
Preventing Cross-Type Aliasing
for More Practical Reasoning
Krishna Kishore Dhara and Gary T. Leavens

TR #01-02a
March 2001, Revised November 2001

Keywords: Cross-type aliasing, viewpoint restriction, weak behavioral sub-
typing, strong behavioral subtyping, aliasing, mutation, modularity, specifica-
tion, verification, Java language, JML language.

2000 CR Categories: D.2.1 [Software Engineering] Requirements/ Spec-
ifications — languages, tools, JML; D.2.2 [Software Engineering] Design Tools
and Techniques — Object-oriented design methods; D.2.3 [Software Engineer-
ing] Coding Tools and Techniques — Object-oriented programming; D.2.4 [Soft-
ware Engineering] Software/Program Verification — Class invariants, correct-
ness proofs, formal methods, programming by contract, reliability, tools, JML;
D.2.7 [Software Engineering] Distribution, Maintenance, and Enhancement —
Documentation; D.3.2 [Programming Languages] Language Classifications —
Object-oriented langauges; D.3.3 [Programming Languages] Language Constructs
and Features — classes and objects, inheritance; F.3.1 [Logics and Meanings
of Programs] Specifying and Verifying and Reasoning about Programs — As-
sertions, invariants, logics of programs, pre- and post-conditions, specification
techniques;

Submitted for publication
An earlier version of this paper was titled “Mutation, Aliasing, Viewpoints,

Modular Reasoning, and Weak Behavioral Subtyping.” This paper is also Avaya
Labs Research Technical Report ALR-2001-025.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Preventing Cross-Type Aliasing
for More Practical Reasoning

Krishna Kishore Dhara1 and Gary T. Leavens2

1 Avaya Labs Research, 1D-632A,
101 Crawfords Corner Rd., Holmdel, NJ 07733 USA

dhara@avaya.com, +1 732 817 2160
2 Department of Computer Science, Iowa State University,

226 Atanasoff Hall, Ames, IA 50011 USA,
leavens@cs.iastate.edu, +1 515 294 1580

Abstract. To reason about the correctness of a method when cross-type
aliases are possible, one must not only consider all possible patterns of
aliasing among the method’s arguments, but all possible ways in which
these types’ abstract (specification-only) fields may be aliased. Because of
the large number of such aliasing possibilities, and because of the com-
plications they cause for reasoning, cross-type aliases make the use of
method specifications impractical in reasoning about correctness. Hence,
existing work on behavioral subtyping either ignores aliasing or prohibits
the use of method specifications in reasoning We present a simple type
system that prohibits cross-type aliases, and thus eliminates these prob-
lems. The “viewpoint restriction” enforced by this type system supports
a less restrictive notion of behavioral subtyping — weak behavioral sub-
typing. Weak behavioral subtyping allows types with immutable objects
(e.g., immutable sequences), to have behavioral subtypes with mutable
objects (e.g., mutable arrays). Thus, besides permitting one to reason
with method specifications, the viewpoint restriction also permits a more
flexible and useful notion of behavioral subtyping.

Key words: Cross-type aliasing, viewpoint restriction, weak behavioral
subtyping, strong behavioral subtyping, aliasing, mutation, modularity,
specification, verification, Java language, JML language.

1 Introduction

When enhancing existing object-oriented (OO) software, one commonly adds
new subtypes to existing types. The type system permits one’s client code to
operate on objects of these new subtypes using the protocol of their supertypes.
However, the type systems of OO languages, like C++ [46] and Java [3], do
not take the semantics of types into account; that is, the type system only
guarantees the lack of runtime type errors [7], not the lack of behavior that
would be surprising, given a specification of the supertype’s behavior.

A well-known technique for preventing such surprising behavior in a modu-
lar way is behavioral subtyping [1, 2, 6, 11, 12, 21–24, 31, 34, 35, 47, 48]. Behavioral

2

subtyping ensures that objects of the new subtypes “act like” objects of their
supertypes when manipulated as if they were supertype objects.

However, when mutable objects are considered, different assumptions about
aliasing1 lead to different expectations about the behavior of objects, which lead
to different reasoning principles and different notions of behavioral subtyping.

For example, one practical and modular technique for reasoning in the pres-
ence of unrestricted aliasing is to only expect that objects obey various safety
properties [31]. For purposes of this paper, we define a safety property of an
object as either an invariant property, which is true in all its publicly-visible
states, or a history constraint [31], which is a property that relates earlier and
later publicly-visible states. History constraints are necessarily monotonic; for
example, a history constraint might say that the age field of a Person object
can only increase. When one only expects safety properties to hold, surprising
behavior means violation of an invariant or history constraint. Liskov and Wing’s
notion of strong behavioral subtyping [31] can be used to modularly prevent such
surprising behavior.

In this paper we consider how reasoning is aided by a slightly stronger as-
sumption about aliasing. This assumption is a viewpoint restriction. A viewpoint
on an object is the (minimal) static type of a variable (other than “this”) or a
field that refers to that object, i.e., the set of all types through which one can
refer to the object. At any given point in a program’s execution, an object’s
viewpoint set is the set of all its viewpoints. For example, after executing the
assignment Collection c = new LinkedList() the viewpoint set of the object
created is {Collection}. The viewpoint restriction that we consider in this pa-
per restricts the viewpoint set of each object to be either empty or a singleton;
that is, an object may not be viewed through variables (other than “this”)
or fields of different types. We discuss modular ways to enforce this viewpoint
restriction in Section 5.

When the viewpoint restriction is enforced by a programming language, one
only has to reason about possible aliases among variables and fields of the same
type. In this case it is easier to prove the absence of certain aliases. Furthermore,
one does not have to consider how the abstract fields used in the specifications
of different types may be aliased, as discussed in Section 3.3 below. This makes
modular reasoning about properties other than safety properties practical. We
call properties other than safety properties liveness properties; liveness properties
include method specifications. Method specifications include pre- and postcon-
ditions, which are assertions about the states before and after a method call.

Because the viewpoint restriction is a stronger assumption about aliasing,
it makes weaker, i.e., less restrictive demands on behavioral subtyping. So even
though one may expect both safety and liveness properties to hold, what we call
weak behavioral subtyping [10–12] permits more behavioral subtype relations
than Liskov and Wing’s notion of strong behavioral subtyping [31]. For example,
a type with immutable objects (e.g., immutable sequences), cannot have strong

1 Concurrency can also lead to similar considerations [31], which we ignore in this
paper.

3

behavioral subtypes whose objects are mutable (e.g., mutable arrays), although
such types can be weak behavioral subtypes. Similarly, non-const objects of a
type T are weak behavioral subtypes of const objects of type T , but are not
strong behavioral subtypes. On the other hand, when the viewpoint restriction
holds, every strong behavioral subtype is also a weak behavioral subtype.

The main contribution of this paper is its discussion of various issues in mod-
ular reasoning for OO languages related to mutation and aliasing; in particular it
describes the advantages of the viewpoint restriction. The paper also describes
the notion of weak behavioral subtyping, and how it compares to strong be-
havioral subtyping; although some discussion of weak behavioral subtyping has
appeared in print before [10–12], what is new here is a clear description of the
advantages for reasoning that weak behavioral subtyping has over strong be-
havioral subtyping, due to the viewpoint restriction. Furthermore, this paper
specializes the treatment of weak behavioral subtyping to single dispatch lan-
guages (as opposed to multiple dispatch languages like CLOS and Cecil), unlike
our previous work on weak behavioral subtyping. Finally, the type system that
enforces the viewpoint restriction is new with this work.

This paper attempts to convey the ideas of viewpoints and weak behavioral
subtyping without getting bogged down in semantic details; thus it is outside its
scope to give formal proofs of the soundness of the associated reasoning tech-
niques. However, a formal proof of the soundness of reasoning with the viewpoint
restriction and weak behavioral subtyping, in a model-theoretic setting, has been
given elsewhere [10].

In the next section, we present a brief introduction to JML, which is used to
discuss formal reasoning in this paper. Section 3 discusses the reasoning problem
and discusses the choices for modular reasoning in the context of mutation and
aliasing. Section 4 discusses weak behavioral subtyping and gives some examples.
In section 5 we discuss one way to enforce restrictions on aliasing necessary for
sound modular reasoning with weak behavioral subtyping. Finally, we present
related work and conclusions.

2 Behavior of Types

One way to formally specify the behavior of a type is to describe the abstract
values of its objects, and to specify the behavior of its methods in terms of
abstract values [15, 30, 54]. In addition one can specify other properties, such as
invariants and history constraints [31].

This paper uses the Java Modeling Language (JML) [19, 20, 43] for such spec-
ifications. JML is a behavioral interface specification language tailored to Java;
it is based on Larch [14] and Eiffel [35]. An example of a JML specification is
given in Fig. 1. This specifies the behavior of class PairFI, which we will use as
a running example of a supertype in the paper.

Annotations in JML are found in comments that either start with //@ and
extend to the end of a line, or that start with /*@ and end with @*/; at-signs (@)
found on the beginning of annotation lines are ignored. The first two annotations

4

public class PairFI {

protected /*@ spec_public @*/ int first;

protected /*@ spec_public @*/ int second;

//@ public invariant true;

//@ public constraint first == \old(first);

/*@ public behavior

@ requires true;

@ assignable first, second;

@ ensures first == fst && second == snd;

@ signals (Exception) false;

@*/

public PairFI(int fst, int snd) {

first = fst;

second = snd;

}

/*@ public normal_behavior

@ ensures \result == first;

@*/

public int getFirst() {

return first;

}

/*@ public normal_behavior

@ ensures \result == second;

@*/

public int getSecond() {

return second;

}

/*@ public normal_behavior

@ assignable second;

@ ensures second == \old(second + 1);

@*/

public void incSecond() {

second++;

}

}

Fig. 1. A JML specification and Java implementation of the class PairFI.

5

declare that the protected fields first and second, are to be considered to be
public for specification purposes. The second annotation is an invariant; the
invariant property defaults to true when this clause is omitted, which allows for
more succinct specifications. The third annotation is a history constraint [31],
which states that the value of first may not be changed once initialized.

In JML, the specification of a method or a constructor can precede its code. In
Fig. 1, the constructor’s specification illustrates a fairly general form of method
specification, introduced by the keyword behavior. A behavior specification
allows one to specify: a precondition (following requires), a frame axiom (fol-
lowing assignable), which says what fields the method may assign, a normal
postcondition (following ensures), and an exceptional postcondition (following
signals). If the requires clause is omitted, the precondition defaults to true,
which means that the method can always be called. If the assignable clause is
omitted, the list of assignable variables defaults to \nothing, which means that
the method may not assign to any variables. The specification form that uses
normal behavior is sugar for a behavior specification where the exceptional
postcondition is false (for all exceptions); hence normal behavior specifies ex-
ecutions that cannot throw any exceptions (when the precondition holds). An
expression of the form \old(E) denotes E’s value in the state at the start of
the method’s execution2 [35]. Thus, for example, the incSecond method may be
called in any state, is only allowed to assign to second, must return normally,
and when it does so, it must make the field second have a value that is one
more than the value it had when the method started. For a non-void method,
the expression \result means the value or object returned by the method, as
in the specifications of first and second.

3 Choices for Modular and Practical Reasoning

In this section, we describe the problem in more detail, and lay out various
choices for modular and practical reasoning techniques. We start with a discus-
sion of the problems caused by multiple viewpoints, which motivates the view-
point restriction. We then further motivate the viewpoint restriction by noting
that it permits more behavioral subtype relations. Finally, with the viewpoint
restrictions and with different notions of behavioral subtyping we enumerate
several reasoning choices for OO software.

3.1 Problems Caused by Multiple Viewpoints

To see the problems caused by multiple viewpoints on objects consider Fig. 2.
In this figure obsFunc1 takes an argument of type IncFirst, specified in Fig. 3.
The first JML annotation in Fig. 3 declares a model instance field fst; such a
field is used for specification purposes only (hence model), and is imagined to
be present in each object that implements the interface (hence instance).
2 The use of old expressions in history constraints has the same semantics, since history

constraints can be thought of as a way of abbreviating assertions that go in method
postconditions [31].

6

public class Observe1 {

public static boolean obsFunc1(PairFI p, IncFirst t) {

if (p == null || t == null) {

return true;

} else {

int first = p.getFirst();

t.incFirst();

return first == p.getFirst();

}

}

}

Fig. 2. An observation on PairFI and IncFirst.

public interface IncFirst {

//@ model instance int fst;

/*@ public normal_behavior

@ assignable fst;

@ ensures fst == \old(fst + 1);

@*/

public void incFirst();

}

Fig. 3. The interface IncFirst.

Treating obsFunc1 in Fig. 2 as a partial specification involves the safety
property that the first component of the object p, which is viewed through static
type PairFI is immutable. Treating obsFunc1 as client code, we want to be able
to reason about it using the specification of PairFI given in Fig. 1, since the
static type of p is PairFI. PairFI’s specification has a history constraint that
says that the field first cannot change. Thus, using this viewpoint, we do not
expect p.first to change. Additionally, since IncFirst is unrelated to PairFI,
there is no reason to expect any interaction between p and t. At least, it is easy
to see how one could overlook such possible interactions.

The problem is that, because of the possible aliasing between the two argu-
ments to obsFunc1, when new types are introduced into the program, another
viewpoint on p is possible, which can lead to an unexpected result.

Suppose one adds a new type, Triple, that is a subtype of both PairFI and
IncFirst. This type is specified in Fig. 4. The connection between the model
instance field fst and the field first inherited from PairFI is given by the

7

depends and represents clauses in Fig. 4 [20, 27, 25, 26, 37]. The depends clause
says that the value of fst is determined by first, and hence that whenever fst
is assignable, so is first. The represents clause says how the value of fst is
recovered from first, in this case they are the same.

public class Triple extends PairFI /*@ weakly @*/ implements IncFirst {

protected /*@ spec_public @*/ int third;

//@ public depends fst <- first;

//@ public represents fst <- first;

/*@ public normal_behavior

@ assignable first, second, third;

@ ensures first == fst && second == snd && third == thd;

@*/

public Triple(int fst, int snd, int thd) {

super(fst, snd);

third = thd;

}

// specification inherited from IncFirst

public void incFirst() { first++; }

/*@ public normal_behavior

@ ensures \result == third;

@*/

public int getThird() { return third; }

/*@ public normal_behavior

@ assignable third;

@ ensures third == \old(third + 1);

@*/

public void incThird() { third++; }

}

Fig. 4. Java code for the class Triple.

In JML specifications, public and protected model fields, invariants and spec-
ifications for non-static public methods are inherited from supertypes [12, 42, 35,
51–53]. For example, the method specification of incFirst is inherited from the
interface IncFirst, and the depends clause allows it to assign a new value to
the field first inherited from PairFI.

8

How can Triple be a behavioral subtype of PairFI, when it has a method,
incFirst, that violates a safety property, the immutability of first, specified
by PairFI’s history constraint? The answer depends on the assumptions one
makes about aliasing when reasoning about client code, such as these observation
functions.

Consider what happens when the same triple is passed in both arguments to
obsFunc1, as in the following.

Triple t = new Triple(3, 4, 5);
Observe1.obsFunc1(t, t);

When the above code is executed, an alias is created, within obsFunc1, between
p and t and the observation returns false. Depending on what assumptions one
has made about aliasing, either:

– the above code is legal, and the unexpected result indicates that there is
something wrong our reasoning or with the types involved, or

– the above code is not legal, in which case there is no unexpected result
to worry about, and this example does not show any problem with our
reasoning or with the types involved, but instead shows a problem with the
programming language.

Suppose the above code is legal, i.e., that the programming language allows
aliasing between p and t in client code like obsFunc1. Then we can look for a
problem in either our reasoning or in the types involved.

If our reasoning about obsFunc1 tells us that it should always return true,
when in fact it returns false for the above code, then our reasoning technique
is unsound. The unsoundness arises because we did not analyze every aliasing
possibility in the code of obsFunc1. In particular we ignored aliasing between
variables of unrelated types, such as PairFI and IncFirst. Although considering
all aliasing possibilities is modular, there are an exponential number of such
aliasing possibilities among variables and fields.3 Worse, this technique seems
error prone if applied informally. There are two reasons for this. First, if there
are a large number of aliasing possibilities, one is likely to overlook some of them.
(However, a tool could force one to consider all aliasing possibilities.) Second,
most of these aliasing possibilities, such as those in obsFunc1, will seem utterly
pointless, since the types involved are not related. So in this case it would be
helpful if there were some way to cut down the number of aliasing possibilities;
furthermore, if cross-type aliases are permitted, tool support also seems essential.

Another possibility for sound reasoning about such examples is to rethink
(retest, and reverify) the client code whenever new subtypes are introduced into
the program that could cause new aliasing possibilities. In terms of the example,
one would have to go back to client code when Triple was introduced as a
3 Although there are an unbounded number of possible types, like Triple that might

be subtypes of such unrelated types, one only needs to consider the possibility of
any combination of variables being aliased through a common subtype; the exact
subtype does not matter.

9

subtype of PairFI and IncFirst. However, this approach is not modular, so we
reject it.

Still assuming that the above code is legal, we could retain sound modular
reasoning by finding a problem with the types involved. The most reasonable
possibility seems to be to say that Triple is not a behavioral subtype of PairFI.

If, instead, we wish to have sound modular reasoning without considering
cross-type aliasing in our reasoning, and if we wish Triple to be a behavioral
subtype of PairFI, we are forced to the other possibility—rejecting the above
observation code. In this case we again have two choices. We can either say that
the call to obsFunc1 is illegal, or we can reject obsFunc1 itself.

We might reject the call to obsFunc1 in the above code because we restrict
aliasing in various ways. The weakest such restriction that works for this example
is to prohibit cross-type aliasing; that is to enforce the restriction that every
object is viewed through variables of at most one static type. Since p and t
in obsFunc1 have different types, this viewpoint restriction would prohibit the
call in the above code. Stronger restrictions, for example prohibiting aliasing
completely, would also have the effect of rejecting the call.

If we wish the call in the above code to be legal, then we make the code
of obsFunc1 illegal. For example, one could say that p and t should have been
declared using arg types in the sense of flexible alias protection [40], and hence
that obsFunc1 cannot legally call methods that access mutable state (such as
incFirst).

Therefore there are four options for sound modular reasoning about the above
code. These same four options apply in general, and fall into two general cate-
gories as follows.

1. Allowing unrestricted aliasing and:
(a) providing tool support that limits the number of aliasing possibilities

(and preferably allows programmers to ignore cross-type aliases), or
(b) restricting behavioral subtyping so that, for example, Triple is not a

behavioral subtype of PairFI.
2. Restricting aliasing so that:

(a) objects are referred to through at most one viewpoint, or
(b) observation of an object’s mutable state is not possible when it is aliased.

In this paper we pursue only options 1(b) and 2(a), because we wish to
contrast the effects of different reasoning choices on the different notions (strong
and weak) of behavioral subtyping. We thus leave the other options, and various
combinations as future work.

3.2 Mutation, Subtyping, and Aliasing

In this subsection we refine the statement of our chosen options for modular
reasoning by looking at whether the methods that mutate an object’s state are
in the supertype or not, and whether the state being mutated is in the supertype
or not.

10

Looking at an object’s state and the methods of a subtype and its supertypes,
we can classify the possible mutations of an object into the following four types.

CS-CM Mutation of common state by common methods. Example: the com-
mon function incSecond of PairFI mutates common state second.

AS-AM Mutation of additional state by additional methods. Example: the ad-
ditional function incThird mutates additional state third.

CS-AM Mutation of common state by additional methods. Example: the ad-
ditional function incFirst mutates the common state first.

AS-CM Mutation of additional state by common methods. Example: an over-
ride of the common function incSecond could also mutate third as a side-
effect, although this is not shown in the example.

When an object of the subtype is held in a variable whose type is a supertype,
if there is no aliasing, then only mutations of the forms CS-CM and AS-CM can
occur, since a strongly-typed language will only allow the common methods to
be invoked on the object.4 However, in the presence of aliasing, the additional
methods can be called on an alias, and thus, mutations of the forms CS-AM,
and AS-AM can occur.

Only mutations of the form CS-AM have the potential to cause problems for a
client’s modular reasoning [31]. Mutations of the form CS-CM and AS-CM must
obey the supertype’s specification of the common methods, and thus cannot
cause problems. Mutations of the form AS-AM affect the additional state of
the subtype, but are not observable through the supertype’s methods. However
mutations of the form CS-AM are observable through the supertype’s methods,
and thus may produce unexpected results. This allows us to refine our decisions
for sound modular reasoning into the following.

Aliasing Choice 1: Restrict the behavior of the subtype’s additional methods
so that they manipulate the common state in ways that are not surpris-
ing. This renders mutations of the form CS-AM harmless. Because such
mutations are harmless, cross-type aliasing (and downcasting) presents no
problems, and does not need to be prohibited.

Aliasing Choice 2: Prohibit multiple viewpoints on objects. Since a subtype
object held in a variable of the supertype can only be manipulated from
the supertype’s viewpoint, this prohibits additional methods of the subtype
from being invoked on supertype variables, and so harmful mutations of
the form CS-AM cannot occur. Because such mutations cannot occur on
supertype variables, the behavior of the subtype’s additional methods need
not be restricted.

How can a language prohibit multiple viewpoints on objects? The direct
approach seems to be to just prohibit cross-type aliasing. Unfortunately, with
4 For the moment, we ignore downcasting, which can also allow a program to manipu-

late an object from more than one viewpoint, in much the same way as aliasing. Our
techniques for preventing multiple viewpoints on objects will also prevent downcast-
ing from causing problems.

11

dynamic dispatch, the implicit receiver in an overridden method (this in Java)
is a variable of a subtype that may have been viewed as a supertype object.

Since it seems hard to prevent multiple viewpoints for the implicit receiver
of a method, we only prohibit cross-type aliasing for other variables and fields.
That is we prohibit cross-type aliasing for all variables and fields, except the
implicit receiver of a method (this in Java). The multiple viewpoints that this
may have do not cause harmful CS-AM mutations, even when this is used in
message passing to call additional methods, because common methods in a sub-
type must obey the specification of the corresponding supertype methods they
override. (Here we are assuming some form of behavioral subtyping.) Thus clients
cannot directly call additional methods, and implementations of common meth-
ods cannot cause unexpected behavior by calling such methods. So mutations of
the form CS-AM either cannot occur, or are harmless.

The two aliasing choices induce different reasoning principles, which we dis-
cuss below.

3.3 Reasoning Principles Induced by the Aliasing Choices

One way to reason about OO programs modularly is to use supertype abstraction
[24]. Supertype abstraction allows one to reason about client code using the static
types of variables and the specifications of these types [2, 31, 34, 35, 41, 38, 48, 47].

The following kinds of supertype abstraction are both sound and practical
with respect to each of the aliasing choices.

Reasoning Choice 1: Restrict the behavior of additional methods in subtypes,
as in aliasing choice 1, and allow clients to reason using the invariants and
history constraints stated for the static types of expressions. Clients are not
allowed to reason using method specifications [31, p. 1812]. The reason for
this prohibition is that allowing the use of method specifications is unsound
without considering all possible cross-type aliases, and, as we demonstrate
below, considering all such aliases is impractical.

Reasoning Choice 2: Prohibit multiple viewpoints on objects, using aliasing
choice 2, and allow clients to reason using method specifications taken from
the specifications of the static types of expressions, as well as the invariants
and history constraints of these types.

These reasoning choices determine two sound and practical notions of behav-
ioral subtyping. For example, with reasoning choice 1, all additional methods of
behavioral subtypes must satisfy the history constraint (and invariant) of their
supertypes. This leads to a less restrictive form of Liskov and Wing’s history
constraint definition of behavioral subtyping [33, 31], which we call “minimal
strong behavioral subtyping.” In minimal strong behavioral subtyping , a sub-
type’s methods must obey the invariant and history constraint of its supertypes,
but Liskov and Wing’s “methods rule” is not imposed. When the methods rule
is imposed as well, we call their definition strong behavioral subtyping . Liskov
and Wing’s other definition of strong behavioral subtyping, based on explaining

12

how additional methods could be programmed using the supertype’s methods
[32, 31], also uses reasoning choice 1, except that the history constraints available
for use with this definition are not specified directly.

The problem with reasoning choice 1 and with strong behavioral subtyping
is that clients cannot use method specifications without considering all possible
cross-type aliases. Indeed, the complications are worse than that, because one
must consider not only cross-type aliases among objects, but for each such cross-
type alias, one must consider all possible dependencies among model fields. To
see this, consider the observation function in Fig. 5. This observation uses the
types PairFI, from Fig. 1, and IncSecond from Fig. 6.

public class Observe2 {

public static boolean obsFunc2(PairFI p, IncSecond s) {

if (p == null || s == null) {

return true;

} else {

int second = p.getSecond();

s.incSnd();

return second == p.getSecond();

}

}

}

Fig. 5. An observation function, obsFunc2.

public interface IncSecond {

//@ model instance int snd;

/*@ public normal_behavior

@ assignable snd;

@ ensures snd == \old(snd + 1);

@*/

public void incSnd();

}

Fig. 6. The interface IncSecond.

How is one to reason about the code in Fig. 5 using the method specifications
of the types PairFI and IncSecond? One has to consider all possible aliases

13

among the arguments, and for each such aliasing pattern, one has to consider all
possible aliases among model fields used in the specifications. In this example one
must consider whether the model instance field s.snd can be aliased to p.first
or p.second. In JML, such aliasing would be declared with a depends declaration
[20, 27, 25, 26, 37]. When a specification such as that in Fig. 6 allows incSnd to
assign to a model field such as snd, it means that a correct implementation
may assign to any location on which snd depends, i.e., on its dependees. There
are thus three possibilities. If there is no aliasing, that is, if s.snd does not
depend on p.first or p.second, then the code in Fig. 5 will return true, since
the frame axiom in Fig. 6 says that only the snd field and its dependees can
be assigned to by the call s.incSnd(). Using the definition of strong behavioral
subtyping, one can rule out the possibility that s.snd depends on p.first, since
in that case the specification of incSnd would violate the history constraint of
PairFI. The other possibility is that s.snd depends on p.second. In this case,
the specification of incSnd in Fig. 6 says that p.second can be assigned (as
a dependee) and thus that p.second may be changed by the call (whether or
not this happens would depend on the exact way that s.snd is represented by
p.second). Thus, the result of obsFunc2 might not be true in this case.

This last possibility occurs if, for example, one adds the subtype TripleFI,
which is a strong behavioral subtype of both TripleFI and IncSecond. In this
case, when one invokes the observation function as follows,

TripleFI t = new TripleFI(3, 4, 5);
Observe2.obsFunc2(t, t)

an alias is created within obsFunc2, between p and s, and the observation returns
false. This shows that such dependencies are not just a theoretical idea, but can
cause observable effects.

In summary, when reasoning using method specifications and strong behav-
ioral subtyping, one must consider each possible aliasing pattern and each pos-
sible dependency among the fields of the potentially aliased objects. While this
is modular, it is surely complex. In particular, the predicates describing states
in general will contain one case for each such possible aliasing pattern and each
of the possible dependencies within those aliasing patterns. For client code con-
taining many objects and many model fields, this is impractical. When applied
informally, such reasoning is likely to be error prone. It is certainly simpler, more
practical, and less error prone to follow Liskov and Wing and only allow reason-
ing using the safety properties guaranteed by invariants and history constraints
when using strong behavioral subtyping [31, p. 1812].

Another way to look at this example is that it shows the advantage of pro-
hibiting cross-type aliasing, as in reasoning choice 2. When this is done, i.e.,
when each object has at most one viewpoint, then the number of aliasing pat-
terns that one needs to consider are reduced. Furthermore, because there are no
cases of cross-type aliasing, one does not have to consider possible dependencies
among model fields. If two objects of the same type are aliased, their viewpoint’s
type declares all the relevant dependencies, and so no additional combinations
of possible dependencies arise.

14

public class TripleFI extends PairFI implements IncSecond {

protected /*@ spec_public @*/ int third;

//@ public depends snd <- second;

//@ public represents snd <- second;

/*@ public normal_behavior

@ assignable first, second, third;

@ ensures first == fst && second == snd && third == thd;

@*/

public TripleFI(int fst, int snd, int thd) {

super(fst, snd);

third = thd;

}

/*@ public normal_behavior

@ ensures \result == third;

@*/

public int getThird() {

return third;

}

/*@ also

@ public normal_behavior

@ assignable third;

@ ensures third == \old(third + 1);

@*/

public void incThird() {

third++;

}

/*@ public normal_behavior

@ assignable second;

@ ensures second == \old(second + 1);

@*/

public void incSnd() {

second++;

}

}

Fig. 7. Java code for TripleFI.

15

Reasoning choice 2 has advantages for reasoning, since clients can use method
specifications, and are not restricted to reasoning about safety properties using
just the invariant and history constraints of types, as with strong behavioral
subtyping. The definition of behavioral subtyping induced by reasoning choice
2 also has the advantage of allowing more subtype relationships than strong
behavioral subtyping. The additional subtype relationships are allowed because
the behavior of the additional methods of subtypes are not constrained. Hence
we call the kind of subtyping induced by reasoning choice 2 weak behavioral
subtyping [10, 12]. With reasoning choice 2, every strong behavioral subtype is a
weak behavioral subtype, but not vice versa.

4 Weak Behavioral Subtyping

In this section we explain weak behavioral subtyping in more detail and give
some examples.

4.1 Definition of Weak Behavioral Subtyping

A formal definition of weak behavioral subtyping that permits reasoning choice
2 and that permits all the types of mutation discussed in Section 3.2 is given in
Appendix A.

The main distinction between strong and weak behavioral subtyping is in
the interpretation of the history constraint. In JML, one specifies that the weak
behavioral subtype interpretation of history constraints is desired by using the
keyword weakly, as in the first line of Fig. 4; omitting this keyword gives a strong
behavioral subtype. For strong behavioral subtyping, the history constraint ap-
plies to all non-static public methods of the subtype, including the additional
methods; however, for weak behavioral subtyping the history constraint is only
applied to the common non-static public methods. That is, for weak behavioral
subtypes, the history constraint of the supertype only has to be valid for compu-
tations that do not invoke the additional methods of the subtype. Thus, although
the constraint rule in the definition of weak behavioral subtyping is similar to
the constraint rule in Liskov and Wing’s history constraint definition of strong
behavioral subtyping [33, 31], the difference in the way history constraints are
applied to the subtype’s additional methods explains the different effects they
have on permitted subtype relationships.

Another way of interpreting the difference in the application of history con-
straints is by viewing the supertype’s history constraint as part of the post-
condition of each of its non-static public methods. In this way, when subtype
methods are specified, because of the postcondition rule, the supertype’s history
constraint should be satisfied by the common methods. In strong behavioral
subtyping, the history constraint is thought of as part of the postcondition of
each non-static public method of each subtype. However, for weak behavioral
subtypes, the history constraint need not be satisfied by the subtype’s addi-
tional methods. Nevertheless, violation of the supertype’s history constraints by

16

ImmutablePair

����*s,w
HHHHY w

ImmutableTriple MutablePair

HHHHYw
����*w,s

SemiMutableTriple

6w

MutableTriple

Fig. 8. Behavioral subtype relationships between tuple types. Arrows labeled with “w”
are weak behavioral subtypes, those labeled with “s” are strong behavioral subtypes.

the subtype’s additional methods will not be observable through the supertype’s
viewpoint, since the viewpoint restriction in aliasing choice 2 disallows CS-AM
mutations.

4.2 Examples of Weak Behavioral Subtyping

As described above, Triple in Fig. 4 is a weak behavioral subtype of the type
PairFI (from Fig. 1). However, since the additional method incFirst of Triple
does not satisfy the history constraint of PairFI, Triple is not a strong behav-
ioral subtype of PairFI.

On the other hand, with the viewpoint restriction, every strong behavioral
subtype is also a weak behavioral subtype. For example, consider Fig. 8, which
shows several subtyping relationships. The subtype ImmutableTriple extends
ImmutablePair with an additional third component and an observer for the third
component. Hence, ImmutableTriple is both a strong and a weak behavioral
subtype of the type ImmutablePair.

In Fig. 8 the types MutablePair and ImmutablePair share common state,
but a MutablePair object has additional methods that can mutate its state.
The history constraint on the supertype ImmutablePair says that its state is im-
mutable, but with weak behavioral subtyping, this history constraint is only ap-
plicable to the common methods. Thus a MutablePair can be a weak behavioral
subtype of ImmutablePair, although it could not be a strong behavioral sub-
type. Similarly, SemiMutableTriple, in which the third element is not mutable,
is a weak behavioral subtype of both ImmutableTriple and MutablePair, but it
is not a strong behavioral subtype of ImmutableTriple. Finally, MutableTriple
is a weak behavioral subtype of SemiMutableTriple.

Fig. 9 is another example of a subtype hierarchy that would not be permit-
ted by strong behavioral subtyping. Figures 10, 11, 12. and 13 give the formal
specifications of these types in JML. The first four JML annotations in Fig. 10

17

ImmutableStudentRecord

observers

�
����*w

FinancialStudentRecord

observers + mutators for
financial information

AdmissionsStudentRecord
H

HHHHY w

observers + mutators for
academic information

StudentRecord
HHHYw

���*w

all observers + all mutators

Fig. 9. Student records with weak behavioral subtype relations that provide multiple
views for virtual supertypes.

declare the model instance fields of the type ImmutableStudentRecord. The
history constraint of ImmutableStudentRecord states that none of its fields is
mutable. Its subtypes AdmissionsStudentRecord, FinancialStudentRecord,
and StudentRecord each provide a different view of ImmutableStudentRecord
with their additional methods. For example, the additional methods of the type
AdmissionsStudentRecord in Fig. 11, changeAddress, setHighSchoolGPA, and
admit, mutate the fields address, highSchoolGPA, and admitted respectively,
provide a way an admissions office can observe and mutate these model fields.
Note that the additional methods in the subtype AdmissionsStudentRecord do
not preserve the history constraint of the type ImmutableStudentRecord. This
is a weak behavioral subtype relation that is not a strong behavioral subtype
relation. Similarly, FinancialStudentRecord is a weak behavioral subtype of
ImmutableStudentRecord, and StudentRecord is a weak behavioral subtype of
both types AdmissionsStudentRecord and FinancialStudentRecord.

Another example is the const modifier, which, as in C++, takes the meth-
ods that have side-effects on objects out of a type’s interface. So T is a weak
behavioral subtype const T , but T is not a strong behavioral subtype of const
T . Similarly, in flexible alias protection [40], the arg mode type modifier is such
that T is a weak (but not strong) behavioral subtype of arg T .

5 Aliasing

In this section, we describe the alias restrictions of aliasing choice 2(b), which
corresponds to weak behavioral subtyping. We then sketch a type system that
enforces these alias restrictions. While the type system presented is somewhat
restrictive, it does demonstrate that the aliasing choice 2 can be statically en-
forced, and that the enforcement is not so restrictive as to be unusable. Since
the type system is not the main point of this paper, we only sketch it here.

18

public interface ImmutableStudentRecord {

//@ public model instance double acctBalance;

//@ public model instance String address;

//@ public model instance float highSchoolGPA;

//@ public model instance boolean admitted;

/*@ public invariant address != null && 0.0 <= highSchoolGPA

@ && highSchoolGPA <= 4.5;

@*/

/*@ public constraint acctBalance == \old(acctBalance)

@ && address == \old(address)

@ && highSchoolGPA == \old(highSchoolGPA)

@ && admitted == \old(admitted);

@*/

/*@ public normal_behavior

@ ensures \result == acctBalance;

@*/

public int getAcctBalance();

/*@ public normal_behavior

@ ensures \result == address;

@*/

public String getAddress();

/*@ public normal_behavior

@ ensures \result == highSchoolGPA;

@*/

public int getHighSchoolGPA();

/*@ public normal_behavior

@ ensures \result == admitted;

@*/

public boolean getAdmitted();

}

Fig. 10. A JML specification for the Java interface ImmutableStudentRecord.

19

public interface AdmissionsStudentRecord

extends ImmutableStudentRecord /*@ weakly @*/ {

/*@ public constraint

@ acctBalance == \old(acctBalance);

@*/

/*@ public normal_behavior

@ requires addr != null;

@ assignable address;

@ ensures address.equals(addr);

@*/

public void changeAddress(String addr);

/*@ public normal_behavior

@ requires 0.0 <= gpa && gpa <= 4.5;

@ assignable highSchoolGPA;

@ ensures highSchoolGPA == gpa;

@*/

public void setHighSchoolGPA(float gpa);

/*@ public normal_behavior

@ requires !admitted;

@ assignable admitted;

@ ensures admitted;

@*/

public void admit();

}

Fig. 11. A JML specification for the Java interface AdmissionsStudentRecord.

20

public interface FinancialStudentRecord

extends ImmutableStudentRecord /*@ weakly @*/ {

/*@ public constraint highSchoolGPA == \old(highSchoolGPA)

@ && admitted == \old(admitted);

@*/

/*@ public normal_behavior

@ requires amt >= 0.0;

@ assignable acctBalance;

@ ensures acctBalance == \old(acctBalance + amt);

@*/

public void credit(double amt);

/*@ public normal_behavior

@ requires amt >= 0.0;

@ assignable acctBalance;

@ ensures acctBalance == \old(acctBalance - amt);

@*/

public void debit(double amt);

/*@ public normal_behavior

@ requires addr != null;

@ assignable address;

@ ensures address.equals(addr);

@*/

public void changeAddress(String addr);

}

Fig. 12. A JML specification for the Java interface FinancialStudentRecord.

public interface StudentRecord

extends FinancialStudentRecord /*@ weakly @*/,

AdmissionsStudentRecord /*@ weakly @*/ {

}

Fig. 13. A JML specification for the Java interface StudentRecord.

21

Allowed Prohibited

j: S
@@R

���

x: T

y: T
or

o.f : T

j: S
@@R

���

x: T

y: S
or

o.f : S

(a)

j: S
@@R

���

o1.f : T

o2.g: T

j: S
@@R

���

o1.f : T

o2.g: S

(b)

Fig. 14. A comparison of the kinds of aliases that are allowed and that are prohibited
for weak behavioral subtyping. In the figure, x and y are variables that are distinct
from “this”, and the types S and T are distinct (and not necessarily related).

5.1 Alias Restrictions

Aliasing in OO programs can be either aliasing between variables or aliasing
between fields of objects.5 Fig. 14 part (a) illustrates allowed and prohibited
aliasing between variables, and between variables and fields of objects. As shown
in part (a), a variable x of type T may refer to the same object as a variable
y or a field f of the same declared type, but (unless x is “this”) it may not
refer to the same object as a variable or field of a different type. Fig. 14 part (b)
illustrates aliasing between fields of two objects o1.f : T and o2.g : T . Again, a
field may be aliased with a field of the same type, but not with fields of different
types. In short these restrictions prevent cross-type aliases that lead to multiple
viewpoints on objects (aside from those the viewpoints of the implicit receiver,
“this”).

5.2 Enforcing Alias Restrictions

A type system that prevents cross-type aliases for client code in a multiple-
dispatch language is presented in [10, 11]. In the remainder of this subsection
we present a new variant of that type system that is adapted to single dispatch
languages.

Each expression has a static type and a viewpoint set. A viewpoint set is a
conservative approximation to the set of viewpoints through which an object may
be manipulated. More concretely, a viewpoint set is a conservative approximation

5 For purposes of this discussion, we think of static fields in classes as variables and
array elements as fields of objects.

22

to the set of static types of fields and variables, other than “this”, which may
reference the object. The notation E:T :: r means that E has static type T and
viewpoint set r.

In a language like Java or C++, some expressions are primitive values, not
objects. For an expression of such a primitive value type, such as int, the view-
point set is empty, because there cannot be any observable aliasing of primitive
values.

To prevent multiple viewpoints of an object, the viewpoint set of each field
or variable, other than “this”, must be either {}, when it is not assigned, or
a singleton set of its static type, when it is assigned. Hence there is no need to
declare the viewpoint set of a variable or field. When used as an expression, the
viewpoint set of a field or variable reference, other than “this,” is the singleton
set containing its static type.

The pseudo-variable “this”6 is assigned by dynamic dispatch, and thus may
refer to objects that are viewed through multiple types. For example, suppose
x has static type T and thus x’s viewpoint set is {T}; then when x denotes an
object of dynamic type S, where S is a subtype of T , a call of the form x.m()
may invoke a method of S. Within the code of method m from type S, this has
static type S, and hence is viewed through type S, but the object also has the
viewpoint T via x.

Therefore, to be conservative, the type system must assume that the view-
point set of this occurring in a method of a type S consists of S, all supertypes
of S, and all potential subtypes of S. We represent the potential subtypes of S
by the special viewpoint SubtypesOf (S), which we specify as distinct from all
other types. The important point to note for the discussion below is that the
viewpoint set of the expression this is thus a set with at least 2 elements, the
static type of this, say S, and SubtypesOf (S).

The most basic type checking rule is the assignment statement’s. If x is a
variable of static type T , an assignment of the form x = E is allowed only if
E:S :: r, S≤:wT , and r ⊆ {T}. Thus the viewpoint set, r of the expression, E,
can be either empty, or it may contain T . Because the viewpoint set of this is
a set with more than one element, the rule prevents one from assigning this to
a variable or field.

To illustrate this rule, consider the Java code in Fig. 15. On line 2, the
expression new Triple(10, 20, 30) has an viewpoint set of {}, and after the
assignment on line 3, the viewpoint set of t is {Triple}. The assignment to p1
on line 3 is illegal because the object t would, if this assignment were permitted,
be aliased by t and p1, so its viewpoint set would be {PairFI, Triple}; such
non-singleton sets are prohibited because they indicate multiple viewpoints (i.e.,
cross-type aliasing). However, the next two assignments in lines 4 and 5 are valid,
because the viewpoint sets of the expressions being assigned are {} (on line 4)
and {PairFI} (on line 5).

6 The name this is used in Java, and is *this in C++, and self in Smalltalk. In
languages, like Smalltalk, where super can be be used as a synonym for self in
some contexts, the remarks we make about this also apply to super.

23

PairFI p1, p2, p3; // 1

Triple t = new Triple(10, 20, 30); // 2

p1 = t; // 3

p2 = new Triple(10, 20, 30); // 4

p3 = p2; // 5

Fig. 15. Example of aliasing. Line 3 is illegal as explained in the text.

The arguments of a method are implicitly assigned to the formal parameters
of the method. Thus the same considerations apply as for assignment. That is,
when passing an actual parameter expression Ei to a formal of static type Ti,
the viewpoint set of Ei must be a subset of {T}. Again, since this has a view-
point set containing at least two elements, it cannot be passed as an additional
argument to a method. Overriding methods must, as in Java or C++, have the
same parameter types; this invariance of method argument types allows the type
checker to use the static type of the receiver in a method call to determine the
formal argument types, which are the same in all overriding methods.

To obtain the viewpoint set for the result of a method call, each non-void
method must declare the viewpoint set for its result. For this purpose, method
declarations have an added may alias clause, which declares an upper bound
on the viewpoint set of the method’s result.7 Type checking ensures that the
results that a method may return are a subset of its declared viewpoint set. For
example, if a method has a clause of the form “may alias {}” then at runtime
it cannot return an object that is aliased. The declared viewpoint set must either
be empty, or be a singleton type, because a result with multiple viewpoints could
never be assigned to a variable or field. Thus returning this as a result is also
prohibited, since its viewpoint set has at least two elements.

When a method overrides a method in a supertype, the viewpoint set declared
for the overriding method must be a subset of the viewpoint set of the method
it overrides. This allows the type checker to conservatively approximate the
viewpoint set of a call using the declared viewpoint set for the method found in
the declaration that corresponds to static type of the receiver. This rule does not
allow a type mentioned in the may alias clause of an overriding method to be
a subtype of a type mentioned in the may alias clause of the supertype. This
restriction is necessary, because the purpose of the viewpoint set is to prevent
cross-type aliasing, which could arise if overriding methods could change the
viewpoint on the method’s result.

The same considerations described above for normal results also apply to
exception results, that is, for the objects that are thrown in exceptions. How-
ever, to simplify the type system, instead of adding may alias declarations for
7 In a language like C++, function declarations also need a may-alias clause. Con-

structors also need such a clause, since they may cause aliases by assigning this to
variables or fields.

24

exception results, the type system just requires that the viewpoint sets for all
exception results be empty. This corresponds to the usual practice of creating a
new object when throwing an exception.

The type system also has rules for other expressions and statements. Casts are
particularly interesting. Casts must be type-safe, as in Java, but the viewpoint
set is not changed by a cast, since no new viewpoints are introduced; that is
(S)E:S :: r if for some S≤:wT , E:T :: r. Casts cannot change the viewpoint set
of an existing object.

In programming, one may need to clone the object, making a copy which has
an empty viewpoint set. The clone can then acquire a different viewpoint, by
assignment or parameter binding. For example, one could fix line 3 of Fig. 15 by
changing it to the following.

p1 = new Triple(t.getFirst(), t.getSecond(), t.getThird());

The conservative nature of the type system can be seen in rules such as the
one for conditional expressions, where the viewpoint set of the entire expression
is the union of viewpoint sets of the alternatives; that is, (E0 ? E1 : E2):T :: r
if for some b, r1, and r2, E0:boolean:: b, E1:T :: r1, E2:T :: r2, and r = r1 ∪ r2.

The implicit receiver, this, cannot, by the rules described above, be assigned
to any other variable or field, passed as an argument to a method, or returned
as a result. These restrictions prevent the multiple viewpoints associated with
different occurrences of this from escaping to other variables or fields in the
program. This rules out certain linked data structures, which require this to be
assigned to various fields. It also rules out double dispatching [17], which passes
this as argument, and hence prevents the use of certain design patterns such as
the visitor pattern [13].

It would thus be desirable to weaken our aliasing restrictions in such a way
that the single viewpoint restriction is enforced, but linked data structures and
this are permitted as arguments. One approach might be to use restrictions
that are more semantic, such as those proposed by Leino and Stata [28]. Leino
and Stata specify pivot objects, which cannot be aliased. To guarantee that
these pivot objects are not aliased, they prohibit assigning arguments to these
pivot fields and restrict assignments to these pivot object unless the result is
not aliased. Our approach has some similarities, but we do not make a dis-
tinction among variables based on specifications, and we do not attempt to
prevent aliasing, just cross-type aliasing. Other work, such as that by Müller
and Poetzsch-Heffter [41, 38, 37], Noble, et al. [40], and Vitek and Bokowski [49]
aims not to prevent multiple viewpoints on objects, but rather to prevent certain
kinds of aliasing, such as representation exposure. We leave combining our type
system with such sophisticated alias control systems as future work, and hope
that it may lead to more flexible rules that are still sufficient for weak behavioral
subtyping.

Another avenue for future work on this type system is ways of combining it
with strong behavioral subtyping, which does not require aliasing restrictions.
Such a change would require the language to syntactically distinguish between
strong and weak subtypes. This may be another avenue to flexibility in practice.

25

6 Related Work

Liskov and Wing [31] were the first to point out the key problem of aliasing (and
also concurrency) for modular reasoning in the presence of subtyping. They noted
that aliasing allows the additional methods of the subtype to cause observable
state changes in a supertype object. Their notion of strong behavioral subtyping
is discussed throughout the present paper. Strong behavioral subtyping is more
restrictive than weak behavioral subtyping, but offers sound modular reasoning
about safety properties with unrestricted aliasing (our reasoning choice 1). How-
ever, since every strong behavioral subtype is also a weak behavioral subtype,
if one can prove that an object satisfies the viewpoint restriction, then one can
reason about it using its viewpoint’s method specifications, thanks to the “meth-
ods rule” of strong behavioral subtyping. (For a more comprehensive discussion
of other work on behavioral subtyping, see [21].)

Lewerentz and his colleagues [29] use refinement calculus to define simulations
on programs that are observations on types. They do not consider aliasing or
interference. Mikhajlova and her coauthors [36] present sound verification of
OO programs in a refinement calculus framework. However, their work is based
on class refinement and treating classes as types restricts both subclasses and
subtypes [44].

Abadi and Leino [1] extend the work of Cardelli’s [7] structural subtyping
rules on records to include behavior. They present an axiomatic semantics and
provide guidance on reasoning about OO programs. However, their approach is
not modular and does not provide any help to make reasoning about cross-type
aliasing practical.

Recently, Huisman [16] and von Oheimb [50] have given sound (and in the
case of von Oheimb, relatively-complete) verification logics for Java. However,
these do not allow one to verify code in a way that is practical with respect to
patterns of potential cross-type aliases, as we do. Furthermore, Oheimb’s work
does concern itself with modularity or specification-only variables such as JML’s
model fields.

The work of Müller and Poetzsch-Heffter [37, 38, 41] has a verification logic
for Java that has also been proved to be sound. The focus of this work is on
modularity, in particular for checking frame axioms (like JML’s assignable
clause) [39] and invariants. They control aliasing through a “universe type sys-
tem.” They use supertype abstraction in reasoning about code using method
specifications, but do not consider history constraints, and hence are not con-
cerned with the effect of such constraints on additional methods of a subtype.
Although their reasoning technique allows modular verification with what are
effectively weak behavioral subtypes, their alias control techniques do not allow
one to limit multiple viewpoints. Hence their notion of modularity does not help
one reason about potential aliases among different types.

As noted earlier, weak behavioral subtyping is related to flexible alias pro-
tection’s arg mode types [9]. The type arg T is like T but does not contain any
methods that access the mutable state of T . Thus, T is a weak behavioral sub-
type of arg T . However, weak behavioral subtyping is a more flexible relation

26

than the relation between T and arg T , since it is defined in terms behavioral
specifications; in particular, there can be several proper weak behavioral sub-
types of arg T that are proper supertypes of T , these need not prohibit access
to all of the mutable state of T .

The restrictions our type system imposes on the this reference are similar
to the restrictions imposed on “anonymous methods” in Vitek and Bokowski’s
work on confining types within Java packages [49]. Both type systems do not
allow a method to store the current instance, this, in a field, to pass it as an
argument to another method, or to return it from a method. However, our type
system is more restrictive because we impose these requirements on all methods,
whereas the Vitek and Bokowski type system only imposes these restrictions on
methods that are declared to be anonymous. On the other hand, anonymous
methods are also prohibited from using object identity comparisons on this,
which is not necessary in our work.

7 Conclusions

The main contributions of this paper are its discussion of issues related to mu-
tation, aliasing, subtyping, and modular reasoning. The paper justifies a se-
ries of choices on these issues that lead to a more flexible notion of behavioral
subtyping—weak behavioral subtyping. In contrast to strong behavioral subtyp-
ing [31], weak behavioral subtyping permits more subtype relations; for example,
it permits types with mutable objects to be subtypes of types with immutable
objects. One new aspect of our definition of weak behavioral subtyping in this
paper is that we have specialized the definition for single dispatch languages
(such as Java). We have also explained how weak behavioral subtyping interacts
with formal specifications in the context of JML.

For soundness, weak behavioral subtyping requires that cross-type or multiple
viewpoint aliasing be prohibited. We have demonstrated one way to enforce this
viewpoint restriction statically; the details of this type system are new with this
work.

Another important contribution of this paper is a clarification of why reason-
ing with method specifications needs the viewpoint restriction to be practical.
The idea is that the viewpoint restriction not only limits the number of alias-
ing patterns that one must consider, but that it also eliminates the need to
consider possible aliases between model fields of different types. This simplifies
reasoning and makes it practical to use method specifications in reasoning. These
advantages apply even when one reasons informally; moreover, when one reasons
informally it is especially important to have a technique that does not require
the consideration of many cases that are easy to forget.

Finally, we observed that, if one has the viewpoint restriction to enable rea-
soning with method specifications, then one can use weak behavioral subtyping
and gain the benefits of its weaker restrictions on what types can be behavioral
subtypes.

27

Future work includes implementing the viewpoint restriction in some practi-
cal language, so that we can experiment to see how difficult it is to write code
with it. We expect that more sophisticated type systems, for example using
alias burying [4] flexible alias protection [9], confined types [49], or universes [37,
38, 41] will be helpful in making the type system that enforces the viewpoint
restriction more practical.

Acknowledgments

The work of Leavens was supported in part by a grant from Electronics and
Telecommunications Research Institute (ETRI) of South Korea, and by grants
CCR-0097907 and CCR-0113181 from the US National Science Foundation.

This work was done, in part, while Leavens was a visiting professor at the
University of Iowa. Thanks to Art Fleck, Ken Slonneger, and Cesare Tinelli at
the University of Iowa, and to Medhat Assaad, John Boyland, Yoonsik Cheon,
Curtis Clifton, Peter Müller, Clyde Ruby, and the OOPSLA 2001 referees for
comments on earlier drafts of this paper.

References

1. M. Abadi and R. Leino. A logic of object-oriented programs. In M. Bidoit and
M. Dauchet, editors, TAPSOFT ’97: Theory and Practice of Software Develop-
ment, 7th International Joint Conference CAAP/FASE, Lille, France, volume 1214
of Lecture Notes in Computer Science, pages 682–696. Springer-Verlag, New York,
NY, 1997.

2. P. America. Designing an object-oriented programming language with behavioural
subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors,
Foundations of Object-Oriented Languages, REX School/Workshop, Noordwijker-
hout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in Computer
Science, pages 60–90. Springer-Verlag, New York, NY, 1991.

3. K. Arnold and J. Gosling. The Java Programming Language. The Java Series.
Addison-Wesley, Reading, MA, second edition, 1998.

4. J. Boyland. Alias burying: Unique variables without destructive reads. Software—
Practice and Experience, 31(6):533–553, May 2001.

5. M. Broy and S. Jähnichen, editors. KORSO: Methods, Languages and Tools for
the Construction of Correct Software, volume 1009 of Lecture Notes in Computer
Science, New York, NY, 1995. Springer-Verlag.

6. K. B. Bruce and P. Wegner. An algebraic model of subtype and inheritance.
In F. Bançilhon and P. Buneman, editors, Advances in Database Programming
Languages, pages 75–96. Addison-Wesley, Reading, Mass., Aug. 1990.

7. L. Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 431–
507. Springer-Verlag, New York, NY, 1991.

8. Y. Chen and B. H. C. Cheng. A semantic foundation for specification matching.
In G. T. Leavens and M. Sitaraman, editors, Foundations of Component-Based
Systems, pages 91–109. Cambridge University Press, New York, NY, 2000.

28

9. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protec-
tion. In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN
Notices, pages 48–64. ACM, Oct. 1998.

10. K. K. Dhara. Behavioral subtyping in object-oriented languages. Technical Report
TR97-09, Department of Computer Science, Iowa State University, 226 Atanasoff
Hall, Ames IA 50011-1040, May 1997. The author’s Ph.D. dissertation.

11. K. K. Dhara and G. T. Leavens. Weak behavioral subtyping for types with
mutable objects. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors,
Mathematical Foundations of Programming Semantics, Eleventh Annual Confer-
ence, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl/locate/entcs/volume1.html.

12. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification
inheritance. In Proceedings of the 18th International Conference on Software En-
gineering, Berlin, Germany, pages 258–267. IEEE Computer Society Press, Mar.
1996. A corrected version is Iowa State University, Dept. of Computer Science TR
#95-20c.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

14. J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch:
Languages and Tools for Formal Specification. Springer-Verlag, New York, NY,
1993.

15. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

16. M. Huisman. Reasoning about Java Programs in higher order logic with PVS and
Isabelle. Ipa dissertation series, 2001-03, University of Nijmegen, Holland, Feb.
2001.

17. D. H. H. Ingalls. A simple technique for handling multiple polymorphism. ACM
SIGPLAN Notices, 21(11):347–349, Nov. 1986. OOPSLA ’86 Conference Proceed-
ings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

18. K. Lano and H. Haughton, editors. Object-Oriented Specification Case Studies.
The Object-Oriented Series. Prentice Hall, New York, NY, 1994.

19. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design. In
H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Busi-
nesses and Systems, pages 175–188. Kluwer Academic Publishers, Boston, 1999.

20. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report 98-
06p, Iowa State University, Department of Computer Science, Aug. 2001. See
www.cs.iastate.edu/~leavens/JML.html.

21. G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and a sketch
of their extension to component-based systems. In G. T. Leavens and M. Sitara-
man, editors, Foundations of Component-Based Systems, chapter 6, pages 113–135.
Cambridge University Press, 2000.

22. G. T. Leavens and D. Pigozzi. A complete algebraic characterization of behavioral
subtyping. Acta Informatica, 36:617–663, 2000.

23. G. T. Leavens and W. E. Weihl. Reasoning about object-oriented programs that
use subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP ’90
Proceedings, volume 25(10) of ACM SIGPLAN Notices, pages 212–223. ACM, Oct.
1990.

24. G. T. Leavens and W. E. Weihl. Specification and verification of object-oriented
programs using supertype abstraction. Acta Informatica, 32(8):705–778, Nov. 1995.

29

25. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Insti-
tute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

26. K. R. M. Leino. Data groups: Specifying the modification of extended state. In
OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices,
pages 144–153. ACM, Oct. 1998.

27. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. Technical
Report 160, Compaq Systems Research Center, 130 Lytton Avenue Palo Alto, CA
94301, 2000.

28. K. R. M. Leino and R. Stata. Virginity: A contribution to the specification of
object-oriented software. Information Processing Letters, 70(2):99–105, Apr 1999.

29. C. Lewerentz, T. Lindner, A. Rüping, and E. Sekerinski. On object-oriented design
and verification. In Broy and Jähnichen [5], pages 92–111.

30. B. Liskov and J. Guttag. Program Development in Java. The MIT Press, Cam-
bridge, Mass., 2001.

31. B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans. Prog. Lang.
Syst., 16(6):1811–1841, Nov. 1994.

32. B. Liskov and J. M. Wing. A new definition of the subtype relation. In O. M.
Nierstrasz, editor, ECOOP ’93 — Object-Oriented Programming, 7th European
Conference, Kaiserslautern, Germany, volume 707 of Lecture Notes in Computer
Science, pages 118–141. Springer-Verlag, New York, NY, July 1993.

33. B. Liskov and J. M. Wing. Specifications and their use in defining subtypes. ACM
SIGPLAN Notices, 28(10):16–28, Oct. 1993. OOPSLA ’93 Proceedings, Andreas
Paepcke (editor).

34. B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY,
1988.

35. B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY,
second edition, 1997.

36. A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in
object-oriented programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
FME ’97: Industrial Applications and Stengthened Foundations of Formal Meto-
hds, volume 1313 of Lecture Notes in Computer Science, pages 82–101, NY, 1997.
Springer-Verlag.

37. P. Müller. Modular Specification and Verification of Object-Oriented programs.
PhD thesis, FernUniversität Hagen, Germany, Mar. 2001.

38. P. Müller and A. Poetzsch-Heffter. Modular specification and verification tech-
niques for object-oriented software components. In G. T. Leavens and M. Sitara-
man, editors, Foundations of Component-Based Systems, chapter 7, pages 137–159.
Cambridge University Press, 2000.

39. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame
properties in jml. Technical Report 01-03, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011, Apr. 2001. To appear in the Formal Tech-
niques for Java Programs 2001 workshop at ECOOP 2001. Also available from
archives.cs.iastate.edu.

40. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
ECOOP ’98 – Object-Oriented Programming, 12th European Conference, Brus-
sels, Belgium, volume 1445 of Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

41. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. D. Swierstra, editor, European Symosium un Programming (ESOP ’99), volume
1576 of Lecture Notes in Computer Science, pages 162–176. Springer-Verlag, 1999.

30

42. A. D. Raghavan and G. T. Leavens. Desugaring JML method specifications. Tech-
nical Report 00-03c, Iowa State University, Department of Computer Science, Aug.
2001.

43. C. Ruby and G. T. Leavens. Safely creating correct subclasses without seeing
superclass code. In OOPSLA 2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis, Minnesota, volume 35(10) of
ACM SIGPLAN Notices, pages 208–228, Oct. 2000.

44. A. Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. ACM SIGPLAN Notices, 21(11):38–45, Nov. 1986. OOPSLA ’86 Confer-
ence Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

45. S. Stepney, R. Barden, and D. Cooper, editors. Object Orientation in Z. Workshops
in Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

46. B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Co.,
Reading, Mass., 1986. Corrected reprinting, 1987.

47. M. Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. PhD
thesis, University of New South Wales, Kensington, Australia, 1992. Draft of
February 1992 obtained from the Author.

48. M. Utting and K. Robinson. Modular reasoning in an object-oriented refine-
ment calculus. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors,
Mathematics of Program Construction, Second International Conference, Oxford,
U.K., June/July, volume 669 of Lecture Notes in Computer Science, pages 344–367.
Springer-Verlag, New York, NY, 1992.

49. J. Vitek and B. Bokowski. Confined types in Java. Software — Practice and
Experience, 31(6):507–532, 2001.

50. D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München, 2001.

51. A. Wills. Capsules and types in Fresco: Program validation in Smalltalk. In
P. America, editor, ECOOP ’91: European Conference on Object Oriented Pro-
gramming, volume 512 of Lecture Notes in Computer Science, pages 59–76.
Springer-Verlag, New York, NY, 1991.

52. A. Wills. Specification in Fresco. In Stepney et al. [45], chapter 11, pages 127–135.
53. A. Wills. Refinement in Fresco. In Lano and Houghton [18], chapter 9, pages

184–201.
54. J. M. Wing. Writing Larch interface language specifications. ACM Trans. Prog.

Lang. Syst., 9(1):1–24, Jan. 1987.

31

A Formal Definition of Weak Behavioral Subtyping

To formally define weak behavioral subtyping, we use the following notation.
We use ≤:w to refer to a weak behavioral subtype relation, which is a binary
relation on types. Type symbols are represented by S and T , where S is by con-
vention the subtype, and type vectors by ~U and ~V . An invariant of a type T is
denoted by IT , and a history constraint of T by CT . The notation prem

T (this, ~x)
denotes the precondition predicate specified for method m in T , with receiver
this and additional parameters ~x. The notation assignablem

T denotes the set of
locations specified as assignable by method m of type T ; this includes depen-
dees of locations explicitly specified as assignable [25, 26]. Similarly, normpostmT
denotes the the normal postcondition of method m in type T ; this is the post-
condition that applies when no exceptions can be thrown. Finally, the notation
expostmT (this, ~x) means the postcondition of method m in T that applies when
exceptions can be thrown; such a postcondition can refer to the exception result
object but the exact notation is unimportant. In relating pre- and postcondi-
tions, we use \old(e) for the value of e in the pre-state. Substituting z for y in
predicate p(y) is written as p(z).

The definition of weak behavioral subtyping given below is for single dis-
patching languages, like Java and C++, that do not support contravariance of
arguments. It is also adapted to specification languages that, like JML, model
objects as records (i.e., as a collection of named fields). In JML, the model of
an object of a subtype inherits all of the fields used to model objects of its
supertypes; this allows assertions used in the specification of its supertypes to
be interpreted on subtype objects, without the need of an abstraction function.
Alternatively, one can imagine that the abstraction function that maps values of
the subtype to the supertype is always a projection, which forgets the subtype’s
extra fields. A more general version of the definition below, which supports con-
travariance of arguments and specified abstraction functions is presented in [12].
However, that definition does not treat exceptional postconditions separately,
and does not treat the assignable clause. The definition below can also be ex-
tended to multiple dispatching languages [10]. This definition uses ideas from [2,
31, 12, 10].

Definition 1 (Weak Behavioral Subtyping). A
type S is a weak behavioral subtype of T with respect to a binary relation ≤:w on
types if and only if the following properties are satisfied.

Syntactic: For each non-static method m of T , S also has a method m such
that:

– Invariance of argument types. If the types of the additional (non-receiver)
arguments of m in S and T are ~U and ~V respectively, then ~U = ~V .

– Covariance of result types. If the result types of m in S and T are Ur and
Vr respectively, then Ur ≤:w Vr.

– Covariance of exception result types. For each declared exception result type
ES of m in S, m in T has an exception result type ET such that ES ≤:w ET .

32

Semantic: The following implications have to hold in the theory of the S’s
specification.8

– Invariant rule. For all objects this : S,

IS(this) ⇒ IT (this).

– Constraint rule. For all objects this : S,

CS(this) ⇒ CT (this).

– Methods rule. For all non-static methods m of T , if the types of the additional
arguments types of m are ~V and if the result types of m in S and T are Ur

and Vr respectively, then for all objects this : S and ~y : ~V , the following
hold:
• Precondition rule.

prem
T (this, ~y) ⇒ prem

S (this, ~y)

• Frame axiom rule.

assignablem
S ⊆ assignablem

T

• Normal postcondition rule.

(\old(prem
S (this, ~y)) ⇒ normpostmS (this, ~y))

⇒ (\old(prem
T (this, ~y)) ⇒ normpostmT (this, ~y))

• Exceptional postcondition rule.

(\old(prem
S (this, ~y)) ⇒ expostmS (this, ~y))

⇒ (\old(prem
T (this), ~y) ⇒ expostmT (this, ~y))

The postcondition rules given above [12] are less restrictive than those used
by Liskov and Wing [31]. A condition that is logically equivalent to our normal
postcondition rule (see appendix B for a proof) is the following [50], which we
display in an unusual manner that illustrates how the condition can be used for
reasoning at the level of the supertype’s specification:

\old(prem
T (this, ~y)) normpostm

T (this, ~y))
⇓ ⇑

((\old(prem
S (this, ~y)) ⇒ normpostm

S (this, ~y))
(1)

Chen and Cheng proved [8] that requiring both the precondition rule and the
normal postcondition rule above is equivalent to requiring both the precondition
rule and the following (also found in [30]):

(\old(prem
T (this, ~y)) ∧ normpostm

S (this, ~y))
⇒ normpostm

T (this, ~y). (2)

Chen and Cheng also proved that these equivalent conditions are the least re-
strictive sound conditions for reuse of methods.
8 In the theory of a type’s specification, one is allowed to assume the type’s invariant

for any object of the type in any visible state. Thus, for example, when proving the
constraint rule, since this : S, one can assume IS(this), which effectively means
that it suffices to prove (IS(this) ∧ \old(IS(this)) ∧ CS(this))⇒ CT (this).

33

B Equivalent Rules for Postconditions

The equivalence of our postcondition rule and Formula (1) is an immediate
consequence of the following lemma.

Lemma 1. For all Spre, Spost, Tpre, and Tpost,

(Spre ⇒ Spost) ⇒ (Tpre ⇒ Tpost)

is equivalent to
Tpre ⇒ ((Spre ⇒ Spost) ⇒ Tpost).

Proof: Let the predicates be given. We calculate as follows.

(Spre ⇒ Spost) ⇒ (Tpre ⇒ Tpost)
= 〈by P ⇒ (Q ⇒ R) ≡ (P ∧Q) ⇒ R〉

((Spre ⇒ Spost) ∧ Tpre) ⇒ Tpost

= 〈by symmetry of conjunction〉
(Tpre ∧ (Spre ⇒ Spost)) ⇒ Tpost

= 〈by (P ∧Q) ⇒ R ≡ P ⇒ (Q ⇒ R)〉
Tpre ⇒ ((Spre ⇒ Spost) ⇒ Tpost)

