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Responsibilities and Rewards

When using a pattern in an given application,
designers are interested in two sets of properties

“ Responsibilities
The implementation requirements that must be
satisfied to apply the pattern correctly

< Rewards
The system properties that result by virtue of
satisfying the implementation requirements

A comprehensive pattern formalism must capture both




The Formalization Challenge

The main challenge in formalizing patterns is striking
the right balance between two competing objectives

“ Precision
Implementation requirements and lbehavioral
guarantees must be clear and unambiguous

 Flexibility
Pattern specifications must be customizable
as appropriate to particular applications

A comprehensive pattern formalism must satisfy both
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Our approach to addressing these requirements
relies on a multi-level contract framework
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Abstraction concepts are a key source of contract flexibility




Contract Structure

(Contract

fPattem | evel (Role | evel h

* State abstraction concepts * Enrollment / disenrollment conditions
* Constraints * State requirements

* |nteraction abstraction concepts * Behavioral requirements
* Constraints * Method state conditions

* Pattern instantiation conditions * Method trace conditions

* Pattern invariant * Non-interference requirements
- -
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(Subcontract

/Pattern | evel /Role | evel

* Concept definitions * Role maps
* State maps
* Method maps
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Example: Composite Pattern )

pattern contract Composite {

state abstraction concepts:
Modified (Compositen, Compositeg, Component.)
Consistent (Componentys, Componente)
constraints:
(Ta=Tp8)A=((T d =Leaf) A (T € =Leaf))A
Vel,cl*™ = Composite,c2 - Component ::
((Consistent(cl,c2) A =Modified(cl,cl*, c2))
—> Consistent(cl*,c2))
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interaction abstraction concepts:
...omitted...

=
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pattern invariant:
Vel, c2 F Component :
(cl eplayers) A (c2 €players)A
(1T ¢l =Component) A (c2 € cl.children)) :
((c2.parent= cl)AConsistent(cl,c2))
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Example: Composite Pattern s

C role contract Component [1,abstract] ({

Component parent;

vold operation();
pre: true
post: (parent= #parent)A
Consistent(parent, this)
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others:
post: (parent= #parent)A
(Consistent(parent, #this)
—> (Consistent(parent, this))
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role contract Leaf [x] : Component ({

void operation () ;
...tnherited from Component...

others:
...tnherited from Component...
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Example: Composite Pattern @)
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role contract Composite [+] : Component ({

Set<Component> children;

void add (Component c);
pre: c ¢ children
post: (children= (#childrenU{c}))A
(c.parent=this)A
Voc = Component :
(oc € #children) :
—Modified(this, #this, oc)A
(J7.c.operation| =1)

vold remove (Component c);
pre: ¢ € children
post: (children= (#children—{c}))A
Yoc = Component
(oc € #children) :
—Modified(this, #this, oc)

...other child management methods omited...

void operation () ;
pre: ...inherited from Component...
post: ...inherited from Component.../N\
(children= #children)A
Ve Component
(c Echildren) :
(Modified(this, #this, c)
—> (|7.c.operation| =1))

others:
....nherited from Component...N\
(children=children)A
Vc b Component :
(c € #children):
—Modified(this, #this, c)




Questions?
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