work, and
overlaps are outside the scope of the partial solution to the
reasoning problem treated in this paper.

We describe an approach eliminating direct aliasing among
formals and globals, and study its effectiveness. In the Alias
Controlling Language (ACL) approach [20, 2] the program-
mer declares different bodies for the same procedure, each of
which handles a different pattern of aliasing among the for-
mal parameters and globals. Within each such body, only
one name may be used for each alias; hence, within each
such body there is no direct aliasing. Calls to such proce-
dures are dispatched to the appropriate bodies according to
the aliasing pattern at the call site.

In this paper we focus on the feasibility of this approach. We

In a language like C, distinct variables are always stored in
distinct locations, and so cannot be directly aliased. Hence
distinct globals also cannot be directly aliased.

describe how to apply it to the C programming language,
and then measure the running time of the resulting code.
Limitations of C mean that we are not able to provide a
complete solution to the reasoning problem, because we are
not able to eliminate problems caused by overlaps. However,
our adaptation of the approach to C is able to eliminate
direct aliases among formals and globals.

Our main goal is to show that this approach does not slow
down program execution at run-time. Although dispatching
calls to the appropriate bodies slows down code, many calls
can be statically dispatched, incurring no overhead at run-
time. Furthermore, increased knowledge of aliasing leads to
better optimizations. The experiments we conducted tried
to measure these effects in a real compiler.

In the next section, we briefly review the problems caused
by aliasing. Section 3 discusses related work on solving the
aliasing problem for formal parameters and globals. Sec-
tion 4 presents C/ACL — C with ACL extensions. Section
5 presents our experimental setup and method. Section 6
summarizes the results of our experiment. Section 7 dis-
cusses our pragmatic experience coding with C/ACL, and
other related work. Finally, in Section 8 we present our
conclusions, and some directions for future work.

2. PROBLEMS CAUSED BY ALIASING

Direct aliasing among parameters can happen in two ways.
First, the same pointer can be passed into two parameters,
in this case, this same location will have two different names,
or direct aliases, inside the called procedure. These pointers
can result from the use of call-by-reference (as in C++),
indirect storage models (as in Lisp, Smalltalk, and Java),
or from an “address of” operator (as in C and C++). The
other way direct aliases can occur is when a pointer to a
global is passed as one of the arguments. If this global is
used inside the called procedure, then it will also have two
names inside that procedure.

Such aliases can cause two kinds of problems. The first
problem is that in the presence of aliases it is much harder
to reason about the correctness of the code, because aliases
violate referential transparency [32, 33]. For example, in
Figure 1, the sum procedure is supposed to add up the ele-
ments of array a with indexes less than the value of size,
and return this sum in the location pointed to by the pa-
rameter total. While this code may look like it will always
return the required result, in the presence of aliasing, this
may not always be true. It may return an incorrect result
if size and total are direct aliases; for example if invoked
with sum(myArray, &size).? It is all too easy for speci-
fiers and implementers to ignore such potential aliases. One
reason for this is that informal summaries of the purpose of
code often make implicit assumptions about lack of aliasing,
as did our English description of sum above.

The second kind of problem is that the possibility of aliasing
limits the ability of a compiler to achieve good optimization.
In the code given in Figure 1, without knowing whether
the global size and total are aliases, the compiler can not

2Recall that, in C, &size returns the address of size.

extern int size;
void sum(int a[], int *total) {
int i;
*total = 0;
for(i=0; i<size; i++) {
*total += alil;
}
}

Figure 1: C code to sum the elements in an array.

assume that the value of size will not change in the loop
body. Thus it must reload it from memory in each iteration.
This happens even if we compile this code with GCC using
all possible optimizations®

In addition to direct aliasing, overlaps may cause similar
problems for reasoning and optimization. For example, in
Figure 1, there is also a possible overlap between *total and
the elements of a. Since C does not track the sizes of arrays
at run-time, our changes to C do not handle overlaps. This
makes the C/ACL language described in this paper an in-
complete solution to the reasoning problem (unlike the ACL
approach itself, which can handle overlaps [20]). However,
our main concern in adapting the ACL approach to C was
to experiment with the approach’s efficiency.

3. RELATED WORK ON ALIASING
OF FORMALS AND GLOBALS

Other research has tried two different approaches to solving
the problems caused by direct aliasing of formals and glob-
als. These approaches either restrict the aliasing possible,
or give some hint to the compiler about the aliasing patterns
that will occur at run time. Euclid [29] prohibits calls with
aliasing among formals and globals. Some compilers [31, 17,
18] and the latest C standard [19] use hints to instruct the
compiler about aliasing, so that this information can be used
for optimization.

Euclid [29] is a variant of Pascal designed to aid program ver-
ification. Euclid has pointer variables and call by-reference,
both of which can cause aliasing between parameters. Point-
ers in Euclid are indexes into collections of objects. Col-
lections are explicitly declared variables that are similar to
the implicit arrays accessed by pointers in other languages,
like C. Therefore eliminating aliasing in Euclid is all about
eliminating aliasing between arrays. The definition of Eu-
clid prohibits any aliasing between the actual parameters
passed to a function by generating checks in the code that
will signal run-time errors if direct aliasing or any overlap is
detected between the arguments.

In general, to satisfy Euclid’s restriction that there is no
aliasing between the actual parameters, the developer will
have to add alias analysis code at the call site. Figure 2

3Using GCC 2.95.2 with the options -fstrict-aliasing
-03; these are explained in Section 6.

shows such code for a function, p, that takes three pointer
parameters; the idea is to pass pointers to al[il, a[j], and
a[k] as the actual parameters. In that code p_abc, p_ab,
p-ac, and p-bc are different versions of p that handle dif-
ferent aliasing patterns but achieve the same effect.* The
problem with this approach is that, to ensure correctness,
the programmer must add these checks at each call site.
This is what the ACL approach automates.

if (i ==3j && j == k) { p_abc(&alil); }

else if (i == j) { p_ab(&alil, &alk]); }
else if (i == k) { p_ac(&alil, &aljl); }
else if (j == k) { p_bc(&alil, &aljl); }
else /* unequal */ { p(&alil, &aljl, &alkl); }

Figure 2: Hand-coded alias analysis at the call-

site [20]

Several authors have proposed variations of linear type sys-
tems or uniqueness annotations for pointers [3, 6, 16, 22,
5]; these ensure that the given pointer is the only one that
points to the target location. These are often used in func-
tional languages, where partial copies of data structures can
be made to ensure uniqueness. In non-functional languages
there are also some techniques, such as alias-burying [4] that
can be used to avoid some of the copies. However, if the pro-
grammer is given the responsibility for ensuring uniqueness,
or if one wishes to use unique pointers to transmit results
from a procedure, then the programmer will have to en-
sure that the call site does not attempt to create two unique
pointers to the same location. Thus the programmer in such
a language would face the same problem that affects Euclid;
for example, the programmer forming several unique point-
ers into an array as in Figure 2 has to either make copies
(if the pointers are not being used for results) or must do
run-time tests to avoid errors when the locations are not
distinct.

Some compilers, like IBM’s XL compiler [31, 18, 17|, use a
noalias pragma that allows the developer to indicate what
parameters cannot be aliased. The noalias pragma can
be used at the function definition site to instruct the com-
piler about the possible aliasing patterns at call sites. This
pragma is used for optimization, but it does not pose any
restrictions on the parameters used at call sites. Although,
unlike Euclid, no run-time errors will be generated if these
pragma-defined patterns do not hold at some call sites, the
behavior of the code at such call sites is undefined. This can
lead to errors, since the XL compiler does not give any warn-
ings about possible violations of the pragma-defined pattern
by procedure calls. One way around this difficulty is for the
XL programmer to think like a Euclid programmer, and
to write code as in Figure 2 where necessary. Such a pro-
grammer will encounter the same problems as the Euclid
programmer would. Another way around this difficulty is to
delete noalias pragmas as necessary to enable the procedure

4A formal statement of such a postcondition often must have
separate cases for each aliasing pattern; this is another mo-
tivation for the ACL approach.

to be used at all call sites, but this sacrifices opportunities
for optimization. The ACL approach does not suffer from
this tradeoff, because it allows different bodies to be associ-
ated with the same procedure, each of which will handle a
different aliasing pattern.

In the C standard, a new type qualifier, ‘restrict’ [19,
Section 6.7.3.1], can be used on a pointer declaration to
instruct the compiler about the aliasing patterns that this
pointer can be involved in. Figure 3 shows an example using
restrict. In that example the compiler will assume that at
each invocation of copy, x and y will not be aliases, and
it may do optimization based on that assumption. But the
developer must insure that none of the call sites breaks the
assumed pattern, otherwise the behavior is undefined. So, as
with IBM’s XL compiler, either extra checks are needed at
each call site, or one must trade optimization for generality.

void copy(int * restrict x, int * restrict vy,
int size) {

int i;

for (i=0; i<size; i++) {
x[i] = y[il;

}

}

Figure 3: The use of the restrict type qualifier in C

In summary, all of these approaches, either explicitly or im-
plicitly, limit the options available for the developer at the
call site. And, they either necessitate adding extra code at
each call site to ensure correctness, or they have a tradeoff
between optimization and generality. We will see that they
can all benefit from the ACL approach.

4. THE C/ACL LANGUAGE

The ACL approach is a language-based technique for elim-
inating aliasing among formals and globals [20, p. 4]. In
this approach, a separate body is provided for each aliasing
pattern that can occur among the parameters and among
the parameters and the globals, thus each procedure may
have multiple bodies, each of which is guaranteed not to
have any direct aliasing among the parameters and globals.
At the call site, a call will be dispatched (statically if pos-
sible, or otherwise dynamically) to the body that matches
the aliasing pattern among the actual arguments and glob-
als; if that body does not exist an error will occur. Thus,
the ACL approach automates and systematizes the FEuclid
style of dispatch coding shown in Figure 2.

Figure 4 shows a function written in C/ACL [2], i.e. C
with ACL extensions. In this code we notice two things
that give ACL its distinct flavor. First, a function must
specify explicitly all the globals it uses with an imports
clause. Second, a function may have several multibodies,
each of which handles a different aliasing pattern among
the arguments and among the arguments and the globals.
In Figure 4 the second body of swap_with_a starts with |
alias (x, a)”; this body, which in this case does nothing,

will be used when swap_with_a is called with an alias to the
global variable a. In C/ACL only the first variable in the
alias list can be used inside the corresponding body. So, in
this example, only x can be used in the second body.

int a = 0;

void swap_with_a (int *x) imports (a) {
int tmp = *x;
*xX = aj;
a = tmp;
} | alias (x, a) {
/* do nothing */
}

Figure 4: C/ACL code with two multibodies

4.1 The ‘imports’ clause

The imports clause declares that a function is written in
ACL style and also declares all globals that the function
uses. It is a static error if an ACL style function uses a
global it does not declare in the imports clause.

In C/ACL, one can have both normal C functions and ACL
style functions. The imports clause tells the C/ACL com-
piler that the function is an ACL style function that can
have multibodies. So, even if an ACL style function does
not use any globals, it must have an imports clause —an
empty one in this case— to be treated as an ACL function.
A function that does not have an imports clause is treated
as a normal C function, and is not allowed to have multi-
bodies. This maintains C’s semantics for functions that are
not converted to ACL style.

Globals listed in the imports clause can be listed as identi-
fiers, in which case they will have the same type inside the
function as outside, or, they can be given a more restric-
tive type —in terms of constness— which can be used by
the compiler when optimizing that body. Figure 5 shows
an example in which size is a global integer, but inside the
function array_sum it will be treated as a constant.

int size = 5;

int array_sum (int a[l)
imports (const int size) {
int sum = 0;
int i;
for (i=0; i<size; i++) {
sum += a[il;

}
return sum;
¥
Figure 5: Globals with restricted types in the

imports clause

4.2 Multibodies

Each ACL function can have more than one body imple-
menting it. Inside the first such multibody all the parame-
ters and imported globals can be used. Within this multi-
body, the compiler assumes that there is no direct aliasing
among the formals and the globals. Subsequent multibodies
start with an alias clause that has the following syntax:
| alias ([alias_list [; alias_list] ...])

where each alias_list is a comma-separated list of identifiers.
An alias_list can include any parameter that has a pointer
type or any of the imported globals. The semantics is that
inside that body, all the stated identifiers in each alias_list
will be direct aliases to each other at run-time. For example,
in Figure 4, in the second multibody at run-time x and a
will be directly aliased, i.e., it will be the case that x == &a.

C/ACL allows formals and globals of different types to be
declared as aliases in alias clauses. This is in keeping with
the spirit of C. For example, C/ACL allows a pointer to
an integer to be an alias to a constant pointer to an inte-
ger. Of course, such aliases are unsafe, as they can lead to
unexpected results when used with aggressive optimization,
because the compiler assumes that a pointer will only point
to its type, and that a constant will actually be constant.

Inside each multibody only a subset of the formal parame-
ters and imported globals can be used. The ones that can
be used are the first identifier in each alias_list and those
not included in the alias_lists. For example, Figure 4 shows
a function with two multibodies. In the second multibody,
only x can be used, since it is mentioned first in the alias_list.
Formals and globals not listed in any alias_list are assumed
to not be directly aliased with each other. Recall that all
these assumptions are enforced at run-time by dispatching
calls to the appropriate multibody.

5. THE EXPERIMENT

In order to determine the feasibility of the ACL approach
we set up an experiment in which we could compare the
execution speed of C code to that of C/ACL code [2].

5.1 Hypothesis

Our main hypothesis was that C/ACL code would run faster
than unconverted C code. We hypothesized that this would
occur for the following reasons:

Specially written multibodies. Since the developer can
supply a separate multibody for each aliasing pattern,
and since the developer knows the function’s seman-
tics, the developer can write each multibody in a way
that makes efficient use of that pattern. An example
is the second multibody in Figure 4 in which, knowing
that x and a are aliases, we had only to give an empty
multibody. Our hypothesis was that each multibody
would be no less efficient than a correct implementa-
tion of the original function for that aliasing pattern.

Aljas-free arguments. In an ACL style function, the ar-
guments to each multibody will be guaranteed not to
be directly aliased with other arguments or globals.

Our hypothesis was that this extra information would
enable a compiler to do a better job when optimiz-
ing these multibodies. Certainly the generated code
should be no less efficient than with a standard com-
piler.

Dynamic dispatch. The only run-time overhead from the
ACL approach was hypothesized to be the dynamic
dispatch code that matches an aliasing pattern to the
corresponding multibody.

Static dispatch. Our final hypothesis was that static dis-
patch would be possible from most call sites.

In summary, we hypothesized that static dispatch, which
avoids the overhead from dynamic dispatch, and better op-
timization would more than make up for the overhead of
whatever dynamic dispatch proved necessary.

5.2 Setup

For testing our hypotheses we applied the ACL approach to
an existing language and optimizing compiler and measured
the performance difference between compiling code with and
without ACL features. We selected C as the language be-
cause it has pointers and is widely-used. We chose GCC
(the GNU Compiler Collection) because we needed a com-
piler that we had source access to, and that does aggressive
optimization using aliasing information.

The implementation of C/ACL was accomplished by apply-
ing the design described in the previous section to the C
front end of GCC. All experiments were done on an AMD-
K2 380 MHz with 192MB of RAM, running RedHat Linux
7.1. The version of GCC modified was GCC 2.95.2 with
Pentium-specific optimizations.

To test our compiler we used benchmarks from the SPEC
CPU2000 benchmark suite. We chose to use this suite be-
cause it ensured that we thoroughly tested our compiler with
real programs and big input data sets. The SPEC suite
also compares the generated output with the expected out-
put, helping to ensure that C/ACL produced correct code.
Moreover, by changing real programs, we could unearth sit-
uations in which using C/ACL was difficult or did not give
the desired improvement (or both).

When running the SPEC benchmarks, most benchmarks
were measured three times. The median of the three mea-
surements is reported as the result of the benchmark.

5.3 Testing method

For each of the benchmarks, we first profiled the unmodified
source. Using the profile data, we selected functions to be
converted to ACL style. These were functions that took a
large amount of the execution time and passed pointers or
used globals. Thus, in doing this conversion we followed the
method detailed in Section 7.4 below. This method selected
no more than 11 functions in each benchmark to convert.
Although in the benchmark ‘MCF’ 42% (8 of 19) functions
were converted, in the other benchmarks no more than 2%
of the available functions were converted to ACL style.

After converting the chosen functions to ACL style, we ran
the benchmark suite twice, the first time using the origi-
nal source code, and then using the modified source code.
In both cases we used the same optimization flags and the
same C/ACL compiler. The optimization flags used were
-fomit-frame-pointer -fstrict-aliasing -03, which se-
lects the most aggressive optimization levels.

To ensure consistency in the results, all tests were run from
the console with no other users logged in, and most unnec-
essary daemons were stopped.

6. EXPERIMENTAL RESULTS

We ran the test on six SPEC 2000 benchmarks: Parser,
MCF, GCC, VORTEx, GAP, and TWolf.> Parser is an En-
glish language parser, it takes as input a sequence of sen-
tences and returns as output the analysis of the input sen-
tences. MCF is a combinatorial optimization program, it
generates the timetable for a single-depot vehicle schedule.
GCC is an earlier version® of GCC, it includes only the C
compiler which takes as input preprocessed C files and gen-
erates as output 88100 assembly code files. VORTEXx is a
single-user object-oriented database transaction benchmark.
GAP implements a language and library designed mostly
for computing in groups (GAP is an acronym for Groups,
Algorithms and Programming). And the TWolf placement
and global routing package is used in the process of creat-
ing the lithography artwork needed for the production of
microchips.

Recall that the compilation flags used for optimization were
-03, -fomit-frame-pointer and -fstrict-aliasing. The
last flag instructs the compiler that a pointer will only point
to its declared type. This flag had to be used as otherwise
GCC assumes that any pointer can point to any memory
location, and skips the alias analysis phase.

MCF, GCC, GAP, and VORTEx had good candidate func-
tions. Converting these functions to ACL style achieved
an improvement in the execution time of between 2.1% and
29.6%, as reported in Tables 1, 2, 3, and 4 respectively. Run
times in these tables are reported in seconds.

Table 1: Results for MCF

Original ~ With ACL
Run Run Time | Run Time Speedup
1 4086 4177
2 4278 3930
3 4255 3870
Reported 4255 3930 8.3%

After profiling ‘Parser’ and ‘TWolf’, we found that most
of the candidate functions to be converted to ACL style
either did not use pointer formals heavily in their bodies, and
thus did not benefit from the extra aliasing information, or
were mainly called outside the compilation unit (i.e., file) in
which the ACL style function was defined; thus our C/ACL

SGAP was only measured once, instead of three times.
5The benchmark was based on GCC version 2.7.2.2

Table 2: Results for GCC

Original ~ With ACL
Run Run Time | Run Time Speedup
1 4089 3746
2 4106 3835
3 3582 4027
Reported 4089 3835 6.7%

Table 3: Results for GAP

Original ~ With ACL
Run Run Time | Run Time Speedup
Reported 12985 12719 2.1%

Table 4: Results for VORTEx

Original ~ With ACL
Run Run Time | Run Time Speedup
1 4171 3196
2 3956 3218
3 4206 3327
Reported 4171 3218 29.6%

compiler did not use static dispatch extensively for these
benchmarks. The overhead of dynamic dispatch dominated
in these benchmarks, resulting in slowdowns of 8.9% and
5.8%, as shown in Tables 5 and 6, respectively.

Table 5: Results for Parser

Original ~ With ACL
Run Run Time | Run Time Speedup
1 4016 4055
2 3668 3832
3 3648 4031
Reported 3668 4031 -8.9%

Table 6: Results for TWolf

Original ~ With ACL
Run Run Time | Run Time Speedup
1 6240 6827
2 6423 6620
3 6171 6569
Reported 6240 6620 -5.8%

To study the effect of varying the number of converted func-
tions and the effect of dynamic dispatch, we made further
investigations with ‘Parser’. By reverting functions that are
called outside of their compilation units to their original
C code, we decreased the cases that incurred the penalty
from dynamic dispatch; this gave a 3% runtime speedup
versus the unmodified C code. To see the net effect of using
static dispatch, we moved the definition of functions con-
verted to ACL style into the compilation unit where they
are called and measured the performance with the -03 flag,

thus enabling static dispatch. In that case we got 6% run-
time speedup versus the unmodified C code. Our conclusion
is that a suitably sophisticated compiler could automatically
eliminate dynamic dispatch in most cases, by making use of
static information about what multibodies are available in
the called function.

To see more of the effect of static dispatch, we measured
the GCC benchmark with only the -02 flag. This in effect
instructs the compiler to do less optimization than the pre-
vious tests, and in particular eliminates inlining and hence
static dispatch. Without static dispatch the code converted
to ACL style was slower than the original C code by 3%.
This was slower than the static dispatch measurements for
the ACL style code by about 10%. Thus static dispatch has
a significant effect on performance.

In summary, our results indicate that static dispatch is easy
to accomplish in most cases, even if the compiler does not
propagate information about what multibodies are avail-
able across compilation units. Overall, the C/ACL compiler
achieved a speedup of about 5% for the benchmarks we ex-
amined. Certainly, the details of our experiments validate
our hypotheses.

7. DISCUSSION
7.1 Our implementation

The central task in implementing C/ACL was to accommo-
date for multibodies in a C program. The compiler converts
each ACL style function having n multibodies into n + 1
regular C functions. Of these n + 1 functions, n correspond
to each of the multibodies. These functions have compiler-
generated names. The n + 1-st generated function has the
same name as the original C function, and does the dy-
namic dispatch to the n multibody functions. The dynamic
dispatch function has decision code based on a decision tree
algorithm. It thus makes the minimum number of tests to
determine the direct aliasing pattern between the formals
and the globals, to decide which of the n multibody func-
tions to call. Since the dynamic dispatch function has the
same name as the original ACL style function, any call to
that function will run the dynamic dispatch code, which will
then direct the call to the appropriate multibody function.

In the cases where static dispatch is possible, the compiler
can bypass the dynamic dispatch code, and call the appro-
priate multibody function directly. In our compiler, this was
achieved automatically by GCC’s function inlining optimiza-
tions. That is, the dynamic dispatch code was inlined at call
sites, and when the compiler knew enough about the aliasing
pattern at the call site, other optimizations would automati-
cally eliminate the decision tree code, leaving just the call to
the appropriate multibody function — i.e., a static dispatch.
The compiler would often know enough about the aliasing
pattern at the call sites when these calls occurred within
multibodies, since extra aliasing information was available
there. Thus the conversion to ACL style has a beneficial
effect on the aliasing information needed to make static dis-
patch possible.

Finally, we benefited from existing infrastructure in GCC

that can inform the optimization passes about aliasing. That
is, there was a pre-existing flag in GCC that we used to tell
the compiler directly that there were no aliases among the
formals and globals within each multibody.

7.2 Where the Speedup Comes From

By studying some code snippets and the resulting assembly
code, we found that the speedup in ACL style functions
mainly comes from the following reasons. By knowing that
a memory location is not aliased, the compiler moves it to
a register and can then access that value from the register
instead of loading it from memory each time. In some other
cases, a variable that is known to be not aliased can help
in finding more loop-invariant code; such code is moved out
of the loop, thus minimizing code used inside loops, which
has a great impact on performance. In the cases where two
variables are known to be aliases, like in multibodies with
alias lists, these two variables can occupy the same register,
thus freeing a register that can be used for another variable
which can save memory accesses.

The other main reason for speedup is static dispatch. While
not a reason for speedup by itself, static dispatch eliminates
the only overhead that one incurs from using the ACL ap-
proach, which is dynamic dispatch. In our implementation
of C/ACL, using GCC, we found that static dispatch is pos-
sible when using the optimization flag -03 which enables
function inlining, and when the called C/ACL function is
defined in the same compilation unit as the call site.

7.3 Pragmatics of C/ACL

Beside measuring the performance improvement gained from
using C/ACL, we were interested in finding out whether it
will be easy to adopt C/ACL and how practical it is. There
are two main hurdles that we thought someone embracing
the ACL approach could face.

First, having to write new multibodies for a function means
that the semantics of the function must be understood. This
can be a disadvantage compared to other optimization tech-
niques that do not require human intervention. While it
might be possible to use the ACL approach automatically
in a more sophisticated compiler, our experience in applying
ACL to the benchmarks was that having to write import lists
and multibodies is not burdensome. In most cases, the ad-
ditional multibodies are very simple. Even when the multi-
bodies can not be deduced easily from the original function,
one often can copy the same function to all the multibodies,
and substitute the head of each alias list for that list’s other
members. This could certainly be automated. Leavens and
Antropova explored this and other ways to automate writing
of multibodies [20].

On the other hand, a human that understands the intended
semantics of a function can write multibodies that are more
efficient for certain patterns of aliasing. A simple example
is shown in the second multibody of Figure 4. In our ex-
periments we found several similar examples. For example,
a function that compares two strings to see if one is less
than or equal to another can return “true” if they are both
aliased. Such optimized multibodies might be very difficult

to construct automatically.

However, hand-optimized multibodies for cases where some
formals and globals are aliased will probably have a small ef-
fect on efficiency, because these multibodies are rarely called.
Our results indicate that most of the calls were dispatched
to the multibody that handles the case where there is no
aliasing among the formals and globals. Many times this
was the only multibody that saw any calls in our experi-
ments. However, for some benchmarks other multibodies
did see significant numbers of calls. ‘Parser’ had one ACL
style function where the other multibodies were run for 19%
of the calls, in another they handled 18% of the calls, and in
another 3% of the calls. So, while these other multibodies
are probably not important for efficiency, they are impor-
tant for correctness, since the program cannot abort when
a call to an ACL style function is made with aliases among
the arguments and globals.

Secondly, there is the problem of choosing which functions
to convert. However, this also turned out to be straight-
forward. We developed a pragmatic method for converting
functions which is described below.

7.4 Method for Conversion to C/ACL

Our method for choosing functions to convert to ACL style
(i-e., which functions should have imports clauses and multi-
bodies) is as follows.

First, one profiles the program with representative input
data, and looks for bottlenecks. The functions that take the
bulk of the execution time are candidates for conversion.

Of the candidate functions, one should convert to ACL style
those that fall into one of the two following classes.

e Functions with at most three pointer parameters and
imported globals. We found that it was burdensome to
convert functions with four or more such parameters
or globals, since the number of required bodies grows
exponentially with the number of such parameters.

e Functions whose call sites only use a few aliasing pat-
terns. Such functions can be converted to ACL style
even if they have a large number of formal pointer pa-
rameters and imported globals, because one only has
to write multibodies corresponding to the aliasing pat-
terns used at the call sites.

Our experimental results show that this method usually re-
sults in execution time speedups. To be more effective, ei-
ther the compiler needs to be able to do static dispatch
across compilation units (which our compiler was unable to
do), or the method needs to be revised to not convert func-
tions to ACL style if they are both heavily used and called
from other compilation units.

7.5 Other Related Work

It would be interesting to see if some tools could do the con-
version to ACL style automatically; i.e., if the ACL approach

could be incorporated into compilers. For example, one can
consider the ACL approach to be a variant of Chambers
and Ungar’s idea of compiling different versions of a func-
tion body assuming different type information, guarded by a
type test [8]. Indeed the idea of dispatch on the aliasing pat-
tern of arguments was inspired somewhat by this idea and
by an analogy to multiple dispatch. The multibodies that
make up a function in C/ACL are similar to multimethods
that make up a generic function in languages like CLOS [28],
Dylan [30], Cecil [7], and MultiJava [11].

Predicate dispatch [14] is able to simulate the ACL ap-
proach, because one can dispatch to a method body based
on a predicate that includes direct aliasing among formal pa-
rameters and globals. Indeed, such predicates would make
it easy to combine various cases in ways that the ACL ap-
proach does not support. However, there have been no com-
pilers that implement predicate dispatch making it unsuit-
able for our experiments. Furthermore, it is unclear how
difficult it would be to link predicate dispatch to optimiza-
tion based on aliasing information.

Our work can also be seen as complimentary to recent work
on alias controlling type systems [1, 10, 9, 16, 26, 25]. These
type systems use static type information to control problems
caused by aliases into the internal state of an object from
outside the class implementing it, such as representation
exposure and argument exposure. Such type systems also
seem important for reasoning in a modular fashion about
the correctness of implementations of abstract data types
[24]. These type systems work by partitioning memory into
several ownership contexts, i.e., sets of locations, and by pro-
hibiting references from certain ownership contexts to cer-
tain other ownership contexts [9]. The invariants maintained
by such type systems can help in alias analysis, because the
compiler can know that references between certain universes
are prohibited. However, these type systems cannot be used
to rule out all aliasing among formals and globals; in par-
ticular, they cannot rule out aliasing among formals and
globals that are in the same ownership context.

RESOLVE deals with the problem of aliasing by eliminat-
ing it completely. It does this by using swapping [27, p.
26] [15] and by eliminating arrays and pointers as built-
in types. Because there are no built-in arrays and pointer
types, the programmer can always statically avoid aliasing of
arguments and globals. However, not having these built-in
types restricts the language’s expressive power. The ACL
approach, on the other hand, is able to eliminate aliasing
among formals and globals without such restrictions.

8. CONCLUSION & FUTURE WORK

In this paper, we investigated the efficiency of code gener-
ated by GCC using the ACL approach. We added syntax to
C that allows users to declare several multibodies for a func-
tion, each of which handles a specific pattern of direct alias-
ing between actual parameters and imported globals. We
modified GCC so that it dispatched calls to such functions to
the appropriate multibody. Thus, in each multibody, there
is no direct aliasing among the formals and globals that the
multibody is allowed to use.

It is quite easy to get a semantics similar to that of Eu-
clid [29] by only writing a single multibody for the case
where no arguments and globals are directly aliased. But
unlike Euclid, because of limitations of C, C/ACL does not
protect against overlaps between parameters and between
parameters and globals. Nevertheless we demonstrated the
feasibility of the ACL approach.

C/ACL resolves the tension between optimization and gen-
erality found in the IBM XL compiler [31] and the restrict
mechanism of the new C standard [19]. Because one can
specify multiple aliasing patterns and multibodies to han-
dle each of them, our approach does not limit the aliasing
pattern at the call site, thus giving extra freedom to the
developer. On the other hand, with the noalias pragma of
the IBM XL compiler and C’s restrict mechanism, one can
state what formals are not aliased, thus the single function
body can handle several aliasing patterns, which the C/ACL
user would have to write as several multibodies. Hence it
is possible that a better syntax for the ACL approach may
make it even less burdensome. Note however, that restrict
is not able to declare that a formal pointer parameter and a
global are not aliased, so the ACL approach is more powerful
in this respect.

The ACL approach can be seen as complimentary to inter-
procedural analysis. Interprocedural analysis tries to find
the effect of a call on the call-site, by propagating infor-
mation from the called function back to the call site. On
the other hand, the ACL approach propagates information
about possible aliasing patterns at different call-sites to the
called function. This information is recorded in the various
multibodies of an ACL style function. Unlike the IBM XL
compiler or the C restrict notion, the user is not limited
to a single function body, hence different call-sites can have
different multibodies tailored to their needs.

By choosing suitable functions to convert to ACL style, im-
provement in run-time performance can be achieved. We
described a simple method for doing this in Section 7.4.

In our experiments we applied C/ACL to six of the SPEC
2000 benchmarks. When doing the conversion of functions
to ACL style, we followed the method described in Sec-
tion 7.4 above to choose the candidate functions. The av-
erage speedup achieved on these six benchmarks was ap-
proximately 5%. In four out of the six benchmarks cases,
we got runtime speedup that averaged 11%, with a median
of 7.5%. These results are indicative of the results that
could be expected by a sophisticated compiler that is able to
do static dispatch across compilation unit boundaries, since
they were the cases where our compiler did static dispatch.
In two benchmarks, our method for conversion to ACL style
picked functions that were called across compilation unit
boundaries; since our compiler cannot statically dispatch
such functions, the overhead from dynamic dispatch resulted
in slowdowns (versus normal C code) averaging 7.4%.

However, in C/ACL one can always compensate for the lack
of static dispatch by not converting functions to ACL style
if necessary. For example, in one benchmark where we ob-

served a slowdown, we profiled the converted benchmark,
and reverted the ACL style functions that were slower to not
use the ACL style. By this process, we obtained a small run-
time speedup, consistent with the other benchmarks. This
validates our hypothesis that the only overhead of the ACL
approach is due to dynamic dispatch. It also shows that a
sophisticated compiler could eliminate this overhead.

The performance improvement from functions converted to
ACL style is mainly due to the ability of the compiler to
optimize the function knowing that it has alias-free param-
eters. The overhead from dynamic dispatch can be min-
imized by using static dispatch whenever possible. When
the improvement from optimization dominates the dynamic
dispatch overhead, a net gain in code efficiency is achieved.

In conclusion, we have demonstrated that the ACL approach
is feasible. Furthermore, with static dispatch, significant
speedups can be achieved. Since the programmer can com-
pensate for slowdowns that result from our compiler’s in-
ability to do static dispatch, the C/ACL compiler itself may
also be useful for optimization of C programs.

The sources for the C/ACL version of GCC are on-line at
ftp://ftp.cs.iastate.edu/pub/leavens/CACL-src.tar.gz.

There are several directions for future work. One direction is
to extend the syntax for function prototypes with informa-
tion about implemented multibodies. Using that informa-
tion, the compiler can emit the decision tree code to call the
appropriate multibody of an ACL style function, instead of
just calling the dynamic dispatch function. This will enable
static dispatch across compilation units.

Another direction is to perform more experiments with more
benchmarks. We plan to perform experiments to find what
kind of functions and optimizations benefit most from the
ACL approach. This could be used to refine the criteria
upon which functions are chosen to be converted to ACL
style. We are also planning to study the performance ef-
fect of converting functions in the C library to ACL style,
although it appears that doing this will only be effective
once the compiler is extended to do static dispatch across
compilation unit boundaries.

In this paper we were mainly interested in code optimiza-
tion. But having alias free parameters can also be useful in
reasoning about programs. However, to be of true benefit
for reasoning, one would have to apply the ACL approach
to a language where one could handle indirect aliasing and
overlaps (unlike C). Once this was done, one could study
whether the ACL approach helps make reasoning about pro-
grams easier; for example, one could see if it makes programs
less error prone, or if formal verification is easier. We also
intend to investigate the interaction of the ACL style with
formal specification.

Finally, we would like to extend the ACL approach to object-
oriented languages. This would allow us to explore its effects
on optimization and reasoning in that setting.

Acknowledgments

The work of Leavens was supported in part by the US Na-
tional Science Foundation under grants CCR-9803843, CCR-
0097907, and CCR-0113181. Thanks to Olga Antropova,
Craig Chambers, Yoonsik Cheon, Curtis Clifton, Markus
Lumpe, Ricky Kendall, Murali Sitaraman, and Bruce Weide
for comments on a earlier drafts. Thanks to Jim Horning
for earlier discussions, and to Olga Antropova for her pivotal
role in developing the ACL approach.

9. REFERENCES
[1] P. S. Almeida. Balloon types: Controlling sharing of
state in data types. In M. Aksit and S. Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming
11th European Conference, Jyvdskyld, Finland, volume
1241 of Lecture Notes in Computer Science, pages
32-59. Springer-Verlag, New York, NY, June 1997.

[2] M. G. Assaad. Alias-free parameters in C using
multibodies. Technical Report 01-05, Department of
Computer Science, lowa State University, Ames, Iowa,
50011, July 2001. Available from
archives.cs.iastate.edu.

[3] H. G. Baker. Lively linear lisp — ‘look Ma, no
garbage!”. ACM SIGPLAN Notices, 27(8):89-98, Aug.
1991.

[4] J. Boyland. Alias burying: Unique variables without
destructive reads. Software—Practice and Ezrperience,
31(6):533-553, May 2001.

[5] J. Boyland, J. Noble, and W. Retert. Capabilities for
sharing. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming: 15th European
Conference, Budapest, Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 1-27,
Berlin, June 2001. Springer-Verlag.

[6] T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer,
and M. J. Plasmeijer. Clean: A language for functional
graph rewriting. In G. Kahn, editor, Functional
Programming Languages and Computer Architecture,
volume 274 of Lecture Notes in Computer Science,
pages 364-384. Springer-Verlag, Berlin, 1987.

[7] C. Chambers. Object-oriented multi-methods in Cecil.
In O. L. Madsen, editor, ECOOP ’92, European
Conference on Object-Oriented Programming, Utrecht,
The Netherlands, volume 615 of Lecture Notes in
Computer Science, pages 33—56. Springer-Verlag, New
York, NY, 1992.

[8] C. Chambers and D. Ungar. Making pure
object-oriented languages practical. In Proceedings
OOPSLA 91, ACM SIGPLAN Notices, pages 1-15,
Nov. 1991. Published as Proceedings OOPSLA 91,
ACM SIGPLAN Notices, volume 26, number 11.

[9] D. G. Clarke, J. Noble, and J. M. Potter. Simple
ownership types for object containment. In J. L.
Knudsen, editor, ECOOP 2001 — Object-Oriented
Programming: 15th FEuropean Conference, Budapest,
Hungary, volume 2072 of Lecture Notes in Computer

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19

Science, pages 53—76, Berlin, June 2001.
Springer-Verlag.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In OOPSLA 98
Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 48—64. ACM, Oct. 1998.

C. Clifton, G. T. Leavens, C. Chambers, and

T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In OOPSLA
2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis,
Minnesota, volume 35(10) of ACM SIGPLAN Notices,
pages 130-145, Oct. 2000.

F. S. de Boer. A proof system for the language POOL.
In J. W. de Bakker, W. P. de Roever, and

G. Rozenberg, editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, volume 489 of
Lecture Notes in Computer Science, pages 124—150.
Springer-Verlag, New York, NY, 1991.

S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T.
Leavens, P. Miiller, and A. Poetzsch-Heffter, editors.
Formal Techniques for Java Programs. Technical
Report 269, Fernuniversitat Hagen, 2000. Available
from www.informatik.fernuni-hagen.de/pi5/
publications.html.

M. D. Ernst, C. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. In ECOOP
’98: 12th European Conference on Object-Oriented
Programming, Brussels, Belgium, volume 1445 of
Lecture Notes in Computer Science, pages 186-211,
New York, NY, 1998. Springer-Verlag.

D. E. Harms and B. W. Weide. Copying and
swapping: Influences on the design of reusable
software components. IEEE Transactions on Software
Engineering, 17(5):424-435, May 1991.

J. Hogg. Islands: Aliasing protection in
object-oriented languages. In Proceedings of the
OOPSLA 91 Conference on Object-oriented
Programming Systems, Languages and Applications,
pages 271-285, Nov. 1991. Published as ACM
SIGPLAN Notices, volume 26, number 11.

IBM Corporation. AIX Version 8 for RS/6000:
Optimization and Tuning Guide for Fortran, C' and
C++. SC09-1705.

IBM Corporation. IBM C Set ++ for AIX/6000
User’s Guide Version 2.1. SC09-1605.

International Organization for Standardization.
Programming Language — C. ISO/IEC 9899.

G. T. Leavens and O. Antropova. ACL — Eliminating
Parameter Aliasing with Dynamic Dispatch. Technical
Report 98-08a, Department of Computer Science,
Towa State University, Ames, Iowa, 50011, Feb. 1999.
Available from archives.cs.iastate.edu.

10

(21]

(22]

23]

24]

(25]

(26]

(27]

(32]

D. Luckham and N. Suzuki. Verification of array,
record, and pointer operations in Pascal. ACM Trans.
Prog. Lang. Syst., 1(2):226-244, Oct. 1979.

N. H. Minsky. Towards alias-free pointers. In

P. Cointe, editor, ECOOP ’96 — Object-Oriented
Programming: 10th European Conference, Linz
Austria, volume 1098 of Lecture Notes in Computer
Science, pages 189-209, Berlin, July 1996.
Springer-Verlag.

S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, Inc.,
1997.

P. Miller. Modular Specification and Verification of
Object-Oriented programs. PhD thesis, FernUniversitat
Hagen, Germany, Mar. 2001.

P. Miiller and A. Poetzsch-Heffter. A type system for
controlling representation exposure in Java. Published
in [13]., 2000.

J. Noble, J. Vitek, and J. Potter. Flexible alias
protection. In E. Jul, editor, ECOOP ’98 —
Object-Oriented Programming, 12th Furopean
Conference, Brussels, Belgium, volume 1445 of Lecture
Notes in Computer Science, pages 158—185.
Springer-Verlag, July 1998.

W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H.
Zweben. Part I: The RESOLVE framework and
discipline — a research synopsis. ACM SIGSOFT
Software Engineering Notes, 19(4):23-28, Oct 1994.

A. Paepcke. Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1993.

G. J. Popek, J. J. Horning, B. W. Lampson, J. G.
Mitchell, and R. L. London. Notes on the design of
Euclid. ACM SIGPLAN Notices, 12(3):11-18, March
1977.

A. Shalit. The Dylan Reference Manual: The
Definitive Guide to the New Object-Oriented Dynamic
Language. Addison-Wesley, Reading, Mass., 1997.

K. E. Stewart. Using the XL compiler options to
improve application performance.
http://www.rs6000.ibm.com/resource/technology/
options.html, 1998.

M. Utting. Reasoning about aliasing. In Proceedings of
the Fourth Australasian Refinement Workshop
(ARW-95), pages 195-211. School of Computer
Science and Engineering, The University of New

South Wales, Apr. 1995. Available from
http://wuw.cs.waikato.ac.nz/ “marku

B. W. Weide and W. D. Heym. Specification and
verification with references. In D. Giannakopoulou,
G. T. Leavens, and M. Sitaraman, editors, SAVCBS
2001 Proceedings: Specificaton and Verification of
Component-Based Systems, Workshop at OOPSLA
2001, pages 50-59, Nov. 2001. Department of
Computer Science, lowa State University, technical
report TR #01-09a.

