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Summary

Problem: 
Efficient reasoning 
in Aspect-Oriented languages

Approach: 
Use static analysis, 
identify (non-)interference
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Background: Reasoning

Specification, of:
Object state
Method:

Preconditions
Heap effects (postcondition + frame)
Control effects

Verification, of method:
Calls
Implementation
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Tally Specification

public class Tally {
protected /*@ spec_public @*/ int val = 0;

/*@ requires true;
@ assignable this.val;
@ ensures this.val == \old(this.val + inc);
@*/

public void add(int inc) { this.val += inc; }
}
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Call Verification: 
Heap Effects

public void testAdd(Tally t) {
//@ assert t.val == 0;
t.add(-10);
//@ assert t.val == -10;

}
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Implementation Verification:
Heap Effects

public void add(int inc) {
//@ assert true;
this.val += inc;
//@ assert this.val == \old(this.val + inc);

}
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Implementation Verification: 
Heap Effects

For all normal states, pre,
if E[[t.val == 0]](pre) 
then let post = S[[t.add(-10)]](pre)

in if normal(post)
then E[[t.val == -10]](post)
else true

else true
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Implementation Verification:
Frame Axiom

//@ assignable this.val;

Conservative static analysis,
accumulates:

Assignments
Assignable clauses for calls
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Call Verification:
Frame Axioms

public void testAddFrame(Tally t, C c, H h) {
//@ assert t != c;
//@ assert t.val == 0 && c.val == 7 && h.b;
t.add(-10);
//@ assert t.val == -10 && c.val == 7 && h.b;

}
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Costs of Reasoning

Specification effort
Verification effort for calls

Find specification
Prove precondition
Show frame independent of preserved part
Show postcondition implies assertion
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Benefits of Reasoning with Contracts

Maintainable despite changes to:
Implementation
Subtypes

Modular:
Only look at small part of program
Gives scalability
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Background: AspectJ

Features: 
Law enforcement (declare error/warning)
Intertype declarations (adding fields/methods)
Advice on dynamic execution events
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Background: Advice in AspectJ

Join point = potential dynamic event
Call of method / constructor
Execution of method / constructor body
Get / set of field

Before advice – run before join point
After advice – run after join point
Around advice – run instead of join point
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Example: Counting Calls

public aspect C {
private /*@ spec_public @*/ int val = 0;

public pointcut tallyAddCalls() :
call(* Tally+.add(..));

before() : tallyAddCalls() { this.val++; }
}
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Problem: Frame Axiom Invalid?

public void testAddFrame(Tally t, C c, H h) {
//@ assert t != c;
//@ assert t.val == 0 && c.val == 7 && h.b;
t.add(-10);
//@ assert t.val == -10 && c.val == 7 && h.b;

}
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Problem Analysis

With before / after advice:
Calls do more

Before advice
Call
After advice

Specification doesn’t reflect that
Verification not designed for it
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Example: Buffering Calls

public aspect BufferTally {
private int tallies = 0;
void around(int i) : 

call(* Tally+.add(..)) && args(i) 
{

this.tallies += i;
if (i == 0 || Math.abs(this.tallies) > 100) {

proceed(this.tallies);
this.tallies = 0;

}  }  }
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Call Verification: 
Control Effects

public void testAdd(Tally t) {
//@ assert t.val == 0;
t.add(-10);
//@ assert t.val == -10;

}
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Problem Analysis

With advice:
Control effects:

Replacing call
Running it multiple times
Not returning (exception, abort)

Specification doesn’t reflect that
Verification not designed for it
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Problem Summary

How to reason efficiently?
How much of program?
What changes can be ignored?
Which changes need how much effort?



July 30, 2007 Concerning Efficient Reasoning22

Approach -1: 
Use Semantics Directly

Specification = code
Verification:

Find applicable advice (Eclipse AJDT)
Weave (recursively)
Use semantics
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Approach -1: 
Use Semantics Directly

Benefits:
Maximally expressive
Doesn’t restrict programmers

Costs:
All applicable changes need re-verification
No abstraction
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Approach 0: Functional Advice

Advice with no heap or control effects

Benefits:
Base code reasoning unaffected

Costs:
Useless
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Approach 1: “Harmless” Advice
Dantas and Walker (POPL 2006)

No information flow from advice to base
Conservative static analysis
Base code assertions
can’t mention advice state
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Approach 1: “Harmless” Advice
Dantas and Walker (POPL 2006)

Benefits:
No annotations needed
No heap effects on base

Costs:
No help with control effects
Loss of expressiveness

Some aspects (assertions) can’t be written
No help with interference among advice
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Approach 2: Behavioral Subtyping 

OO Analogy:
Around advice ∼ overriding method
Proceed ∼ super call

Behavioral Subtyping:
Advice obeys specification of all it advises
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Approach 2: Behavioral Subtyping 

Benefits:
Verification of base code
independent of advice

Costs:
Quantification limits in practice
Re-verify advice when advise more
Much advice outside this paradigm
(e.g., Buffering)
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Approach 3: Limits on Advice

Gudmundson and Kiczales (2001)
Griswold et al.’s XPIs (2005-6)
Aldrich’s Open Modules (2005)

Idea:
Advice only on declared pointcuts
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Approach 3: Limits on Advice

Benefits:
Some code can’t be advised
Enables negotiation
No limits on expressive power

Costs:
Extra annotation / code
No help where advice can be applied
No help finding interference among advice
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Similar Approaches

Composition Filters: no execution advice
HyperJ: limits quantification
Larochelle et al.: hide join points
Ossher: confirm or deny advice application
Lopez-Herrejon, Batory: limit quantification
Cottenier et al.: limit quantification
Rajan-Leavens: no obliviousness (not AOP)
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Approach 4: 
Weave Specifications

Specify:
Object state and methods
Aspect state and advice

Heap effects
Control effects

Weave specifications
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Approach 4: 
Weave Specifications

Benefits:
More abstract than code
Allows changes in methods and advice

Costs:
Lack of expressiveness?
Weaving specifications is hard / expensive
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Optimizations for 
Weaving Specifications

Inapplicable advice ignored
Spectator advice ignored:

Want
Advice o Call ≅ Call

Problem: soundness
Other advice:

Advice o Call ≅ weave(Advice, Call)
Problem: expense
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Where the Composition is Done
(Clifton 2005)

Client utilities: 
client weaves into call semantics
Implementation utilities:
implementation of method weaves
into its specification
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Approach 4a: 
Optimization via Effect Analysis

Advice A heap interferes with code C iff:
A writes a field that C reads
Efficiency: only look at signatures

Can apply to both:
Advice vs. base code
Advice vs. other advice
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Effect on 
Specification Composition

Want non-interference to imply: 
weave(ensures P, ensures Q)
≅ ensures P && Q
(modulo control effects)

For spectators, projection onto base fields 
can ignore advice’s effects
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Potential Cost: 
Overly Conservative Analysis

Even spectators will have side effects

private int val = 0;
before() : tallyAddCalls() { this.val++; }
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Concern Domains (Clifton 05) 
(Clifton, Leavens, Noble 07)

Declare concern domains (heap partitions)
Declare write effects (and control effects)
Uses readonly types
Type/effect analysis 
detects potential interference
Sound for checking possible interference
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Concern Domains 
Partition the Heap

Domain of Main
Domain

of
another
Aspect

Domain of an
Aspect
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Example MAO Class 
with Concern Domains

public class CDTestTally<Owner> {
@writes({“Owner”}) 
public void testAdd(Tally<Owner> t)
{

//@ assert t.value == 0;
t.add(-10);
//@ assert t.value == -10;

}
}
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Example MAO Aspect
with Concern Domains
@readonlyDomains({"Other"}) 
@depends({ @varies({"Owner", "Other"}) })
public aspect CDBufferTally<Owner, Other>  {

private int tallies = 0;
@writes({“Owner”}) 
void around(int i)

: call(* Tally<Other>+.add(..)) && args(i) {
this.tallies += i;
if (i == 0 || Math.abs(this.tallies) > 100) {
proceed(this.tallies);
this.tallies = 0;

} } }
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Checking Spectators in MAO

A spectator aspect:
Only has surround advice:

Only writes its home concern domain (Owner)
Does not change arguments or results
Does not interrupt program flow:

No explicit exception throwing
Proceeds exactly once

Control effect guarantees enforced
Heap effect guarantees proved sound
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Analysis of Concern Domains

Benefits:
Spectators can be ignored
Sound for detecting 
heap (non-)interference

Costs:
Declaring effects of methods and advice
Other concern domain annotations
Restrictions on assertions
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Related Work in Static Analysis

Rinard, Salcianu, Bugrara (FSE ’04):
Control flow analysis and
global pointer + escape analysis
More fine-grained than concern domains
Considers interference

But it’s a whole-program analysis
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Summary

Goals:
Reasoning efficiency
Practicality

Approaches could be combined?
Applicability (AJDT)
Declared limits (XPIs, OMs)
Heap partitions / effects (MAO)
Specification of advice, weaving specifications
Other static analyses + annotations
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Future Work

Implement and do case studies
Integrate MAO’s concern domains
and JML’s data groups [Leino98]

Problem: data groups can overlap
Benefit: less syntax, plug into other tools
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Conclusions

Around advice like overriding method
But often used to change behavior
So refinement isn’t a complete solution
Efficient reasoning by:

Limited applicability
Specifications of advice
Weaving specifications
Effect analysis (concern domains)


