
Discussion of Steimann’s Essay:
“The Paradoxical Success of 

Aspect-Oriented Programming”
Gary T. Leavens

Department Of Computer Science, Iowa State University

OOPSLA, October 26, 2006

Supported in part by the US NSF



October 25, 2006 Discussion2

Outline

Summary
Important points
Perspective: what questions?
Questionable points
Conclusion



October 25, 2006 Discussion3

Summary: 
Definition and Paradox

Need definition of AOP languages
Definition offered ≈ implicit invocation
Paradox:

Ok in moderation, but then no contribution
Hurts modularity if more developed



October 25, 2006 Discussion4

Summary:
Modularity of AOP

Information hiding (Parnas)
“Main concern” (5.1.2): 

Strong coupling of aspects to base
Implicit interface, often not public
Impairs independent development

Explicit interfaces for aspects in base: 
Less obliviousness
More scattering



October 25, 2006 Discussion5

Summary:
Locality of AOP

Implicit invocation
= less direct control flow
Context exposure
= more global access to variables



October 25, 2006 Discussion6

Summary:
Utility of AOP

Generated code weaving
Forming new components (glue code)

Dismantle components
Reassemble to form new components

Observed uses:
Logging
Security
Runtime assertion checking



October 25, 2006 Discussion7

Summary:
Prospects for AOP

“Tremendous success”
Cachet
OOP is old, need something new

Paradox (section 8):
Aims to “modularize crosscutting concerns”
“Its very nature … breaks modularity”



October 25, 2006 Discussion8

Important Points:
What is AOP?

Focus on mechanisms (vs. goals)
Need definition of AOP languages

Mechanisms
Independent of goals

Implicit invocation definition sensible



October 25, 2006 Discussion9

Important Points:
Modularity of AOP

Interfaces are crucial
Explicit interfaces for aspects in base: 

Less obliviousness
More scattering



October 25, 2006 Discussion10

Important Points:
Utility of AOP

AOP especially useful as noted
Generated code weaving

Aids modularity of generator
AspectJ = Assembly language of 2000’s

Glue code is important



October 25, 2006 Discussion11

Important Points:
Prospects for AOP

AOP has been a success



October 25, 2006 Discussion12

Perspective

Flon’s axiom (SIGPLAN, Oct. 1975):
“There does not now, nor will there ever, 
exist a programming language
in which it is the least bit hard 
to write bad programs.“



October 25, 2006 Discussion13

Perspective

Flon’s axiom (SIGPLAN, Oct. 1975):
Can write bad programs in any language



October 25, 2006 Discussion14

Perspective:
What are the right questions?

Flon’s axiom (SIGPLAN, Oct. 1975):
Can write bad programs in AOP languages

Can we write good ones?
Without scattering and tangling of
crosscutting concerns
Without excess coupling of aspects to base



October 25, 2006 Discussion15

Perspective:
All or Nothing?

Modularity
System is modular or not

Obliviousness
Mechanisms are oblivious or not



October 25, 2006 Discussion16

Perspective:
Questions of Degree

Coupling

ScatteringTangling



October 25, 2006 Discussion17

Perspective:
Perfect AOP Measures

Coupling

ScatteringTangling



October 25, 2006 Discussion18

Perspective:
Without AOP

Coupling

ScatteringTangling



October 25, 2006 Discussion19

Perspective:
Compromise

Coupling

ScatteringTangling



October 25, 2006 Discussion20

Perspective:
N-Dimensions of Modularity

Coupling

ScatteringTangling

Reasoning Difficulty

Heap interference...



October 25, 2006 Discussion21

Questionable Points:
Coupling of Aspects and Base

Section 5.1.2:
Code “moved out of its context …”
“it must take (a reference to) 
the context that it depends on with it,”
“thereby establishing coupling”

How often?
How much coupling?



October 25, 2006 Discussion22

Questionable Points:
Reducing Coupling

XPIs (Griswold et al.)
Adding interfaces for crosscutting
Extra indirection reduces coupling

Open Modules (Aldrich)
Explicit interface to advice
Reduces obliviousness



October 25, 2006 Discussion23

Questionable Points:
Paradox

Due to all-or-nothing usage of:
Modularity
Quantification and obliviousness
AOP’s contribution

Due to multiple senses of “modularity”
Information hiding (lack of coupling)
Encapsulation (lack of scattering)



October 25, 2006 Discussion24

Questionable Points:
Lack of Imagination

“I find it difficult to imagine …” (4.2)
“I cannot see how ... ” (4.3)
“it may be my lack of imagination” (5.1.7)



October 25, 2006 Discussion25

Questionable Points:
Lack of Imagination

Most technology nay-sayers wrong
Some promising directions

Tool support (Eclipse AJDT)
XPIs
Open Modules
Static analysis
Model-driven architecture
Annotations



October 25, 2006 Discussion26

Conclusions

Thought-provoking
Read it!
Agree: AOP ≈ implicit invocation
Perspective on “paradox”:

N-dimensions of modularity
Each a scale, not all-or-nothing
Compromise!
Research: how to do better



October 25, 2006 Discussion27

Time for Discussion

Coupling

ScatteringTangling

Reasoning Difficulty

Heap interference...


	Discussion of Steimann’s Essay:�“The Paradoxical Success of Aspect-Oriented Programming”
	Outline
	Summary: �Definition and Paradox
	Summary:�Modularity of AOP
	Summary:�Locality of AOP
	Summary:�Utility of AOP
	Summary:�Prospects for AOP
	Important Points:�What is AOP?
	Important Points:�Modularity of AOP
	Important Points:�Utility of AOP
	Important Points:�Prospects for AOP
	Perspective
	Perspective
	Perspective:�What are the right questions?
	Perspective:�All or Nothing?
	Perspective:�Questions of Degree
	Perspective:�Perfect AOP Measures
	Perspective:�Without AOP
	Perspective:�Compromise
	Perspective:�N-Dimensions of Modularity
	Questionable Points:�Coupling of Aspects and Base
	Questionable Points:�Reducing Coupling
	Questionable Points:�Paradox
	Questionable Points:�Lack of Imagination
	Questionable Points:�Lack of Imagination
	Conclusions
	Time for Discussion

