Integrating Math Units and
Proof Checking for
Specification and Verification

Hampton Smith Joan Krone William F. Ogden
Kim Roche Denison University Ohio State University

Murali Sitaraman
Clemson University

SIGSOFT 2008 / FSE 16
November 9th, 2008

“Qﬁ SAVCBS Workshop 2008
\

Overview

« RESOLVE Verification System
* Role of Proof Checker in Verification System

 Requirements of a Proof Checker in such a system

Overview

« RESOLVE Verification System
* Role of Proof Checker in Verification System
o Issues
o Solutions
 Requirements of a Proof Checker in such a system
o Issues
o Solutions

RESOLVE Verification System

RESOLVE

 Reusable Software Research Group at Clemson

e Integrated Programming, Specification, and Proof Language
* Full end-to-end verification

o Scalability

o Performance

|Isabelle Backend

cs.clemson.edu/~resolve

Proof Checkers in a
Verification System

PROOF OBLIGATIONS

Precondition

Precondition

Postcondition

Postcondition

Enhancement for Stacks

Enhancement Flipping_Capability for Stack _Template;

Operation Flip(updates S : Stack);
ensures S = Rev(#S);

end Flipping_Capabillity;

Implementation of Flipping

Realization Obvious_Flipping_Realization for
Flipping_Capability of Stack_Template;

Procedure Flip (updates S : Stack);
Var Next_Entry : Entry;
Var S_Flipped : Stack;

While (Depth(S)/=0)
changing S, Next _Entry, S Flipped;
maintaining #S = Rev(S_Flipped) 0 S;
decreasing |S|;

do
Pop(Next_Entry, S);
Push(Next Entry, S_Flipped);

end,

S =1 S_Flipped;
end Flip;
end Obvious_Flipping_Realization;

Verification Condition

((]S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and
(|??S| /= 0 and ??S = (<?Next_Entry> 0 ?S))))

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o0 ?S_Flipped) o ?S)

A little help

Theorem 1:
Ya: Str(E), ¥x: E, (a o <x>)FY = (<x> o af*¥)

Theorem 2:
Is_Associative(o)

10

Postcondition

11

Postcondition

12

Automated Prover

Postcondition

12

Automated Prover

Postcondition

User Provided Proof +
Proof Checker 12

Verification System

"Requiring programmers to
engage in a fine level of proof
activity is unlikely to lead to
wide-spread verification
[T]he limitations of automated
theorem proving often require
substantial human
iIntervention."

13

Verification System

"Requiring programmers to Clear division between
engage in a fine level of proof verification conditions and
activity is unlikely to lead to math results.

wide-spread verification

[T]he limitations of automated Rethink the latter as a job for
theorem proving often require trained mathematicians.
substantial human

Intervention.”

13

Requirements for such a Proof
Checker

14

Automated Prover

Postcondition

User Provided Proof +
Proof Checker 15

Reusabllity

Programming Language

* Abstraction
e Modules

e |nterfaces
« Readability

Proof Language

16

Reusabllity

Programming Language

Abstraction
Modules
Interfaces
Readability

Proof Language

Abstraction
\Y[e]o[B][=1S
Interfaces
Readability

16

Abstraction and Modules

Stack Queue List

17

Consumers of Theories

Proof Checker
Automated Prover
Mathematicians
Programmers

18

Précis vs. Proof Units

Header file for theories.

19

Précis vs. Proof Units

Precis Natural Number_Theory;
uses Basic_Function_Properties,
Monogenerator_Theory...

Inductive Definition on 1 : N of
(@:N)+ (b):Nis
(Hha+0=a;
(i) a + suc(b) = suc(a + b);

Theorem N1.:
Is_Associative(+);

end Natural_Number_Theory;

20

Précis vs. Proof Units

Précis Natural_Number_Theory; Proof unit
uses Basic_Function_Properties, Natural Number Theory Proofs
Monogenerator _Theory... for Natural_Number_Theory;
Uses ...
Inductive Definition on i : N of
(@:N)+(b):Nis Proof of Theorem N1.:
(Da+0=a; Goal for all k, m, n: N,
(i) a + suc(b) = suc(a + b); K+(m+n)=(k+m)+n;
Definition S1: Powerset(N) =
Theorem N1.: {n: N, forallk, m:N,
Is_Associative(+); K+ (m+n)=(k+m)+n}

end Natural Number_Theory;

20

Automated Prover

Postcondition

User Provided Proof +
Proof Checker 21

Popular Proof Checkers

|sabelle [2] Coqg [1]
lemma assumes AB: Variables A B C : Prop.
"large_A /\ large B"
shows Lemma and_commutative :
"large_B A\ large A" (ANB)->(BN\A).
(1Is"?B N\ ?A") Intro.
using AB elim H.
proof split.
assume "?A" "?B" exact H1.
show ?thesis .. exact HO.
ged Save.

22

Mathematical Proof

Supposition k, m: N
Goalk+(m+0)=(k+m)+0
K+(m+0)=k+m
by (i) of Definition +
k+m=(k+m)+0
by (i) of Definition +
Deduction if Kk € N and m € N then
k+(m+0)=(k+m)+0

[ZeroAssociativity] For all k: N, for all m: N,

K+(m+0)=(k+m)+0
by universal generalization

23

RESOLVE Proof Language

Supposition k, m: N;
Goalk+(m+0) =(k+ m)+ 0;
K+(m+0)=k+m
by (i) of Definition +;
K+m=(k+m)+0
by (i) of Definition +;
Deduction if kis in N and mis_in N then
K+(m+0)=(k+m)+0;

[ZeroAssociativity| For all k: N, for all m: N,

K+(m+0)=(k+m)+0
by universal generalization;

24

Demo

Corollary Identity: a : N and
a+0=a;

Proof of Theorem Nothing:
Supposition k, m: N;
(k+m)+0=k+m
by Corollary Identity & equality;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED

25

Demo

Corollary Identity: a : N and Error: Simple.mt(10):
a+0=a; Could not apply substitution to the
justified expression.
Proof of Theorem Nothing: (k+m)+0=m+0
Supposition k, m: N; by Corollary Identity & equality;

(kK+m)+0=m+0
by Corollary Identity & equality;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED

26

Demo

Corollary Identity: a : N and
a+0=a;

Proof of Theorem Nothing:
Supposition k, m: N;
(k+m)+0=k+m
by Corollary Identity & or rule;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED

Error: Simple.mt(10):
Could not apply the rule Or Rule to
the proof expression.
(k+m)+0=k+m
by Corollary Identity & or rule;

27

Conclusions

e A clearer distinction is required between those proof
obligations that we expect to be dispatched by an automated
prover, and those for which we intend to furnish a proof.
 Programmers should not be required to provide proofs.

e Robust mathematical library of theories is required.

e Techniques from programming languages should be applied
to mitigate the complexity of such theories.

28

References

[1] G. Huet, G. Kahn, and C. Paulin-Mohring, “The
Cog Proof Assistant: A Tutorial.” INRIA,
2004, pp. 3-18; 45-47.

[2] T. Nipkow. “A Tutorial Introduction to Structured
Isar Proofs,”
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isa
belle/doc/isar-overview.pdf.

28

