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Summary: 
Definition and Paradox

Need definition of AOP languages
Definition offered ≈ implicit invocation
Paradox:

Ok in moderation, but then no contribution
Hurts modularity if more developed
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Summary:
Modularity of AOP

Information hiding (Parnas)
“Main concern” (5.1.2): 

Strong coupling of aspects to base
Implicit interface, often not public
Impairs independent development

Explicit interfaces for aspects in base: 
Less obliviousness
More scattering
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Summary:
Locality of AOP

Implicit invocation
= less direct control flow
Context exposure
= more global access to variables
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Summary:
Utility of AOP

Generated code weaving
Forming new components (glue code)

Dismantle components
Reassemble to form new components

Observed uses:
Logging
Security
Runtime assertion checking
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Summary:
Prospects for AOP

“Tremendous success”
Cachet
OOP is old, need something new

Paradox (section 8):
Aims to “modularize crosscutting concerns”
“Its very nature … breaks modularity”
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Important Points:
What is AOP?

Focus on mechanisms (vs. goals)
Need definition of AOP languages

Mechanisms
Independent of goals

Implicit invocation definition sensible
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Important Points:
Modularity of AOP

Interfaces are crucial
Explicit interfaces for aspects in base: 

Less obliviousness
More scattering
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Important Points:
Utility of AOP

AOP especially useful as noted
Generated code weaving

Aids modularity of generator
AspectJ = Assembly language of 2000’s

Glue code is important



October 25, 2006 Discussion11

Important Points:
Prospects for AOP

AOP has been a success
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Perspective

Flon’s axiom (SIGPLAN, Oct. 1975):
“There does not now, nor will there ever, 
exist a programming language
in which it is the least bit hard 
to write bad programs.“
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Perspective

Flon’s axiom (SIGPLAN, Oct. 1975):
Can write bad programs in any language
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Perspective:
What are the right questions?

Flon’s axiom (SIGPLAN, Oct. 1975):
Can write bad programs in AOP languages

Can we write good ones?
Without scattering and tangling of
crosscutting concerns
Without excess coupling of aspects to base
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Perspective:
All or Nothing?

Modularity
System is modular or not

Obliviousness
Mechanisms are oblivious or not
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Perspective:
Questions of Degree

Coupling

ScatteringTangling
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Perspective:
Perfect AOP Measures

Coupling

ScatteringTangling
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Perspective:
Without AOP

Coupling

ScatteringTangling
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Perspective:
Compromise

Coupling

ScatteringTangling
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Perspective:
N-Dimensions of Modularity

Coupling

ScatteringTangling

Reasoning Difficulty

Heap interference...
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Questionable Points:
Coupling of Aspects and Base

Section 5.1.2:
Code “moved out of its context …”
“it must take (a reference to) 
the context that it depends on with it,”
“thereby establishing coupling”

How often?
How much coupling?



October 25, 2006 Discussion22

Questionable Points:
Reducing Coupling

XPIs (Griswold et al.)
Adding interfaces for crosscutting
Extra indirection reduces coupling

Open Modules (Aldrich)
Explicit interface to advice
Reduces obliviousness
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Questionable Points:
Paradox

Due to all-or-nothing usage of:
Modularity
Quantification and obliviousness
AOP’s contribution

Due to multiple senses of “modularity”
Information hiding (lack of coupling)
Encapsulation (lack of scattering)
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Questionable Points:
Lack of Imagination

“I find it difficult to imagine …” (4.2)
“I cannot see how ... ” (4.3)
“it may be my lack of imagination” (5.1.7)
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Questionable Points:
Lack of Imagination

Most technology nay-sayers wrong
Some promising directions

Tool support (Eclipse AJDT)
XPIs
Open Modules
Static analysis
Model-driven architecture
Annotations



October 25, 2006 Discussion26

Conclusions

Thought-provoking
Read it!
Agree: AOP ≈ implicit invocation
Perspective on “paradox”:

N-dimensions of modularity
Each a scale, not all-or-nothing
Compromise!
Research: how to do better
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Time for Discussion

Coupling

ScatteringTangling

Reasoning Difficulty

Heap interference...
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