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RESOLVE
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e Integrated Programming, Specification, and Proof Language
* Full end-to-end verification

o Scalability
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Enhancement for Stacks

Enhancement Flipping_Capability for Stack _Template;

Operation Flip( updates S : Stack );
ensures S = Rev( #S);

end Flipping_Capabillity;



Implementation of Flipping

Realization Obvious_Flipping_Realization for
Flipping_Capability of Stack_Template;

Procedure Flip ( updates S : Stack );
Var Next_Entry : Entry;
Var S_Flipped : Stack;

While ( Depth(S)/=0)
changing S, Next _Entry, S Flipped;
maintaining #S = Rev( S_Flipped ) 0 S;
decreasing |S|;

do
Pop( Next_Entry, S );
Push( Next Entry, S_Flipped);

end,

S =1 S_Flipped;
end Flip;
end Obvious_Flipping_Realization;




Verification Condition

((]S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and
(|??S| /= 0 and ??S = (<?Next_Entry> 0 ?S))))

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o0 ?S_Flipped) o ?S)



A little help

Theorem 1:
Ya: Str(E), ¥x: E, (a o <x>)FY = (<x> o af*¥)

Theorem 2:
Is_Associative( o )
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Automated Prover

Postcondition
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Automated Prover

Postcondition

User Provided Proof +
Proof Checker 12



Verification System

"Requiring programmers to
engage in a fine level of proof
activity is unlikely to lead to
wide-spread verification ....
[T]he limitations of automated
theorem proving often require
substantial human
iIntervention."
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Verification System

"Requiring programmers to Clear division between
engage in a fine level of proof  verification conditions and
activity is unlikely to lead to math results.

wide-spread verification ....

[T]he limitations of automated  Rethink the latter as a job for
theorem proving often require  trained mathematicians.
substantial human

Intervention.”
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Requirements for such a Proof
Checker
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Automated Prover

Postcondition

User Provided Proof +
Proof Checker 15



Reusabllity

Programming Language

* Abstraction
e Modules

e |nterfaces
« Readability

Proof Language
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Reusabllity

Programming Language

Abstraction
Modules
Interfaces
Readability

Proof Language

Abstraction
\Y[e]o[B][=1S
Interfaces
Readability
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Abstraction and Modules

Stack Queue List
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Consumers of Theories

Proof Checker
Automated Prover
Mathematicians
Programmers
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Précis vs. Proof Units

Header file for theories.
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Précis vs. Proof Units

Precis Natural Number_Theory;
uses Basic_Function_Properties,
Monogenerator_Theory...

Inductive Definition on 1 : N of
(@:N)+ (b):Nis
(Hha+0=a;
(i) a + suc(b) = suc(a + b);

Theorem N1.:
Is_Associative( + );

end Natural_Number_Theory;
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Précis vs. Proof Units

Précis Natural_Number_Theory; Proof unit
uses Basic_Function_Properties, Natural Number Theory Proofs
Monogenerator _Theory... for Natural_Number_Theory;
Uses ...
Inductive Definition on i : N of
(@:N)+(b):Nis Proof of Theorem N1.:
(Da+0=a; Goal for all k, m, n: N,
(i) a + suc(b) = suc(a + b); K+(m+n)=(k+m)+n;
Definition S1: Powerset(N) =
Theorem N1.: {n: N, forallk, m:N,
Is_Associative( + ); K+ (m+n)=(k+m)+n}

end Natural Number_Theory;
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Automated Prover

Postcondition

User Provided Proof +
Proof Checker 21



Popular Proof Checkers

|sabelle [2] Coqg [1]
lemma assumes AB: Variables A B C : Prop.
"large_A /\ large B"
shows Lemma and_commutative :
"large_B A\ large A" (ANB)->(BN\A).
(1Is"?B N\ ?A") Intro.
using AB elim H.
proof split.
assume "?A" "?B" exact H1.
show ?thesis .. exact HO.
ged Save.
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Mathematical Proof

Supposition k, m: N
Goalk+(m+0)=(k+m)+0
K+(m+0)=k+m
by (i) of Definition +
k+m=(k+m)+0
by (i) of Definition +
Deduction if Kk € N and m € N then
k+(m+0)=(k+m)+0

[ZeroAssociativity] For all k: N, for all m: N,

K+(m+0)=(k+m)+0
by universal generalization
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RESOLVE Proof Language

Supposition k, m: N;
Goalk+(m+0) =(k+ m)+ 0;
K+(m+0)=k+m
by (i) of Definition +;
K+m=(k+m)+0
by (i) of Definition +;
Deduction if kis in N and mis_in N then
K+(m+0)=(k+m)+0;

[ZeroAssociativity| For all k: N, for all m: N,

K+(m+0)=(k+m)+0
by universal generalization;
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Demo

Corollary Identity: a : N and
a+0=a;

Proof of Theorem Nothing:
Supposition k, m: N;
(k+m)+0=k+m
by Corollary Identity & equality;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED
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Demo

Corollary Identity: a : N and Error: Simple.mt(10):
a+0=a; Could not apply substitution to the
justified expression.
Proof of Theorem Nothing: (k+m)+0=m+0
Supposition k, m: N; by Corollary Identity & equality;

(kK+m)+0=m+0
by Corollary Identity & equality;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED
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Demo

Corollary Identity: a : N and
a+0=a;

Proof of Theorem Nothing:
Supposition k, m: N;
(k+m)+0=k+m
by Corollary Identity & or rule;
Deduction if kis_in N and
m is_in N then
(k+m)+0=Kk+m;
QED

Error: Simple.mt(10):
Could not apply the rule Or Rule to
the proof expression.
(k+m)+0=k+m
by Corollary Identity & or rule;
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Conclusions

e A clearer distinction is required between those proof
obligations that we expect to be dispatched by an automated
prover, and those for which we intend to furnish a proof.
 Programmers should not be required to provide proofs.

e Robust mathematical library of theories is required.

e Techniques from programming languages should be applied
to mitigate the complexity of such theories.
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