
Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom
School of Computing, CS Division

Clemson University

Neelam Soundarajan
Computer Science and Engineering

Ohio State University

This work is supported in part by the National Science Foundation
(CNS-0745846, DUE-0633506)

Responsibilities and Rewards

When using a pattern in an given application,
designers are interested in two sets of properties

Responsibilities
The implementation requirements that must be
satisfied to apply the pattern correctly

Rewards
The system properties that result by virtue of
satisfying the implementation requirements

A comprehensive pattern formalism must capture both

The Formalization Challenge

The main challenge in formalizing patterns is striking
the right balance between two competing objectives

Precision
Implementation requirements and behavioral
guarantees must be clear and unambiguous

Flexibility
Pattern specifications must be customizable
as appropriate to particular applications

A comprehensive pattern formalism must satisfy both

Pattern Contracts

Our approach to addressing these requirements
relies on a multi-level contract framework

Pattern Contract
Captures the requirements and guarantees
associated with all instances of a given pattern

Pattern Subcontract
Refines a pattern contract (or subcontract) to
yield the specification of a sub-pattern or
pattern implementation

Abstraction concepts are a key source of contract flexibility

Contract Structure

specializes

Contract
Pattern Level

State abstraction concepts
Constraints

Interaction abstraction concepts
Constraints

Pattern instantiation conditions
Pattern invariant

Role Level
Enrollment / disenrollment conditions
State requirements
Behavioral requirements

Method state conditions
Method trace conditions

Non-interference requirements

Subcontract

Pattern Level
Concept definitions

Role Level
Role maps

State maps
Method maps

Example: Composite Pattern (1/3)

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ $ Composite, c2 $ Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 $ Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (! c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent, #this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc $ Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc $ Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c $ Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c $ Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

Example: Composite Pattern (2/3)

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ $ Composite, c2 $ Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 $ Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (! c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent, #this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc $ Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc $ Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c $ Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c $ Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

1 role contract Leaf [*] : Component {
2

3 void operation();
4 ...inherited from Component...
5

6 others:
7 ...inherited from Component...
8 }

Listing 4: Composite Contract (part 4)

The bulk of the contract is devoted to specifying the Com-

posite role (Listing 3). The first line of the role contract
indicates that one or more classes must be mapped to this
role in an application of the pattern, and each must inherit
from the class mapped to the Component role.

As before, the contract begins with state requirements:
Participating classes must maintain a Set of component ob-
jects. This variable, children, stores references to each of the
composite’s children.

Next, the contract specifies the method behaviors required
of composite objects: First, participating classes must sup-
ply child management methods. The pre-condition of add(),
for example, requires that the child passed as argument not
be contained within children. The method is required to
add the child to children and assign itself as the child’s par-
ent. The next conjunct requires that the composite not be
significantly modified (according to Modified()) by the call.

More interesting is the last conjunct, which specifies a
call sequence requirement: |τ .c.operation| denotes the sub-
sequence obtained by projecting τ on object c and method
operation(). Hence, the clause requires that the composite

invoke operation() on the new child. While this requirement
is not discussed in the original pattern description, it is es-
sential to ensuring the pattern invariant; without it, there
is no guarantee that the child will be in a state consistent
with its parent. Requirements on remove() are analogous,
but omit call sequence requirements. Other management
methods have been elided.

The pre-condition on operation() is inherited from Com-

ponent; it is trivially true. The inherited post-condition is
strengthened: first, it requires that the children variable not
be altered. More interestingly, it requires that if operation()

modify the state of the component in a manner that is sig-
nificant with respect to some child, the object is responsible
for invoking operation() on that child. This ensures that if
the original call breaks the pattern invariant, the forwarding
behavior will re-assert the invariant.

The non-interference conditions specified in the others

clause strengthen the conditions specified by the Compo-

nent role contract. In particular, non-role methods of a class
mapped to Composite are required to preserve the children

variable. Further, they are not allowed to modify the state
of the composite in a significant way.

Finally, the contract specifies the role contract for Leaf

(Listing 4). The declaration indicates that zero or more
classes may map to this role, and each must inherit from
the class mapped to Component. The remainder of the role
contract is inherited without change.

To arrive at the implementation requirements and behav-
ioral guarantees associated with a particular application of
Composite, a corresponding subcontract must be specified.

It is the composition of the subcontract and the contract
that guides system implementation activities and assists in
reasoning about pattern-centric behaviors. As an example,
consider a standard application of the pattern in the context
of designing a GUI library. Classes within the library might
represent windows, frames, panels, and other graphical ele-
ments, and the tree structure imposed by Composite would
mirror visual containment relationships. The subcontract
for this application would provide role maps for each of the
participating classes; the details are straightforward. More
interesting are the concept definitions.

For simplicity, we assume that only one method plays the
role of operation() — namely, a resize() method used to ad-
just the size of a visual container and all of its children. In
this scenario, the definition of Modified() would rely only
on the first two arguments: The relation would evaluate to
true if the object states passed as argument had different
width and height values, and false otherwise. Similarly,
the definition of Consistent() would evaluate to true if the
component states passed as argument had equal dimensions,
and false otherwise. By substituting these definitions into
the role contracts, application-specific requirements emerge.
And by satisfying these requirements, developers are assured
of the specialized pattern invariant: When control is outside
of the participating objects, the dimensions of the children

in any subtree total the dimensions of the parent. In this
way, the contract formalism captures precise implementa-
tion requirements while affording flexible specialization to
document applications and sub-patterns8.

5. RELATED WORK
The benefits and pitfalls of pattern formalization have

been discussed by other authors. A number of specifica-
tion formalisms have been proposed. Here we briefly survey
four representative efforts.

Eden and Hirshfeld [5] focus on specifying the structural
(i.e., static) properties of design patterns. The authors de-
scribe a higher-order logic formalism in which patterns are
specified as formulae. The basic terms of the logic consist
of classes and methods. The associated relations correspond
to standard syntactic concepts, including class membership,
method invocation, and inheritance. Each pattern is speci-
fied as a list of participants (i.e., classes and methods) and
the relations among them. While the approach handles rich
structural properties, it does not provide facilities for state
abstraction, pattern specialization, or behavioral properties.

In contrast to Eden and Hirshfeld’s structural emphasis,
Mikkonen [11] focuses on behavioral (i.e., dynamic) proper-
ties. Using his approach, patterns are expressed in an action
system notation with roots in the UNITY [4] formalism for
parallel and distributed systems. Each pattern is specified
as a set of state elements, relations on these elements, and
guarded assignments. Refinement is supported through su-
perposition; specification layers can be composed without
violating safety properties as long as each layer writes only
to the state components it defines. While this approach of-
fers a number of interesting benefits, including the ability
to concisely specify complex temporal properties, it is, in
a sense, too abstract. Structural and control-flow require-
ments are intentionally abstracted away, compromising the

8Sub-patterns are documented in an analogous matter; we
omit there consideration.

Example: Composite Pattern (3/3)

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ $ Composite, c2 $ Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 $ Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (! c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent, #this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc $ Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc $ Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c $ Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c $ Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ $ Composite, c2 $ Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 $ Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (! c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent, #this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc $ Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc $ Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c $ Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c $ Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom
School of Computing, CS Division

Clemson University

Neelam Soundarajan
Computer Science and Engineering

Ohio State University

This work is supported in part by the National Science Foundation
(CNS-0745846, DUE-0633506)

Questions?

