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ABSTRACT
Classical specification and verification techniques support
invariants for individual objects whose fields are primitive
values, but are unsound for invariants involving more com-
plex object structures. However, such non-trivial object
structures are common, and occur in lists, hash tables, and
when systems are built in layers.

We generalize classical techniques to cover such layered ob-
ject structures using a refined semantics for invariants based
on an ownership model for alias control. This semantics en-
ables sound and modular reasoning. We further extend this
ownership technique to even more expressive invariants that
gain their modularity by imposing certain visibility require-
ments.

1. INTRODUCTION
Invariants are predicates that specify what states of an ob-
ject are consistent [25]. Even if not formally specified, they
help in writing, understanding, maintaining, and reasoning
about programs [20]. For example, the invariant of the List

class, near the top of Fig. 1, states several such properties,
including that the array field is always non-null and that
the unused part of the array holds zeroes. Thus, when call-
ing add, for example, the expression array.length cannot
cause a null pointer exception.

In this paper we discuss invariants in technical terms, which
allows us to prove the validity of the techniques formally.
Nevertheless, the programming guidelines we propose in the
conclusions (Fig. 17) are relevant for programmers, even if
they do not use formal techniques to reason about their
programs.

1.1 Problems and their Importance
Classical reasoning techniques [3, 34, 35, 36, 37] assume that
a method can only break the invariant of its receiver object
or of all objects of the enclosing class. Therefore, they are

sound for invariants of individual objects whose fields are
primitive values, such as points with integer coordinates.
However, since they do not impose proof obligations on the
invariants of other objects, these techniques do not support
invariants of more complex object structures. For example,
the invariant in class List of Fig. 1 is not supported by
classical techniques, because it refers to locations in the un-
derlying array object. If a reference to the array could be
exposed to other objects, then any method of the program
could use such a reference to break List’s invariant [34, 41].

Furthermore, classical techniques are not sound for invari-
ants of layers implemented on top of List. For example,
the invariant of class BagWithMax in Fig. 2, which says that
no element of the list is larger than a given upper bound,
is generally not preserved by List’s add method. Even if
one would require add to preserve BagWithMax’s invariant,
this example would not be handled modularly, since modu-
lar verification of a class implies not considering its clients
during its verification.

Invariants that depend on the state of objects of an under-
lying layer are common and important. They occur in three
situations. The first is when invariants of the upper layer
relate locations in the upper layer and the object states in
the underlying layers, as illustrated by BagWithMax. The
second is when an upper layer restricts the object states of
the underlying layers. For instance, a set built on top of
a list might have an invariant that excludes duplicates in
the list. The third is when the invariant of an upper layer
relates the states of different objects of an underlying layer.
This is often the case in aggregate objects. For example,
consider Family objects that aggregate different Person ob-
jects. Family’s invariant could require that all Persons in a
Family have the same street address.

In summary, the problem we address is how to generalize
classical reasoning techniques for invariants to deal with lay-
ered object structures while retaining modularity.

1.2 Contributions to the State-of-the-Art
A direct approach to solving this problem is given by the
Boogie technique [6, 32]. The essence of this technique is an
explicit treatment of when invariants must hold in specifica-
tions. In the Boogie technique, an object is either in a valid
or a mutable state. Only when in a valid state, an object
has to satisfy its invariant, and only objects in a mutable
state can be modified. The additional state information is
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class List {
private /*@ spec_public rep @*/ int[] array;
private /*@ spec_public @*/ int n;

/*@ public invariant array != null
@ && 0 <= n && n <= array.length
@ && (\forall int i; 0<=i && i<n; array[i]>=0)
@ && (\forall int i; n<=i && i<array.length;
@ array[i]==0); @*/

/*@ requires k >= 0 && n < Integer.MAX_VALUE;
@ assignable array, array[n], n;
@ ensures n==\old(n+1)
@ && array[\old(n)]==k
@ && (\forall int i; 0<=i && i<\old(n);
@ array[i]==\old(array[i])); @*/

public void add(int k) {
if (n==array.length) { resize(); }
array[n] = k; // temporary invariant violation
n++;

}

//@ assignable array, n;
public void resize() { /* ... */ }
public List() { array = new /*@ rep @*/ int[10]; }
public void addElems(int[] elems) { /* ... */ }
public /*@ pure @*/ int size() { return n; }
public void append(int i) { /* ... */ }
// other methods omitted.

}

Figure 1: Implementation of an array-based list.
Annotation comments start with an at-sign (@), and
at-signs at the beginning of lines are ignored. The
array object is part of the encapsulated internal rep-
resentation of the list, indicated by the rep annota-
tion. The spec public annotation allows fields with
any access modifier to be mentioned in public spec-
ifications.

class BagWithMax {

private /*@ spec_public rep @*/ List theList;

private /*@ spec_public @*/ int maxElem;

/*@ public invariant theList != null

@ && (\forall int i;

@ 0<=i && i<theList.n;

@ theList.array[i] <= maxElem);

@*/

//@ requires k>=0;

public void insert(int k) {

theList.add(k);

if (k > maxElem) { maxElem = k; }

}

// other methods and constructors omitted.

}

Figure 2: Class BagWithMax builds an abstraction
layer on top of List. BagWithMax’s invariant depends
on the state of the List object and its array.

represented by a specification-only field, which is modified
by two special statements, pack and unpack. To handle in-
variants for object structures, objects are organized in an
ownership hierarchy. For instance, a List object would own
its underlying array object, and a BagWithMax object would
own its List object. The Boogie technique enforces that all
(transitive) owner objects of a mutable object are also mu-
table. Therefore, when an object is modified, the invariants
of its owner objects need not hold. In our example, a mod-
ification of the array object would require that the array,
the owning List object, and the BagWithMax object owning
the list, be mutable. Therefore, the modification would be
allowed to break the invariants of these objects. The invari-
ants would be checked when the objects are packed, that is,
turned from mutable to valid.

Whereas the explicit representation of object validity and
the pack and unpack statements allow the Boogie technique
to handle invariants for layered object structures, they also
increase the specification overhead significantly: it is non-
trivial to figure out where to use the new statements, and
method specifications become much more complex, due to
the need to describe what objects are valid, that is, what
invariants are expected to hold.

Although developed earlier than the Boogie technique, our
ownership technique can be regarded as a combination of
the classical technique and the Boogie technique. This tech-
nique’s approach, adopted from Müller’s thesis [38], is to
define an invariant semantics based on an ownership model
for alias control. As in the classical technique, this seman-
tics defines statically in which execution states an invariant
most hold, avoiding the overhead of the Boogie technique’s
explicit treatment of validity. In our ownership technique,
the ownership model is enforced by a type system that also
prevents representation exposure problems.

Müller’s thesis also gives an indirect treatment of invariants
that solves this problem. That treatment is indirect because
it is based on a translation into specification-only fields, and
relies for soundness on a technique for modular verification
of modifies clauses. In this paper, we give a simpler, direct
formal treatment that uses no such translation and is inde-
pendent of modifies clauses. This direct treatment results
in several advantages, including less specification overhead
and an overall simplification of the soundness proof.

Another contribution of this paper is that we clearly explain
the relation between the semantics of invariants, the loca-
tions an invariant is allowed to depend on, and the encap-
sulation that is necessary to reason about invariants modu-
larly. This helps explain what restrictions are necessary for
classical techniques [3, 34, 35, 36, 37] to be (or to become)
sound.

Such classical techniques, even if not sound, are modular
due to the way that they encapsulate the locations an in-
variant may depend on. Another contribution of our work is
that we clarify the distinction between these techniques and
techniques that gain modularity by imposing certain visibil-
ity requirements on such fields [31, 33]. We both present the
details of the encapsulation-based approaches, and discuss
how to generalize such reasoning techniques to invariants
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that are based on visibility requirements.

1.3 Assumptions
The techniques we present depend, in their technical details,
on a few assumptions about programming and specification
languages. Some of these assumptions are made to avoid
complications in the proofs. We discuss how to relax some
of these assumptions at various points in the paper.

For the programming language, we assume a sequential Java
subset including classes, inheritance, arrays, instance fields,
instance methods, statements, and expressions. For sim-
plicity, we omit interfaces, exceptions, static fields, static
methods, and inner classes. Müller shows how to handle
interfaces, exceptions, and static methods [38, 17]. An ex-
tensions to static fields is planned for future work.

Although we focus on sequential programs in this paper, we
expect that our results are also applicable to multi-threaded
programs. Such programs can be verified by first proving
atomicity by other means, which then allows one to apply
verification techniques for sequential programs [11, 22, 28,
45, 49].

For the specification language, we use a tiny variant of JML
[29, 30], including requires and ensures clauses (pre- and
postconditions), assignable (i.e., modifies) clauses, and in-
variants. As shown in Fig. 1, the invariant of a class is
declared by an invariant clause of the form invariant I;

where I is essentially a side-effect free boolean expression
of the programming language that may contain reads from
fields and array elements, the usual unary and binary oper-
ators, and bounded quantification expressions.

For simplicity we prohibit method invocations and object
creation in specifications. JML only allows side-effect free
calls in specifications, which can be formally modeled by
applications of mathematical functions. Müller’s thesis [38]
shows that such applications in invariants can be handled
by explicitly declaring which variables an invariant depends
on. Such dependency declarations are used to determine all
invariants that might be violated by a field update. How-
ever, explicit dependency declarations introduce significant
specification overhead, which is a distraction in this paper.

We omit consideration of constructors for simplicity. The
treatment of constructors is analogous to methods except
that one must not assume the invariant for the (newly cre-
ated) receiver object in the constructor’s prestate.

As in JML, an object X must satisfy the invariant of its
supertypes as well as the invariant declared in its own class.
The conjunction of these invariants is called the object in-
variant of X, or simply the invariant of X.

1.4 Overview
In Section 2 we explain some semantic background. In Sec-
tion 3 we describe the classical technique for reasoning about
invariants. Its problems and limitations are discussed in Sec-
tion 4. Section 5 gives background on the ownership model.
Sections 6 uses the ownership model to give a first solution
technique. Section 7 extends this solution with transitive
readonly references for more flexibility. Section 8 describes

limitations of this ownership technique, which motivates an
even more flexible technique described in Section 9. Sec-
tion 10 discusses the tradeoffs among these solutions. The
paper ends with sections on future work, related work, and
conclusions.

2. SEMANTIC BACKGROUND
A technique for specifying and reasoning about invariants
must address:

1. Encapsulation: What parts of a program can assign to
the variables used in an invariant?

2. Admissible invariants: What variables may an invari-
ant depend on?

3. Semantics: When do invariants have to hold?

4. Modular proof techniques: How can one show that
objects satisfy their invariants, without examining the
entire program?

The answers to these questions closely depend on each other.
However, their interconnections have not been previously
described.

Answering these questions requires some general background
about visible states and the concept of dependencies. Both
of these are used in all techniques presented in this paper.
The particular restrictions on dependencies and how each
technique answers the above questions are discussed in sub-
sequent sections.

2.1 Visible States
The semantics of invariants is fundamentally based on the
notion of visible states [24, 37].

Definition 2.1 (Visible states). A program execu-
tion state is called visible if it is a pre- or poststate of a
method execution.

Some approaches exclude the pre- and poststates of so-called
“helper methods” (e.g., private methods) from the visible
states [37, p. 366]. This idea can easily be added as a refine-
ment to our approach (and is present in JML).

2.2 Dependencies
Invariants can depend on the state of various locations. Syn-
tactically, locations are denoted by expressions either of the
form E.f , where E is an expression that denotes an object
and f is a field, or of the form A[i], where A denotes an
array. To simplify notation, when X is an object, we also
use the notation X.f to refer to the location of the instance
variable f in X. When L is a location and the object store σ

is known from context, then we use the notation L.f to refer
to the location of the instance variable f in the object ref-
erenced from L in store σ. We use the analogous notation,
L[i], for arrays.
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Definition 2.2 (Dependee, Dependency). An in-
variant, I, of an object X depends on a location L if
assignment to L might change I’s value. Such a location, L,
is called a dependee of I. The dependency is called static
if L is an instance variable of X. It is called dynamic if L

is a location or array element of a different object.

For example, the invariant of a List object X depends on
X.n, X.array, X.array.length, and X.array[i], for all i

within the array bounds. The first two dependencies are
static, the others are dynamic. More generally, invariant
declarations refer to dependee locations by field or array ac-
cess expressions of the form “this.g0g1 . . . gN”, for N ≥ 0,
where g0 is a field name and each of the other gi is either
a field access of the form .f or an array access of the form
[j]. The leading “this.” can be omitted. Since we as-
sume there are no method calls in invariant declarations,
the access expressions describe the dependencies of a class
invariant. Dependencies with N = 0 are static. For dy-
namic dependencies (N > 0), g0 is called the pivot field of
the dependency.

Note that if X’s invariant has a dynamic dependency on
X.g0 . . . gN , then all locations X.g0 . . . gk, k < N are depen-
dees as well, since an assignment to X.g0 . . . gk redirects the
dependency to a different location, which might have a dif-
ferent value.

3. THE CLASSICAL TECHNIQUE
In this section we explain the classical invariant technique.
This technique is interesting both for its simplicity and for
its limitations. These limitations are the problem we solve
in later sections.

3.1 Classical Encapsulation
The classical technique assumes a simple encapsulation dis-
cipline that does not permit layering. In this technique,
invariants can only be guaranteed if their dependees are en-
capsulated or otherwise protected from unwanted modifica-
tion. Dependees of the latter kind are predefined fields that
cannot be assigned directly by programs, such as the length
field of arrays in Java. We call such fields constant fields.

Definition 3.1 (Classically encapsulated). A lo-
cation X.f is classically encapsulated in object X if the only
assignments to X.f occur in method executions with X as
receiver object.

Classical encapsulation can be enforced by only allowing
field assignments of the form this.f=E, as in Smalltalk [23]
and Eiffel [36, 37]. Fields of objects different from this have
to be assigned via setter methods. However, note that this
discipline allows methods in subclasses of the declaration
class of f to modify f , that is, f need not be private.

3.2 Classical Admissible Invariants
For modular specification and verification, it is important
to control dependencies. The key restriction of the classical
approach is that it requires dependencies on mutable fields
to be static. That is, only invariants obeying the following
restrictions are admissible:

Definition 3.2 (Classical invariant). An invari-
ant declaration in class C is classical if each of its access
expressions has one of the following forms:

1. A field name, g0, where g0 is declared in C, or

2. g0 . . . gN , N > 0, where g0 is a field declared in C and
each of the other gi is a field access of the form .f ,
where f is a constant field.

In a language like Java, Eiffel, or Smalltalk, where arrays
are stored as separate objects on the heap, array element
references cannot be allowed in classical invariants.1 So the
invariant of class List (Fig. 1) is not classical because the
access expression array[i] is neither static nor does it refer
to a constant field.

More generally, the classical technique does not permit lay-
ering of objects, because an invariant for an object cannot
depend on the mutable state of other objects.

Orthogonal to the topic of invariants for layered object struc-
tures is the problem of invariants depending on superclass
fields. Such dependencies cause a different modularity prob-
lem. By modifying superclass fields, code in the superclass
could break subclass invariants without noticing it, because
subclass invariants are usually not known in the superclass.
To avoid this particular problem and to focus on the main
topic, Definition 3.2 restricts class invariants so that they
cannot depend on superclass fields. More precisely, invari-
ants declared in a class C are only allowed to depend on non-
constant fields that are declared in C. Similar restrictions
with respect to superclass fields are necessary for sound-
ness in other classical approaches [34, 35]. In Section 11,
we briefly discuss how techniques such as those proposed by
Ruby and Leavens [47], and by Barnett et al. [6] might be
adapted to address this restriction. So, while we do not ig-
nore inheritance in this paper, for the bulk of this paper we
ignore this restriction and instead concentrate on the classi-
cal technique’s limited support for layered object structures.

3.3 Classical Invariant Semantics
The classical approach uses a visible state semantics [43].

Definition 3.3 (Classical invariant semantics).
Each object must satisfy its invariant in each visible state.

The need for the visible state semantics is shown in Fig. 1,
where the method add temporarily violates the invariant
while updating the internal representation of the list. For
instance, in the state before incrementing n, the last con-
junct of the invariant might be violated, but the invariant
is reestablished before the method terminates.

1 In a language, like Ada, where arrays are stored directly in
objects, and thus can be treated as shorthand for fields, ar-
ray element references could be allowed in the classical tech-
nique. In C++ non-heap (direct) array references would be
allowable, but heap-based (indirect) array references would
not be.
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3.4 Classical Proof Technique
Proof techniques formally describe how one shows correct-
ness of a program with respect to its intended semantics.
A proof technique is usually based on (1) proof obligations
and (2) a program-independent soundness proof to show
that the proof obligations are sufficient to verify that any
program meeting those obligations satisfies the intended se-
mantics. In a modular proof technique, proof obligations
are imposed on modules independently of each other. A
modular proof technique that can be used to show correct-
ness with respect to the classical invariant semantics is the
following.

Definition 3.4 (Classical proof technique). Let
C be a class and let inv(C) denote the conjunction of the in-
variants declared in C and its superclasses. Let pre(o.p(~e))
and post(o.p(~e)) denote the pre- and postcondition of a call
to method p, determined by the static types of o and ~e.

For each method m declared in C one must show that:
(O1) inv(C) and m’s postcondition hold for the poststate
of each execution of m, and (O2) for every call of a method,
o.p(~e), that appears in the body of m, pre(o.p(~e)) holds in
the call’s prestate, and inv(C) also holds for m’s receiver
object in the prestate of the call to p.

For the proof of each method m, one may assume that:
(A1) the invariants of all allocated objects and m’s precon-
dition hold in m’s prestate, and (A2) after each call of a
method, o.p(~e), post(o.p(~e)) holds and all allocated objects
satisfy their invariants.

Note that the above proof technique avoids the problem of
re-entrant method executions (call-backs), pointed out by
Huizing and Kuiper [26], by requiring that a method reestab-
lishes the invariant of the current receiver object before it
makes method calls.

The classical proof technique can be shown in a modular
way. To verify methods of a class C, one only has to refer
to program parts that are available in C, such as C’s super-
classes or the specifications of methods that are called from
methods of C. Therefore this technique enables modular
reasoning.

Moreover, the classical proof technique is sufficient to show
that classical invariants hold in all visible states. The proof
of this soundness property is contained in Appendix A.

Theorem 3.5 (Classical soundness). Let P be a
program containing only classical invariants. Suppose meth-
ods of P only assign to fields of this and array elements. If
the classical proof obligations for P’s invariants hold, then
all objects satisfy their invariants in all visible states.

4. LIMITS OF THE CLASSICAL TECH-
NIQUE

The restrictive limitations in the definition of classical in-
variants, which prevent layering, are needed for soundness.
We next explain why these cannot be relaxed without either
changing the notion of encapsulation or the proof technique.

/*@ requires elems != null

@ && (\forall int i; 0<=i && i<elems.length;

@ elems[i]>=0); @*/

public void addElems(int[] elems) {

if (n==0) {

array = elems; // illegal

n = elems.length;

} else {

/* ... */

}

}

Figure 3: A questionable implementation of the List

method addElems that stores the argument array into
the array field. Our approach will require copying
elems (or some form of ownership transfer).

4.1 Abstraction Layering is not Sound
The classical proof technique is not sound for invariants
that depend on mutable objects of underlying layers. Con-
sider the class BagWithMax from Fig. 2 again. According
to the classical technique it would be perfectly fine to omit
the last statement of BagWithMax’s insert method! Why?
Because just before that statement is a call to a method,
theList.add(k), and since that call’s poststate is a visible
state, the invariants of all allocated objects must hold. Since
the receiver (this) in BagWithMax’s insert method is cer-
tainly an allocated object in this state, its invariant must
hold, according to the classical technique. But that is not
true if k is greater than maxElem (hence the need for the last
statement). This shows an unsoundness, in that the classical
proof technique can lead to an incorrect conclusion.

Another way to view this soundness problem is that the
classical invariant semantics is too strong for invariants over
layered object structures. The class List cannot modu-
larly know enough to establish the invariant of a class,
BagWithMax, that it does not know about.

4.2 Mutable Subobjects are not Sound
In the classical technique, the invariant of an object X may
only depend on those fields that can exclusively be assigned
to by methods executed on X. This restriction is neces-
sary for soundness of the classical technique, but can be
violated if the restrictions on classical invariants are relaxed
enough to describe layered object structures—if there are
no controls on aliasing. Consider the List example (Fig. 1).
List’s invariant needs to depend on its array. However,
methods that get hold of the reference to this array object
could assign to its elements and violate List’s invariant.
Such an alias could occur by rep exposure [41] or by captur-
ing [16] as illustrated by the version of addElems in Fig. 3.
With that version, the code fragment in Fig. 4 would vio-
late List’s invariant. This could happen even if the classical
proof technique was used to prove the correctness of all of
List’s methods. This unsoundness in the classical proof
technique shows that a sound technique must either restrict
invariants that depend on subobjects in lower abstraction
layers, or it much control modifications of such subobjects.

5



class Client {

/*@ requires list.n == 0; @*/

void violator(List list) {

// invariant of list holds in prestate

int[] aliasedArray = new int[10];

list.addElems(aliasedArray);

aliasedArray[0] = -1;

// invariant of list is violated in poststate

}

}

Figure 4: Client code that shows the problem with
aliased representations.

4.3 Summary of the Technique’s Problems
In sum, the classical technique effectively cannot describe
interesting invariants for layered objects, unless the subob-
jects are immutable. The restrictive limitations of classical
invariants stem from the visible state semantics and from
the classical proof technique. As we have shown by exam-
ple, to remove these limiting restrictions, and hence to sup-
port invariants for interesting layered object structures, it is
necessary to change either the visible state semantics or the
proof technique, or both. The challenge is to do this and
still preserve modularity.

5. BACKGROUND ON OWNERSHIP
Our first solution technique builds on an ownership model.
An ownership model partitions the allocated objects into a
hierarchy of disjoint groups of objects, called “contexts” [5,
9, 10, 13, 14, 39]. Contexts are used:

1. for alias control and encapsulation (preventing repre-
sentation exposure);

2. to control the dependencies of invariants (preventing
argument exposure [41]);

3. to define a weaker semantics for invariants that allows
layering.

The first two aspects allow one to encapsulate objects even
in layered object structures. The third aspect is vital to our
extended proof technique’s soundness.

5.1 Ownership Model
Each object is directly owned by at most one other object,
called its direct owner, or owner for short. A context is the
set of all objects with the same direct owner. The set of
objects without an owner is called the root context. The
owner-relation is acyclic. Thus, the contexts form a tree
with the root context as root and where context ∆ is a child
of context Γ if and only if the owner of the objects in ∆ is
an element of Γ. The owner of an object is specified when
the object is created and cannot change later.

We say that object X is the owner of context Γ if X is the
direct owner of the elements of Γ. Moreover, we say that an
object Y is inside a context Γ if it is an element of Γ or of

theList:
maxElem:

array:
    n:

length:
     0:
     1:
     2:
     3:

b:BagWithMaxl: List

int[] array:
    n:

myl:List

length:
     0:
     1:

int[]

2

2

7

88

88

4

2

1

57

0

0

root context

Figure 5: A hierarchy of contexts (rounded rectan-
gles, dotted lines) with the objects (rectangles) they
contain. Owner objects sit atop the context they
own. In general, a context can contain many objects,
several of which may not be directly referenced by
its owner.

one of its descendants; otherwise Y is outside Γ. X owns
an object Y if Y is inside the context owned by X. For
instance, in Fig. 5, myl is an element of the context owned
by b. Hence, it is inside the root context, but not an element
of the root context, and it is outside the context owned by
the other List object, l. Finally, a method is executed in a
context Γ if and only if the corresponding receiver object is
an element of Γ.

We use the ownership model to restrict references between
objects. An object X can have a direct reference to objects
in the same context as X and to objects directly owned by
X. That is, the only references that cross context bound-
aries are references from the owner of a context Γ to ele-
ments of Γ. We will relax this restriction in Sec. 7 by allow-
ing special readonly references to point to objects in arbi-
trary contexts. The restrictions apply to references stored
in all locations, including local variables and formal para-
meters. Technically, local variables and formal parameters
in a method, m, are treated like fields of m’s receiver object.

5.2 Enforcing the Ownership Model
Several type systems have been proposed to statically en-
force ownership models [5, 9, 10, 13, 14, 39]. The work
presented here builds on common properties of almost all
ownership type systems. Therefore, we expect that progress
in the theory of ownership type systems can be directly
translated into less restrictive versions of our work. For con-
creteness we use the Universe type system, which has been
implemented in JML [18].

Types. Our ownership model permits (1) references be-
tween objects in the same context (peer references) and
(2) references from an object X to an object directly owned
by X (rep references). This classification is expressed in the
Universe type system by adding one of the ownership modi-
fiers peer and rep to each reference type. The peer modifier
is the default modifier, that is, it can be omitted. For in-
stance, the type /*@ rep @*/ T is the type of references
pointing to objects of class T owned by this. Rep and peer
types are disjoint, that is, references of type /*@ rep @*/ T
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cannot be assigned to variables of type /*@ peer @*/ T and
vice versa. This reflects that objects of rep and peer types
are in different contexts.

Figures 1 and 2 demonstrate the use of ownership modifiers:
List objects own their array objects, and BagWithMax ob-
jects own their List objects. This ownership relation is
illustrated by Fig. 5, which shows the root context with a
List and a BagWithMax object and their child contexts. In
Fig. 1, the elems parameter of List’s method addElems has
an implicit peer modifier, which indicates that the argument
array has to be in the same context as the receiver object of
the method.

The owner of a new object is determined by the type given in
the creation expression: new /*@ rep @*/ T(. . .) creates an
object in the context owned by this (as in Fig. 1), whereas
new T(. . .) (or the more explicit new /*@ peer @*/ T(. . .))
creates an object in the same context as this.

Type Rules. The type rules of the Universe type system
guarantee that the ownership modifiers of reference types
correctly reflect the owner of the referenced object. We
summarize the most important rules in the following. For
a formalization of the complete type system, see our earlier
work [38, 39].

Assignment: The rule for an assignment is the standard Java
rule: The type of the right-hand side expression has to be a
subtype of the type of the left-hand side variable. This rule
renders the implementation of method addElems in Fig. 3
incorrect: The type of elems, /*@ peer @*/ int[], is not
a subtype of the type of array, /*@ rep @*/ int[].

Field Access: To determine the owner of an object refer-
enced by X.f—and, thus, the type of the field access X.f—
one has to consider the ownership modifiers of the types of
both X and f (see Fig. 6):

1. If the types of both X and f are peer types, then we
know (a) that the object referenced by X has the same
owner as this, and (b) that the object referenced by
X.f has the same owner as X and, thus, the same
owner as this. Consequently, the type of X.f also has
the modifier peer.

2. If the type of f is a rep type, then the type of this.f
has the modifier rep, because the object referenced by
this.f is owned by this.

3. If the type of X is a rep type and the type of f is a
peer type, then the type of X.f has the modifier rep,
because (a) the object referenced by X is owned by
this, and (b) the object referenced by X.f has the
same owner as X, that is, this.

4. In all other cases, we cannot determine statically that
the object referenced by X.f has the same owner as
this or is owned by this. Therefore, these forms of
field accesses are forbidden and lead to a type error.

The rules for array access are analogous to field access.

Method Call: Analogously to field accesses, the declared pa-
rameter and result types of a method have to be interpreted

Universe Type Annotations
Case X f X.f

1. peer peer peer

2. peer, X = this rep rep

3. rep peer rep

4. peer, X 6= this rep error
rep rep error

Figure 6: Summary combinations for field access.

w.r.t. the type of the receiver expression of the method call.
Consider a method foo(/*@ peer @*/ p). The peer mod-
ifier expresses that the parameter p has the same owner as
the receiver object on which foo is executed. Therefore, if
foo is called on an expression of a rep type, the actual pa-
rameter of the call must also be of a rep type to meet this
requirement. This interpretation of parameter and result
types is performed by the mapping described for field ac-
cesses, with the type of the field replaced by the parameter
or result type of the method. Thus, in our example, the
combination of a rep type (the type of the receiver) and a
peer type (the type of p) yields a rep type (point 3 in the
enumeration above).

For a call X.m(. . . ai . . .), this observation leads to the fol-
lowing conditions: (1) The type of an actual parameter, ai,
must be a subtype of the combination of the types of X and
of the formal parameter, pi. (2) The type of the call expres-
sion is the combination of the types of X and the declared
result type of m.

5.3 Properties of the Ownership Model
Type safety of the Universe type system guarantees the fol-
lowing program invariant.

Theorem 5.1 (Universe invariant). Let P be a pro-
gram that is type correct in the Universe type system. The
following program invariant holds in every execution state:
If an object, X, holds a direct reference to an object, Y , then
(1) X and Y are elements of the same context or (2) X is
the owner of Y . W.r.t. this program invariant, local vari-
ables and formal parameters behave like instance variables
of the this object.

Since the Universe type system is not a contribution of this
paper, we refer to Müller’s thesis for the type safety proof
[38].

This program invariant implies the following properties of
our ownership model.

Corollary 5.2 (Ownership properties).

1. Ingoing reference invariant: Every reference chain
from an object outside a context Γ to an object inside
Γ passes through Γ’s owner.

2. Outgoing reference invariant: There is no reference
chain from an object inside a context Γ to an object
outside Γ.
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3. Context encapsulation: Method executions in a context
Γ can only be invoked by another method execution in
Γ or by method executions with the owner of Γ as this
object. Elements of arrays in Γ can only be assigned
to by method executions in Γ or by method executions
with the owner of Γ as this object.

4. Context locality: Method executions in a context Γ can
only modify locations of objects inside Γ, either directly
by field updates and array element assignments, or in-
directly by method invocations.

Properties 1 and 2 are immediate consequences of the Uni-
verse invariant. Properties 3 and 4 follow from Properties 1
and 2. Properties 1 and 3 guarantee that an owner has full
control over the objects in its context. They generalize clas-
sical encapsulation of fields of the this object to encapsu-
lation of the fields of all objects owned by this. Property 2
will be used to restrict dependencies. Property 4 allows one
to localize effects of method executions.

It is helpful to also look at the context encapsulation prop-
erty from the perspective of the method performing an invo-
cation or an update. This leads to the following equivalent
property.

Corollary 5.3. A method executed in context ∆ can
only invoke other methods in context ∆ or in the context
owned by the this object. Analogously, this method execu-
tion can only assign to fields and elements of arrays in these
two contexts. 2

The classes in Fig. 7 illustrate how the Universe type system
guarantees the ownership properties in Corollary 5.2. Con-
sider the object structure shown in Fig. 8: two instances of
class Super, s1 and s2, own T objects t1 and t2, resp.

The statements in method bad are illegal because they po-
tentially violate the ownership properties. Consider the call
s1.bad(s2).

Statement (1) violates the ingoing reference invariant be-
cause it creates a direct reference from s1 into the context
owned by s2. The assignment is illegal because superT has
a rep type and the receiver, s, is different from this. There-
fore, cases 1 to 3 of the rule for field accesses do not apply.
For the same reason, statement (2) is illegal. Note that the
leak method itself is permitted, but the rule for method
calls ensures that this method can be called only on the
receiver this because it returns a rep reference.

Statement (3) violates the outgoing reference invariant by
creating an outgoing reference from t1 to s1. The com-
bination of the types of the receiver, /*@ rep @*/ Super,
and the formal parameter, /*@ peer @*/ Super, yields
/*@ rep @*/ Super. Therefore, the call is illegal because
the method expects an argument of type /*@ rep @*/

Super, but the actual parameter is of type /*@ peer @*/

Super.

class T {

private /*@ spec_public peer @*/ Super out;

public void setOut(/*@ peer @*/ Super o) {

out = o;

}

}

class Super {

private /*@ rep @*/ T superT;

private /*@ rep @*/ T leak() {

return superT;

}

public void bad(/*@ peer @*/ Super s) {

superT = s.superT; // (1) illegal

superT = s.leak(); // (2) illegal

superT.setOut(this); // (3) illegal

}

public void init() {

superT.setOut(null);

}

}

Figure 7: Classes illustrating how the Universe type
system enforces the ownership properties. Method
bad violates the type rules for field accesses and
method calls.

superT:

out:

s1: Super

t1: T

superT:

out:

s2: Super

t2: T

X

X

Figure 8: Ownership structure for the example in
Fig. 7. The ownership properties guarantee that s1

and s2 reference different T objects. The crossed-
out references are those references that would be
introduced by the illegal statements in Fig. 7.
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class Sub extends Super {

private /*@ spec_public rep @*/ T subT;

/*@ public invariant subT != null

@ && subT.out != null; @*/

public void separate() {

subT = superT; // illegal

subT = leak(); // illegal

}

// other methods and constructors omitted.

}

Figure 9: The invariant of class Sub is violated by
Super’s init method if superT and subT reference the
same T object. Such an alias is forbidden.

superT:

out:

s1: Sub

t1: T

out:

t2: T

X

subT:

Figure 10: Ownership structure for the example in
Fig. 9. Subclass separation guarantees that superT

and subT reference different T objects. The crossed-
out reference would be introduced by the illegal
statements in Fig. 9.

5.4 Subclass Separation
The ownership model allows an object, X, to control how
objects inside the context owned by X are modified. In the
next section, we will use this property to allow X’s invariant
to depend on the state of objects owned by X. Class Sub in
Fig. 9 contains such an invariant: for a Sub object, X, this
invariant requires that the out field of the T object referenced
by X.subT is non-null.

Although X.subT is owned by X and X can control how
that field is modified, Sub’s invariant leads to a potential
soundness problem. Since class Super does not declare an
invariant, method init can be verified easily. However, if
X.superT and X.subT both reference the same T object,
Y , then calling X.init violates Sub’s invariant by setting
Y .out to null.

To avoid this unsoundness, we enforce that the set of objects
reachable from a superclass rep field and the set of objects
reachable from a subclass rep field are disjoint. (Again, for-
mal parameters and local variables of a method in class C

behave like fields of this, declared in C.) This is achieved by
requiring that rep fields, and methods that have rep modi-
fiers for their parameters or results, are private. Therefore,

a rep reference stored in a subclass field cannot be passed to
superclass methods. This restriction renders the statements
in Sub’s method separate illegal since they access a private
field and a private method of the superclass.

The requirement that rep fields, and methods that have
rep modifiers for their parameters or results, are private
guarantees the following additional ownership property. It
is illustrated by Fig. 10.

Corollary 5.4 (Subclass separation).

5. Subclass separation: Let X be the owner of a context
Γ, f a field of X and m a method of X. If f and
m are declared in different classes, an execution of m

on receiver X cannot modify objects inside Γ that are
reachable from X.f .

Method separate in class Sub illustrates how subclass sep-
aration is enforced. The method cannot create an alias be-
tween the superclass field superT and the subclass field subT

by a direct field access or by calling the leak method because
both superT and leak must be private, since they have rep
types.

6. THE OWNERSHIP TECHNIQUE
The ownership model allows one to encapsulate whole ob-
ject structures as underlying layers in the representations
of owner objects. In this section, we exploit this property
to generalize the classical technique to invariants over lay-
ered object structures. To avoid the soundness problems
described in Section 4, we use the hierarchical structure of
the ownership model to refine the classical invariant seman-
tics and also present a refined proof technique.

6.1 Ownership Encapsulation
In the ownership model, objects outside a context Γ can
modify objects inside Γ only by invoking methods of Γ’s
owner object, X. So we can consider all objects in Γ to be
part of X’s encapsulated representation.

Definition 6.1 (Ownership encapsulated). A lo-
cation Y.f is ownership encapsulated in an object X if:

1. X = Y and the only assignments to X.f occur in
method executions with X as receiver object, or

2. X owns Y .

Part 1 above corresponds to the definition of classical en-
capsulation (Def. 3.1). It is enforced in the same way, by
disallowing assignments to fields of objects other than this.
Part 2 enables owned objects as part of the encapsulated
representation. It is enforced by the Universe type system.

Although owned objects are encapsulated in their owner, we
do not allow the owner to directly assign to fields of owned
objects. As in the classical technique, method calls must be
used to change fields of other objects. While this restriction
could be relaxed [38], it simplifies the proof obligations for
invariants significantly.
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6.2 Ownership Admissible Invariants
Using ownership encapsulation allows the key generalization
of the classical technique necessary to support layered object
structures. That is, in the ownership technique, an invariant
of an object X may depend on mutable locations of objects
that X owns.

Definition 6.2 (Ownership admissible). An access
expression occurring in a class C is ownership admissible
if it has one of the following forms:

1. A field name, g0, where g0 is declared in C,

2. g0 . . . gN , N > 0, where for each 0 ≤ i < N , g0 . . . gi

is ownership admissible, and gN is a constant field ac-
cess, or

3. g0 . . . gN , N > 0, where the pivot field g0 is declared
with a rep annotation, for each 0 ≤ i ≤ N , g0 . . . gi is
ownership admissible, and where each of the fields and
array accesses in g1, . . . , gN−1 are declared with a rep

or peer annotation.

An invariant declaration in class C is ownership admissible
if each of its access expressions is ownership admissible.

Access expressions of form 1 are the classical approach’s sta-
tic dependees (Def. 3.2). Access expressions of form 2 allow
the invariant of an object X to depend on constant fields of
objects referenced by X. Since the prefixes used to reach
such a constant field only have to be admissible, this form is
more general than its classical counterpart. For the invariant
of object X, access expressions of form 3 denote locations
of objects inside the context owned by X; these dependees
were not allowed in classical encapsulation. Recall that the
rep annotation indicates that the object referenced by X.g0

and, thus, all objects reachable from X.g0 via peer and rep
references are in contexts owned by X (due to the outgoing
reference invariant, Corollary 5.2).

The invariant of class List is ownership admissible because
the access expressions array and n have form 1. The ac-
cess expression array.length matches forms 2 and 3 since
length is a constant field and the pivot field, array, has
a rep annotation. The expression array[i] has the same
pivot field and, thus, form 3.

Ownership admissible invariants can express properties of
layered object structures as long as the representation is en-
capsulated in a context. For instance, BagWithMax’s invari-
ant can depend on locations of the associated list, because
the ownership model guarantees that all modifications of
the list are initiated by a method of the owning BagWithMax

object, and this BagWithMax method makes sure that the
invariant is preserved. In particular, invariant violations
through representation exposure, as described in Section 4,
are ruled out by the ownership model.

Due to our assumed syntax for invariants, a type checker
can syntactically determine the dependees of an invariant
and can statically check admissibility of invariants.

6.3 Relevant Invariant Semantics
In Section 4, we showed that invariants over layered object
structures may not hold in all visible states. The reason is
that an object needs the right to temporarily violate its own
invariant when changing an encapsulated object. For exam-
ple, a BagWithMax object needs to temporarily violate its
invariant when changing its encapsulated theList object.
The difference from the visible state semantics is that these
invariant violations can span over method executions in the
owned context. For example, a BagWithMax object can vio-
late its invariant during a call to a method of theList, since
theList is owned by the BagWithMax object. To allow such
violations, we weaken the visible state semantics from the
classical technique (Def. 3.3).

The basic idea of the weakened semantics is that methods
executing in a context Γ are regarded as internal opera-
tions that might break the invariants of objects in contexts
that are ancestors of Γ. The rationale is that (1) according
to context locality (Corollary 5.2), such method executions
cannot modify objects outside Γ, and (2) according to con-
text encapsulation, such method executions are controlled
by a method execution of Γ’s owner. Γ’s owner is responsi-
ble for invariants of objects in its context.

Definition 6.3 (Relevant object). An object X is
relevant to the execution of a method m if and only if X is
inside the context in which m executes.

For example, in the execution of method add on object myl of
Fig. 5, the relevant objects are those in the context that con-
tains myl (here only myl) and those in the contexts owned by
myl. Since the field array in List is declared using the rep

annotation, the object that myl.array points to is owned
by myl. Thus, this array is also relevant. However, the
BagWithMax object that owns myl is not relevant.

Definition 6.4 (Relevant invariant semantics).
Suppose an object X is relevant to the execution of a method
m; then X must satisfy its invariant in the visible states of
m’s execution.

For simplicity, if an object X is relevant to the execution of
a method m, then we refer to X’s invariant as being relevant
to the execution of m. We use the term relevant invariant to
refer to such invariants when the method execution is clear.

For example, consider the execution of method add on object
myl. For this execution, the invariant of myl is relevant, but
the invariant of the BagWithMax object that owns myl is not
relevant.

6.4 Ownership Proof Technique
The ownership proof technique describes how to prove cor-
rectness of invariants with respect to the relevant invariant
semantics. The classical proof technique (Def. 3.4) is not
sound for use with the relevant invariant semantics, as its
assumption that all invariants hold in all visible states is too
strong. Furthermore, we can also weaken the proof obliga-
tions of the classical technique, due to ownership encapsu-
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lation. Changes from the classical technique are highlighted
in bold in the following definition.

Definition 6.5 (Ownership proof technique).
Let C be a class and let inv(C) denote the conjunction
of the invariants declared in C and its superclasses. Let
pre(o.p(~e)) and post(o.p(~e)) denote the pre- and postcondi-
tion of a call to method p, determined by the static types of
o and ~e.

For each method m declared in C one must show that:
(O1) inv(C) and m’s postcondition hold for the current re-
ceiver object in each poststate of m’s execution, and (O2) for
every call of a method, o.p(~e), that appears in the body of m,
pre(o.p(~e)) holds in the call’s prestate, and if o is an el-

ement of m’s context, then inv(C) also holds for m’s
receiver object in the prestate of the call to p.

For the proof of each method m, one may assume that:
(A1) the invariants of all allocated objects that are

relevant to the execution of m and m’s precondition hold
in m’s prestate, and (A2) after each call of a method, o.p(~e),
post(o.p(~e)) holds and all allocated objects that are relevant

to the execution of o.p(~e) satisfy their invariants.

Since ownership encapsulation prohibits assignment from
outside an object to fields of that object, these proof oblig-
ations can be verified modularly (see Subsection 3.4). Note
that obligation (O2), which is necessary to avoid problems
with re-entrant method calls, is weaker than for the classical
technique. This is because the outgoing reference invariant
of the ownership model prevents re-entrant calls on objects
outside the context that contains the current receiver ob-
ject, this. That is, if p is executed on an object owned by
this, the execution of p cannot re-enter the this object by
a call-back. For this reason, the slightly weaker assumption
of proof obligation (O2) suffices for soundness.

To illustrate how to use the ownership proof technique, con-
sider BagWithMax’s insert method. For the call to List’s
add method we may, by (A2), assume that the method
preserves the invariant of theList. However, since the
BagWithMax object this is not relevant to this call to add,
its invariant might be broken by the call. To show that the
insert method preserves this invariant (O2), we use the
postcondition of add (A2) to derive that the list after the
call contains exactly the elements before the call plus the
new element k. If k happens to be a new maximum in the
list, then BagWithMax’s invariant is violated after the call,
but reestablished by the subsequent assignment to maxElem,
which satisfies (O1).

As can be seen from the example above, responsibility for
verifying invariants is divided. A method’s implementor is
responsible for the objects that are relevant to its execu-
tions, but its calling method is responsible for other objects.
Which invariants are relevant is decided statically using the
Universe type system. There are only two possibilities:

1. The receiver expression of the call is of a peer type.
That is, the caller and receiver of an invocation are in

the same context. As in the classical technique, the
guarantees provided by the called method are exactly
the obligations the calling method has to satisfy.

2. The receiver expression of the call is of a rep type. In
this case, the receiver is owned by the caller. As illus-
trated by the above example, the latter case is handled
by using the method specification of the called method
to reason about those invariants that are relevant to
the caller, but not to the receiver.

This proof technique, besides handling layers of mutable ob-
jects and supporting modular verification, is sound with re-
spect to the relevant invariant semantics. The proof of the
soundness theorem below is contained in Appendix B.

Theorem 6.6 (Ownership invariant soundness).
Let P be a program that is type correct in the Universe
type system. Suppose all invariants of P are ownership
admissible and methods of P only assign to fields of this

and array elements.

If all invariants of P have been proven using the ownership
proof technique, and if X is an object relevant to the exe-
cution of a method m, then X satisfies its invariant in the
visible states of m’s execution.

7. READONLY REFERENCES
An important extension to ownership type systems, and one
that relaxes some of the restrictions of the ownership tech-
nique, is transitive readonly references [8, 39, 48]. Such ref-
erences can cross context boundaries, thereby permitting
patterns that would otherwise violate the ingoing and outgo-
ing reference invariant (properties 1 and 2 of Corollary 5.2).
Among such patterns are collections that do not own their
elements, iterators, binary methods, and clone operations.
Transitive readonly references can be allowed to cross con-
texts since they cannot be used to modify the referenced ob-
jects. Both the ownership technique, and the visibility tech-
nique (described below) are easily extended to cover such
readonly references.

In this section we describe how to extend the ownership
technique to cover transitive readonly references. The main
semantic complication is a special proof obligation for cer-
tain calls of side-effect free methods.

7.1 Syntax
The basic mechanism is simple. Besides the ownership mod-
ifiers rep and peer, we add the modifier readonly to the
annotation language. Variables and expressions with this
modifier can hold references to objects in arbitrary con-
texts. However, these readonly references must not be used
to modify the referenced object. In JML, this restriction
is checked syntactically: a readonly expression must not be
used as receiver expression of a field update, an array up-
date, or an invocation of a non-pure method. Pure methods
are side-effect free methods. Since they do not modify the
state of any allocated object, they can be called on readonly
receivers.
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class ListIterator {

private /*@ spec_public @*/ List theList;

private /*@ spec_public readonly @*/

int[] theArray;

private /*@ spec_public @*/ int position;

/*@ public invariant theList != null

@ && theList.array == theArray

@ && 0 <= position

@ && position < theList.n; @*/

public /*@ pure @*/ boolean hasNext() {

return position != theList.size();

}

public int getNext() {

return theArray[position++];

}

// other methods and constructors omitted.

}

Figure 11: ListIterator implements iterators for the
array-based List (Fig. 1). The iterator has a di-
rect readonly reference to the list’s internal array.
ListIterator’s invariant is not admissible in the own-
ership technique because theList has no rep annota-
tion.

Class ListIterator (Fig. 11) illustrates how readonly ref-
erences can be used to implement iterators. A List object
and the associated iterators are in the same context. The
iterator stores a reference to the array of the list. Since
this array is owned by the List object, this reference has to
be readonly as indicated by the readonly modifier of field
theArray. Method getNext uses the readonly reference to
directly access the internal list representation. However, the
readonly reference to the array cannot be used to modify
the list. Modifications must be performed by the owning
List object. ListIterator objects store a reference to the
associated List object, which can be used to delegate mod-
ifications to the list (not shown in the example).

In the Universe type system, readonly types are supertypes
of the corresponding peer and rep types. Therefore, expres-
sions of peer and rep types can be assigned to variables of
readonly types. Conversely, downcasts can be used to cast
readonly into rep or peer types. Runtime checks guarantee
that the more specific owner information of the rep or peer
type is correct and that subclass separation is preserved [32].

Readonly types are used for all expressions that cannot be
statically determined to evaluate to a peer or a rep refer-
ence. That is, instead of forbidding expressions of form 4
in the Universe type rule for field accesses (Sec. 5.2), these
expressions are typed readonly. For instance, if ro is a vari-
able of a readonly type and field f has type peer T, then
ro.f has type readonly T because the expression evaluates
to a reference to a T object in a context that is not known
statically.

class Purse {

private /*@ spec_public @*/ int amount;

//@ public invariant 0 <= amount;

//@ ensures 0 <= \result;

/*@ pure @*/ int getAmount() {

return amount;

}

// other methods and constructors omitted.

}

Figure 12: The pure method getAmount of class Purse

can be called on readonly receivers.

class Person {

private /*@ spec_public @*/ Person spouse;

private /*@ spec_public rep @*/ Purse purse;

/*@ public invariant purse != null

@ && spouse != this; @*/

//@ ensures 0 <= \result;

public /*@ pure @*/ int amountSpendable() {

int res = purse.getAmount();

if (spouse != null) {

/*@ readonly @*/ Purse p = spouse.purse;

res += p.getAmount();

}

return res;

}

// other methods and constructors omitted.

}

Figure 13: Method amountSpendable of class Person

accesses the Purse object owned by spouse. Since
this object is neither in the same context as this nor
owned by this, the field access spouse.purse yields a
readonly reference.
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Readonly references and pure methods are illustrated by
the classes Purse and Person (Figs. 12 and 13). Method
getAmount of class Purse relies on the invariant to guarantee
its postcondition. A person can spend their money and the
money of their spouse. Person’s method amountSpendable

accesses the Purse objects of this and of spouse to deter-
mine the amount of money the person can spend. The field
access spouse.purse yields a readonly reference since the
referenced Purse object is owned by spouse and is, thus,
neither in the same context as this nor owned by this.
Method amountSpendable can use this readonly reference
to call the pure method getAmount, but could not modify
the spouse’s Purse object, for instance, to take out money.

An ownership model with readonly references guarantees a
slightly weaker program invariant and, therefore, ownership
properties that are weaker than those in Corollary 5.2. The
ingoing and outgoing reference invariants hold for chains
of readwrite (that is, peer or rep) references, but not for
reference chains that contain readonly references. Context
encapsulation and Corollary 5.3 hold for non-pure methods,
but pure methods can be invoked from any context via a
readonly reference. Context locality and subclass separation
(Corollary 5.4) are not affected by readonly references.

Whereas the weaker ownership properties provide additional
ways to read an object’s state, they do not enable additional
modifications. This allows us to adapt the ownership tech-
nique to these weaker ownership properties, described next.

7.2 Ownership Technique with Readonly Ref-
erences

When combined with readonly references, the ownership
technique can handle even more examples including collec-
tions of object identities, such as object lists, iterators, etc.

To maintain the encapsulation principle, an object needs
control over the locations its invariant depends on. There-
fore, the invariant of an object, X, may only depend on
mutable locations of X and objects owned by X. This is
guaranteed by requiring that the fields or array elements
g1, . . . , gN−1 in form 3 of the definition of admissible invari-
ants (Def 6.2) are not declared with a readonly annotation.

The proof obligations of the ownership technique (Def. 6.5)
stay essentially unchanged. However, calls of pure meth-
ods on readonly receivers impose an additional obligation.
When a readonly reference is used as receiver of a method
call, the receiver, X, can be in an arbitrary context. In
particular, X can be one of the (transitive) owners of this,
whose invariant is temporarily violated. That is, the method
may be executed in a state in which the relevant object X

does not satisfy its invariant, which clearly violates the rel-
evant invariant semantics (Def. 6.4).

To avoid the unsoundness caused by such re-entrant calls, we
add the following proof obligation to the proof obligations
of the ownership technique (Def. 6.5):

(O3) For each method m, and for each method call o.p(~e),
appearing in m, if o has a readonly type, then one must
show that the object referenced by o is inside the context
that contains m’s this object.

Since the receiver, o, of a call to method p is inside the con-
text of the caller, all objects relevant to the execution of p

are also relevant to the caller. Therefore, the invariants of
these objects hold in the prestate of p. Due to this proof
obligation only ingoing readonly references can be used as
receivers of method calls.2 However, outgoing readonly ref-
erences can still be used to compare object identities or read
fields.

In many practical cases, the additional proof obligation can
be shown by using Universe type information. Consider the
call p.getAmount() in Person’s amountSpendable method.
We know that p is inside the context that contains the this

object, because (1) spouse is in the same context as this

(spouse is a peer field) and (2) spouse.purse is in the con-
text owned by spouse (purse is a rep field). Consequently,
spouse.purse and, thus, p is inside the context that con-
tains the this object.

In the ListIterator example, the invariant and the types
of theList and List’s array field can be used to show that
the array referenced through theArray is inside the con-
text that contains the ListIterator object. Again, this
allows ListIterator to call pure methods on the array, for
instance, equals (not shown in the example).

The ownership technique in the presence of readonly refer-
ences is sound, that is, with the adapted proof obligations,
Theorem 6.6 still holds. For non-pure methods m, the proof
in Appendix B remains valid. For calls of pure methods, the
additional proof obligation guarantees that all relevant ob-
jects satisfy their invariant in the prestate of m’s execution.
Since m is side-effect free, it cannot violate any invariants.
Consequently, the relevant invariants still hold in the post-
state.

8. LIMITATIONS OF THE OWNERSHIP
TECHNIQUE

The ownership technique presented above is a proper gen-
eralization of the classical technique for reasoning about in-
variants. This is because a Java program that meets the
assumptions of the classical approach (Def. 3.2 and 3.1),
trivially passes the Universe type system (because it has no
rep and readonly annotations) and meets the assumptions
of the ownership technique (Def. 6.1 and 6.2).

In addition to all implementations that can be handled
by the classical approach, the ownership technique is ca-
pable of expressing invariants of non-trivial layered object
structures that are encapsulated, that is, those that are ac-
cessed through a single owner object. Such structures in-
clude record-like collections of data (e.g., Person objects)
and recursive data structures such as balanced trees that
are accessed through the root object.

However, ownership encapsulation (Def. 6.1), even with the
addition of transitive readonly references, is too strong for
several interesting implementations. In addition to the re-
strictions imposed by the ownership model (Subsection 5.2),
the ownership technique has the following limitations.

2 On outgoing readonly references, only pure helper meth-
ods, which do not assume invariants to hold, could be called.
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class Person {

private /*@ spec_public @*/ Person spouse;

// ... other members and specifcations as before

/*@ public invariant spouse != null

@ ==> spouse.spouse == this; @*/

/*@ requires p != null && p != this

@ && spouse == null && p.spouse == null; @*/

public void marry(Person p) {

spouse = p;

p.spouse = this;

}

}

Figure 14: The extension of class Person (Fig. 13) is
not admissible in the ownership technique because
spouse has no rep annotation and method marry di-
rectly assigns to p’s field.

Recursive data structures: Invariants over mutually recur-
sive data structures are not ownership admissible. For in-
stance, the additional invariant of class Person in Fig. 14
is not admissible in the ownership technique since a per-
son does not own its spouse. This problem cannot be fixed
by declaring spouse as rep, because that would mean that,
X.spouse would have a rep reference to its owner, X (since
X== X.spouse.spouse), which is forbidden by the outgoing
reference invariant (Corollary 5.2).

Direct field access: A method can only assign to fields of
the this object. As shown by method marry (Fig. 14), it
is often convenient to allow cooperating objects to directly
assign to each other’s fields.

Iterators: Iterators have invariants that depend on the
states of the collections over which they iterate. For ex-
ample, the ListIterator in Fig. 11 depends on theList.n.
However, to allow several iterators for one list and to avoid
copying the list, the iterator does not own the list (theList
is not declared with rep). Such invariants are not ownership
admissible.

These three limitations stem from the principle that the
invariant of an object X can depend only on those locations
whose modification X can control. In the next section, we
describe how to achieve more expressiveness for the price of
more proof obligations.

9. THE VISIBILITY TECHNIQUE
The visibility technique, presented in this section, directly
addresses the problems of recursive data structures, direct
field access, and iterators that were described in Section 8.

9.1 Overview of the Visibility Technique
The visibility technique allows invariants for recursive data
structures, by weakening the restrictions on admissible in-
variants. In addition, it removes the restriction on what
fields a method can assign to. For example, the visibility
technique allows the invariant of a Person object to depend

on the state of its spouse (as in Fig. 14). Furthermore, meth-
ods, such as marry, are allowed to directly assign to a field
of the new spouse, p.

For soundness, the visibility technique must impose more
and stronger proof obligations. For example, allowing the
invariant of Person to depend on the spouse field of its
spouse means that changing the state of a Person object
could break the invariant of its spouse. Furthermore, allow-
ing the marry method to directly assign to the spouse field
of the new spouse, p, potentially breaks the invariant of the
receiver object p, and any old spouses. The technique com-
pensates, however, by requiring that a method making such
a change re-establish the invariant of these objects. That
is, the visibility technique imposes additional proof obliga-
tions on methods that ensure that these potentially-broken
invariants are preserved [31, 38].

Moreover, the visibility technique allows one to determine
what these additional proof obligations are modularly. The
idea is to only add proof obligations that follow the pro-
gram’s module structure. So, an invariant, I, of an object
X may depend on a field, f , of an object Y in X’s con-
text, provided that the declaration of I is visible where f

is declared; this ensures that X’s invariant I is visible in
each method, m, that can assign to Y.f ; such methods must
preserve I for all relevant objects (which includes X). Most
of these proof obligations can be discharged easily, since all
invariants that do not depend on state that was modified by
a method are trivially preserved.

For example, the invariant of a Person object (Fig. 14) can
depend on the spouse field of its spouse. The additional
proof obligations require one to show that each method, m

of class Person preserves the invariant of all Person objects
in the context in which m is executed. In particular, one has
to prove that marry preserves the invariants of the objects
it modifies directly: this and p. Moreover, one has to prove
that the invariants of all other objects in the same context
are preserved, because these invariants are potentially af-
fected by the modifications; in particular, any spouses of the
modified objects might be affected. However, the precondi-
tion of the marry method avoids dealing with such previous
spouses by requiring that both objects have a null spouse
field.

In summary, the key idea is that if an invariant declaration
is visible in every method that might violate that invariant
for a relevant object, then the obligations to preserve these
invariants can be shown modularly.

To describe this idea more precisely, we need to describe a
module system that defines an appropriate notion of visibil-
ity. We assume a simple module system, in which modules
correspond to compilation units in Java. A declaration in
class T is visible in a method m if T ’s module is imported
by the module that contains m.3

Given this notion of visibility, we can summarize the main

3We assume that each module imports itself. Visibility must
not be confused with accessibility: Each accessible declara-
tion is visible, but declarations declared to be private will
be visible but not accessible.
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idea behind the visibility technique as follows.

Definition 9.1 (Visibility Principle). An invari-
ant, I, obeys the visibility principle if I’s declaration is
visible in every method, executions of which might violate I

for a relevant object.

The visibility technique combines the visibility principle and
the ownership technique. This gives specifiers the flexibility
to make trade-offs between expressiveness and the required
proof obligations. We discuss these trade-offs in Sec. 10.

9.2 Encapsulation in the Visibility Technique
The visibility technique uses the concepts from the own-
ership model, but does not need the requirement that a
method can only assign to fields of its receiver. In the visi-
bility technique, a method is allowed to assign to fields of all
objects in the context in which it is executed. This change
from ownership encapsulation (Def. 6.1) is highlighted in
bold below.

Definition 9.2 (Visibility encapsulated). A loca-
tion Y.f is visibility encapsulated in an object X if:

1. X = Y and the only assignments to X.f occur in
method executions in X’s context, or

2. X owns Y .

For example, method marry (Fig. 14) is allowed to assign
to p.spouse, as p is a peer object (since that is the de-
fault ownership annotation in the Universe type system),
and hence p is in the same context as the receiver.

9.3 Visibility Admissible Invariants
The notion of visibility encapsulation permits methods to
modify fields of other objects. As noted above, the invariants
for such programs need to depend on mutable fields of non-
rep objects in the same context. This requires a more general
notion of admissible invariants.

Definition 9.3 (visibility admissible). An access
expression occurring in a class C is visibility admissible if
it has one of the following forms:

1. g0 . . . gN , N ≥ 0, where g0 is a field name declared in
C, for each 0 ≤ i < N, g0 . . . gi is a visibility ad-

missible combination of peer field accesses, gN is

a field access, and if N > 0, then gN accesses a

non-constant field,

2. g0 . . . gN , N > 0, where for each 0 ≤ i < N , g0 . . . gi is
visibility admissible, and gN is a constant field access,
or

3. g0 . . . gN , N > 0, where the pivot field g0 is declared
with a rep annotation, for each 0 ≤ i < N , g0 . . . gi is
visibility admissible, and where each of the fields and
array accesses in g1, . . . , gN−1 are declared with a rep

or peer annotation.

An invariant declaration in class C is visibility admissible if
each of its access expressions is visibility admissible, and

if, for each each access expression, g0 . . . gN , of form 1

that appears in the invariant, the invariant is visible

in the class that declares the field named in gN .

Access expressions of form 1 use the visibility principle to
generalize form 1 of the definition of ownership admissible
access expressions (Def. 6.2). This is a strict generalization,
as can be seen by setting N = 0. This generalization al-
lows the invariant of an object to depend on locations of
other objects in the same context, which is the reason why
form 1 uses peer accesses. Access expressions of form 1 are
statically distinguishable from those of form 2, since only
form 1 can consist of a single field name, and when N > 0,
only in form 2 can gN access a constant field. Access ex-
pressions of form 1 are also statically distinguishable from
those of form 3, since only form 1 can consist of a single field
name, and when both have length N > 0, the former must
start with a peer field name, g0, while the latter must start
with a field name, g0, that has a rep annotation. Access ex-
pression forms 2 and 3 are isomorphic to the corresponding
cases in the definition of ownership admissible field accesses
(Def. 6.2).

The invariant in class Person (Fig. 14) is visibility admissi-
ble, because spouse.spouse is a visibility admissible access
expression of form 1, and because Person’s invariant is vis-
ible in the class that declares spouse, namely Person.

The invariant of class ListIterator (Fig. 11) is admis-
sible, because theList.array and theList.n are visibil-
ity admissible access expressions of form 1, assuming that
ListIterator is visible in class List, where array and n are
declared.

9.4 Semantics
The visibility technique uses the relevant invariant semantics
(Def. 6.4).

9.5 Visibility Proof Technique
The visibility proof technique describes how to prove cor-
rectness of visibility admissible invariants with respect to
the relevant invariant semantics. The ownership proof tech-
nique (Def. 3.4) is not sound for use with all visibility ad-
missible invariants, as it relies on ownership encapsulation.
The additional proof obligations needed are highlighted in
bold in the following definition.

Definition 9.4 (Visibility proof technique). Let
T be a class and let inv(T ) denote the conjunction of the in-
variants declared in T and its superclasses. Let pre(o.p(~e))
and post(o.p(~e)) denote the pre- and postcondition of a call
to method p, determined by the static types of o and ~e.

For each method m, and for all classes T visible in m,
one must show that: (O1) inv(T ) holds for each T object

in m’s context in each poststate of m’s execution and m’s
postcondition holds in each poststate, and (O2) for every
call of a method, o.p(~e), that appears in the body of m,
pre(o.p(~e)) holds in the call’s prestate, and if o is in m’s
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context, then inv(T ) also holds for each T object in m’s

context in the prestate of the call to p. Moreover, (O3) for
each method m, and for each method call o.p(~e), appearing
in m, if o has a readonly type, then one must show that the
object referenced by o is inside the context that contains m’s
this object.

For the proof of each method m, one may assume that:
(A1) the invariants of all allocated objects that are rele-
vant to the execution of m and m’s precondition hold in
m’s prestate, and (A2) after each call of a method, o.p(~e),
post(o.p(~e)) holds and all allocated objects that are relevant
to the execution of o.p(~e) satisfy their invariants.

These proof obligations include the proof obligations of the
ownership technique (Def. 6.5 and its extension for readonly
references). To see this, let m be declared in class C. Then C

and C’s superclasses are visible in m. Moreover, the current
receiver object of m is a C object in the context in which m

is executed. So inv(C) must be established before calls in
the body of m (O2) and inv(C) must also be preserved by
m (O1).

As an example of this proof technique, consider proving that
(O1) Person’s marry method (Fig. 14) preserves the invari-
ant of all relevant Person objects, including the argument
p. The proof starts by assuming (A1) that Person’s invari-
ant holds for both this and p, and that the precondition
of marry also holds. The precondition says that p and this

are distinct, and that both have no spouse. The assign-
ment of p to the spouse field of this breaks the invariant of
this, although since p is distinct, its invariant is not broken.
Then the assignment of this to p.spouse reestablishes the
invariant of this and preserves the invariant of p. No other
Person objects have their invariants broken by this assign-
ment, since they cannot depend on either p or this, by the
precondition. This establishes (O1).

The soundness theorem for the visibility technique is simi-
lar to the ownership soundness theorem (Theorem 6.6), but
deals with methods that assign to fields of objects other
than the current receiver object and the larger set of admis-
sible invariants. The proof of the theorem is contained in
Appendix C.

Theorem 9.5 (Visibility invariant soundness).
Let P be a program that is type correct in the Universe
type system. Suppose all invariants of P are visibility
admissible and methods of P only assign to fields of this,
array elements, and fields of peer objects.

If all invariants of P have been proven using the visibility
proof technique, and if X is an object relevant to the exe-
cution of a method m, then X satisfies its invariant in the
visible states of m’s execution.

According to this soundness theorem, the proof obligations
of the visibility proof technique (Def. 9.4) suffice to guaran-
tee the relevant invariant semantics (Def. 6.4), even in the
presence of the more general visibility admissible invariants
(Def. 9.3). In particular, it suffices to prove that a method,

m, preserves the visible invariants of the objects in its con-
text. By the definition of visibility admissible invariants, m

cannot violate non-visible invariants of these objects.

10. DISCUSSION
Two fundamental principles enable the modular verification
of invariants: Techniques based on the following encapsu-
lation principle gain their modularity from protecting the
dependees of an invariant from certain modifications that
potentially break the invariant. Both the classical technique
and the ownership technique are encapsulation-based.

Definition 10.1 (Encapsulation Principle). The
invariant of object X obeys the encapsulation principle
if it only depends on locations encapsulated in X and on
locations for constant fields.

In contrast, techniques based on the visibility principle
(Def. 9.1) gain their modularity from enforcing that all in-
variants that are potentially affected by a field update are
visible in the method that contains the update. Therefore,
it is possible to show modularly that these invariants are
preserved.

The visibility technique presented in this paper uses both the
visibility and the encapsulation principle. A purely visibility-
based technique would allow only forms 1 and 2 of Def. 9.3.
Our visibility technique also supports access expressions of
form 3, which use ownership, that is, encapsulation.

In this section, we summarize the trade-offs between the two
principles and discuss combinations of both.

10.1 Trade-Offs
The choice between encapsulation-based and purely
visibility-based techniques is essentially a trade-off between
expressiveness and verification effort.

Encapsulation-based techniques support layered object
structures in which the invariant of an object, X, depends
only on locations of objects in deeper layers that are exclu-
sively owned by X. Such invariants occur in many practical
examples, in particular, aggregate objects. However, they
cannot express properties of common implementations such
as mutually recursive classes. In contrast, purely visibility-
based invariants relate objects in the same layer, but require
that the invariant is visible in all classes that declare mutable
fields the invariant depends on Therefore, purely visibility-
based invariants of client programs must not depend array
elements or fields of library classes because the invariant is
not visible in these classes (recall that array elements behave
like public fields of class Object).

The restrictions of encapsulation-based techniques lead to
very simple proof obligations limited to the invariant of the
current receiver object (see Defs. 3.4 and 6.5). Visibility-
based techniques generally impose proof obligations for all
visible invariants, which is often tedious.

In both approaches, the proof obligations can be discharged
in a modular fashion. That is, the proof obligations for a
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method m can be proven by using m’s implementation and
the invariants that are visible in m. Invariants that are not
visible in m cannot be violated by executions of m.

If applied in isolation, both encapsulation-based and purely
visibility-based invariants are too restrictive for many com-
mon implementations. Therefore, our visibility technique
combines both approaches. A verification tool can inspect
invariants syntactically and determine whether the simple
proof obligations of the ownership proof technique (Def. 6.5)
suffice or whether all proof obligations of the visibility proof
technique (Def. 9.4) are required.

The visibility technique presented in Sec. 9 is one way of
combining the encapsulation and visibility principles to an
expressive and practical verification technique. Other com-
binations make different trade-offs between expressiveness
and the number of proof obligations. For instance, the
number of proof obligations can be reduced by restrict-
ing visibility-admissible invariants. Assume that form 1 of
Def. 9.3 requires that all fields gi are declared in classes
in C’s package and have private or default access. Then
the only methods that potentially violate the C invariant
of an object in the context in which the method executes,
are methods declared in classes in C’s package. Methods of
classes not in C’s package cannot assign to any of these
fields, gi. Consequently, it is sufficient to prove that a
method m of a class T preserves the invariants declared
in the classes in the package that contains T (instead of
all visible invariants) for objects in the context in which m

executes.

10.2 Example
The producer-consumer example in Figs. 15 and 16 illus-
trates the expressiveness of combining encapsulation-based
and visibility-based invariants. It is adopted from Barnett
and Naumann [7], who present a number of interesting im-
plementations that can be handled by visibility techniques.

The classes Producer and Consumer are implemented in
the same package, which allows them to mutually access
their default access fields. A Producer and a Consumer ob-
ject share a common ring buffer of natural numbers, imple-
mented by an array. The producer stores the index, f, of
the next free array element, and the consumer stores the
index, n, before the array element that is consumed next.
That is, array elements n + 1 to f − 1 contain products,
whereas elements f to n are empty. The synchronization
of producer and consumer is expressed by specifications. To
allow specifications of the producer to refer to the index n of
the consumer, producers store a reference to the associated
consumer, and vice versa.

Producer’s invariant expresses that the elements in the
buffer array are natural numbers. This invariant requires
encapsulation of the array, that is, uses the ownership tech-
nique.

Consumer’s invariant specifies that a producer and the asso-
ciated consumer are correctly linked to each other (analo-
gously to the spouse invariant, see Fig. 14) and that both
refer to the same buffer. Since Producer and Consumer ob-
jects do not own each other, this invariant requires visibility,

import Consumer;

class Producer {

/*@ spec_public rep @*/ int[] buf

= new /*@ rep @*/ int[10];

/*@ spec_public @*/ int f = 0;

/*@ spec_public peer @*/ Consumer con = null;

/*@ public invariant buf != null

@ && (\forall int i; 0<=i && i<buf.length;

@ buf[i]>=0)

@ && 0 <= f && f < buf.length; @*/

/*@ requires con != null

@ && con.n != (f+1) % buf.length;

@ assignable buf[f], f;

@ ensures f == \old((f+1) % buf.length);

@*/

void produce(int x) {

buf[f] = x;

f = (f+1) % buf.length;

}

}

Figure 15: Implementation of the producer. The
invariant constrains the values stored in the buffer.

that is, Consumer has to be visible in class Producer. This
requirement is met because the classes import each other.

Besides illustrating the visibility technique, this example
is interesting because it demonstrates that the ownership
model does not necessarily prevent different objects from
sharing common data: although the buffer is owned by the
producer, the consumer can directly access the buffer via a
readonly reference.

11. FUTURE WORK
An important topic for future work is invariants over model
(specification-only) fields [29, 31], which are useful to de-
scribe properties of data structures without referring to their
concrete implementation. Müller’s work [38] shows that the
presented approach carries over to visibility-based invariants
with model fields. Adapting the technique to ownership in-
variants over model fields is planned for future work, which
might simplify the proof obligations in many practical cases.

Another topic is how to support static fields and global data,
which requires a generalization of the ownership model used
in this paper.

To avoid problems with re-entrant method executions [26],
the visibility technique imposes a proof obligation (O2 in
Def. 9.4). This proof obligation requires that before a
method m makes a call o.p(~e), if o is a peer object, then
m must re-establish the visible invariants of objects in m’s
context. This is less onerous than the classical technique,
since it does not require re-establishing m’s receiver object’s
invariant (and the invariants of other objects in m’s context)
when manipulating the receiver’s owned representation ob-
jects. It remains to be seen how difficult the proof obligation
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import Producer;

class Consumer {

/*@ spec_public readonly @*/ int[] buf;

/*@ spec_public @*/ int n;

/*@ spec_public peer @*/ Producer pro;

/*@ public invariant buf != null

@ && 0 <= n && n < buf.length

@ && pro != null && pro.con == this

@ && pro.buf == buf; @*/

//@ requires p != null && p.con == null;

Consumer(/*@ peer @*/ Producer p) {

buf = p.buf;

pro = p;

n = buf.length-1;

pro.con = this;

}

/*@ requires (n+1) % buf.length < pro.f;

@ assignable n;

@ ensures n == \old((n+1) % buf.length);

@*/

int consume() {

n = (n+1) % buf.length;

return buf[n];

}

}

Figure 16: Implementation of the consumer. A
readonly reference allows the consumer to directly
access the buffer owned by the producer. The
visibility-based invariant relates a consumer to its
producer.

that remains is in practice or whether some more sophisti-
cated treatment of re-entrant method calls is needed.

History constraints [35], which are also found in JML, suffer
from the same problems as the classical invariant technique
when applied to object structures. We plan to extend the
techniques presented here to history constraints and possibly
also to more general temporal constraints.

An open problem that is left for future work is that the
classical technique as well as our ownership and visibility
techniques require that invariants cannot depend on inher-
ited fields. That is, the invariant in a class C cannot depend
on a field this.f , if f is declared in a superclass of C. The
reason for this restriction is that superclass methods could
assign to f , thereby breaking such an invariant, but C’s in-
variant is generally not available when reasoning about the
superclass.

There are two kinds of subclasses that typically would con-
tain such invariants. One is a subclass that restricts the
set of possible states of objects. For instance, one could
have a subclass of class List, NonEmptyList, that requires
the list to have at least one element. Its invariant stating
this restriction would depend on the inherited field n. Con-

sider adding a remove method to List. A call to such a
method could break this invariant. The other kind of sub-
class relates inherited to newly-declared fields. For instance
a subclass of class BagWithMax, BagWithHistoricMax, could
store the largest value that has ever been seen by the bag.
Its invariant stating this property would say that the his-
toric maximum is at least as large as maxElem. A call to
BagWithMax’s insert method that assigns to maxElem could
break this invariant.

One solution that has been proposed is to force the program-
mer to override the methods of the superclass that might
potentially break the invariant [47]. We could adopt this
approach, but not all superclass methods can be overridden
in Java (e.g., final methods). So this approach works for
some but not all examples. Moreover a soundness proof is
still in progress [46].

Leino and his colleagues proposed type-indexed invariants
[6]. With such invariants, one can specify that a method of
class C preserves the invariants declared in C and its su-
perclasses, but might break the invariants declared in sub-
classes of C. Since this approach allows methods to break
certain relevant invariants, its application to a visible state
semantics is not immediate.

12. RELATED WORK
The concept of abstraction layers has a long history, going
back to at least to the THE operating system [19]. However,
the present paper is not about the concept of layering itself,
but about techniques for specifying invariants that allow one
to structure a system in layers.

In this section, we discuss papers from the large literature on
invariants that are directly related to invariants for layered
object structures. Since the Universe type system is not a
contribution of this paper, the discussion of related work on
ownership models focuses on how our ownership and visibil-
ity techniques can be combined with different models.

12.1 Invariants
Although the B-Method [1] is only object-based, it follows
the classical invariant approach in the sense that it does not
allow a machine (ADT) to impose additional invariants on
the machines it builds on. This forces users to refine ma-
chines to maintain extra invariants, which is inconvenient
and would not always be possible in object-oriented lan-
guages (see Section 11).

The proof obligations for the classical invariants are, for in-
stance, used in Meyer’s work [36, 37] and the KeY tool [3].
They permit invariants over arbitrary object structures, but
without the restrictions presented here; hence their tech-
nique is not sound. For example, their work allows invari-
ants over object structures like in List and BagWithMax, but
uses the classical proof technique. We have argued in Sec. 4
why this is not sound.

Liskov, Wing, and Guttag [34, 35] use a slight adaptation of
the classical technique which requires the invariant of class
T only to depend on private fields declared in T . Their
technique enables a sound treatment of invariants for simple
recursive object structures such as singly-linked lists. How-
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ever, our technique allows invariants to depend on fields of
other types, which is necessary in layered structures, as illus-
trated in Fig. 2. Liskov and Wing do not explicitly discuss
the soundness issues related to invariants that depend on
inherited fields. We forbid such dependencies.

Huizing and Kuiper [26] present a proof system that sup-
ports invariants for arbitrary object structures. Invariants
are analyzed syntactically to determine which methods of
a program could violate which invariants. However, this
whole-program analysis is not modular.

The work by Leino and Nelson [31, 33] has visibility-based
invariants for object structures. It uses dependency decla-
rations to formulate restrictions that enable sound modular
reasoning. This work is not based on the notion of owner-
ship, which makes it difficult to formulate the requirements
for admissible invariants. The soundness proof for static
dependencies (form 1 of Def. 6.2) is very complicated and
there is no proof for the more interesting case of dynamic
dependencies (form 3 of Def. 6.2). Moreover, this work does
not use a visible state semantics: any method can violate in-
variants as long as the violation is specified in the method’s
modifies clause. Visible states make explicit in which states
invariants can be assumed to hold, which is useful in prac-
tical specification languages.

We have discussed the work of Barnett, et al. [6] in Sec-
tion 1.2. Leino and Müller [32] as well as Barnett and Nau-
mann [7] extended the work by Barnett et al. [6] to visibility-
based invariants. Barnett et al.’s work [6] cannot handle mu-
tually recursive structures. Visibility-based invariants give
much more flexibility, and in particular such invariants per-
mit all the examples we can handle with visibility-based in-
variants. However, they still suffer from the disadvantages
mentioned above.

Barnett and Naumann [7] propose two ways to reduce the
number of proof obligations for visibility-based invariants.
First, update guards specify conditions under which a field
update is guaranteed not to violate the invariant of an ob-
ject. Second, sets of dependent objects can be used to de-
termine efficiently all objects whose invariant is potentially
broken by a field update. Both approaches can be combined
with our visibility technique to simplify verification.

DeLine and Fähndrich [15] use typestates to express consis-
tency of objects. Typestates can essentially express classical
invariants (Def. 3.2) and also allow invariants to depend on
inherited fields. Moreover, different invariants can be spec-
ified for the different typestates of an object. Aliasing is
handled by a type system with linearity and the adoption
and focus model [21], which provides a controlled way of
creating aliases and accessing aliased objects, loosening the
rigid uniqueness requirements imposed by linear type sys-
tems. Typestates can be checked automatically by a type
checker, but they do not support invariants for object struc-
tures, which limits their application to comparably simple
consistency criteria.

Separation logic [44] and related approaches [2, 27] allow one
to express that a predicate depends only on certain objects
of a heap. It has been used to reason about classical invari-

ants of modules with one instance [42]. However, this work
does not address object-oriented languages. Applying sep-
aration logic to reason about the programs and invariants
considered in this paper is ongoing research.

12.2 Ownership Models and Readonly Refer-
ences

The ownership model supported by ownership types [13,
14] is similar to the model used in this paper. It does not
support readonly references, but allows objects to reference
objects in ancestor contexts. Like outgoing readonly ref-
erences, these references can be used to invoke methods on
receivers whose invariant is temporarily violated. Our verifi-
cation techniques can be adapted to this model by forbidding
calls of non-helper methods on outgoing references. The
ownership parameters of the ownership type system allow
one to determine statically whether a reference is outgoing.

SafeJava [10, 12] supports multiple ownership: An object X

and all associated instances of inner classes can access the
objects owned by X. Since a class and its inner classes are
mutually visible, the adaption of the visibility technique to
this model is straightforward.

Aldrich’s work [4] structures contexts into domains, which
can be public. Objects outside a context, Γ, can access ob-
jects inside Γ through Γ’s owner or any object in one of
Γ’s public domains. For instance, iterators in a public do-
main of a collection are accessible for clients of the collec-
tion. They can be allowed to reference the representation
of the collection stored in another domain. Since objects
outside a context, Γ, can modify objects inside Γ without
going through Γ’s owner, the encapsulation principle is vi-
olated. Consequently, the ownership proof technique is not
sound for this model. However, the visibility technique can
be adapted by requiring that the invariant of Γ’s owner is
visible in the classes of all objects in Γ’s public domains and,
therefore, in all clients that call methods on objects in the
public domains.

Leino and Müller [32] use an ownership model that is very
similar to our model. Although modifications of an object
have to be initiated by its owner, this work does not re-
strict aliasing. Instead of using a type system, Leino and
Müller’s methodology encodes ownership dynamically via
ghost fields, invariants, and new statements. Therefore, it
can handle programming patterns that cannot be statically
typed in the Universe type system. For instance, it supports
ownership transfer, which allows additional examples such
as merging two doubly-linked lists. However, as pointed out
previously, the main disadvantage of this approach is that it
has a much higher specification and verification overhead.

Leino and Müller achieve the equivalent to subclass sepa-
ration by using pairs of an object, X, and a “typeframe”
of X as owner of an object. For instance, if X is an ob-
ject of a class C, then an object can be owned by the pair
[X, D], where D is a superclass of C. The same ownership
information is necessary in our approach to generate proof
obligations that guarantee that downcasts from readonly to
rep types preserve subclass separation.

Soundness of our verification techniques does not require
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that pure methods are completely side-effect-free. JML al-
lows pure methods to create and initialize new objects. In
Skoglund’s readonly system [48], a pure method must not
modify the state of objects reachable from its receiver ob-
ject, but is allowed to modify other parameter objects. This
requirement is weaker than JML’s purity, but strong enough
to guarantee soundness of our techniques.

Birka and Ernst [8] present a type system for reference im-
mutability, which is very similar to our readonly references,
but not integrated with an ownership type system. Birka
and Ernst’s type system allows pure methods to modify
fields explicitly declared as mutable, for instance, to up-
date local caches. Soundness of our ownership and visibility
techniques can be achieved for this notion of purity by pre-
venting invariants from referring to mutable fields.

Naumann [40] generalizes purity to observational purity,
which allows pure methods to make modifications as long
as these modifications cannot be observed by client code.
His work can be combined with our verification techniques
by considering dependencies of client invariants as obser-
vations. In particular, this means that an observationally
pure method must not assign to spec public fields that are
potentially mentioned in client invariants.

The above discussion shows that our verification techniques
are general enough to be adapted to new developments in
ownership models, readonly references, and purity.

13. CONCLUSIONS
In this paper, we have generalized classical object invariants
to invariants over object structures. The classical technique
cannot handle even simple object structures that use layers
of abstractions such as bags built on top of lists. To handle
such layers, the key idea is the relevant invariant semantics,
which is based on the structure provided by an ownership
model for alias control.

The essence of the technique presented in this paper is the
set of guidelines for programming and code reviewing in
Fig. 17. Using an ownership model like the Universe type
system would automatically enforce Rule 1 of the guidelines.
Rule 2 reflects the definition of visibility-based invariants
(Def. 9.3). Rule 3 covers two cases. For static dependencies,
it subsumes the classical technique. For dynamic depen-
dencies it requires invariants to obey the visibility principle
(Def. 9.1) to be modular. Otherwise, this rule would require
a whole-program analysis for public fields.

Rule 4 of the guidelines corresponds to ownership encapsu-
lation (Def. 6.1). If g is part of the representation of X,
then the Universe type system guarantees requirements (a)
and (b). Requirement (c) is one of the proof obligations for
the relevant invariant semantics (Def. 6.5). Without such an
alias controlling type system, the programmer has to manu-
ally avoid representation exposure (external aliases into the
representation of X). Often, this can be done by cloning
objects that are exchanged between clients in the internal
representation of X.

The relevant invariant semantics and the corresponding
proof principle of dividing responsibility for preserving in-

1. Organize your system in layers. A method execution
on an object should only modify objects in the same
or underlying layers.

2. The invariant of an object X should only depend on
the states of objects in the layer that contains X or
underlying layers.

3. If the invariant of an object X depends on a field f

of an object in the same layer (including X itself),
determine all methods that can assign to f and make
sure that these methods preserve the invariant of X.

4. Consider an invariant declared in class C and let X

be a C object in layer L. Suppose this invariant of X

depends on a field or an array element, g, in a layer
underlying L. Make sure that every method execution
on a receiver in layer L that modifies g:

(a) is executed on receiver X,

(b) is declared in C, and

(c) reestablishes the invariant before it terminates or
calls a method on an object in L (including X

itself).

Figure 17: Informal guidelines summarizing our
technique for handling invariants.

variants between a method and its callers is fundamental.
It enables modular verification of invariants of object struc-
tures.

The relevant invariant semantics can be applied to both own-
ership and visibility-based invariants. Both kinds of invari-
ants, and even classical invariants can co-exist in the same
specification language. Visibility-based invariants would be
used when the representation of an object cannot be com-
pletely encapsulated. In all other cases, ownership or classi-
cal invariants would be used, and would lead to simpler proof
obligations. A tool could determine syntactically which
proof obligations are necessary without additional annota-
tions in the specification language.
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APPENDIX
A. SOUNDNESS PROOF FOR THE CLAS-

SICAL TECHNIQUE
The following is the proof of the soundness theorem for clas-
sical invariants (Theorem 3.5).

Proof: Modular soundness can be proved by induction over
the sequence of visible states of a program. The base case is
the empty sequence, in which there are no allocated objects,
and thus the result holds.

For the inductive case, the induction hypothesis is that all
allocated objects satisfy their invariants in executions of
length k (k ≤ n). Without loss of generality, let us suppose,
that there is a method m such that the nth visible state is
either m’s prestate or the poststate of a method called in
m. We have to show that all allocated objects satisfy their
invariants in visible state n + 1. Let m be declared in class
C. Recall that inv(C) is C’s invariant. Visible state n+1 is
the prestate of a method called in m or the poststate of m.
From the classical proof technique, we know that inv(C)
holds in state n + 1 for the current receiver object X. It
remains to be shown that: (1) the other conjuncts of X’s
invariant (if X is an instance of a proper subclass of C) and
(2) the invariant of all other allocated objects hold in visible
state n + 1.

According to classical encapsulation, the only locations that
m can assign to between the visible states n and n + 1 are
either array locations or non-constant fields f of X where
f is declared in C or its superclasses (the static type of
the receiver object in m is C). Classical invariants cannot
depend on array locations. An assignment to X.f with f

declared in C or its superclasses cannot violate conjuncts of
X’s invariant that are declared in subclasses of C, because
classical subclass invariants must not depend on superclass
fields such as f . Thus, these conjuncts remain valid, show-
ing (1). Invariants of objects, Y , that are different from
X cannot be violated by assignments to X.f , because such
invariants may only depend on locations of Y . Thus, such
invariants remain valid, showing (2). 2

B. SOUNDNESS PROOF FOR THE OWN-
ERSHIP TECHNIQUE

The following is the proof of the soundness theorem for own-
ership invariants (Theorem 6.6). The proof is analogous to
the soundness proof for classical invariants given above.

Proof: We say that an execution state “S has context Γ”
if S is the pre- or poststate of a method m executing in Γ,
and that an object “is relevant in S” if it is relevant to the
execution of m.

The key difference from the inductive proof for classical in-
variants is that different objects can be relevant in two dif-
ferent execution states, depending on whether these states
are pre- or poststates of methods executed in the same or in
different contexts. This leads to the following adapted in-
duction hypothesis: For executions of length k (k ≤ n), all
allocated objects that are relevant in state k satisfy their in-
variants. We have to show that all allocated relevant objects
satisfy their invariants in visible state n + 1.

Without loss of generality, we can assume that visible state
n + 1 is either the poststate of a method m executed in a
context Γ on a receiver X, or the prestate of a method called
in m on a receiver X. In the latter case, by Corollary 5.3,
visible state n + 1 can either have context Γ or the context
owned by X, ΓX . Let m be declared in a class C, and let
inv(C) be defined as in Def. 6.5. We have to consider two
cases for the induction step.

Case 1: The visible state n + 1 has context Γ. For
the induction step, we consider the latest predecessor state
j of state n + 1 that has context Γ. This state is either the
prestate of m’s execution or the poststate of a method called
by m executing in Γ. Since states j and n+1 have the same
context, Γ, all objects that are relevant in state n + 1 are
also relevant in state j, which implies that their invariants
hold in state j.4 By the proof obligations, we know that
inv(C) holds in state n + 1 for the current receiver object
X. It remains to be shown that: (1) the other conjuncts of
X’s invariant hold (if X is an instance of a proper subclass
of C) and (2) the invariant of all other allocated relevant
objects hold in state n + 1.

According to context encapsulation, between the visible
states j and n + 1 method m can:

(a) assign to locations denoted by fields of X,

(b) assign to locations of arrays in context Γ,

(c) assign to locations of arrays in ΓX , and

(d) modify locations inside ΓX by executing methods in
ΓX .

Cases (a) and (b) are analogous to the classical soundness
proof.

For cases (c) and (d), we prove that invariants of objects
inside ΓX , invariants of objects inside child contexts of Γ
other than ΓX , and invariants of objects in Γ (but not in
child contexts) are preserved.

Objects inside ΓX . In case (c), by Corollary 5.2 and 6.2 the
invariants of objects inside ΓX cannot depend on an array
element in ΓX . Therefore, there are no invariants of objects
inside ΓX that could be violated by such an assignment.

In case (d), the induction hypothesis implies that the invari-
ants of objects inside ΓX hold in state n + 1.

Objects inside child contexts of Γ other than ΓX. In cases (c)
and (d) only locations of objects inside ΓX can be modi-
fied (for case (d), this follows from context locality, Corol-
lary 5.2). According to the definition of admissible invari-
ants (Def. 6.2), invariants of objects in child contexts of Γ
other than ΓX must not depend on locations of objects inside
ΓX . Therefore, an invariant of an object in such a context

4Since we are ignoring constructors in this paper, this argu-
ment is simplified, as it ignores object allocation. For the
objects that are allocated in state n + 1 but not in state j,
we can assume that the constructors that initialized these
objects established their invariants. Technically, constructor
calls are handled analogously to method invocations [38].
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must not depend on mutable locations of objects inside ΓX

and thus cannot be violated by modification of locations of
objects inside ΓX .

Objects in Γ. In cases (c) and (d), we prove (1) and (2)
above by showing that the invariant declared in class C of
object X is the only invariant of objects in Γ that could be
affected by the modification of locations inside the context
ΓX , which are the only locations that could be modified, as
explained above. Assume there is an invariant declared in
class D of an object Y in Γ that is affected, then we show
X = Y and C = D:

If this invariant depends on a mutable location inside ΓX ,
the dependency must have a rep pivot p because the depen-
dency is dynamic (form 3 of Def. 6.2). Since Y.p references
an object in ΓX , Y is the owner of ΓX (ingoing reference
invariant, Corollary 5.2). Consequently, we have X = Y (as
each context has at most one owner).

As explained after Def. 3.2, X’s invariant depends as well
on the pivot X.p. Since this dependency is static, p must be
declared in D (form 1 of Def. 6.2). According to subclass
separation (Corollary 5.4), m can only modify a location
reachable from X.p if m is also declared in D. This implies
C = D.

Case 2: The visible state n + 1 has a child context
ΓX of Γ. The nth state is either the prestate of m or the
poststate of a method called in m. That is, state n either
has context Γ or ΓX , and all objects that are relevant in
state n + 1 (that is, that are inside ΓX) are also relevant
is state n. Therefore, all invariants relevant in state n + 1
hold in state n. According to Corollary 5.3 and the rule
that a method can assign only to fields of this, the only
locations that m can assign to between the visible states
n and n + 1 are either fields f of m’s receiver object X or
locations of arrays in context Γ or ΓX . Since X is in context
Γ, it is not relevant in state n+1. Invariants of objects inside
context ΓX cannot depend on elements of arrays in Γ or
ΓX (Def. 6.2). Consequently, all allocated relevant objects
satisfy their invariants in visible state n + 1. 2

C. SOUNDNESS PROOF FOR THE VISI-
BILITY TECHNIQUE

The following is the proof of the soundness theorem for the
visibility technique (Theorem 9.5). The proof is analogous
to the soundness proof for ownership invariants given above.
In particular, we prove the same induction hypothesis: For
executions of length k (k ≤ n), all allocated objects that are
relevant in state k satisfy their invariants. We have to show
that all allocated relevant objects satisfy their invariants in
visible state n + 1.

Proof: Without loss of generality, we can assume that visible
state n + 1 is either the poststate of a method m executed
in a context Γ on a receiver X, or the prestate of a method
called in m on a receiver X.

If m is a pure method, the proof is trivial: we consider the
latest predecessor state j of state n + 1 that has context
Γ. This state is either the prestate of m’s execution or the
poststate of a method called by m executing in Γ. Since

states j and n+1 have the same context, Γ, all objects that
are relevant in state n+1 are also relevant in state j, which
implies that their invariants hold in state j. Since m does
not modify any locations, the invariants still hold in state
n + 1.

If m is not pure. we know by Corollary 5.3 that visible state
n + 1 has either context Γ or the context owned by X, ΓX .
We have to consider two cases for the induction step.

Case 1: The visible state n + 1 has context Γ. For
the induction step, we consider the latest predecessor state
j of state n + 1 that has context Γ. Again, we have that all
objects that are relevant in state n+1 satisfy their invariants
in state j. From the proof obligations, we know that any T

object Z in Γ satisfies inv(T ) in state n + 1. It remains to
be shown that: (1) the other conjuncts of Z’s invariant hold
(if Z is an instance of a proper subclass of T ) and (2) the
invariant of all objects in descendants of Γ hold in state n+1.

According to context encapsulation, between the visible
states j and n + 1 m can:

(a) assign to locations denoted by fields of objects in Γ,

(b) assign to locations of arrays in context Γ,

(c) assign to locations of arrays in ΓX , and

(d) modify locations inside ΓX by executing methods in
ΓX .

In case (a), assume that m assigns to a location Y.f . Ac-
cording to the definition of admissible invariants (Def. 9.3),
the invariant declared in class S of an object Z can depend
on Y.f only if Z and Y are in the same context, Γ, and the
invariant of S is visible in the class that declares f . Since
m can assign to f , f is visible in m and, therefore, the in-
variant of S is also visible in m. Invariants in subclasses of
S that are not visible in m cannot depend on Y.f and are,
thus, not affected by the update of Y.f , which implies (1).
Invariants of objects in descendants of Γ cannot depend on
Y.f , which implies (2).

Cases (b), (c), and (d) are analogous to the soundness proof
for ownership invariants (App. B).

Case 2: The visible state n + 1 has a child context
ΓX of Γ. The nth state is either the prestate of m or the
poststate of a method called in m. That is, state n either has
context Γ or ΓX , and all objects that are relevant in state
n+1 (that is, that are inside ΓX) are also relevant is state n.
Therefore, all invariants relevant in state n+1 hold in state
n. According to Corollary 5.3 and the rule that a method
can assign only to fields of objects in the context in which
it executes, the only locations that m can assign to between
the visible states n and n + 1 are either fields f of objects
Y in context Γ or locations of arrays in context Γ or ΓX .
Invariants of objects inside context ΓX can neither depend
on locations Y.f of objects in Γ nor on elements of arrays
in Γ or ΓX (Def. 9.3). Consequently, all allocated relevant
objects satisfy their invariants in visible state n + 1. 2
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