Black-Box Composition: a Dynamic Approach

Casandra Holotescu
Department of Computer and Software Engineering
Politehnica University of Timigoara, Romania

casandra@cs.upt.ro

ABSTRACT

A core issue in component-based software engineering is rep-
resented by automatic component adaptation and composi-
tion. At behavioural level, an adaptor is an appropriate en-
vironment for two or more software components to correctly
interoperate with respect to a certain desired behavioural
property. This, however, requires for the behavioural inter-
faces of all components to be well-specified, which is not al-
ways the case in industrial practice. What happens if these
components are black-boxes: incomplete specification, no
provided models and no source code to extract interfaces
from? How could we integrate them? Our approach inter-
leaves online monitoring, verification-driven execution and
model refinement in order to infer models of the black-box
components, provide early access to a part of the system
functionality whenever possible and synthesize permissive
adaptors. We present both a centralized and a distributed
technique, the last one directed towards the exploration and
control of remote components.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.4 [Software

Engineering]: Software/Program Verification—Model Check-

ing; D.2.12 [Software Engineering]: Interoperability—
Distributed objects

General Terms
Reliability, Verification, Design

Keywords

black-box components, model refinement, adaptation

1. INTRODUCTION

Important advances have been done in the area of au-
tomatic composition of software systems from off-the-shelf
components. Since the seminal work of Yellin and Strom [23],
formal specifications of component behaviour have been used
to obtain adaptors able to ensure correct interoperability at
behavioural level. Such an adaptor is a specific component-
in-the-middle that coordinates the interactions in the system
under the purpose of achieving desired functionality.

While early approaches, such as [21], focus on ensuring
non-deadlocking interaction, later solutions like [2] or [5] re-
sult in adaptors that coordinate the system into satisfying
desired temporal logic properties. Temporal properties and
component behaviour are modelled by means of the same

formalism (finite state machines, Biichi automata or labeled
transition systems, etc.) and the composition aim is for the
adapted system behaviour to simulate the specified goal.

Behavioural system adaptation can also be easily reduced
to a control problem [18], if we see the adaptor as a controller
over the system plant, enabling transitions by message for-
warding and disabling them by message consumption.

However, formally specified component behaviour is still
far from becoming a mainstream industrial practice. There-
fore, situations when incompletely specified, black-box com-
ponents have to be correctly assembled to create a larger
system are not at all uncommon. As none of the classic
adaptor synthesis solutions can be applied, building a cor-
rect and reliable system becomes a challenging task.

Our aim is to provide an automatic solution for the com-
position of software systems out of black-box components.
We actively explore component behaviour at runtime by con-
trolling its inputs and monitoring its outputs, while con-
comitantly building and refining a tentative model of it.
Model refinement is performed with focus on the desired
property, i.e., we are not interested in inferring component
behaviour that is not relevant to the system specification.

In extension to our previous work [16], the behaviour ex-
ploration and refinement method presented here addresses
both safety and liveness properties in infinite runs. Also,
adding to the centralized exploration from [16], we propose
a distributed solution for remote components. Early access
to a part of the desired system functionality is provided by
means of a restrictive adaptor that is obtained and incre-
mentally improved during the behaviour exploration phase.

2. METHOD OVERVIEW

We want to compose a system out of a set of components
for which a behavioural model has not been provided. We
assume they are deterministic, asynchronous components,
whose interactions are of the message send/receive type, by
means of bounded buffers. The set of messages that a com-
ponent can send or receive is assumed to be known, and
both send and receive events are assumed observable. Also,
all components can be reset anytime to an initial state.

The desired system has a temporal specification given as
a Biichi automaton over a set of send/receive events. The
goal must be enforced by a controller over the system plant.

Classic control theory [18] provides solutions to synthe-
size a controller over a plant using the controllable events
of the plant to disable any uncontrollable events that might
violate the specification. In the case of a plant consisting
of a set of black-box components, controllable and uncon-

trollable behaviour cannot be precisely known. However, a
controller synthesized using an underapproximation of the
real controllable and an overapproximation of the real un-
controllable behaviour of the plant, can control the plant.

In order to build a controller over the system plant, we
need behavioural models for all components. As these com-
ponents are black-boxes, their behaviour can only be ac-
knowledged by runtime observation — thus underapproxi-
mated. Still, from a number of executions, a model can
be built that would underapproximate only the controllable
behaviour, while containing all its uncontrollable behaviour.

For such a model to be useful to the control problem, not
only should observed executions cover as many controllable
sequences of events as possible, but they also should be cor-
rect with respect to the desired system specification. Thus,
we must generate executions that respect the specification,
while covering as many controllable sequences as possible.

We aim to infer these models as Biichi automata, so that
they will allow infinite accepting runs. Our black-box com-
ponents are assumed deterministic, i.e., were they to have a
precise model, no more than one transition from a specific
state would be triggered by the same event.

In order to always overapproximate any unobserved un-
controllable behaviour, while also avoiding an expensive de-
terminization step, we allow for nondeterminism in the mod-
els we infer. We say we enable a controllable transition
whenever we forward to the component the message it needs
to receive for the transition to be triggered. For each compo-
nent, model inference takes place as follows. If absolutely no
information is available on component behaviour, we start
with a most general model (one state, all events triggering
self-loops). Execution sequences observed at runtime are
confronted to this model, and the model is refined: expected
controllable events that cannot be enabled lead to state
splits, observed events serve to prune out non-deterministic
transitions whenever possible, equivalent states are merged.

However, due to model nondeterminism, a current internal
component state might correspond to several model states.
To differentiate between these states we need to observe ex-
ecution sequences with a common prefix up to the disputed
point, but containing transitions specific to only one possible
state from that point on, i.e., differentiating transitions.

Thus, to infer models for the components in the system we
need to observe execution sequences that either explore the
controllability of correct system behaviour or serve to reduce
a set of possible current states in a component model.

Our solution obtains these sequences at runtime. We place
among the components a "fake” adaptor, that will intercept
all sent messages and control the system by forwarding or
consuming them, while monitoring the components to see if
they accept forwarded messages. Observed events are used
to synchronize the current execution with both a path in the
system model and a path in the specification automaton.

We conduct the runtime experiments as follows: suppose
the current state of a component corresponds in the model
to one or more unexplored states g, having several outgoing
controllable transitions. If any of these are differentiating
transitions, the fake adaptor will enable one of them first,
in order to narrow down the set of possible states.

The current state ¢ in the model will always be synchro-
nized with a current state s in the specification automaton.

Suppose a safety property. If for a controllable transition
t from ¢ in the model, a transition from s exists on the same

event in the specification automaton, then ¢ will be explored
at runtime, as it conforms to the safety property. If several
such transitions exist, they are explored in a random order.

Considering the safety property, a state ¢’ is marked as
forbidden when the specification was observed to be violated
at runtime from ¢’, and no controllable event can be disabled
in order to prevent this. A state from which a forbidden state
cannot be controllably avoided is also marked as forbidden.

If the specification automaton describes a liveness prop-
erty, a depth-first search is initiated from the current state
q, searching for traces of a maximum length b that violate
the negation of the liveness property. Outgoing transitions ¢
from ¢ for which such a counterexample has been found will
be explored at runtime to check counterexample feasibility.

While model-checking explores simultaneously all outgo-
ing paths from a state, controlled execution can only explore
one path at once. Let T'(¢) is the set of either safe or differ-
entiating transitions, yet unexplored and controllable from
a state g. Thus, a transition from T'(q) is enabled each time
an execution reaches g. Only safe transitions are reexplored.

Whenever an execution violates the specification or reaches
a forbidden state by a trace that is not a differentiating trace,
or whenever an infinite run is found, the ongoing execution
is forced to end by resetting all components in the system.

We say a transition is confirmed when, from its state of
origin, its triggering event is observed at runtime. The ex-
ploration process stops for a safety property when all con-
trollable transitions in the system are either confirmed or
marked as forbidden, and for a liveness property when all
cycles conforming to its complement have been explored and
no uncontrollable infinite execution has been found.

If a maximum number of states m is reached for all com-
ponent models and there still is unexplored controllable be-
haviour in the system, this behaviour is removed, since con-
trollable behaviour can be underapproximated. We then
build the needed adaptor as a controller over the system
plant. Also, during system exploration, correct and control-
lable traces found are used to generate a restrictive adaptor
that enables the correct partial use of the system.

3. FORMAL DESCRIPTION

Consider a set S = {Cp, C1,...Cr—1} of n asynchronous
black-box components from which the system S is to be
composed. Desired system S must comply to a property
expressed by means of a Biichi automaton ®, including both
the system specification and the absence of deadlock.

We decompose the specification ® into a safety and a live-
ness property that are also expressed as Biichi automata. ®
will represent the synchronous product ® = || ®;.

In order for S to comply to the specification, it is necessary
for the behaviour of S to be simulated by ®s: S < ®s.

Each black-box component C; is associated to a tentative
Biichi automaton U; = <Qi,q67Q§:, % 6%, where Q° is the
state set, g5 € Q' the initial state , Q} = Q' the set of
accepting states, ©¢ is the event set of C;, and & = [JX*
the event set of the system, and ¢° : Q* x £¢ — P(Q") is the
transition function. The event set of the system includes the
event set of the property automaton ®: ¥ O ©%. An event
o in X is either a message send: msg!, or a receive: msg?.

Let us assume that Vi. < n — 1. ack!, rst? € T, where
ack!, rst? are special, auxiliary events. Event ack! confirms
a successful receive: it is emitted by component C; whenever

Figure 1: Model nondeterminism: (a) current set of states,
(b) pruned model after al.c? is observed

a message msg arrives in a state g of C; in which it can be
accepted: 0°(q, msg?) # (. Event rst? forces the component
to return to its initial state, from any state gq. This makes
receive events externally observable and allows reset.

3.1 Model Refinement

Each black-box component C; is considered deterministic,
i.e., if its behaviour would be precisely modelled by an au-
tomaton, from any state ¢ of this automaton, any event o,
controllable or not, can trigger at most one transition.

However, since we don’t have this precise model, the be-
haviour of C; is overapproximated by the tentative model
Ui, i.e., U; allows for all possible behaviours of C;.

If we have no information on the behaviour of C;, we ini-
tialize U; with the most general model. Its transition func-
tion is §° (qé, J) = {q4} for all oinX’. Model U; represents
an overapproximation of the real component C; behaviour.
The transition function ¢° is a set function, thus it allows for
nondeterminism, in order to include all possible transitions.

During model refinement, nondeterminism can be intro-
duced whenever a state is split and we don’t know how to dis-
tribute its incoming transitions among resulted states. This
nondeterminism must be resolved by runtime observations,
which confront the model U; with the real behaviour of Cj.
We chose this option over the determinization of U;, which
would have exponentially increased the number of states.

Tentative models U; are refined based on runtime obser-
vations, that will prove traces feasible or unfeasible for C;.

3.1.1 Refinement cases

A transition triggered by an event o from state g can
lead the system into any state ¢’ € 6°(q, o) (Figure 1). Let
3*(q") be the set of outgoing events from such a state ¢'.

e After ok, an event opi1 occurs. We consider event
or+1 as confirmed from any state ¢’ that would cor-
rectly correspond to the internal state of the real com-
ponent C;. Thus, all transitions §’(q, o%) to a state
q"" for which §*(q”, ok1+1) = 0 are removed from U;, as
component C; is deterministic.

Figure 2: Cycle transformation: (a) before, (b) after split

e After oy, a receive event o471 is enabled by forwarding
the required message, but the message is not accepted.

— if op11 € B(¢’) for a unique state ¢’ € 6°(q, o),
then ¢’ becomes a split candidate. The explo-
ration continues with events o s.t. o € £¢(q”) for
some ¢ € 6°(q,01) and ¢ € ¥¥(¢’). Only if none
of these events o can be confirmed, ¢’ is split.

— if op1 € 2(¢), V¢’ € Q', where Q' C 6%(q, o),
we mark the states in Q’ as split candidates. The
exploration continues with receive events that can-
not be enabled from any ¢’ € Q’. If any of these is
confirmed, the split is canceled. Else, the explo-
ration continues with events o € %.*(¢’) for states
¢ € Q", where Q" C Q' and |Q"| is minimal.

Whenever a set of states (); end up having similar out-
going transitions, i.e., ¥'(q;,) = X%(gj,), Vja # Jjo and
6°(¢ja,0) = 0%(gj,,0),Vo € £(qj.)s Y4j.:05, € Qj, the
states in (); are considered equivalent and merged.

3.1.2 State split

A state split can be performed only on a single state. If
we have a set of split candidates, we first narrow it down
by experimenting with differentiating traces until we have
either only one state, or a set of equivalent states to merge.

Consider a trace p = ¢} .. .q in the model U;, where event
o is not accepted in the last state ¢ although allowed in the
model, o € Ei(q). Since the last state accepts fewer events
than ¢, it needs to be refined. Let n’ > 0 be the number
of transitions ¢ % ... occurring in p from state gq. The
refinement of U; must count to n': {(q,0), {q,1),...,{q,n’},
with o enabled in every state but the last (see Figure 2).

Thus, the refinement of U; has state space (Q* x {0..n'})U
{{g,n")} U @', its initial state is {g§,0), and the transition
relation ' is defined by:

o §'({g,k),0) ={{¢", k+1)|¢" €d(q,0)} fork<n'—1
(transition and count on ¢ from gq),

o 0'((q' k), 0") = {(¢" k) | ¢" € d(¢',0")} if ¢" # qor
o' # o (else keep behavior and counter),

e §'({g,n"),0") = &(q,0") for o' # o (switch to old state
space)

e 8 (q,0")=0d(q,0') forall ¢ € Q%, 0’ € ¥* (transitions
of old state space).

A special case appears when from the initial state ¢ € Q°,
a receive event o is enabled and the message fails to be
accepted. Here, ¢¢ splits into (g}, 0) and ¢, the new initial
state becomes (qé, 0) and transitions modify as following:

o §'((g6,0),0") = 6(q6,0") U{gs} for o’ # o
e §(¢,0')=6(¢,0"), forall ¢ € Q*, o’ € X°

The refinement of a component model U; stops when the
behaviour exploration is complete or a maximal state num-
ber m is reached and no state merging is possible.

Our model refinement phase is related to the counterex-
ample guided abstraction refinement (CEGAR) developed
by Clarke et al. [6], since the blocking execution can be re-
garded as a spurious counterexample, however, here the un-
feasibility of the counterexample cannot obtained from an
accessible concrete model, but only explored at runtime.

3.2 Centralized Exploration

The desired property ® can be decomposed into safety
and liveness properties: ® = &,||®;. We first explore the
system with respect to the safety property, and only after-
wards, within the confirmed safe behaviour, we analyze the
satisfaction of the liveness property.

3.2.1 Safety Properties

Let Ux be the asynchronous product of the tentative mod-
els Ux = Uy X Ui X ... xUp—1. As defined in [16], we consider
a control point in Uy as a global state g.p for which at least
one of the outgoing controllable event sets X% (gep) contains
2 or more receive events: |Z4(qep)| > 2.

We put the real components together and start the sys-
tem execution with a fake adaptor in the middle, that inter-
cepts component messages and forwards or consumes them
in order to control the execution, while also monitoring the
component reactions. The property automaton ®, will be
executed synchronously with the system model Ux.

If, from a state g, an uncontrollable event ¢’ occurs at
runtime, for which no transition triggered by o’ exists in ®s
from the current state, then ¢ is marked as a forbidden state.
The same happens when for all controllable transitions from
q, no corresponding transition exists in ®; or all controllable
transitions from ¢ end up in a forbidden state.

When the execution reaches a control point ¢.p, a receive
event o € X% (gep) is enabled for execution by the fake adap-
tor if from the current state of ®, a transition triggered by
o exists, and d(gep, o) does not contain forbidden states.

Whenever the runtime observations report one of the de-
scribed model refinement cases, the component model U; for
which the observation was reported will be refined.

The execution is forced to end when:

e A forbidden state is reached.
e A cycle that respects the safety property is confirmed:

— a cycle is found in the system model
— the cycle does not violate the safety property

— if the execution is steered towards the cycle, it
doesn’t leave it after a number of 8 transitions.

The mentioned transition threshold § = m - n, where m is
the maximum number of states admitted for a component,
and n is the total number of components in the system, 6
representing the maximum number of states in the system.

We base this result upon the consideration made by Peled
n [12], that for a black-box component with a maximum
number m of states, an accepted trace of the form uv™ is
enough to prove the existence of an infinite run.

Below we give a pseudocode description of the behaviour
exploration algorithm for safety properties.

: if cycle.in then

cycle := true

10: transitions := 0 [reset counter when new cycle]
11: else if cycle then

12: if cycle.out then

13: cycle:=false

14: inc(transitions) [only count when in a cycle]
15: return U;

1: def fixpoint =

2: Vt. t.msg € X7 — confirmed(t) V t.next € Bad
3:

4: function good(Uj, i, t) [confirmed transitions]
5: confirm(t)

6: prune(U;,t, last(i)) [prunes out nondeterminism]
7: last(i) :==t

8

9:

In fixpoint we define the ideal terminating condition for
behavioural exploration: all controllable transitions in the
system model are either confirmed, i.e., have been observed
at execution, or found to lead towards forbidden states.

Function good is applied when an event is observed in
a component C;: it marks transition ¢ as confirmed, prunes
out nondeterminism, and memorizes ¢ in last(i). Transitions
inside a cycle are counted, and when their number reaches
m-n an infinite execution has been found. For simplification,
we have left out the case of nested cycles, where each distinct
cycle has its own counter.

The procedure execution conducts the experiments dur-
ing one execution. Incoming messages are read in the buffer,
dropping old messages whenever the buffer is full. The cur-
rent system state is marked as Bad, i.e., forbidden, if the
transition t triggered by an observed event leads to a prop-
erty violation (model U; and specification ® do not synchro-
nize on t) or if ¢ leads to a forbidden state. If from the
current system state ¢, a controllable outgoing transition
t is unexplored and conforms to ®, it is enabled, i.e., the
requested message is forwarded to the component. If the
message acceptance is acknowledged, the transition is con-
firmed, else the model is refined by state splitting. If all
transitions from ¢ end in a forbidden state, then ¢ is forbid-
den. If, however, all controllable transitions from ¢ end in
a forbidden state, and X(q) # X2(q), then at least one such
transition ¢ has to be confirmed by runtime execution in or-
der to mark ¢ as forbidden. An already confirmed transition
is only explored if it conforms to the specification.

The execution ends when m - n transitions have been
counted inside a cycle, or a forbidden state was reached.
The exploration process finishes when either the fixpoint
condition is true, or all component models have reached m
states. In the last case, unexplored controllable transitions
are removed from component models. If a controller can be
obtained for this underapproximation of the controllable be-
haviour, it will ensure correct interoperability in the system.

3.2.2 Liveness Properties

Let ®; be the complement automaton of ®;. If &; ex-
presses a liveness property, ®; will express a safety property.
The behaviour exploration algorithm for the liveness spec-
ification is similar with the one given for the safety specifi-
cation, with two significant differences: the negated specifi-

1: procedure execution [directing one execution]
2: buffer := @ [initialize]
3: cycle:=false
4: transitions:=0
5: for alli=0,n—1 do
6: last(i) := none [no last transition]
7. reset C;
8: repeat
9: foralli=0,n—1do
10: if incoming(C;) # 0 A (buffer.size <! —1) then
11: t:= incoming(C;) [accepts sent messages|
12: buffer := buffer U {t.msg}
13: U;:=good (U, i, t) [confirm send]
14: if buffer.size = [then
15: buffer := buffer \ buffer.old [full buffer]
16: if sync(U;, ®, t)=FErr V sys.state.next € Bad
then
17: Bad:= Bad U sys.state.current [found bad state]
18: stop
19:
20: for alli=0,n—1do
21: q := sys.state.current
22: Ctrl(i):= X%(q) [explore controllable events)
23: for all t € Ctrl(i) A t.msg € buffer do
24: if not(explored(t)) then
25: if sync(U;, ®,t)=0Ok A sys.statenext ¢ Bad
then
26: enable(t) [try a safe transition]
27: if ack then
28: U;:= good(Us, i, t)
29: else {enable fails, refine model}
30: U;:=split(q, t, U;)
31: else if 3(q) \ Ctrl(i) = 0 then
32: Bad:= Bad U {q} [bad state]
33: break
34: else if 3:(q) \ Ctrl(i) = 0 then
35: enable(t)
36: if ack then
37: Ui:=good(i, t)
38: Bad:= Bad U {q} [bad state]
39: stop
40: else {enable fails}
41: U; := split(q, t, U;)
42: else if sync(U;, @,t)=0k A sys.state.next ¢ Bad
then
43: enable(t)
44: if ack then
45: U;:=good(i, t)
46: else
47: U; := split(q, t, U;)
48: until transitions > 6 [infinite cycle found]
49: return
1: [behaviour exploration main]
2: for alli=0,n—1 do
3: initialize(U;)
4: Bad =0
5: repeat
6: execution
7: until fixpoint V (Vi <n —1).|Q;| >m

cation, ®;, is used, and the decision on the transitions to be
explored from a control point is taken differently.

When the execution reaches a control point q.p, a depth-
first search phase will return the outgoing transitions from
which controllable traces that violate ®; can be found in the
system model for a length of b transitions, where b is the
maximum depth bound.

Only the outgoing transitions on traces that violate ®;
will be enabled for execution. An execution ends when:

o O is violated and if the execution reaches a cycle that
complies to @y, it can also be controllably steered away
after less than 0 transitions

e if a cycle is reached where ®; cannot be violated in
0 transitions, we reset the components and conclude
that the system S does not satisfy ®;, unless entering
the cycle can be controllably avoided.

If the safety property is trivial, i.e., the model hasn’t been
refined before, exploration stops when all controllable tran-
sitions are either confirmed, or do not violate property ®;.

If, however, the model has already been refined by run-
time exploration with respect to the safety property ®s, the
exploration process stops when either all cycles that conform
to ®; have been explored and controllably exited after less
than 6 transitions, or one such cycle is entered by means of
an uncontrollable transition and proved to lead to infinite
executions in ;.

3.3 Distributed Exploration

3.3.1 Motivation

Our system S contains n components, each with a max-
imum number of m states. During one directed execution,
2 - n; messages are exchanged between the components and
the adaptor, where n; is the number of executed transitions,
due to the fact that each message is sent and received twice
(by the component and by the adaptor). During cycle explo-
ration, the number n; of transitions can reach a maximum
of 6 = m - n, resulting in O(m - n) exchanged messages.

If our components are placed remotely, the procedure of
monitoring and controlling an execution will involve O(m-n)
remote message exchanges, all taking place through the cen-
tralized controller. Also, remote communication is prone to
issues such as message loss, large delays, etc., which can
make remote behaviour exploration very inefficient if cen-
tralized. Thus, the solution should be localized.

3.3.2 Overview

Let us now assume that we have local fake adaptors, one
for each remote component, and that each local fake adap-
tor broadcasts sent messages over the network, to the other
adaptors, in a non-redundant way, i.e., won’t broadcast the
same message twice. Once a message is received, it can be
reused many times, as the adaptor will forward it locally
to the component whenever needed, at no communication
cost. Thus, assuming all messages are broadcast to all com-
ponents, the number of remotely exchanged messages during
the whole behaviour exploration will be O(n - |%]).

Assume that all n components in the system S are remote.
This results in n local fake adaptors FA;, i = 0,n — 1. Each
FA; monitors and controls only the local component C;, and
communicates with the other adaptors by broadcasting the

messages sent by C; and receiving messages sent by the other
components Cj, j # i.

When it receives a message msg, FA; will only keep it if
msg? € 2%, Also, as soon as component C; sends a message
msg, FA; intercepts it, but, in order to save bandwidth, it
will only broadcast it to all FA;, iff msg hasn’t been broad-
cast yet during the exploration process.

The behaviour exploration and refinement are performed
by the local adaptor on the monitored and controlled com-
ponent similarly to the centralized case.

However, an important difference between the centralized
and the distributed approach resides in the way components
interact during the exploration process: if in the central-
ized approach the real components are explored together,
in the distributed case each component is explored individ-
ually, together with only the tentative models of the other
components. While allowing for parallelism in the explo-
ration process, this method has the disadvantage that, as the
tentative models overapproximate the real behaviour of the
components, the local component might be explored against
execution scenarios that are actually infeasible for the real
system. In order to minimize this issue, the local copies of
the tentative models should be up to date.

Whenever the local model U; of component C; is refined,
the refinement increment is broadcast, so that all FA; can
update the local copy of U;, and use it to refine Uj.

The parallel exploration of component behaviour ends when
each local component has a model in which all control-
lable transitions are either confirmed, or leading to forbidden
states, and all the transitions from the local copies of other
component models, that are part of at least one correct local
executions, are also confirmed transitions.

3.4 Adaptor synthesis

The final aim of the technique is to correctly compose
the system S from the components C;,i < n — 1. For the
adaptor synthesis phase, the composed property expressed
by the Biichi automaton ® will be considered.

Consider a refined model of a component C; to be Uj.
Also, let U} be the asynchronous product of these refined
models: Uy = U) x U{ x ... x U}, _;.

3.4.1 Early adaptation

As mentioned in our previous work, having obtained dur-
ing the behaviour exploration phase a set T ctr; of correct
and controllable traces, we can easily merge these traces into
an automaton C. We then obtain adaptor A by mirroring C,
i.e., transform all its send transitions into receive ones and
conversely: ¥4 = {msg!|lmsg? € £} U {msg?|/msg! € °}.

We can compute A only using executions obtained dur-
ing the exploration of the liveness property, after the safety
property exploration has completed. The adaptor A will be
incrementally enriched when new correct and controllable
traces are discovered. Thus, we can provide an early, safe
access to a part of the desired system functionality.

3.4.2 Final adaptation

After both the behaviour exploration and model refine-
ment end, a permissive adaptor can be computed starting
from a controller over the plant U.

However, models U; might still contain non-deterministic
transitions triggered by uncontrollable events o, from states
q where o was neither observed at execution, nor eliminated

from ¥%(¢). In our previous work [16], we proposed three
ways to resolve this situation, and build a final model U”.

e Optimistic approach: If we consider components C;
to be fair, then, for all states ¢, all transitions triggered
by uncontrollable events not observed at execution are
considered not to exist and can be removed from U;.
We obtain a deterministic refined model, that leads to
a small controller.

e Pessimistic approach: We know C; as unfair. There-
fore, its final model will be U/, unchanged, thereby
the nondeterminism due to uncontrollable events un-
observed at execution remains. The controller synthe-
sis problem is harder for nondeterministic models, but
the obtained controller is safe.

e Semi-optimistic approach: We have no information
regarding the fairness of C;, but we believe it is fair.
For any state ¢, all uncontrollable events o € {(gq)
not observed during the verification-driven execution
phase, are assumed unobservable, and only the self-
loops triggered by such events o are kept, all other
transitions being removed. We obtain a determinis-
tic refined model U}, that still accepts all o € Zi(q).
Computing the resulting controller, while much easier
than in the case of the pessimistic one, is still more dif-
ficult than for the optimistic controller. Further risks
may still appear if some such ¢ do manifest and the
actual transition from ¢ is not a self-loop.

The computation of the controller, noted by Ctrl, for the
specification @, relies on the classical result of Ramadge
and Wonham: Ctrl = supcon(UY, ®), where supcon, de-
scribed in [18], is a fixpoint procedure. Thus, all behaviours
of the plant Ul that do not violate ®. are allowed.

A permissive adaptor A is obtained from the controller
Ctrl by mirroring its event set. It allows the user a safe,
correct and complete access to the system S functionality.

4. DISCUSSION

The main challenge when it comes to black-box compo-
nent integration is to make behaviour exploration feasible
for real-world software components. Executing the compo-
nents is vital to obtain information on their behaviour in
the absence of a precise model. However, the cost of ex-
ploring behaviour by execution is greater than the cost of
model checking, since paths cannot be explored simultane-
ously. When exploring behaviour at runtime, we cannot
simply backtrack to the previous control point in order to
try another path. Instead, we have to reset the components
each time, and restart the run from the initial state. To
reach again the original control point is difficult, due to the
uncontrollability in the system, which can take the execution
astray. This is very expensive for deep paths.

However, this is the unavoidable cost of exploring asyn-
chronous black-box components at runtime. If all states are
control points, to obtain a trace of length m -n — required to
determine an infinite run — a number of O(|X|™") decisions
are to be taken, which implies O(]X|™") actual executions
for an exhaustive, controllable exploration, with no looka-
head. The black-box checking algorithm of Peled in [12] has
a time complexity of O(°|X|" + 13|2|™~! + I?pm) — where
[is the size of an equivalent minimal automaton and p the

size of the property automaton — to prove the correctness
of the component, without addressing the problem of trace
controllability.

Generating a controller based on an inaccurate, approx-
imated model is useless and unsafe, if the approximated
model contains spurious controllable transitions, or lacks un-
controllable transitions that actually occur at runtime. We
need to explore the runtime behaviour of the components in
order to be able to control the system, because the control-
lable behaviour of the plant is of no use if it is not confirmed.

In order to perform an efficient exploration, we need to
reduce the number of necessary executions as much as pos-
sible. This is why, when choosing a transition to enable from
several possible, we make use of a bounded model-checking
based step, which lets us select for exploration only the paths
that conform to the specification up to a bound b. If con-
firmed, the controllable transitions on these paths are the
ones to be used by the controller, later on, to enforce the
desired behaviour on the plant. This lookahead step has
an exponential complexity: O(|%[?), but the bound b can
be chosen as convenient, and a directed execution has the
advantage of always inferring useful information.

However, in order to infer models useful for system com-
position, we do not have to exhaustively explore the compo-
nents, but only reach a fixpoint in the runtime exploration
and model-refinement interleaving, where all controllable be-
haviour, correct with respect to the specification, is either
confirmed, or forbidden. An upper bound on the number of
traces to be experimented with, considering n., the number
of control points in an hypothetical, precise model of the sys-
tem, is \Ef})\"c?, which, considering also the lookahead step,
leads to a complexity O(nep|Z|P - |SF|™r). If, worst case,
Nep = M, the complexity becomes O(m|X|® - |B%|™).

The total number of runs needed to observe these traces,
however, depends on their controllability. Still, even if we
fail to reach the fixpoint before reaching the maximum num-
ber of states for component models, we can use only the
confirmed controllable behaviour to generate a controller.

S. RELATED WORK

A closely related approach is the black-box checking tech-
nique developed by Peled et al. for programs with missing or
inaccurate models [12]. It employs the Angluin algorithm [1]
for model inference. An approximated model is proposed,
verified, and compared to the real behaviour using black-box
testing. Found differences are used to generate a new model,
while counterexamples are validated by testing. However, in
contrast to our approach, their model only has input events,
which highly simplifies the learning process, and, since the
aim is to find feasible counterexamples, their model under-
approximates real behaviour. When refining the model, an
intermediary learning phase ensures its consistency, a prob-
lem which our algorithm avoids by overapproximating the
system behaviour. Also, in our case, verification, testing
and model refinement are strongly interleaved, which allows
us to obtain a good model earlier, while their work has dis-
tinct phases aiming for an early confirmed counterexample.

Recent advances on dynamic model mining underline the
critical significance of this domain. The works of Berg et
al. [10], or the GK-tail algorithm developed by Lorenzoli et
al. [14] focus on extracting extended finite state machines
from execution traces. GK-tail uses inferred invariants and
positive execution samples to extract EFSMs, while the reg-

ular inference method of Berg et al. uses an adaptation of
the Angluin algorithm [1], thus assuming the possibility of
querying for trace membership and model equivalence. In
contrast, our approach learns the model on-the-fly, using
both positive and negative samples, while always maintain-
ing a safe approximation of the real component behaviour,
instead of querying for equivalence. Also, our samples are
not random traces, but are generated using a lookahead tech-
nique that aims towards a compositionality goal.

In [20], Suman et al. describe a method to extract state
models for black-box components under the form of finite
state machines with guard conditions. It considers that a
state is defined by the method invocations it accepts, and it
discovers potential new states by invoking all active methods
from the current state. These potential states can be merged
or confirmed, existing cycles can be detected within a cer-
tain bound, etc. Somehow similar, the work of Dallmeier
et al. in [7] relies on test case generation to systematically
extend the execution space and thus obtain a better be-
havioural model by dynamic specification mining. The exe-
cution space is extended by adding/removing method calls
from the current state, and thus enriching an existing test
suite. Also, in [8], Ghezzi et al. present the SPY approach,
which is able to infer a behavioural model of black-box com-
ponents that embody data abstractions, by using both in-
variants computed on input/output data relations and graph
transformations, while also assumming a "uniform” compo-
nent behaviour. These techniques work with synchronous
method calls, while our approach addresses asynchronous
message exchange, which is more difficult as it involves is-
sues such as uncontrollable events, etc. Also, our technique
is composition-oriented and works on discovering specific be-
haviour required by the desired global property, thus, the
model is refined not in isolation, but with respect to the
property and to its possible interactions with the other com-
ponents in the system.

In the domain of conversational web services, we found the
work of Bertolino et al. [3] on behaviour protocol synthesis,
and Cavallaro et al. [13] on service adaptation to be related
to ours. While [3] describes a technique that uses the WSDL
interface to extract possible operation dependencies between
the I/O data, and then validates these dependencies through
testing, thus obtaining the behavioural web service protocol,
the work in [13] takes this technique further, and develops a
method for synthesizing web service adaptors starting from
WSDL descriptions, which enables a correct interoperation
when an old service is replaced by an equivalent, new one.
However, the web services in [3, 13] are stateless, while our
approach addresses stateful black-box components. Thus,
while their work starts from a data-dependency perspective,
ours explores the language of the component and its con-
trollability, while regarding data from a higher level of ab-
straction, as passed and received messages. Therefore, we
consider the two approaches complementary.

Another related method is [15] by P#sireanu et al., which
relies on environmental assumption generation when verify-
ing a software component against a desired property. Their
approach is based on the work of de Alfaro and Henzinger [11]
stating that two components are compatible if there exists
an environment that enables them to correctly work to-
gether. This divide-and-conquer technique analyzes com-
ponents separately in order to obtain for each the weakest
environmental assumption needed for the property to hold.

By building a system controller, our approach actually cre-
ates such an environment. However, while in [15] the an-
alyzed component is well specified, our approach addresses
systems with black-box components, whose behaviour and
controllability must be understood before building an adap-
tor. In [19], the authors use both underapproximation and
overapproximation to learn component interfaces, but with
respect to predicate abstraction, and in a white-box manner.

The use of verification-driven execution relates our method
to smart play-out [9], which is a lookahead technique that
employs model-checking to execute and analyze Live Se-
quence Charts. The play-out technique is mainly used to
actually execute specifications from a GUI, during the soft-
ware design process. Both approaches use verification-driven
execution to improve knowledge, but, while we infer exist-
ing, unknown behaviour, smart play-out experiments with
execution scenarios to find the best design options.

CrystalBall [22] also makes use of model checking for looka-
head analysis. Here, nodes in a distributed system run con-
tinuously a state exploration algorithm on a snapshot of
their neighbourhood in order to detect future inconsisten-
cies. If an error is predicted, the ongoing execution can also
be steered away from it. However, in contrast to our ap-
proach, CrystalBall addresses well-specified distributed sys-
tems. Also, while CrystalBall uses the lookahead and execu-
tion steering in a defensive way, our method employs similar
techniques aggressively, for runtime exploration.

6. CONCLUSIONS

We have presented a method to automatically compose
a system from a set of black-box components. Our tech-
nique infers behavioural models for the black-box compo-
nents by starting from an initial abstraction that is repeat-
edly confronted with the runtime behaviour of the compo-
nent and incrementally refined. In order to refine the useful
behaviour of the model, the execution of the system is con-
trolled by an intelligent adaptor, which employs a bounded
model-checking [4] based lookahead technique to guide the
run towards the satisfaction of the system specification.

Our method does not depend on source code availability,
but can be combined with static component interface extrac-
tion, which is known to produce overapproximated models,
in order to appropriately refine these models by dynamic
behavioural exploration, and thus provide more precise in-
terfaces. Also, it can be applied to improve the knowledge
on maintenance components for which no behaviour model
has been provided, or the provided models are outdated.

The main contributions of this paper are the behaviour
exploration methods for infinite runs, addressing safety and
liveness properties, and inferring models for system compo-
sition. Also, this paper makes preliminary considerations on
a distributed exploration of remote black-box components —
an idea we plan to further develop in our future work.

We are currently working on the implementation of this
technique. We will validate our prototype on a set of En-
terprise JavaBeans systems using Java Message Service for
asynchronous messaging. For initial experiments, we have
used the Supremica tool [17] for controller synthesis.

Acknowledgements

We are grateful to Marius Minea for substantial feedback.
This work was partially supported by the European FP7-
ICT-2007-1 project 216471, AVANTSSAR and by the strate-

gic grant POSDRU 6/1.5/S/13, (2008) of the Ministry of
Labour, Family and Social Protection, Romania, co-financed
by the European Social Fund: Investing in People.

7. REFERENCES

[1] D. Angluin. Learning regular sets from queries and
counterexamples. Inform. and Computation 1987.

[2] M. Autili, L. Mostarda, A. Navarra, and M. Tivoli.
Synthesis of decentralized and concurrent adaptors for
correctly assembling distributed component-based
systems. Journal of Systems and Software 2008.

[3] A. Bertolino, P. Inverardi, P. Pelliccione, M. Tivoli
Automatic Synthesis of Behaviour Protocols for
Composable Web-Services. ESEC/FSE 2009.

[4] A. Biere, A. Cimatti, E. M. Clarke et al. Bounded
model checking. Advances in Computers 2003.

[5] C. Canal et al. Model-based adaptation of behavioral
mismatching components. Trans. Soft. Eng. 2008

[6] E. Clarke et al. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 2003.

[7] V. Dallmeier and A. Zeller. Generating Test Cases for
Specification Mining. ISSTA 2010

[8] G. Ghezzi et al. Synthesizing Intentional Behavior
Models by Graph Transformation. /CSE 2009.

[9] D. Harel et al. Smart play-out. OOPSLA 2003

[10] T. Berg et al. Regular Inference for State Machines
Using Domains with Equality Tests. FASE 2008

[11] L. de Alfaro and T. A. Henzinger. Interface automata.
ESEC/FSE-9 2001

[12] D. Peled, Moshe Y. Vardi. Black box checking.
FORTE/PSTV 1999

[13] L. Cavallaro, E. Di Nitto, P. Pelliccione et al.
Synthesizing adapters for conversational web-services
from their WSDL interface. SEAMS 2010

[14] D. Lorenzoli, L. Mariani, M. Pezzé. Automatic
Generation of Software Behavioral Models. ICSE 2008

[15] C. Pasireanu, D. Giannakopoulou et al. Learning to
divide and conquer: applying the L* algorithm to
automate assume-guarantee reasoning. FMSD 2008.

[16] C. Holotescu. Controlling the Unknown. FoVeOOS
2010

[17] K. Akesson, M. Fabian et al. Supremica: an integrated
environment for verification, synthesis and simulation
of discrete event systems. WODES 2006

[18] P. Ramadge and W. Wonham. The control of discrete
event systems. Proc. of the IEEE, 7T7(1), 1989.

[19] R. Singh, D. Giannakopoulou, and C. P&sireanu.
Learning Component Interfaces with May and Must
Abstractions. CAV 2010.

[20] R. Suman et al. Extracting State Models for
Black-Box Software Components. J. Obj. Tech. 2010

[21] H. W. Schmidt and R. H. Reussner. Generating
adapters for concurrent component protocol
synchronisation. FMOODS 2002.

[22] M. Yabandeh, N. Knezevi¢, D. Kostié¢, V. Kuncak.
CrystalBall: Predicting and Preventing Inconsistencies
in Deployed Distributed Systems. NSDI 2009

[23] D. Yellin, R. Strom. Protocol specifications and
component adaptors Tr. on Prog. Lang. and Syst. 1997

