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RESOLVE Verification System 
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P ditiPrecondition

Postcondition

6
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Enhancement for St

E h t Fli i C biliEnhancement Flipping_Capabili

Operation Flip( updates S : StOperation Flip( updates S : St
ensures S = Rev( #S );

end Flipping_Capability;

acks

t f St k T l tty for Stack_Template;

tack );tack );
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Implementation of F
Realization Obvious_Flipping_Realization

Flipping_Capability of Stack_Templa

Procedure Flip ( updates S : Stack );
Var Next_Entry : Entry;
Var S Flipped : Stack;_ pp ;

While ( Depth( S ) /= 0 ) 
changing S, Next_Entry, S_Flippeg g y
maintaining #S = Rev( S_Flipped 
decreasing |S|;

do
Pop( Next_Entry, S );
Push( Next_Entry, S_Flipped);

end;

S :=: S_Flipped;
end Flip;

end Obvious Flipping Realization;end Obvious_Flipping_Realization;

lipping
n for
ate;

ed;
) o S;
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Verification Conditio

((|S| M D th) d (S (R((|S| <= Max_Depth) and (S = (R
(|??S| /= 0 and ??S = (<?Next_E

=========================

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o ?S_Flipp

on

R (?S Fli d) ??S) dRev(?S_Flipped) o ??S) and
Entry> o ?S)))) 

====>

ped) o ?S) 
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A little help

10



P ditiPrecondition

Postcondition

Invar

Math Results

riant

11



Precondition
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Automated Prover
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Verification System

"R i i t"Requiring programmers to 
engage in a fine level of proof 
activity is unlikely to lead toactivity is unlikely to lead to 
wide-spread verification .... 
[T]he limitations of automated 
theorem proving often require 
substantial human 
intervention "intervention.

13



Verification System

"R i i t"Requiring programmers to 
engage in a fine level of proof 
activity is unlikely to lead toactivity is unlikely to lead to 
wide-spread verification .... 
[T]he limitations of automated 
theorem proving often require 
substantial human 
intervention "intervention.

Cl di i i b tClear division between 
verification conditions and 
math resultsmath results.

Rethink the latter as a job for 
trained mathematicians.
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Reusability

P i LProgramming Language

• AbstractionAbstraction 
• Modules 
• Interfaces
• Readability

P f LProof Language
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Reusability
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Abstraction and Mod

Stack Queue List .

String Theory

dules

..

...
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Consumers of Theo

P f Ch k• Proof Checker 
• Automated Prover
• MathematiciansMathematicians
• Programmers

ries
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Précis vs. Proof Unit

Header file fHeader file f

ts

for theoriesfor theories.
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Précis vs. Proof Unit

P é i N t l N b ThPrécis Natural_Number_Theory;
uses Basic_Function_Properties,

Monogenerator_Theory... 

Inductive Definition on i : N of
(a : N) + (b) : N is

(i) a + 0 = a;(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1:Theorem N1:
Is_Associative( + );

......

end Natural_Number_Theory;

ts
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Précis vs. Proof Unit

P é i N t l N b ThPrécis Natural_Number_Theory;
uses Basic_Function_Properties,

Monogenerator_Theory... 

Inductive Definition on i : N of
(a : N) + (b) : N is

(i) a + 0 = a;(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1:Theorem N1:
Is_Associative( + );

......

end Natural_Number_Theory;

ts

P f itProof unit
Natural_Number_Theory_Proofs

for Natural_Number_Theory;
UsesUses ...

Proof of Theorem N1:
Goal for all k m n: NGoal for all k, m, n: N,

k + (m + n) = (k + m) + n;
Definition S1: Powerset(N) =

{n : N for all k m : N{n : N, for all k, m : N,
k + (m + n) = (k + m) + n};

......
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Popular Proof Check

I b ll [2]Isabelle [2]
lemma assumes AB:

"large A /\ large B"large_A /\ large_B
shows

"large_B /\ large_A"
( is "?B /\ ?A" )

using AB
proofproof

assume "?A" "?B"
show ?thesis ..

qed

kers

C [1]Coq [1]
Variables A B C : Prop.

Lemma and_commutative :
(A /\ B) -> (B /\ A).

intro.
elim H.
splitsplit.
exact H1.
exact H0.

Save. 
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Mathematical Proof

S iti k NSupposition k, m: N
Goal k + (m + 0) = (k + m) + 0
k + (m + 0) = k + mk + (m + 0)  k + m

k + m = (k + m) + 0

Deduction if k ∈ N and m ∈ N
k + (m + 0) = (k + m) + 0k + (m + 0) = (k + m) + 0

[ZeroAssociativity] For all k: N[ y]
k + (m + 0) = (k + m) + 0

0

by (i) of Definition + 

by (i) of Definition +
N then 

N, for all m: N, 

by universal generalization
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RESOLVE Proof Lan

S iti k NSupposition k, m: N; 
Goal k + (m + 0) = (k + m) + 0
k + (m + 0) = k + mk + (m + 0)  k + m

k + m = (k + m) + 0

Deduction if k is_in N and m is
k + (m + 0) = (k + m) + 0;k + (m + 0) = (k + m) + 0;

[ZeroAssociativity] For all k: N[ y]
k + (m + 0) = (k + m) + 0

nguage

0; 

by (i) of Definition +;

by (i) of Definition +; 
s_in N then

N, for all m: N, 

by universal generalization;
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Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m 
by Corollary Identity & equality;by Corollary Identity & equality;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0  k + m;

QED
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Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = m + 0
by Corollary Identity & equality;by Corollary Identity & equality;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0  k + m;

QED

E Si l t(10)Error: Simple.mt(10):
Could not apply substitution to the 

justified expression.
(k + m) + 0 = m + 0(k + m) + 0 = m + 0

by Corollary Identity & equality;
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Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m
by Corollary Identity & or rule;by Corollary Identity & or rule;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0  k + m;

QED

Error: Simple mt(10):Error: Simple.mt(10):
Could not apply the rule Or Rule to 

the proof expression.
(k + m) + 0 = k + m(k + m) + 0 = k + m

by Corollary Identity & or rule;
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Conclusions

A l di ti ti i i d• A clearer distinction is required
obligations that we expect to be 
prover and those for which we iprover, and those for which we i

• Programmers should not be re

• Robust mathematical library o

• Techniques from programming
to mitigate the complexity of sucg p y

d b t th fd between those proof 
dispatched by an automated 
ntend to furnish a proofntend to furnish a proof.

equired to provide proofs.

of theories is required.

g languages should be applied 
ch theories.
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