Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom Neelam Soundarajan
School of Computing, CS Division Computer Science and Engineering
Clemson University Ohio State University

@ This work is supported in part by the National Science Foundation
(CNS-0745846, DUE-0633506)

Responsibilities and Rewards

When using a pattern in an given application,
designers are interested in two sets of properties

“ Responsibilities
The implementation requirements that must be
satisfied to apply the pattern correctly

< Rewards
The system properties that result by virtue of
satisfying the implementation requirements

A comprehensive pattern formalism must capture both

The Formalization Challenge

The main challenge in formalizing patterns is striking
the right balance between two competing objectives

“ Precision
Implementation requirements and lbehavioral
guarantees must be clear and unambiguous

 Flexibility
Pattern specifications must be customizable
as appropriate to particular applications

A comprehensive pattern formalism must satisfy both

Pattern Co

Nntracts

Our approach to addressing these requirements
relies on a multi-level contract framework

s Pattern Contract

Ca

ptures the requirements and guarantees

associated with all instances of a given pattern

%+ Pa

tern Subcontract

Refines a pattern contract (or subcontract) to

yvie

d the specification of a sub-pattern or

pa

tern iImplementation

Abstraction concepts are a key source of contract flexibility

Contract Structure

(Contract

fPattem | evel (Role | evel h

* State abstraction concepts * Enrollment / disenrollment conditions
* Constraints * State requirements

* |nteraction abstraction concepts * Behavioral requirements
* Constraints * Method state conditions

* Pattern instantiation conditions * Method trace conditions

* Pattern invariant * Non-interference requirements
- -

T specializes

(Subcontract

/Pattern | evel /Role | evel

* Concept definitions * Role maps
* State maps
* Method maps

-

Example: Composite Pattern)

pattern contract Composite {

state abstraction concepts:
Modified (Compositen, Compositeg, Component.)
Consistent (Componentys, Componente)
constraints:
(Ta=Tp8)A=((T d =Leaf) A (T € =Leaf))A
Vel,cl*™ = Composite,c2 - Component ::
((Consistent(cl,c2) A =Modified(cl,cl*, c2))
—> Consistent(cl*,c2))

1
2
3
4
15)
6
7
8
9

N
N = O

interaction abstraction concepts:
...omitted...

=
ok W

pattern invariant:
Vel, c2 F Component :
(cl eplayers) A (c2 €players)A
(1T ¢l =Component) A (c2 € cl.children)) :
((c2.parent= cl)AConsistent(cl,c2))

R S O
© 0w N O

Example: Composite Pattern s

C role contract Component [1,abstract] ({

Component parent;

vold operation();
pre: true
post: (parent= #parent)A
Consistent(parent, this)

© 00 N O O k=~ W N -

others:
post: (parent= #parent)A
(Consistent(parent, #this)
—> (Consistent(parent, this))

=
w N = O

role contract Leaf [x] : Component ({

void operation () ;
...tnherited from Component...

others:
...tnherited from Component...

0 J O Ot bk~ W N =

}

Example: Composite Pattern @)

1
2
3
4
5
6
7
8
9

NN N R R R R R R e R
N B O © 00 N O Otk W N = O

role contract Composite [+] : Component ({

Set<Component> children;

void add (Component c);
pre: c ¢ children
post: (children= (#childrenU{c}))A
(c.parent=this)A
Voc = Component :
(oc € #children) :
—Modified(this, #this, oc)A
(J7.c.operation| =1)

vold remove (Component c);
pre: ¢ € children
post: (children= (#children—{c}))A
Yoc = Component
(oc € #children) :
—Modified(this, #this, oc)

...other child management methods omited...

void operation () ;
pre: ...inherited from Component...
post: ...inherited from Component.../N\
(children= #children)A
Ve Component
(c Echildren) :
(Modified(this, #this, c)
—> (|7.c.operation| =1))

others:
....nherited from Component...N\
(children=children)A
Vc b Component :
(c € #children):
—Modified(this, #this, c)

Questions?

Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom Neelam Soundarajan
School of Computing, CS Division Computer Science and Engineering
Clemson University Ohio State University

@ This work is supported in part by the National Science Foundation
(CNS-0745846, DUE-0633506)

