
Safely Creating Correct Subclasses
without Seeing Superclass Code

Clyde Ruby and Gary T. Leavens

TR #00-05d
April 2000, revised April, June, July 2000

Keywords: Downcalls, subclass, semantic fragile subclassing problem, subclassing contract, specification inheritance, method
refinement, Java language, JML language.
1999 CR Categories: D.2.1 [Software Engineering ] Requirements/Specifications — languages, tools, JML; D.2.2 [Software
Engineering ] Design Tools and Techniques — Object-oriented design methods, software libraries; D.2.3 [Software Engineering ]
Coding Tools and Techniques — Object-oriented programming; D.2.4 [Software Engineering ] Software/Program Verification
— Class invariants, correctness proofs, formal methods, programming by contract, reliability, tools, JML; D.2.7 [Software
Engineering ] Distribution, Maintenance, and Enhancement — Documentation, Restructuring, reverse engineering, and reengi-
neering; D.2.13 [Software Engineering ] Reusable Software — Reusable libraries; D.3.2 [Programming Languages] Language
Classifications — Object-oriented langauges; D.3.3 [Programming Languages] Language Constructs and Features — classes
and objects, frameworks, inheritance; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about
Programs — Assertions, invariants, logics of programs, pre- and post-conditions, specification techniques;

To appear in OOPSLA 2000, Minneapolis, Minnesota, October 2000.

Copyright c© 2000 ACM. Permission to make digital or hard copies of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA



Safely Creating Correct Subclasses
without Seeing Superclass Code

Clyde Ruby and Gary T. Leavens
∗

Department of Computer Science
Iowa State University

226 Atanasoff Hall, Ames, IA 50011 USA
+1 515 294 1580

{ruby,leavens}@cs.iastate.edu

ABSTRACT
A major problem for object-oriented frameworks and class
libraries is how to provide enough information about a su-
perclass, so programmers can safely create new subclasses
without giving away the superclass’s code. Code inherited
from the superclass can call down to methods of the subclass,
which may cause nontermination or unexpected behavior.
We describe a reasoning technique that allows programmers,
who have no access to the code of the superclass, to deter-
mine both how to safely override the superclass’s methods
and when it is safe to call them. The technique consists
of a set of rules and some new forms of specification. Part
of the specification would be generated automatically by a
tool, a prototype of which is planned for the formal specifi-
cation language JML. We give an example to show the kinds
of problems caused by method overrides and how our tech-
nique can be used to avoid them. We also argue why the
technique is sound and give guidelines for library providers
and programmers that greatly simplify reasoning about how
to avoid problems caused by method overrides.

Keywords
Downcalls, subclass, semantic fragile subclassing problem,
subclassing contract, specification inheritance, method re-
finement, Java language, JML language.

1. INTRODUCTION
Our long term goal is to discover what makes good qual-
ity documentation of frameworks and class libraries. Usu-
ally, not enough documentation is provided for program-
mers to write a subclass without studying the source code of

∗The work of both Ruby and Leavens was supported in part
by the US National Science Foundation under grant CCR-
9803843.

Permission to make digital or hard copies of this work for personal or
classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
To appear inOOPSLA 2000Minneapolis, Minnesota, October 2000.

its superclasses. One benefit of sufficient and unambiguous
documentation of object-oriented (OO) class libraries and
frameworks would be to allow companies to protect their
investment in source code. In particular, this would allow
a company to only ship compiled code and documentation.
The problem we address in this paper is what information is
needed in such documentation, and how to use it to create
subclasses that do not exhibit problems such as nontermi-
nation or unexpected behavior.

A correct superclass method can only be problematic when
a new subclass overrides some methods, leading to down-
calls. A downcall occurs when a superclass method calls a
method that is overridden in the subclass. We also say that
the superclass “calls down to” the overridden method, be-
cause we visualize the class diagram with subclasses below
superclasses. Overriding is important, because no problems
occur when a superclass calls one of its own methods. On
the other hand, when the superclass calls down to an over-
ridden method, this overriding subclass method may behave
differently than the superclass method expects.

Downcalls are also related to callbacks [39, p. 107]. Call-
backs can happen when a subclass method calls a superclass
method that makes a downcall; the downcall then is also a
callback, because it leads back to the subclass. However,
not every callback involves a superclass calling down to an
overridden method.

Downcall problems are related to the so-called semantic frag-
ile base class problem [27] [39, pp. 102-104], which is con-
cerned with how to change superclasses without invalidating
existing subclasses. The problem we are solving might be
called the semantic fragile subclassing problem, which deals
with how to create a valid subclass; that is, how to override
superclass methods in such a way that the subclass is free
from downcall problems.

To understand what information is needed by programmers
to avoid downcall problems, we study a formal version of
this problem. Our formal specifications for superclasses rep-
resent the documentation of a class library or framework.
Our reasoning technique corresponds to using the documen-
tation. The ability to prove correctness of the subclass is

1



used as a criteria to judge whether these specifications and
the reasoning technique are adequate. Therefore, we believe
our study provides sound guidance for providing adequate
information in user manuals and informal documentation.
Some discussion of this is found in Section 7.4.

For our purposes, the specifications given for the classes in
a library or framework have three parts:

• a public specification that uses a client-visible model
of objects of the class to describe the behavior of each
public method and constructor,

• a protected specification that describes any additional
subclass-visible behavior, as well as the behavior of
protected methods and constructors, and

• a subclassing contract that lists the variables accessed
and methods called by each method and constructor.

The subclassing contract would be automatically generated
by a planned tool. Section 3 gives more details about the
contents of these specifications.

In Section 4 we give examples of downcall problems and
explain our rules for reasoning about how to avoid each par-
ticular problem. In a few cases, when there is no easy or
sound way to prevent the problem, we give restrictions on
superclass code that would eliminate the problem. In our
study, we created formal public and protected specifications
for a base class and implemented it; based on this implemen-
tation, a subclassing contract for the base class was derived
by hand, simulating what our tool would do. We next gave
formal public and protected specifications for several new
subclasses and studied the problem of how to correctly im-
plement them without access to the superclass code.

The rules presented in Section 4 generalize our experience
and provide a formal system for avoiding downcall problems.
The rules are conservative, because we are assuming that su-
perclass code is not available, and thus the rules can only
use information from specifications. The rules allow a pro-
grammer to determine which methods to override and when
it is safe to call a superclass method. They form the basis of
our proposed tool, which would give warning messages when
the rules are violated by the subclass. In Section 5 we argue
the soundness of these rules. In Section 6 we describe our
proposed tool. In Section 7 we give guidelines for library
providers and programmers that can greatly simplify rea-
soning about how to avoid downcall problems. In Section 8
we discuss related work, and we offer some conclusions in
Section 9.

2. ASSUMPTIONS
Our investigation focuses primarily on the issues involved in
code inheritance and subclassing in a single-dispatch1 OO
programming language. We do not consider other language-
specific features such as nested classes or exceptions.

1In single dispatch, the method to be executed is selected
based on the dynamic type of the receiver. Smalltalk, C++,
Eiffel, and Java use single dispatch.

We make several simplifying assumptions that are important
for the soundness of our approach. We assume that the
superclass’s code does not name the new subclass, since a
library class would not know about new subclasses. We
assume that methods do not access instance variables2, even
public ones, in objects of unrelated classes. An unrelated
class of C means a class other than C or one of C’s ancestors
or descendents, i.e., outside the class hierarchy of C. We
assume that methods do not temporarily change and then
restore instance variables around calls to public methods, as
in Figure 8 below. Finally, we assume that classes do not
have mutually recursive methods from unrelated classes.

3. JML SPECIFICATIONS
Although our ideas and techniques are independent of any
particular programming language, for concreteness in exam-
ples we use Java and the Java Modeling Language (JML)
[14, 15] as our programming and specification notations.
JML blends the Eiffel [24] and Larch [8] traditions, and like
Eiffel uses Java expressions within assertions.

3.1 Public Specification
Figure 1 gives a formal public specification of a simple Point
class in JML. As a public specification, it documents the be-
havior of public methods and instance variables, and there-
fore protected and private members are not included. This
is the kind of information that would be provided to clients
of the class.

The modifier model in a declaration means that the declara-
tion is for use in specifications and need not be part of the
implementation. For example, xCoord is an instance vari-
able used only for specifying method behavior. Similarly,
the model modifier means that distance is a specification-
only method. (Note that it is enclosed entirely in a JML
annotation.) A method may only be used in assertions if it
does not have side-effects; the modifier pure specifies that a
method, like distance, has no side-effects, and thus can be
used in assertions.

In JML method specifications, preconditions start with the
keyword requires, postconditions with ensures, and frame
conditions with modifiable. A modifiable clause specifies
the variables that may be modified by the method; for exam-
ple, in the method moveX of Point, only the model variables
xCoord and oldX, and the variables on which they depend
(see below) may be modified.

The “normal” in the public_normal_behavior keyword in-
dicates that the constructor or method must not signal ex-
ceptions, and thus, when its precondition is satisfied, its final
state must satisfy the corresponding postcondition. Also,
the “public” prefix means that the specification is a public
specification, and thus only public variables and methods
are in scope; for example, in a public specification, no pro-
tected variables can be mentioned.

3.2 Protected Specification
2We use the term instance variable for what Java calls a
non-static data field.

2



package edu.iastate.cs.jml.paper;

public class Point

{

//@ public model int xCoord; // model variables

//@ public model int yCoord;

//@ public model int oldX;

//@ public model int oldY;

/*@ public_normal_behavior

@ ensures: \result == Math.abs(xDist) + Math.abs(yDist);

@ public pure model int distance(int xDist, int yDist); @*/

/*@ public_normal_behavior

@ modifiable: xCoord, yCoord, oldX, oldY;

@ ensures: xCoord == initX && yCoord == initY

@ && oldX == initX && oldY == initY; @*/

public Point(int initX, int initY);

/*@ public_normal_behavior

@ ensures: \result == xCoord; @*/

public /*@ pure @*/ int getX();

/*@ public_normal_behavior

@ ensures: \result == yCoord; @*/

public /*@ pure @*/ int getY();

/*@ public_normal_behavior

@ modifiable: xCoord, yCoord, oldX, oldY;

@ ensures: xCoord == newX && yCoord == newY

@ && oldX == \old(xCoord) && oldY == \old(yCoord); @*/

public void move(int newX, int newY);

/*@ public_normal_behavior

@ modifiable: xCoord, oldX;

@ ensures: xCoord == newX && oldX == \old(xCoord); @*/

public void moveX(int newX);

/*@ public_normal_behavior

@ modifiable: yCoord, oldY;

@ ensures: yCoord == newY && oldY == \old(yCoord); @*/

public void moveY(int newY);

/*@ public_normal_behavior

@ ensures: \result == distance(xCoord - oldX, yCoord - oldY); @*/

public /*@ pure @*/ int distanceMoved();

/*@ public_normal_behavior

@ requires: p != null;

@ ensures: \result == distance(p.xCoord - xCoord, p.yCoord - yCoord); @*/

public /*@ pure @*/ int distanceTo(Point p);

}

Figure 1: Public specification of Point in file Point.jml-refined. JML behavioral specifications are found on
lines starting with //@ and between the annotation markers /*@ and @*/. Within annotations, an initial at-sign
(@) on a line is ignored.

3



package edu.iastate.cs.jml.paper;

//@ refine: Point <- "Point.jml-refined";

public class Point

{

protected int x, y;

protected int deltaX, deltaY;

//@ protected depends: xCoord -> x;

//@ protected represents: xCoord <- x;

//@ protected depends: yCoord -> y;

//@ protected represents: yCoord <- y;

//@ protected depends: oldX -> deltaX;

//@ protected represents: oldX <- (x - deltaX);

//@ protected depends: oldY-> deltaY;

//@ protected represents: oldY <- (y - deltaY);

/*@ protected_normal_behavior

@ requires: p != null;

@ modifiable: xCoord, yCoord, oldX, oldY;

@ ensures: this.xCoord == p.xCoord

@ && this.yCoord == p.yCoord

@ && oldX == p.xCoord

@ && oldY == p.yCoord;

@*/

protected Point(Point p);

}

Figure 2: Protected specification of class Point in
file Point.jml.

The protected specification provides additional documenta-
tion that is needed by programmers when specializing or
extending a class. It specifies the parts of the class visible
to subclasses, including protected instance variables and the
behavior of protected constructors and methods. It will in-
clude information about public instance variables and meth-
ods that is not of interest to clients, but will be of interest to
the implementer of a subclass. It also includes information
about protected variables and methods needed to verify the
correctness of the implementation of the class.

Figure 2 gives the protected specification of class Point;
it specifies the relation between the public and protected
instance variables and gives the specification of a protected
constructor. The protected specifications in Figure 2 are
added to the public specifications in Figure 1 because of
the refine clause found after the package declaration in
Figure 2.

The depends and represents clauses specify the relation-
ship between variables. Typically the variables are defined
in two different places such as the superclass and subclass,
or, as in this case, in the public and protected specifications.
In this example, they specify the relation between the pub-
lic specification-only variables and the protected concrete

variables of the class. The term concrete means part of the
implementation of a class. The public variables are needed
for reasoning about the behavior of public methods, whereas
the protected variables are needed so the implementation is
not exposed to clients of the class.

The depends clause specifies a dependency relationship that
controls which variables can be modified by methods [17,
18]. For example, in Figure 2, the first depends clause says
that xCoord depends on the protected instance variable x;
this allows x to be modified by a method whenever xCoord

is modifiable. Without this depends clause x could not be
modified by any of the methods of class Point. Similarly,
the other depends clauses control which concrete variables
can be modified by method implementations.3

The represents clause also specifies a relationship between
variables; it specifies how a variable can be derived from one
or more other variables. For example, the third represents

clause specifies how the value of oldX can be derived from
the concrete variables x and deltaX.

The keywords that introduce specifications restrict the scope
of variables. E.g., protected_normal_behavior means that
both public and protected instance variables and methods
are in scope in the specification that follows it; this is be-
cause of prefix “protected.” Nevertheless, the specification
of the protected constructor in Figure 2 uses public model
variables even though protected variables are in scope; this
makes its specification independent of the implementation.

3.3 Subclassing Contract
The purpose of the subclassing contract is to give program-
mers additional information they can use to avoid downcall
problems. The subclassing contract must be generated for
all methods and constructors involved in reasoning about
downcalls; thus they are generated for some methods and
constructors that may not seem obviously needed at first,
such as non-public methods and constructors. Figure 3
shows the subclassing contract of class Point. The subclass-
ing contract includes the callable and accessible clauses
that would be automatically derived from implementation
code by our proposed tool.

3.3.1 The Callable Clause
The callable clause lists the signatures of methods (and
constructors) directly called by the method being specified.
Because constructor calls can also cause downcall problems,
we include constructors when we use the term “method.” A
method M directly calls another method N if the code for
M has an expression that calls N , such as “N().” If N also
directly calls method P , then M indirectly calls P .

Various kinds of calls are distinguished in the callable

clause, because the effects on downcall problems can some-
times be subtly different, due to the different semantics of
each kind of call. In the presence of static overloading, as
in Java, it is also necessary that the callable clause distin-

3Note that the depends clause does not control what names
are in scope in a specification.

4



package edu.iastate.cs.jml.paper;

//@ refine: Point <- "Point.jml";

public class Point {

/*@ also

@ subclassing_contract

@ accessible: x, y;

@ callable: \nothing;

@*/

public Point(int initX, int initY);

/*@ also

@ subclassing_contract

@ accessible: x, y;

@ callable: moveX(int), moveY(int);

@*/

public void move(int newX, int newY);

/*@ also

@ subclassing_contract

@ accessible: x;

@ callable: \nothing;

@*/

public void moveX(int newX);

/*@ also

@ subclassing_contract

@ accessible: y;

@ callable: \nothing;

@*/

public void moveY(int newY);

/*@ also

@ subclassing_contract

@ accessible: p.x, p.y,

@ x, y, deltaX, deltaY;

@ callable: distanceMoved(),

@ move(int, int);

@*/

public int distanceTo(Point p);

/*@ also

@ subclassing_contract

@ accessible: x, y, deltaX, deltaY;

@ callable: \nothing;

@*/

public int distanceMoved();

/*@ also

@ subclassing_contract

@ accessible: p.x, p.y;

@ callable: \nothing;

@*/

protected Point(Point p);

// ... other methods omitted

}

Figure 3: Subclassing contract for class Point from
Point.refines-jml.

guishes which method (or constructor) is being called. Thus
argument types are included along with the method name.

Downcall and callback problems can occur when an instance
method M passes its implicit receiver parameter, this, as
an argument to some method N (which could be the same
as M). Some calls pass this implicitly, and some pass it
explicitly. A call in which this (the current method’s re-
ceiver), is explicitly passed as an argument will be referred
to as a this-argument call. By “explicitly” we do not mean
that a this-argument call must literally include “this” as
an actual argument; calls in which this is passed inside a
data structure, such as an array, are also considered to be
this-argument calls.

We distinguish two kinds of calls in which this is passed
implicitly: super-calls and self-calls.

A super-call is a call where either the receiver is the built-
in variable super, such as “super.move(u,v)” in Java, or a
superclass constructor call, such as “super()” in Java. In a
callable clause, a super-call to a method will be recorded
with a signature like “super.move(int,int),” and a su-
perclass constructor will be recorded as “super().” (In
languages with multiple-inheritance, like C++, one could
also refer to a specific superclass in a super-call, for exam-
ple, “Point:: move(u,v),” which would appear as “Point::
move(int,int).”) Superclass method calls and superclass
constructor calls are both included in our definition of super-
call because both can be involved in the same kinds of down-
call problems for the same reasons and must be reasoned
about in the same way.

A self-call is a call such as “move(u,v)” which is sugar
for “this.move(u,v),” i.e., a call in which this is the re-
ceiver object. In a callable clause, a self-call will appear
as “move(int,int).”

Recall that a this-argument call is one that receives this as
an argument. All this-argument calls can indirectly access
the calling method’s receiver and use it to make downcalls.
Therefore, three other kinds of calls must be distinguished
in the callable clause: object-calls, static-calls, and new
object constructor calls. These three kinds of call can only
access the calling method’s this if it is passed as an argu-
ment to them; thus they can only be involved in downcall
problems via this-argument calls.

An object-call is a call in which the receiver is an object
other than super or this; e.g., “p.move(u,v)” is an object-
call. Such an object-call is recorded with a signature like
“Point.move(int,int),” where Point is the static type of
the receiver.

A static-call is a call to a static method; for example, the
call “Math.abs(x)” is a static-call in Java. In a callable

clause, the signature of a static-call has the same form as
an object-call. However, this notation is not ambiguous be-
cause we assume that static and non-static method names
cannot conflict in the same class.

5



A new object constructor call is an expression, for exam-
ple “new Point(i,j)” in Java or C++, that creates a new
object by invoking a constructor. In a callable clause, a
new object constructor call has a signature such as “new
Point(int,int).”

The above definitions assume perfect knowledge of aliasing;
that is, one may only be able to decide at run-time what
kind of call is being made by a specific piece of program text.
However, when our proposed tool is statically generating the
callable clause, it will have only approximate knowledge
of aliasing. To compensate, a call like “p.move(u,v)” will
appear in a callable clause twice if p is a possible alias of
the implicit parameter this; that is, it will appear once as
a self-call and once as an object-call.

3.3.2 The Accessible Clause
The accessible clause of a method M in a class C pro-
vides the list of instance variables of objects of type C
(including inherited and non-public variables) that are di-
rectly accessed by M . In addition, fields of other objects
whose type could be C (or a subclass)4 are included in
the accessible clause. Accesses to instance variables of
the receiver (this) will be called self-accesses, and accesses
to fields of other potential subclass objects will be called
object-accesses. Self-accesses and object-accesses will be dis-
tinguished in the accessible clause. As for the callable

clause, if the tool does not have exact aliasing information,
accesses may be listed twice.

For example, the subclassing contract of method distanceTo

in Figure 3 would be generated from the implementation
shown in Figure 8 below. Note that local variables accessed
in that method are not included in the accessible clause.

Inheritance of subclassing contracts is different from inher-
itance of the rest of the specification, because it is derived
from and reflects the code of each method or constructor.
So when a method is inherited without change from its su-
perclass (by not overriding the method), then the subclass
inherits the subclassing contract from the superclass for that
method. However, when a method is overridden by the sub-
class, that method’s subclassing contract is just derived from
the subclass’s code.

A complete specification is formed from the public and pro-
tected specifications, together with the subclassing contract.
The complete specification is what programmers would use
to implement subclasses. (JML comes with a tool that can
automatically combine specifications from various files into
such a complete specification [34].)

4. CREATING NEW SUBCLASSES
This section gives a set of rules for dealing with potential
problems that should be considered by programmers when

4In a single-inheritance language, like Java, the only types
that are potentially subtypes of C are C itself and any known
subclasses. In a language with multiple inheritance, like
C++, one would have to be more conservative, since an un-
related class could, through later use of multiple inheritance,
have a subclass that is also a subclass of C.

creating subclasses. The rules only use information in the
subclassing contract and the public and protected specifica-
tions.

Two kinds of rules are given: rules for determining which
methods must be overridden and rules for determining when
super-calls are safe.

The intent of the overriding rules is to determine which
methods to override, again assuming the superclass’s code
is not available. The overriding rules are discussed in Sub-
sections 4.1–4.6. This set of rules must be applied repeatedly
until no additional methods are added to the set of methods
to be overridden. Downcall problems for the subclass spec-
ified, other than those caused by super-calls, are avoided
when the overriding rules are followed and our assumptions
have also been followed.

The intent of the super-call authorization rule, discussed in
Subsection 4.7, is to determine when it is safe to make a
super-call. Its application is closely related to the overrid-
ing rules, but its purpose is to prevent callback problems
involving super-calls.

The subsections describing these rules are followed by a dis-
cussion of some consequences. This discussion appears in
Subsection 4.8.

Subclass methods can call overridden methods via super-
calls and new object constructor calls. Therefore, when nec-
essary to avoid possible ambiguities, methods and construc-
tors will be represented as C::M , where M is the method or
constructor and C is the class in which M is defined. This
is the same notation used in C++.

4.1 New Instance Variables
This subsection describes an overriding rule that prevents
problems resulting from side-effects to new instance vari-
ables. It introduces the concepts of codependency and ad-
ditional side-effects.

For example, consider Figure 4, which contains the public
specification of PointPlusTotal, a new subclass of Point.
This subclass adds method getTotalDistance and adds to
the specifications for move, moveX, and moveY. The protected
specification is given in Figure 5. This new subclass adds
a new concrete instance variable named _totalDist_ that
tracks the total distance a point object has been moved since
it was first created.

The depends clauses in Figure 4 allow the model variable
totalDist to change when the model variables in Point

change. The depends clause in Figure 5 also transitively
allows the concrete variable _totalDist_ to change when
the public model variables change in Point. This allows
the methods that move the point to modify the new con-
crete variable. The concrete variable is modified as speci-
fied in the ensures clause of these methods, taking into ac-
count the represents clause in Figure 5. (This represents
clause says that the value of totalDist is given by the value
of _totalDist_.) Thus all methods that move the point

6



will have to be overridden. The rule below ensures that the
necessary methods have been overridden.

However, a similar situation may also arise with indirect
dependencies. To handle this, the rule uses a notion of
codependency. Variables V and W are codependent in M
if there is some variable X such that X depends (perhaps
indirectly) on both V and W , and X is modifiable by M . In
particular, because V always reflexively depends on V , if V
also depends on W , then V and W are codependent in any
method in which V is modifiable. In summary, if V and W
are codependent in M , then V and W are both modifiable
by M .5

Additional side-effects rule. Let V be a superclass vari-
able and W a new subclass instance variable. If V
and W are codependent in a method M , then M must
be overridden, unless the subclass’s specification of M
prohibits modification of W .

This rule requires a method override if the subclass method
can have additional side-effects. A subclass method has ad-
ditional side-effects if it overrides a superclass method and
it modifies a concrete instance variable defined in the sub-
class; such changes are in addition to any that have been
specified in the superclass. In class PointPlusTotal, any
overriding method that modifies _totalDist_ has additional
side-effects.

Formally, an overriding subclass method P may have addi-
tional side-effects if

1. P ’s postcondition implies an assertion A(W ) involving
a new concrete variable W , and

2. P needs to be able to modify W in order to ensure
that A(W ) holds on exit from P .

The postcondition itself may refer to a new concrete variable
W implicitly; that is, it may explicitly reference a variable
V that is codependent with W in P . The values of these
variables may be related indirectly by either a represents

clause or an invariant. For example, in Figure 4, the pub-
lic specification explicitly references totalDist; however,
it implicitly references the concrete variable _totalDist_,
through the depends and represents clauses.

When a subclass method P can modify a concrete variable
W , our approach requires both depends clauses and an as-
sertion, A(W ), implied by P ’s postcondition. For example,
if a subclass method P can modify a model variable V and
its specification says it must modify W in order to achieve
some effect on V , then a depends clause for V is required to
allow this [17, 18]. On the other hand, if the depends clauses
allow P to modify W , then P ’s postcondition must imply
an assertion about the state of W ; otherwise, if there is no

5In terms of Leino’s work [18], V and W are codependent
in M if they are in the same data group as a variable that
is modifiable in M .

package edu.iastate.cs.jml.paper;

public class PointPlusTotal extends Point

{

//@ public model int totalDist;

//@ public depends: xCoord -> totalDist;

//@ public depends: yCoord -> totalDist;

//@ public depends: oldX -> totalDist;

//@ public depends: oldY -> totalDist;

/*@ public_normal_behavior

@ modifiable: xCoord, yCoord, oldX,

@ oldY, totalDist;

@ ensures: xCoord == initX

@ && yCoord == initY

@ && oldX == initX && oldY == initY

@ && totalDist == 0;

@*/

public PointPlusTotal(int initX, int initY);

/*@ public_normal_behavior

@ ensures: \result == totalDist;

@*/

public int getTotalDistance();

/*@ also

@ public_normal_behavior

@ modifiable: totalDist;

@ ensures: totalDist

@ == \old(totalDist)

@ + distance(xCoord - oldX,

@ yCoord - oldY);

@*/

public void move(int newX, int newY);

/*@ also

@ public_normal_behavior

@ modifiable: totalDist;

@ ensures: totalDist

@ == \old(totalDist) + (xCoord - oldX);

@*/

public void moveX(int newX);

/*@ also

@ public_normal_behavior

@ modifiable: totalDist;

@ ensures: totalDist

@ == \old(totalDist) + (yCoord - oldY);

@*/

public void moveY(int newY);

}

Figure 4: PointPlusTotal’s public specification from
the file PointPlusTotal.jml-refined.

7



package edu.iastate.cs.jml.paper;

/*@ refine: PointPlusTotal

@ <- "PointPlusTotal.jml-refined";

@*/

public class PointPlusTotal extends Point

{

protected int _totalDist_;

/*@ protected depends:

@ totalDist -> _totalDist_;

@*/

/*@ protected represents:

@ totalDist <- _totalDist_;

@*/

}

Figure 5: PointPlusTotal’s protected specification,
from PointPlusTotal.jml.

assertion, then W can take on an arbitrary value allowed by
any represents clause. Thus, another implicit assumption is
that the subclass and implementer care about the state of
W (in this sense the rule is perhaps too strong for those rare
situations when the state of an instance variable does not
matter).

If V is declared to depend on W , then all methods in which
V is modifiable can also modify W . To avoid having to over-
ride the methods that do not need to modify W , one must
explicitly specify that each such method does not change
W . In JML, this can be done by using the expression
\not_modified(W). With such a specification, a method
without additional side-effects does not need to be overrid-
den based on this rule. (Similar remarks apply to code-
pendencies.) In summary, the additional side-effects rule
ensures that exactly those subclass methods that may have
additional side-effects have been overridden.

In JML, the keyword invariant introduces properties that
must hold in all publicly-visible states of objects of the class.
If more than one public or protected invariant clause oc-
curs in a class, then all the given properties must hold in
such states. Together, these properties are the invariant for
the class. For example, subclass PointPlusInvariant spec-
ified in Figures 6 and 7 has a class invariant, given at the
end of Figure 7.

The class invariant must hold at the beginning and end of all
public methods. Therefore, when verifying an implementa-
tion of a public method, the class invariant will be conjoined
with the method’s pre- and postconditions. However, be-
cause non-public methods are not publicly visible, they may
only assume the explicit precondition given in their specifi-
cation. Furthermore, implementations of non-public meth-
ods are only required to establish the explicit postcondition
given in their specification.

package edu.iastate.cs.jml.paper;

public class PointPlusInvariant extends Point

{

/*@ public_normal_behavior

@ modifiable: xCoord, yCoord,

@ oldX, oldY;

@ ensures: xCoord == initX

@ && yCoord == initY

@ && oldX == initX

@ && oldY == initY;

@*/

public PointPlusInvariant(int initX, int initY);

}

Figure 6: PointPlusInvariant’s public specification,
from PointPlusInvariant.jml-refined.

Due to subclass invariants and represents clauses, the im-
plied assertion, A(W ), may not appear explicitly as a con-
junct in the postcondition. For example, the invariant in
Figure 7 is implicitly conjoined with the postconditions of
all public methods of PointPlusInvariant. It specifies that
the value of concrete variable deltaDistance is determined
by deltaX and deltaY. Thus, deltaDistance must be al-
lowed to change whenever deltaX or deltaY changes; this is
done using two depends clauses, as shown in the protected
specification of Figure 7.

The concept of additional side-effects has another important
purpose. As will be seen later, downcalls to methods that
have additional side-effects can cause problems.

4.2 Temporary Side-Effects
Another problem that can arise when new instance vari-
ables are added to a subclass is caused by temporary side-
effects. A method has temporary side-effects if it modifies
an instance variable and then restores the original value
before it returns. Temporary side-effects can cause prob-
lems if a superclass method makes a downcall before the
original value has been restored. For example, consider
the implementation of Point shown in Figure 8. In that
figure, method distanceTo is implemented using the move

and distanceMoved methods. This implementation will not
work properly when called from subclass PointPlusTotal,
because move has additional side-effects that are not han-
dled. That is, _totalDist_ will not be restored, in viola-
tion of the modifiable clause of distanceTo. Therefore,
distanceTo would have to be overridden.

Another problem due to temporary side-effects and down-
calls is illustrated by the implementation of Point given in
Figure 9. In this figure only the method distanceMoved,
which has no additional side-effects, is used in the imple-
mentation of distanceTo. However, even this implementa-
tion may not work correctly when called from a subclass like
PointPlusInvariant of Figures 6 and 7, because the sub-
class invariant is not established before distanceMoved is

8



package edu.iastate.cs.jml.paper;

/*@ refine: PointPlusInvariant

@ <- "PointPlusInvariant.jml-refined";

@*/

public class PointPlusInvariant extends Point

{

protected int deltaDistance;

/*@ protected depends:

@ deltaX -> deltaDistance;

@*/

/*@ protected depends:

@ deltaY -> deltaDistance;

@*/

/*@ protected invariant:

@ deltaDistance

@ == distance(deltaX, deltaY);

@*/

}

Figure 7: PointPlusInvariant’s protected specifica-
tion, from PointPlusInvariant.jml.

called. Since distanceTo might not work correctly, it would
have to be overridden.

The first problem described above can be avoided by re-
quiring an override if a superclass method calls a method
with additional side-effects. But the second problem cannot
be detected using only pre- and postconditions. JML does
not allow temporary side-effects6; that is, in JML, variables
not mentioned in the modifiable clause may not be assigned
to by a method (or a method it calls). JML’s semantics
for the modifiable clause is more restrictive than necessary,
but is simpler than our assumption. Recall that we assume
that methods do not temporarily change and then restore
instance variables around calls to public methods. With this
assumption, it suffices to interpret modifiable clauses as only
pertaining to modification of the value of variables between
the pre- and post-states of a method. However, our assump-
tion is difficult to check statically, whereas the JML rule is
easy to check statically.

4.3 Subclass Invariants
Another problem that occurs in the presence of subclass
instance variables is related to subclass invariants. For ex-
ample, a superclass method, M , could modify variables that
invalidate a subclass invariant; if this occurs, it is unsafe for
M to self-call down to public methods of the subclass since
they expect this invariant to hold. The rule below is neces-
sary because it is not possible, without superclass code, to

6In part, JML disallows temporary side-effects because they
also cause problems for reasoning about concurrent pro-
grams.

public class Point {

protected int x, y, deltaX, deltaY;

public void move(int newX, int newY){...}

...

public int distanceTo(Point p) {

int saveX = x, saveY = y;

int saveDX = deltaX, saveDY = deltaY;

move(p.x, p.y);

int d = distanceMoved();

x = saveX; y = saveY;

deltaX = saveDX; deltaY = saveDY;

return d;

}

}

Figure 8: Implementation of class Point. The code
for distanceTo violates our assumptions, because it
uses temporary side effects.

public class Point {

protected int x, y, deltaX, deltaY;

public int distanceMoved() {

return Math.abs(deltaX)

+ Math.abs(deltaY);

}

...

public int distanceTo(Point p) {

int saveDX = deltaX, saveDY = deltaY;

int d = distanceMoved();

deltaX = saveDX; deltaY = saveDY;

return d;

}

}

Figure 9: Another implementation of class Point,
which also has temporary side-effects.

know whether the subclass invariant has been established
prior to such calls.

However, in the statement of the invariant rule, we use the
notion of codependency (from Section 4.1) as a way to con-
servatively detect which variables might be related by an
invariant. Recall that if two variables are related by an in-
variant, and one variable can be changed by a method, then
the variables must be codependent in that method, other-
wise the other variable could not be changed to maintain
the relationship.

Invariant rule. Let S be a subclass of C. Let V be a
concrete instance variable of C and let W be a new
concrete instance variable of S. Let M be a method
of C and O be an argument of M that could be of
type S. If V and W are codependent in M and if M
can directly or indirectly make a downcall on O to an

9



overriding public method of the subclass, then M must
be overridden.

In a language with a static type system, the static type of
the argument O in the invariant rule would be C or some
supertype of C. Object O in the invariant rule can only be
a subclass object if O is passed explicitly or implicitly to
M , since M does not know about subclasses. However, the
object O would usually be M ’s implicit receiver object this.

Furthermore, the invariant rule is not concerned with down-
calls to non-public methods based on the following reason-
ing. Only public methods can implicitly depend on class
invariants. A non-public method must explicitly state all of
its preconditions. Suppose the new subclass invariant is IS .
If a non-public method C::N with precondition Pre is over-
ridden such that the overriding method S :: N expects the
subclass invariant to also hold, then S :: N does not refine
C:: N ; that is, S:: N has strengthened C:: N ’s precondition
to Pre && IS . Such cases are handled by the method re-
finement rule of Section 4.5. Therefore, since a superclass
method M does not know about subclass invariants, M does
not require that these invariants hold unless it directly or in-
directly calls down to a public method of the subclass.

Another problem involving subclass invariants is caused by
the modification of superclass instance variables by unre-
lated classes. If some unrelated class modifies instance vari-
ables, then the new subclass invariant may no longer hold.
This would cause downcall problems that cannot be elimi-
nated by method overrides and is the reason our approach
assumes that methods do not access instance variables of
objects of unrelated classes.

4.4 Mutually Recursive Methods
This subsection describes an overriding rule that makes ter-
mination proofs possible. It prevents potential nontermina-
tion that may arise from new methods inserting themselves
into cycles of mutually recursive methods.

A callback cycle occurs when a method, M , makes a call
to another method, which then calls back to M (perhaps
indirectly). A callback cycle means there is a cycle in the
call graph, and thus there is potential for non-termination.
The following rule prevents callback cycles in the call graph
that would make a termination proof impossible without the
superclass code.

Callback cycle rule. Let P be an overriding method in a
subclass. If P calls a method M that calls back directly
or indirectly to P , then M must be overridden.

The callback cycle rule ensures that all methods in a call
graph cycle are overridden if any method in the cycle is over-
ridden, since the rule is applied repeatedly until all methods
in the cycle have been overridden. However, a callback cycle
that occurs in the superclass will not occur in the subclass
if the cycle is broken by one of the subclass methods. For
example, in a superclass, a method M may call P which

Suppose S is a subtype of T , then the public and protected
specification of method m in S refines that of method m in
T if
1. Theory(S) ` \old(Prem

T ) ⇒ \old(Prem
S )

2. Theory(S) ` PostmS ⇒ PostmT
3. Theory(S) ` Modifiablem

S ⊆ Modifiablem
T

Figure 10: A practical notion of method refinement
[1, 2, 24, 28].

then calls back to M . However, if P is overridden and the
new overriding method P does not call M , then this cycle
does not occur in the subclass; thus the callback cycle rule
would not require that M be overridden.

We assume that groups of mutually recursive methods do
not contain methods from unrelated classes. This seems
to be needed for soundness because overriding all classes
involved in such a cycle does not prevent nontermination.
For example, suppose A and C are classes for which no code
is available. Further, suppose A::m and C::n are mutually
recursive; in this case A:: m takes an argument of type C
(or accesses a field of type C) and C :: n similarly takes an
argument of type A. Then, simply by making subclasses B
of A and D of C and overriding m in B and n in D does not
help the termination proof, because a call to B :: m might
pass an actual argument of type C, not one of type D, and
the code for C::n is not available.7

4.5 Method Refinement
This subsection describes an overriding rule that deals with
overriding subclass methods that do not conform to the su-
perclass’s specification. If a superclass method calls down to
such a non-refining method, it may not behave as expected.

The notion of refinement relates behavioral specifications.
The basic idea is that specification B refines specification
A if the allowed behavior of B is a subset of the allowed
behavior of A, that is, specification B is stronger than spec-
ification A [2, 9, 28]. A definition of method refinement that
is sufficient for most purposes is given in Figure 10.8

In Figure 10, Theory(S) is the set of all formulas that follow
from S and the semantics of the OO programming language
and specification language. An expression such as \old(P )
means that predicate P is applied to the pre-state, the pro-
gram state at the beginning of a method invocation. The
first and second proof obligations give the relationship that
must hold between the preconditions and postconditions of
the methods being overridden by S.9 The third proof obli-

7Other features of a specification language, such as JML’s
measured by clause, may make termination proofs possible
in such cases, but these are outside the scope of this paper.
8This definition can be weakened by replacing proof obliga-
tion 2 of Figure 10 with the following [3]:

2′. Theory(S) ` (\old(Prem
S ) ⇒ PostmS )

⇒ (\old(Prem
T ) ⇒ PostmT )

9When verifying the implementation of a class, one also

10



gation says that the variables modifiable by method m in
type S must be a subset of the variables modifiable by the
overridden supertype method m in T , taking into account
any specified dependencies.

Method refinement, in contrast to behavioral subtyping [1,
4, 21, 20], is defined from the point of view of the imple-
menter rather than that of the client. Thus the protected
specification must be used in reasoning about method re-
finement. However, because a subclassing contract does not
specify functional behavior, it is ignored in reasoning about
method refinement.

An overriding method that refines the method it overrides
will be called a refining method, otherwise an overriding
method is a non-refining method. A new subclass method
that does not override a superclass method is neither a re-
fining nor a non-refining method.

When Csub :: P is a non-refining method, then its allowed
behavior is not a subset of the allowed behavior of the su-
perclass method CP :: P it is overriding. Therefore, other
superclass methods that call down to P may not behave as
specified, since they were verified using the superclass spec-
ification of CP :: P . A downcall to Csub :: P can happen
either as a self-call or via a subclass object-call. A subclass
object-call is an object-call in which the dynamic type of
the receiver could be a subtype of the current class. Hence,
the following rule must be considered by the programmer
whenever overriding a method.

Method refinement rule. A superclass method must be
overridden if it makes a direct self-call or a subclass
object-call to a method that has been overridden by a
non-refining method.

If a subclass has a non-refining method, then methods must
not make a this-argument call to a method that expects a
superclass object. Furthermore, in general it is unsound to
allow non-refining public methods in subtypes, since this
breaks behavioral subtyping [1, 4, 21, 20]. This is why
JML enforces method refinement by specification inheri-
tance. However, in languages like C++ one can create a
subclass that is not a subtype by using protected or private
inheritance. In such cases, one is not concerned with mak-
ing behavioral subtypes, and hence one will often override a
method in a way that makes it non-refining. Thus, this rule
is also useful in such languages.

4.6 Concrete Data Refinement
So far we have assumed that the superclass’s public and
protected invariant is maintained by the new subclass. In
this subsection, we explore the ramifications of changing the
way data is represented.

conjoins invariants to the pre- and postconditions of pub-
lic methods. However, for refinement, one does not have
to consider invariants; technically this is because one does
the proof in the theory of the subclass, where the subclass
invariant always holds.

Data refinement is a program transformation in which either
one set of variables is replaced by a different set, or the set of
variables is unchanged but their properties (e.g., invariants)
are changed. Data refinement is usually used to make repre-
sentations more concrete or more efficient [7, 6, 28, 29]. An
example of data refinement, occurred above when Point’s
model variable oldX was refined to the concrete variables x

and deltaX.

In a data refinement, a relation between the old and new
variable is specified; this relation can be used to show that no
unexpected behaviors arise [7, 6, 10, 28, 29]. In our example,
this relation was specified by the depends and represents

clauses in the protected specification for Point (Figure 2).

We distinguish two kinds of data refinement: model and
concrete. Figure 2 is an example of model data refinement,
where model variables are refined to concrete variables. A
Model variable can be replaced by a concrete variable be-
cause model variables, by definition, need not be part of the
implementation.

Concrete data refinement means refinement of concrete vari-
ables to concrete variables. In this section we explore con-
crete data refinement in a subclass, where its superclass’s
concrete instance variables are data refined by the subclass’s
concrete instance variables. In most OO programming lan-
guages, such as C++, Java, Eiffel, and Smalltalk, code in-
heritance does not allow an instance variable of the super-
class to be replaced or removed, since this is not type safe in
general. The problem is that inherited superclass methods
would try to refer to missing or changed instance variables.

However, the programmer of a subclass can choose to ig-
nore a superclass variable and use a different data structure
in the subclass. Another possibility for concrete data refine-
ment is that the programmer can use the same superclass
variables but change the data’s properties, and thus the way
the data is interpreted and manipulated. This might hap-
pen accidentally when the documentation for the superclass
is incomplete. However, concrete data refinement can only
be safe if certain restrictions are followed and the necessary
methods are overridden. Our purpose in exploring concrete
data refinement is to explore the ramifications of:

1. not providing the representation invariant to program-
mers reusing a software framework or class library (i.e.,
keeping the representation private), and

2. making data structure changes to improve efficiency in
comparison to inherited data structures.

The next rule must be considered when a subclass method
directly accesses or modifies concrete variables of the super-
class and either there is no protected invariant for the su-
perclass or the subclass’s protected invariant does not imply
the superclass’s protected invariant. “Direct access” means
access that names specific instance variables; these may be
instance variables of the superclass or instance variables of
another object of a related class.

11



Concrete data refinement rule. A method, M , must be
overridden (i) if M makes a direct self-access or object-
access to a concrete variable V that is data refined by
the new subclass and (ii) if the part of the superclass’s
invariant that concerns V is not maintained by the
subclass.

The above rule is concerned with accesses to variables in
objects that are possible subclass objects; these are exactly
the accesses that are included in the accessible clause (see
Section 3.3.2).

The concrete data refinement rule mandates that superclass
methods be overridden when they are expecting a different
representation. So calling such superclass methods must not
be allowed. For example, it would be unsafe to change the
way the concrete variable deltaX is interpreted and used in
the subclass without overriding all methods that access this
variable. Such a change of interpretation would mean that
the representation invariant of Point would no longer hold
for subclass objects.

Although we have assumed that unrelated classes cannot
access instance variables of a given class, several OO pro-
gramming languages allow such access. For example, Java
allows such access within packages, and C++ allows it with
its friend feature. Our rule for concrete data refinement
is only valid if such accesses are not permitted. Therefore,
JML only allows such concrete data refinements if the invari-
ant of the subclass implies the invariant of the superclass.
Indeed, JML’s use of specification inheritance forces the sub-
class to maintain the superclass’s invariant. However, we did
not want to limit our study to JML.

4.7 Super-Calls
In this subsection we discuss a rule for determining when
super-calls are safe.

Often it is convenient to call a superclass method when mak-
ing a minor extension to a method in a subclass. Further-
more, in some cases it can be mandatory that the superclass
method be called. For example, if the subclass is not making
a concrete data refinement of the entire superclass represen-
tation, then an overriding subclass method M must make a
super-call to the overridden superclass method CM :: M , if
CM :: M modifies private instance variables or calls private
methods with such side-effects. Without the superclass code
or more information, it is not possible to know the effect of
these calls and accesses on private instance variables. But it
is outside the scope of this paper to determine exactly when
a super-class call is necessary. We leave that for future work.

However, super-calls are not always safe. Consider the Java
implementation, shown in Figure 11, of two of the sub-
class methods that had to be overridden by PointPlusTotal

based on the additional side-effects rule. Calling the super-
class method and updating _totalDist_ seems like an obvi-
ous implementation. However, the callable clause of method
Point:: move in Figure 3 indicates a self-call to moveX and
moveY. Thus, the variable _totalDist_ might be updated
twice, because Point::move calls down to PointPlusTotal::

public class PointPlusTotal extends Point {

protected int _totalDist_;

...

public void move(int newX,int newY) {

super.move(newX, newY);

_totalDist_ =

_totalDist_ + distanceMoved();

}

public void moveX(int newX) {

super.moveX(newX);

_totalDist_ =

_totalDist_ + deltaX;

}

}

Figure 11: Incorrect implementation of subclass
PointPlusTotal.

moveX (from Figure 11), which also updates this variable.
Any superclass method that calls down to a method with
additional side-effects cannot safely be called without su-
perclass code.

The solution to this, and to other similar downcall prob-
lems, is to prevent super-calls to methods that have been
invalidated by the new subclass. A superclass method is
invalidated by the new subclass if it might no longer satisfy
its superclass specification or calls down to a method that
might have additional side-effects (as in the above example).
A superclass method might no longer satisfy its superclass
specification if it had to be overridden based on one or more
of the rules given earlier, aside from the additional side ef-
fects rule. That is, a superclass method might no longer
satisfy its superclass specification if: (i) it has side-effects
that could invalidate a subclass invariant and calls an over-
ridden public method (invariant rule), (ii) it is a member of
a callback cycle that had to be overridden (callback cycle
rule), (iii) it calls down to a non-refining method (method
refinement rule), or (iv) it accesses a variable V and the sub-
class does not maintain the superclass’s invariant concerning
V (concrete data refinement rule).

A superclass method that calls down to a method that might
have additional side-effects might still satisfy its specifica-
tion, but without the superclass code (or more information),
it is not possible to know what effect calling it may have on
subclass instance variables. This was described in the dis-
cussion of Figure 11 above. Therefore, a superclass method
that calls down to a subclass method with additional side-
effects must also be considered to be invalidated.

The rule below is based on the following reasoning. Suppose
a superclass method M has been invalidated by the new
subclass and thus should not be executed. If M has been
overridden by the subclass, then the only way it can be
invoked is via a super-call. Therefore, super-calls to M must

12



also be prevented.

Super-call authorization. A superclass method may only
be called by subclass methods, if it has not been in-
validated by that subclass.

The above rule ensures that all methods of the superclass
that are super-called satisfy their specifications and have
no additional side-effects. A superclass method can only
have additional side-effects if it calls a method that has been
overridden by a subclass method. For example, in subclass
PointPlusTotal, the depends clauses from Figure 4 and
the modifiable clauses of methods move, moveX, and moveY

from Figure 1 specify that these methods have additional
side-effects and have to be overridden; that is, they modify
subclass instance variables. Hence, the super-call autho-
rization rule says that any methods in Point that directly
or indirectly make (down)calls to these methods are inval-
idated and cannot be called by the subclass. For example,
Point::move is invalidated because of its self-call (downcall)
to moveX (Figure 3). Therefore, the super-call in the invalid
implementation of move, shown in Figure 11, would not be
allowed.

On the other hand, the super-call in the implementation of
PointPlusTotal :: moveX shown in Figure 11 is permitted,
since Point :: moveX has not been invalidated by the new
subclass.

Some languages with multiple inheritance, such as C++,
permit calls to methods of any named superclass; such calls
are also super-calls and need to take the above rules into
account. When applying this rule, one needs to use the
subclassing contract of the superclass method being called;
this is because a method B:: M could be invalidated while
the method it overrides, A::M , is not invalidated by a new
subclass.

4.8 Discussion
In this subsection we discuss two consequences of the rules.
The first subsection below describes an overriding rule that
deals with unoverridable invalidated methods. The second
notes cases in which a correct subclass cannot be written,
based on the rules given above.

4.8.1 Unoverridable Methods
From the point of view of a new subclass, an unoverridable
method is a method that it cannot override. For example,
final methods of a superclass may not be overridden in
Java, and non-virtual methods may not be overridden in
C++. Methods of a superclass may also be unoverridable
because of visibility control; for example, private methods
are unoverridable in Java and C++; static methods and
constructors are also unoverridable. Further, from the point
of view of a new subclass, S, methods in classes that are
unrelated to S are also unoverridable. The following rule
deals with invalidated, non-public methods that are unover-
ridable; its purpose is to prevent such methods from being
invoked.

Unoverridable method rule. If a non-public superclass
method, M , cannot be overridden, and is invalidated
by the new subclass, then all methods that directly
call M must be overridden and M cannot be called by
subclass methods.

Notice that the above rule only applies to non-public meth-
ods. If M were public, then behavioral subtyping would fail
for the subclass, because M , an invalidated, non-overridable
method, could be called by clients of the subclass.

Furthermore, in a language like C++, one can use protected
inheritance without worrying about behavioral subtyping.
However, if one inherits an unoverridable, invalidated public
method, there is no way to prevent clients from calling it.
Thus there would be no way to guarantee that such a method
meets its specification.

4.8.2 Unimplementable Subclasses
An interesting result of our study is that in some situations
it may not be possible to write a verifiably correct imple-
mentation of a subclass specification without seeing the su-
perclass’s code. One such situation is when, based on the
rules, a public method must be overridden, and that method
is unoverridable, or when a method in an unrelated class is
invalidated by the new subclass.

Another example occurs in situations like the following. Sup-
pose part of the superclass object state is private and is
maintained by a non-public method M . If M calls a method
that may have additional side-effects, then a provably cor-
rect implementation satisfying the class specification cannot
be created without some trick like saving and restoring the
object state, which our technique prohibits.

One way to avoid these problems is to allow all methods in
a class to be overridable (e.g., avoiding the use of final in
Java), and to allow subclasses to directly access all instance
variables (e.g., avoiding the use of private in Java). We
leave for future work a classification of such situations and
ways to avoid them.

5. SOUNDNESS
The soundness of our technique is based on the ability to ver-
ify correctness of the code of the new subclass with respect
to its specification. This is done using the formal specifi-
cations of both the subclass and its superclasses, and the
code of the subclass, but without any superclass code. We
assume the existence of a verification logic for the OO pro-
gramming and specification languages (e.g., [31]) and that
the superclass code has been verified as correct. We assume
the new subclass has a formal specification with the three
parts described above.

The partial correctness proof for the subclass would be done
in the standard way using method specifications for method
calls; that is, one would use the superclass specifications
for both super-calls and self-calls to inherited methods, and
the subclass specifications for self-calls to subclass methods.
Object-calls are handled using the specification of the static

13



type of the receiver [16]. The proof of termination would
also be standard if the code for all methods in a mutually
recursive callback cycle is available.

To have a valid partial correctness proof, all superclass meth-
ods called by the subclass must satisfy their superclass spec-
ification and must not have additional side-effects; that is,
a subclass must not call invalidated (see Section 4.7) su-
perclass methods. We also assume that a subclass does
not have non-refining, public methods, since in general such
subclasses can have downcall problems that cannot be pre-
vented via method overrides. We assume that these are the
only ways that a subclass can invalidate superclass methods;
proving this assumption is outside the scope of this paper
and would require choosing a programming language and a
specification language and doing a formal analysis of this
combination. We leave that as future work. However, this
assumption seems reasonable based on our assumptions in
Section 2. The following theorems ensure that a standard
proof will be valid.

Valid Specification Theorem: If none of the rules given
in this paper are violated in the implementation of subclass
methods, then the subclass code does not call any invali-
dated superclass methods.

Proof sketch: Induction on the number of overridden meth-
ods using the rules and the above assumption about the only
ways to invalidate superclass methods.

Mutual Recursion Theorem: If none of the rules given
in this paper are violated in the implementation of subclass
methods, then there are no callback cycles involving both
subclass and superclass methods.

Proof sketch: The callback cycle rule and the super-call au-
thorization rule prohibit callback cycles involving both sub-
class and superclass methods.

The valid specification theorem means that superclass meth-
ods called by the subclass satisfy their specifications. Fur-
thermore, the mutual recursion theorem means that the code
needed for a termination proof of mutually recursive meth-
ods is available. Thus, if the code of a new subclass follows
the rules, then a standard proof of its correctness would be
valid.

6. TOOL SUPPORT
Tool support is necessary to automatically create subclass-
ing contracts and to assist in applying the rules. This section
describes our plans for a tool that will fill this role for JML
and Java.

Our proposed tool will have three phases. It will work on a
per-class basis, looking at related classes mentioned in the
code. For a given class, the first phase will typecheck the
code and generate its subclassing contract (i.e., the callable
and accessible clauses).

The subclassing contract always reflects the current calling
structure of a class no matter how many layers there are

public non-pure methods

?

?

public pure methods

?

�	�

non-public methods
�	�

Figure 12: The three levels of methods used in the
guidelines for library providers. Arrows indicate
that calls can be made in the arrow’s direction.

in the class hierarchy; that is, the subclassing contract of a
method defined in the subclass is derived directly from the
code of that method, but the subclassing contracts of inher-
ited methods are inherited in the same way that methods
are inherited by subclasses.

Phase 2 will generate the transitive closure of the callable
clauses to obtain the methods directly or indirectly called.
From this the directly and indirectly called methods can
be listed so the invariant rule can be applied more easily.
The details of how the transitive closure will be computed
is given in Appendix A.

Phase 3 will check to make sure, based on our rules, that all
methods have been properly overridden. For example, the
tool may say that a superclass method should be overridden.
The tool may also complain that a method was not overrid-
den properly if the overriding method makes a super-call to
an invalidated superclass method.

7. CLASS LIBRARIES
A major purpose of our study was to identify the kinds of
problems that arise when creating a subclass without the
superclass code. For each potential problem identified, rules
or restrictions were given that prevent such problems. The
rules in our paper are conservative, but, based on our exper-
imentation with much more complicated examples, we be-
lieve that these rules identify issues that must be considered
by OO programmers in general when creating subclasses.
Even if the superclass code is available, the calling structure
and fields accessed must be considered when determining
which methods to override.

However, our study also provides some insights for frame-
work and class library designers and implementers. The
idea is to use three levels of methods: public non-pure, pub-
lic pure, and non-public (see Figure 12). The visibility of
the methods in each level is given by the name; for exam-
ple, public non-pure methods would be declared public in
Java. Public non-pure methods cannot be called by other
methods, but may call methods in the other two levels. The
public pure methods can only be called by public methods;
they may call pure public and non-public methods. The non-
public methods can be freely called by all other methods of
the class, and may only call other non-public methods.

14



The idea described above is the main one embodied in the
following guidelines. To these we add a few other assump-
tions and details, for soundness. If the library provider and
reuser adhere to these guidelines, then reasoning about cre-
ating valid subclasses is simplified. These guidelines are
overly restrictive in some cases, but they guarantee that a
reuser can easily make a correct subclass without seeing the
library’s source code. By “easily” we mean that the reuser
only needs to follow the simple guidelines for programmers
described later in this section; that is, the reuser does not
need to have read this paper and does not need to think
about the application of our rules. In particular, these two
sets of guidelines guarantee that methods in the library are
never invalidated, and so super-calls are always safe.

7.1 Guidelines for Implementers of Libraries
For each library class:

L1 methods should not directly access any instance vari-
ables from unrelated classes,

L2 methods should not call the public methods of an object
while temporary side-effects have not been restored in
that object, and

L3 overriding methods should refine the method being over-
ridden.

For each library class that can be subclassed by reusers:10

L4 there should be no mutually-recursive methods,

L5 methods should not make this-argument calls,

L6 methods should not self-call or super-call non-pure pub-
lic methods,

L7 non-public methods should not call the public methods
of a related class,

L8 if a protected concrete instance variable of type T cannot
hold all values of type T , then its domain should be
described in a protected invariant.

Guidelines L1 and L2 are assumptions made in our approach
and are necessary for its soundness; as explained earlier, they
prevent problems related to calls while a subclass invariant
does not hold. Note that guideline L1 holds automatically
in Smalltalk, where there are no public instance variables.
Guideline L3 is fundamental to behavioral subtyping; it is
built-in to JML.

Guideline L4 eliminates mutual recursion, and thus the need
for reusers to think about the callback cycle rule. Guide-
line L5 eliminates problems caused by callbacks. This guide-
line disallows mutual recursion among unrelated classes and
prevents problems related to subclass invariants involving
this-argument calls.

10A library class cannot be extended by a reuser if it is private
or final in the Java sense.

Guideline L6 gives reusers the ability to prevent non-public
superclass methods from having additional side-effects. The
only way a superclass method can have additional side-
effects is if it calls down to a subclass method with additional
side-effects. Guideline L6, if followed, means that superclass
methods must directly modify instance variables or call non-
public methods to implement side-effects. This guideline
means that the only methods with side-effects that can be
called are non-public methods. Since non-public methods
are not required to establish invariants, they are also not
required to have additional side-effects. This allows reusers
to avoid invalidation of superclass methods caused by addi-
tional side-effects; they can do this by not overriding these
non-public methods.

Guidelines L2, L5, and L7 mean that non-public methods
cannot be invalidated by subclass invariants. Thus, in all
cases, superclass methods are not invalidated and can be
called. Guideline L8 and the others make it possible to avoid
concrete data refinement, which we have assumed does not
occur.

7.2 Guidelines for Reusers Inheriting from Li-
braries

Programmers who are using libraries or frameworks that fol-
low the above guidelines, but are not themselves producing
extensible libraries or frameworks, do not need to follow the
above guidelines. However, reusers should pay attention to
the following guidelines:

R1 avoid additional side-effects when overriding non-public
methods that modify superclass instance variables,

R2 avoid creating a group of mutually recursive methods
involving a method of a library superclass,

R3 when overriding a superclass method, always refine it,

R4 make the subclass’s protected invariant imply the su-
perclass’s protected invariant, when superclass instance
variables have been exposed to the subclass (or other
classes).

If the above guidelines are followed, then super-calls will be
safe. Note that JML requires that guidelines R3 and R4 are
followed.

7.3 Discussion
Following both sets of guidelines ensures that additional
side-effects do not invalidate other methods. This means
that methods can be implemented and reasoned about in-
dependently of each other.

Our guidelines could also be used to help with the organi-
zation of a class library or framework. Its implementation
could be reviewed for its reusability using the subclassing
contracts of its classes in light of the guidelines for library
providers.

We leave as future work making these guidelines less restric-
tive for library implementers. Another direction of future

15



work might be further restrictions that would make fewer
demands on reusers.

7.4 Informal Documentation
What do these guidelines say about informal documentation
for class libraries and frameworks?

One clear conclusion is that the notion of documentation as
a contract [19, 24, 25] is essential. For example, guideline L8
says that libraries have to be documented with public and
protected invariants, and this is required by guidelines R3
and R4 as well. Such contracts benefit greatly from for-
mality, but even informal contracts are better than none.
Informal contracts can be structured into invariants, pre-
and postconditions for methods, and modifiable clauses to
help make them more understandable and readable [19]. We
believe that the division of specifications into public and
protected parts is another way to help make such specifica-
tions more understandable, since it separates the informa-
tion needed by clients from that needed by reusers writing
subclasses.

Guidelines L6 and L7, illustrated in Figure 12, divide the
methods of a library class into layers. The layers them-
selves are a substitute for the subclassing contract. That
is, they eliminate the need for library documentation to in-
clude something like the subclassing contract. However, if
a library provider cannot strictly follow this layering, some-
thing like the callable and accessible clauses in the subclass-
ing contract needs to be part of the documentation provided
for the library. Since these are essentially lists, there seems
to be no reason not to use the formal notation and automatic
tool support for generating them.

Finally, documentation for a library needs to discuss the
guidelines for reusers, and especially to highlight guidelines
R1 and R2.

8. RELATED WORK
Leino introduces the notion of data groups and dependen-
cies for controlling which subclass fields can be modified by
an overriding subclass method [17, 18]. The depends clause
in JML is derived from Leino’s work. A specification lan-
guage needs a feature like the depends clause to allow a tool
to apply the additional side-effects rule. However, Leino’s
work does not attempt to solve downcall problems caused
by subclassing.

Kiczales and Lamping informally describe the kind of docu-
mentation that needs to be provided by an “extensible class
library” [12]. Kiczales and Lamping show that more knowl-
edge of the calling relationships among methods is needed by
programmers inheriting from a class library. They propose
that methods be organized into layers; a method may call
another method, only if the other method is a member of
the same layer or is on a lower layer [12, section 4.8]. This is
similar to our guidelines for library providers that organize
the methods of a class into three levels. However, in our
guidelines, the public non-pure methods are not allowed to
call each other, which is key to preventing invalidation of su-
perclass methods. Kiczales and Lamping also propose that

methods be grouped based on the instance variables manip-
ulated by methods within the group; every method in such
a group would be overridden, whenever any member of the
group is overridden [12, sections 4.5 and 4.6]. Thus, a group
would be inherited as a whole by subclasses. The documen-
tation they propose is informal, and thus, does not allow
static checks for possible problems when new subclasses are
created.

Lamping later formalizes some of these ideas into a type sys-
tem approach for describing what he calls the specialization
interface, an interface between a class and its subclasses
[13]. An important benefit of this technique is that it al-
lows for additional error detection when new subclasses are
created. However, in contrast to our technique, Lamping’s
does not say anything about super-calls and requires that
entire groups be overridden. Our technique only requires
that methods be overridden if they have been invalidated or
if they have additional side-effects.

Steyaert, Lucas, et al. introduce a similar approach called
“reuse contracts” for specifying a contract between a class
and its subclasses [22, 38]. Like a specialization interface,
a reuse contract specifies the calling interdependencies of
methods of a class, that is, a reuse contract lists the other
methods on which a particular method depends. The pri-
mary innovation of this approach is in defining a set of op-
erators on reuse contracts that allow safe transformations
to the calling structure. It also allows the detection of con-
flicts between a class and its subclasses due to changes in
the calling structure of the superclass, and it formalizes the
meaning of correctly implementing a reuse contract. How-
ever, a reuse contract does not necessarily list all methods
called. Only those methods manually determined to be im-
portant for inheritors are included, although no guidelines
are given for how to do this. In addition, reuse contracts are
primarily concerned with the evolution of superclasses, while
our work is concerned with the addition of new subclasses.

All of the above approaches are syntactically based, that is,
they do not necessarily detect or prevent errors caused by
changes in the behavior of methods overridden by subclasses.

Perry and Kaiser [33] address the semantic problem caused
by changes in the behavior of methods overridden by sub-
classes in the context of their work on testing. They point
out that inherited superclass methods must be retested un-
less “the new subclass is a pure extension of the superclass,
that is, . . . there are no interactions in either direction be-
tween the new [subclass] instance variables and methods and
any inherited instance variables and methods.” They further
show that a different set of tests may be needed to retest
these inherited methods. However, our technique does not
limit the interactions between superclasses and subclasses so
severely. Further, if the documentation and reasoning tech-
nique we propose is followed, then inherited methods would
not need to be retested.

Stata and Guttag [36] solve this semantic problem by requir-
ing that new subclasses implement behavioral subtypes [1,
4, 21, 20] of their superclass. They extend the partitioning

16



ideas of Kiczales and Lamping [12] and Lamping [13] into
a formal system of class components composed of disjoint
sets of methods and instance variables. No method in one
component is allowed to directly access variables in another
component, and all methods within a component must be
overridden whenever any one of the methods in the com-
ponent is overridden. This permits individual components
to be implemented, reasoned about, and overridden inde-
pendently of other components of a class. However, in this
formalization, improvements to individual methods cannot
be made without overriding all methods of a component,
even when the modifications would not change observable
behavior. Edwards weakens this requirement by allowing
individual methods to be overridden as long as the repre-
sentation invariant of instance variables of the component is
maintained [5]. Neither Stata and Guttag nor Edwards give
conditions under which super-calls may be made.

Like Stata and Guttag, JML requires that subclasses im-
plement behavioral subtypes. However, like Edwards, JML
also allows improvements to individual methods by spec-
ifying the representation invariant (i.e., the protected in-
variant) in the protected specification. JML’s specification
inheritance ensures that the subclass representation invari-
ant implies the superclass representation invariant; thus, in
JML an individual method may be overridden as long as it
refines the method it overrides. Furthermore, although JML
does not allow non-refining methods or all forms of concrete
data refinement, we do provide rules for reasoning about
how to safely create subclasses with such methods and data
structure changes.

Stata later separates the notions of subtyping and subclass-
ing, as we do, to allow overriding parts of a component [35].
Overriding parts of a component is permitted if the super-
class representation invariant is maintained by the new sub-
class (as Edwards requires). Stata also proposes conditions
to allow super-calls. Super-calls are allowed if the specifi-
cation of each overridden superclass method is refined by
the specification of the new subclass method. This condi-
tion, like the method refinement rule, only ensures that su-
perclass method invocations satisfy the superclass method
specification. When superclass code is not available, this
condition does not handle verification problems caused by
additional side-effects or mutually recursive methods. Our
approach, however, handles these problems and sometimes
requires that fewer methods be overridden by providing the
calling structure of the methods in a class and rules for de-
termining which methods to override. Also, there is no need
to explicitly partition methods and instance variables into
components, although our tool could be used as an aid in
creating and enforcing such a partitioning.

Mezini proposes a metalevel cooperation contract that al-
lows library designers to declare properties of classes that
are propagated to subclasses [26]. These properties are spec-
ified in a cooperation contract language (CCL). The cooper-
ation contract allows base classes to be monitored to detect
modifications to a superclass that may invalidate existing
subclasses. Mezini incorporates ideas from Lamping [13],
Stata and Guttag [36] and Steyaert, Lucas, et al. [38]. For

example, class designers can partition methods or classes
into groups, can express dependencies such as when certain
methods must be called, or can specify when methods are re-
quired or non-overridable. Although super-calls are shown
in examples, it is unclear whether the mechanism ensures
their safety and no claim is made as to how to reason about
such super-calls. Cooperation contracts are entirely syntac-
tic, so they do not contain enough information to prove cor-
rectness of a new subclass. In addition, this method cannot
be used for languages, such as C++, Java, Smalltalk and
Eiffel, unless extended to have a metaobject protocol [11],
whereas subclassing contracts can be generated and used by
any statically typed, OO language.

The approaches described above would be carried out as
part of the analysis and design activities for a class library;
furthermore, the determination of what information is in-
cluded is done manually, whereas the subclassing contract,
a major part of our approach, would be generated automat-
ically by our proposed tool. Having a tool to make sure no
rules are violated helps ease the work of applying the rules
and thus automates part of the work involved in creating
correct subclasses. In addition, except for Stata [35], the
above approaches do not handle downcalls caused by super-
calls other than ignoring or prohibiting them. However, even
Stata’s work does not handle additional side-effects.

Szyperski shows how downcall and callback problems are
avoided by using object composition and message forward-
ing rather than implementation inheritance [39, pp. 117-
119]. Object composition means building an object from
other objects. The contained objects perform tasks for the
containing object. Forwarding means sending a message on
from one object to another object. Szyperski’s technique
simulates implementation inheritance by forwarding method
calls to a contained object; this contained object would have
the type of what would have been the superclass. In some
sense, forwarded calls are like super-calls except that they
do not create downcall problems because, once control has
been passed to the contained object, control stays inside its
methods (unless the contained object itself contains the orig-
inal object). Object composition would have worked fairly
well in the design of class PointPlusTotal, except that pro-
tected methods would not have been available to subclasses
when implementing new subclass methods. Furthermore,
Szyperski gives an example showing that implementation
inheritance cannot be simulated in all cases by object com-
position and method forwarding, and others are difficult and
complicated [39, p.118].

Our study focused on the semantic fragile subclassing prob-
lem, that is, how to create valid subclasses using only spec-
ifications. This problem is closely related to the seman-
tic fragile base class problem because both problems are
caused by downcalls and changes to the calling structure of
classes. Mikhajlov and Sekerinski describe the fragile base
class problem and give four requirements for discipling in-
heritance to avoid such problems [27]. Their requirements
prohibit access to superclass instance variables and do not
allow instance variables to be declared in subclasses. Our
technique, which relies on the extra information contained

17



in the accessible clause, allows more flexible access to in-
stance variables. The method specifications used by Mikha-
jlov and Sekerinski implicitly document what methods may
be called. This information is used to disallow overriding
a method in a callback cycle, since this would introduce a
“new cyclic method dependency.” But, our technique, which
relies on similar information in the callable clause, allows
methods in such cycles to be safely overridden. Further-
more, the callable clause is automatically generated. Their
technique, like ours, requires that superclass method specifi-
cations be used when verifying subclass methods. However,
this does not handle problems caused by additional side-
effects. Their technique does not permit additional side-
effects, but our rules allow sound reasoning about the state
of subclass instance variables and additional side-effects.

Changes in the subclassing contract could also be used to
catch problems such as method capture. Method capture oc-
curs when a new method is added to a (super) class in a new
version of the library but that method was already defined in
an existing subclass [22, 38]. Therefore, the subclass would
have to delete or rename the captured subclass method or
make sure the captured method refines the method it now
overrides.

In summary, our approach has important advantages over
all the work described above in that it allows super-calls
and reasoning about when such calls are safe. Furthermore,
creation of the subclassing contract need not be part of the
manual design activities of a class library.

9. CONCLUSION
To allow the safe creation of a subclass without using the
source code of its superclasses, our technique uses a three
part specification, which is incorporated in JML:

1. a public specification used by clients to create and ma-
nipulate objects, and by programmers to reason about
overriding subclass methods,

2. a protected specification that provides additional in-
formation to programmers who want to specialize or
extend a class; it includes protected information such
as invariants and also specifications for protected in-
stance variables and methods,

3. an automatically-generated subclassing contract that
provides important additional information needed by
programmers to safely specialize or extend a class.

The subclassing contract is an unusual feature of our tech-
nique. It is unusual in that it records information about
code, as opposed to purely behavioral information. While
this is precisely what makes it able to stand in for the code of
a library method, some programmers may worry that they
are revealing too much detail about their methods. How-
ever, we believe that the subclassing contract contains just
enough information to safely create subclasses and avoid
downcall problems.

As a substitute for source code, such a specification allows
a library or framework provider to keep source code secret.

But it also functions as a contract with the usual benefits
to both reusers and library providers [19, 25]. Both parties
benefit because the specification, and in particular the sub-
classing contract, abstracts out code details. For reusers, we
believe that reading the specification is much less complex
than studying the superclass code. For the library provider,
it allows some details in the code to change without breaking
the contract with reusers. Both parties also gain a more sta-
ble contract, since changes to code details do not necessarily
break it.

Our technique and proposed tool could also support evolu-
tion of a library or framework. Using specifications for an
older version of a class, the tool could detect when a new
version might invalidate some existing subclass. For exam-
ple, the tool could give a warning if the subclassing contract
of the old version of a class is broken by the new version.
A subclassing contract is broken if it has additional accesses
or calls that do not appear in the old version. A broken
subclassing contract could invalidate an existing subclass,
based on our rules. The tool could be used to either pre-
vent breaking the contract, or to inform the users of what
classes have changed in an incompatible way. In the latter
case, reusers could use the tool and the new specifications
to correct their subclasses.

Changing the specifications of existing superclass methods
and changing the protected invariant of concrete instance
variables would also break the superclass’s specification. A
superclass method specification can be neither weakened nor
strengthened; weakening it means the method may no longer
behave as expected by clients, and strengthening it may re-
sult in a refining subclass method becoming a non-refining
method. These violations would not be detected by our tool;
library providers would have to notify reusers manually.

A major contribution of our work is its new rules for using
such specifications to reason about which methods must be
overridden and when super-calls are safe. While the method
refinement rule and concrete data refinement rule are based
on existing notions of refinement, all the rules rely on the
subclassing contract, whose use in reasoning is new with this
work. Although the method refinement and concrete data
refinement rules would have to be checked manually or with
the aid of a theorem prover, the other rules could be checked
automatically by our proposed tool.

This reasoning technique is backed up by an analysis of how
downcall problems can occur, which is also a contribution of
the work. However, it remains future work to carefully ana-
lyze programming languages to determine whether these are
the only ways in which downcall problems can arise. Doing
this would help establish the soundness of our technique for
subsets of realistic languages.

Our approach to creating subclasses is general in the sense
that it does not impose restrictions (other than those given
in Section 2) on the implementation of a framework or class
library. It identifies potential problems that should be con-
sidered by OO programmers using any language. In addi-
tion, we have described the details of adapting the rules to

18



Java, using our specification language JML.

While our technique and reasoning method allows for con-
siderable flexibility in inheritance, reusers need considerable
knowledge to apply it. As an alternative, we have also of-
fered guidelines for library implementers and reusers (see
Section 7). These guidelines place greater demands on the
library implementer, but make only limited demands on the
reuser.

Our work also points out some directions for future work on
JML. Although JML does not provide a way to list the meth-
ods that may be indirectly called, one can imagine adding to
the subclassing contract a callable_indirectly clause that
would list the indirectly called methods. Furthermore, one
could add a recursive_methods clause, listing the methods
in a group of (two or more) mutually recursive methods.
This could also be generated by the tool. Recording these
additions in the subclassing contract would assist people in
manually applying the invariant and callback cycle rules.

There are several areas for future work in addition to those
mentioned earlier. One area is to extend our ideas to lan-
guages with different kinds of inheritance, such as Beta’s
[23]. Another area is to relate concrete data refinement to
refactoring [32]. Longer term future work includes justifying
the assumptions about the programming language we used
in arguing the soundness of our technique.

Our proposed tool is also important future work. Recall that
this tool would use superclass specifications and the spec-
ification of a new subclass to list superclass methods that
must be overridden based on the rules. It would also stati-
cally generate the subclassing contract of the new subclass,
and check for violations of the rules. Building this tool is
important future work because it can catch and help prevent
potential errors prior to execution.

APPENDIX
A. COMPUTING THE TRANSITIVE CLO-

SURE
The tool will compute the transitive closure of the callable
clause for each method. When computing the transitive clo-
sure, callable clauses of a subclass Csub must be inter-
preted from the point of view of a receiver object of type
Csub. For example, if Csub overrides a method P , then self-
calls to P appearing in Csub’s callable clauses are inter-
preted as calls to Csub :: P . However, if Csub inherits P
from a superclass CP , then such self-calls to P are inter-
preted as calls to CP :: P . Therefore, when computing the
transitive closure of a method, calls will be represented as
(CM ::M, CR), where CM ::M is the method or constructor
called and CR is the type of the receiver.

Let Csub be a new subclass. Then the set of methods and
constructors, TCM , transitively called by CM :: M can be
computed starting from the set containing the single ele-
ment (CM::M, Csub) by recursively adding method calls, as
described below, until TCM reaches a fixed point.

For each (CN :: N, CR) in TCM and for each call to P in

CN::N ’s callable clause, do one of the following:

• if P is a self-call, then
add (CP :: P, CR) to TCM , where CP is the class in
which P is defined from the point of view of a receiver
of type CR;

• if P is a super-call that is not a superclass constructor
call, then
add (CP :: P, CR) to TCM , where CP is the class in
which P is defined as specified in the super-call (e.g.,
the superclass of CN in Java, the named class in C++);

• if P is a superclass constructor call (e.g., super(. . .)11

in Java), then
add (Cnew::Cnew(. . .), CR) to TCM , where Cnew is the
class in which the superclass constructor Cnew(. . .) is
defined;

• if P is a subclass object-call, then
add (CP ::P, Csub) to TCM , where CP is the class in
which P is defined from the point of view of Csub (i.e.,
always assume the receiver has type Csub);

• if P is a new object constructor call of the form “new
Cnew(. . .),” then
add (Cnew :: Cnew(. . .), Cnew) to TCM (note that the
type of the receiver may change).

Acknowledgements
Thanks to Raymie Stata and Curt Clifton for helpful com-
ments on earlier drafts. Thanks to the OOPSLA 2000 refer-
ees for helpful comments on an earlier version of this paper.

B. REFERENCES
[1] P. America. Designing an object-oriented

programming language with behavioural subtyping. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, volume 489 of Lecture
Notes in Computer Science, pages 60–90.
Springer-Verlag, New York, NY, 1991.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998.

[3] Y. Chen and B. H. C. Cheng. A semantic foundation
for specification matching. In G. T. Leavens and
M. Sitaraman, editors, Foundations of
Component-Based Systems, pages 91–109. Cambridge
University Press, New York, NY, 2000.

[4] K. K. Dhara and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. In
Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, pages
258–267. IEEE Computer Society Press, Mar. 1996. A
corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

11(. . .) represents the list of types of the arguments that are
used to disambiguate overloaded methods or constructors.

19



[5] S. H. Edwards. Representation inheritance: A safe
form of “white box” code inheritance. In Fourth
International Conference on Software Reuse, pages
195–204. IEEE Computer Society Press, Apr. 1996.

[6] P. H. B. Gardier and C. Morgan. A single complete
rule for data refinement. In Morgan and Vickers [30],
pages 111–126.

[7] P. H. B. Gardiner and C. Morgan. Data refinement of
predicate transformers. In Morgan and Vickers [30],
pages 71–84.

[8] J. V. Guttag, J. J. Horning, S. Garland, K. Jones,
A. Modet, and J. Wing. Larch: Languages and Tools
for Formal Specification. Springer-Verlag, New York,
NY, 1993.

[9] E. C. R. Hehner. A Practical Theory of Programming.
Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

[10] C. A. R. Hoare. Proof of correctness of data
representations. Acta Informatica, 1(4):271–281, 1972.

[11] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The
Art of the Metaobject Protocol. The MIT Press,
Cambridge, Mass., 1991.

[12] G. Kiczales and J. Lamping. Issues in the design and
documentation of class libraries. ACM SIGPLAN
Notices, 27(10):435–451, Oct. 1992. OOPSLA ’92
Proceedings, Andreas Paepcke (editor).

[13] J. Lamping. Typing the specialization interface. ACM
SIGPLAN Notices, 28(10):201–214, Oct. 1993.
OOPSLA ’93 Proceedings, Andreas Paepcke (editor).

[14] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[15] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report 98-06i, Iowa State
University, Department of Computer Science, Feb.
2000. See www.cs.iastate.edu/~leavens/JML.html.

[16] G. T. Leavens and W. E. Weihl. Specification and
verification of object-oriented programs using
supertype abstraction. Acta Informatica,
32(8):705–778, Nov. 1995.

[17] K. R. M. Leino. Toward Reliable Modular Programs.
PhD thesis, California Institute of Technology, 1995.
Available as Technical Report Caltech-CS-TR-95-03.

[18] K. R. M. Leino. Data groups: Specifying the
modification of extended state. In OOPSLA ’98
Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 144–153. ACM, Oct. 1998.

[19] B. Liskov and J. Guttag. Abstraction and Specification
in Program Development. The MIT Press, Cambridge,
Mass., 1986.

[20] B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM Trans. Prog. Lang. Syst.,
16(6):1811–1841, Nov. 1994.

[21] B. Liskov and J. M. Wing. Specifications and their use
in defining subtypes. ACM SIGPLAN Notices,
28(10):16–28, Oct. 1993. OOPSLA ’93 Proceedings,
Andreas Paepcke (editor).

[22] C. Lucas. Documenting Reuse and Evolution with
Reuse Contracts. PhD thesis, Vrije Universiteit
Brussel, Brussels, Belgium, Sept. 1997.

[23] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
Object-Oriented Programming in the BETA
programming Language. Addison-Wesley Inc, 1993.

[24] B. Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, 1988.

[25] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, Oct. 1992.

[26] M. Mezini. Maintaining the consistency and behavior
of class libraries during their evolution. ACM
SIGPLAN Notices, 32(10):1–21, Oct. 1997. Conference
Proceedings of OOPSLA ’97.

[27] L. Mikhajlov and E. Sekerinski. A study of the fragile
base class problem. In E. Jul, editor, ECOOP ’98 —
Object-Oriented Programming, 12th European
Conference , Brussels, Proceedings, volume 1445 of
Lecture Notes in Computer Science, pages 355–382.
Springer-Verlag, July 1998.

[28] C. Morgan. Programming from Specifications: Second
Edition. Prentice Hall International, Hempstead, UK,
1994.

[29] C. Morgan and P. H. B. Gardiner. Data refinement by
calculation. Acta Informatica, 27(6):481–503, May
1990.

[30] C. Morgan and T. Vickers, editors. On the refinement
calculus. Formal approaches of computing and
information technology series. Springer-Verlag, New
York, NY, 1994.

[31] P. Müller and A. Poetzsch-Heffter. Modular
specification and verification techniques for
object-oriented software components. In G. T. Leavens
and M. Sitaraman, editors, Foundations of
Component-Based Systems, chapter 7, pages 137–159.
Cambridge University Press, 2000.

[32] W. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[33] D. E. Perry and G. E. Kaiser. Adequate testing and
object-oriented programming. Journal of
Object-Oriented Programming, 2(5):13–19, Jan/Feb
1990.

20



[34] A. D. Raghavan. Design of a JML documentation
generator. Technical Report 00-12, Iowa State
University, Department of Computer Science, July
2000.

[35] R. Stata. Modularity in the presence of subclassing.
Technical Report 145, Digital Equipment Corporation,
Systems Research Center, 130 Lytton Avenue Palo
Alto, CA 94301, Apr 1997. Order from
src-report@pa.dec.com or ftp from
gatekeeper.dec.com.

[36] R. Stata and J. V. Guttag. Modular reasoning in the
presence of subclassing. ACM SIGPLAN Notices,
30(10):200–214, Oct. 1995. Proceedings of OOPSLA
’95 Tenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications.

[37] S. Stepney, R. Barden, and D. Cooper, editors. Object
Orientation in Z. Workshops in Computing.
Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[38] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt.
Reuse contracts: Managing the evolution of reusable
assets. In OOPSLA ’96 Conference on Object-Oriented
Programming Systems, Languagges and Applications,
pages 268–285. ACM Press, October 1996. ACM
SIGPLAN Notices, Volume 31, Number 10.

[39] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

21


