
Concerning
Efficient Reasoning in

Aspect-Oriented Languages
Gary T. Leavens

Iowa State University
Department of Computer Science

Based on work with Curtis C. Clifton and James Noble

July 30, 2007

Concerning
Efficient Reasoning in

Aspect-Oriented Languages
Gary T. Leavens

University of Central Florida
School of Electrical Engin. and Computer Science

Based on work with Curtis C. Clifton and James Noble

July 30, 2007

July 30, 2007 Concerning Efficient Reasoning3

Summary

Problem:
Efficient reasoning
in Aspect-Oriented languages

Approach:
Use static analysis,
identify (non-)interference

July 30, 2007 Concerning Efficient Reasoning4

Background: Reasoning

Specification, of:
Object state
Method:

Preconditions
Heap effects (postcondition + frame)
Control effects

Verification, of method:
Calls
Implementation

July 30, 2007 Concerning Efficient Reasoning5

Tally Specification

public class Tally {
protected /*@ spec_public @*/ int val = 0;

/*@ requires true;
@ assignable this.val;
@ ensures this.val == \old(this.val + inc);
@*/

public void add(int inc) { this.val += inc; }
}

July 30, 2007 Concerning Efficient Reasoning6

Call Verification:
Heap Effects

public void testAdd(Tally t) {
//@ assert t.val == 0;
t.add(-10);
//@ assert t.val == -10;

}

July 30, 2007 Concerning Efficient Reasoning7

Implementation Verification:
Heap Effects

public void add(int inc) {
//@ assert true;
this.val += inc;
//@ assert this.val == \old(this.val + inc);

}

July 30, 2007 Concerning Efficient Reasoning8

Implementation Verification:
Heap Effects

For all normal states, pre,
if E[[t.val == 0]](pre)
then let post = S[[t.add(-10)]](pre)

in if normal(post)
then E[[t.val == -10]](post)
else true

else true

July 30, 2007 Concerning Efficient Reasoning9

Implementation Verification:
Frame Axiom

//@ assignable this.val;

Conservative static analysis,
accumulates:

Assignments
Assignable clauses for calls

July 30, 2007 Concerning Efficient Reasoning10

Call Verification:
Frame Axioms

public void testAddFrame(Tally t, C c, H h) {
//@ assert t != c;
//@ assert t.val == 0 && c.val == 7 && h.b;
t.add(-10);
//@ assert t.val == -10 && c.val == 7 && h.b;

}

July 30, 2007 Concerning Efficient Reasoning11

Costs of Reasoning

Specification effort
Verification effort for calls

Find specification
Prove precondition
Show frame independent of preserved part
Show postcondition implies assertion

July 30, 2007 Concerning Efficient Reasoning12

Benefits of Reasoning with Contracts

Maintainable despite changes to:
Implementation
Subtypes

Modular:
Only look at small part of program
Gives scalability

July 30, 2007 Concerning Efficient Reasoning13

Background: AspectJ

Features:
Law enforcement (declare error/warning)
Intertype declarations (adding fields/methods)
Advice on dynamic execution events

July 30, 2007 Concerning Efficient Reasoning14

Background: Advice in AspectJ

Join point = potential dynamic event
Call of method / constructor
Execution of method / constructor body
Get / set of field

Before advice – run before join point
After advice – run after join point
Around advice – run instead of join point

July 30, 2007 Concerning Efficient Reasoning15

Example: Counting Calls

public aspect C {
private /*@ spec_public @*/ int val = 0;

public pointcut tallyAddCalls() :
call(* Tally+.add(..));

before() : tallyAddCalls() { this.val++; }
}

July 30, 2007 Concerning Efficient Reasoning16

Problem: Frame Axiom Invalid?

public void testAddFrame(Tally t, C c, H h) {
//@ assert t != c;
//@ assert t.val == 0 && c.val == 7 && h.b;
t.add(-10);
//@ assert t.val == -10 && c.val == 7 && h.b;

}

July 30, 2007 Concerning Efficient Reasoning17

Problem Analysis

With before / after advice:
Calls do more

Before advice
Call
After advice

Specification doesn’t reflect that
Verification not designed for it

July 30, 2007 Concerning Efficient Reasoning18

Example: Buffering Calls

public aspect BufferTally {
private int tallies = 0;
void around(int i) :

call(* Tally+.add(..)) && args(i)
{

this.tallies += i;
if (i == 0 || Math.abs(this.tallies) > 100) {

proceed(this.tallies);
this.tallies = 0;

} } }

July 30, 2007 Concerning Efficient Reasoning19

Call Verification:
Control Effects

public void testAdd(Tally t) {
//@ assert t.val == 0;
t.add(-10);
//@ assert t.val == -10;

}

July 30, 2007 Concerning Efficient Reasoning20

Problem Analysis

With advice:
Control effects:

Replacing call
Running it multiple times
Not returning (exception, abort)

Specification doesn’t reflect that
Verification not designed for it

July 30, 2007 Concerning Efficient Reasoning21

Problem Summary

How to reason efficiently?
How much of program?
What changes can be ignored?
Which changes need how much effort?

July 30, 2007 Concerning Efficient Reasoning22

Approach -1:
Use Semantics Directly

Specification = code
Verification:

Find applicable advice (Eclipse AJDT)
Weave (recursively)
Use semantics

July 30, 2007 Concerning Efficient Reasoning23

Approach -1:
Use Semantics Directly

Benefits:
Maximally expressive
Doesn’t restrict programmers

Costs:
All applicable changes need re-verification
No abstraction

July 30, 2007 Concerning Efficient Reasoning24

Approach 0: Functional Advice

Advice with no heap or control effects

Benefits:
Base code reasoning unaffected

Costs:
Useless

July 30, 2007 Concerning Efficient Reasoning25

Approach 1: “Harmless” Advice
Dantas and Walker (POPL 2006)

No information flow from advice to base
Conservative static analysis
Base code assertions
can’t mention advice state

July 30, 2007 Concerning Efficient Reasoning26

Approach 1: “Harmless” Advice
Dantas and Walker (POPL 2006)

Benefits:
No annotations needed
No heap effects on base

Costs:
No help with control effects
Loss of expressiveness

Some aspects (assertions) can’t be written
No help with interference among advice

July 30, 2007 Concerning Efficient Reasoning27

Approach 2: Behavioral Subtyping

OO Analogy:
Around advice ∼ overriding method
Proceed ∼ super call

Behavioral Subtyping:
Advice obeys specification of all it advises

July 30, 2007 Concerning Efficient Reasoning28

Approach 2: Behavioral Subtyping

Benefits:
Verification of base code
independent of advice

Costs:
Quantification limits in practice
Re-verify advice when advise more
Much advice outside this paradigm
(e.g., Buffering)

July 30, 2007 Concerning Efficient Reasoning29

Approach 3: Limits on Advice

Gudmundson and Kiczales (2001)
Griswold et al.’s XPIs (2005-6)
Aldrich’s Open Modules (2005)

Idea:
Advice only on declared pointcuts

July 30, 2007 Concerning Efficient Reasoning30

Approach 3: Limits on Advice

Benefits:
Some code can’t be advised
Enables negotiation
No limits on expressive power

Costs:
Extra annotation / code
No help where advice can be applied
No help finding interference among advice

July 30, 2007 Concerning Efficient Reasoning31

Similar Approaches

Composition Filters: no execution advice
HyperJ: limits quantification
Larochelle et al.: hide join points
Ossher: confirm or deny advice application
Lopez-Herrejon, Batory: limit quantification
Cottenier et al.: limit quantification
Rajan-Leavens: no obliviousness (not AOP)

July 30, 2007 Concerning Efficient Reasoning32

Approach 4:
Weave Specifications

Specify:
Object state and methods
Aspect state and advice

Heap effects
Control effects

Weave specifications

July 30, 2007 Concerning Efficient Reasoning33

Approach 4:
Weave Specifications

Benefits:
More abstract than code
Allows changes in methods and advice

Costs:
Lack of expressiveness?
Weaving specifications is hard / expensive

July 30, 2007 Concerning Efficient Reasoning34

Optimizations for
Weaving Specifications

Inapplicable advice ignored
Spectator advice ignored:

Want
Advice o Call ≅ Call

Problem: soundness
Other advice:

Advice o Call ≅ weave(Advice, Call)
Problem: expense

July 30, 2007 Concerning Efficient Reasoning35

Where the Composition is Done
(Clifton 2005)

Client utilities:
client weaves into call semantics
Implementation utilities:
implementation of method weaves
into its specification

July 30, 2007 Concerning Efficient Reasoning36

Approach 4a:
Optimization via Effect Analysis

Advice A heap interferes with code C iff:
A writes a field that C reads
Efficiency: only look at signatures

Can apply to both:
Advice vs. base code
Advice vs. other advice

July 30, 2007 Concerning Efficient Reasoning37

Effect on
Specification Composition

Want non-interference to imply:
weave(ensures P, ensures Q)
≅ ensures P && Q
(modulo control effects)

For spectators, projection onto base fields
can ignore advice’s effects

July 30, 2007 Concerning Efficient Reasoning38

Potential Cost:
Overly Conservative Analysis

Even spectators will have side effects

private int val = 0;
before() : tallyAddCalls() { this.val++; }

July 30, 2007 Concerning Efficient Reasoning39

Concern Domains (Clifton 05)
(Clifton, Leavens, Noble 07)

Declare concern domains (heap partitions)
Declare write effects (and control effects)
Uses readonly types
Type/effect analysis
detects potential interference
Sound for checking possible interference

July 30, 2007 Concerning Efficient Reasoning40

Concern Domains
Partition the Heap

Domain of Main
Domain

of
another
Aspect

Domain of an
Aspect

July 30, 2007 Concerning Efficient Reasoning41

Example MAO Class
with Concern Domains

public class CDTestTally<Owner> {
@writes({“Owner”})
public void testAdd(Tally<Owner> t)
{

//@ assert t.value == 0;
t.add(-10);
//@ assert t.value == -10;

}
}

July 30, 2007 Concerning Efficient Reasoning42

Example MAO Aspect
with Concern Domains
@readonlyDomains({"Other"})
@depends({ @varies({"Owner", "Other"}) })
public aspect CDBufferTally<Owner, Other> {

private int tallies = 0;
@writes({“Owner”})
void around(int i)

: call(* Tally<Other>+.add(..)) && args(i) {
this.tallies += i;
if (i == 0 || Math.abs(this.tallies) > 100) {
proceed(this.tallies);
this.tallies = 0;

} } }

July 30, 2007 Concerning Efficient Reasoning43

Checking Spectators in MAO

A spectator aspect:
Only has surround advice:

Only writes its home concern domain (Owner)
Does not change arguments or results
Does not interrupt program flow:

No explicit exception throwing
Proceeds exactly once

Control effect guarantees enforced
Heap effect guarantees proved sound

July 30, 2007 Concerning Efficient Reasoning44

Analysis of Concern Domains

Benefits:
Spectators can be ignored
Sound for detecting
heap (non-)interference

Costs:
Declaring effects of methods and advice
Other concern domain annotations
Restrictions on assertions

July 30, 2007 Concerning Efficient Reasoning45

Related Work in Static Analysis

Rinard, Salcianu, Bugrara (FSE ’04):
Control flow analysis and
global pointer + escape analysis
More fine-grained than concern domains
Considers interference

But it’s a whole-program analysis

July 30, 2007 Concerning Efficient Reasoning46

Summary

Goals:
Reasoning efficiency
Practicality

Approaches could be combined?
Applicability (AJDT)
Declared limits (XPIs, OMs)
Heap partitions / effects (MAO)
Specification of advice, weaving specifications
Other static analyses + annotations

July 30, 2007 Concerning Efficient Reasoning47

Future Work

Implement and do case studies
Integrate MAO’s concern domains
and JML’s data groups [Leino98]

Problem: data groups can overlap
Benefit: less syntax, plug into other tools

July 30, 2007 Concerning Efficient Reasoning48

Conclusions

Around advice like overriding method
But often used to change behavior
So refinement isn’t a complete solution
Efficient reasoning by:

Limited applicability
Specifications of advice
Weaving specifications
Effect analysis (concern domains)

