
JML and Java 1.5+

David R. Cok
Eastman Kodak Company, Research Laboratories
9 October 2008
SAVCBS08 workshop

2

Java 1.5 was a big step (in 2004)

• Tools built on or for Java had to make a
considerable infrastructure investment

• Certainly the case for the Java Modeling Language
tool set (JML2)
– built on a research compiler
– graduate student moved on...

• Older tool set is maintained, but there is a strong
desire for JML tools that support current Java

3

Some goals for a new JML tool set

• Built on a supported compiler base
– use other people’s work, timely updates
– suitable licensing for research and application use

• Good for research use
– easily extendable with a clear design

• Good for causal use
– Clear diagnostics
– Well-integrated into an IDE
– Available as command-line tools also

• Good for practical/industrial use
– Robust and reasonably complete
– Well-integrated into a commonly used tool environments
– Reasonable time and memory footprints

4

Two development efforts

• Eclipse-based (cf. Chalin et al.)
– popular, well-used, easy to integrate IDE
– actively supported Java infrastructure
– can do command-line tools, but is a bit heavy-

weight for that purpose
– need to really get into the details of the compiler

in order to extend it
– Eclipse has efficient (and hence a bit complex)

compilation and AST structure

5

Two development efforts

• Open JDK based
– straightforward command-line based tools
– quite extensible design
– JML can be added almost completely by

derivation
– no IDE – can be bolted on to Eclipse in the way

that many tools are (compilation processes run
twice)

– used for research in JML and static verification
(limited resources)

6

The question for this talk:

• What specification language issues arise with the
move to Java 1.5+?

• JML is a BISL with the philosophy that the
specification language should be similar to the
programming language.

• Should expect corresponding changes in JML as
the Java language changes.

7

Java 1.5+ changes of note

• Generic types
• enhanced for
• auto boxing and unboxing
• annotations
• varargs
• static import
• enum types
• java.lang.SuppressWarnings
• new APIs: compiler, AST, annotation processing

8

Parsing

• Generic types (and all the other new constructs) can
be used in JML specs as well as in Java
– It helps greatly to be able to repurpose a

compiler’s lexing/parsing/name and type
resolution infrastructure for JML in addition to
Java

– There are JML constructs as well, so extension is
essential

9

Refinement

• Need to match up methods (and fields and classes) in specs
with methods in implementation
– complicated by overloading
– need type resolution before matching

specification:

class Exp<Q> {

//@
<X> void m(X x);

//@ ...
Q m(int i, Q q);

}

java implementation:

class Exp<E> {

<T> void m(T t) { ... }

int m(int i, E e) { ... }

}

10

Other straightforward features...

• Enums
– no changes needed

• varargs
– no changes needed

• static import
– no changes needed

• callable clause, \only_called predicate
– change in syntax to allow specifying generic and

variable argument methods:
callable <T> T [] collection<T>.toArray(T[]);

11

Autoboxing and unboxing

In JML < and <= are overloaded to designate a lock
ordering on objects, so JML allows

Integer i, j; //@ boolean b = i < j;

(i<j is illegal in Java 1.4)

12

Autoboxing and unboxing

In Java 1.5+: with int k, kk; Integer i, ii;
Java JML

k < kk less than less than
i < ii less than ambiguous
i < kk less than ambiguous

• Resolution: use a non-overloaded operator to
represent lock ordering: <# and <#=

13

Enhanced for loop

Typical loop specification

int sum = 0;
//@ loop_invariant 0 <=i && i <= N;
//@ loop_invariant sum = i * (i - 1) / 2;
//@ decreasing N – i;
for (int i=0; i<N; i++) {

sum += i;
}
//@ assert sum = N * (N - 1) /2;

14

Enhanced for loop

Expands into

//@ assume 0 <= N;
int sum = 0;
int i = 0;
while (i<N) {

//@ assert 0 <= i && i <= N;
//@ assert sum == i * (i - 1) / 2;
sum += i;
i++; // update

}
//@ assert 0 <= i && i <= N;
//@ assert sum == i * (i - 1) / 2;
//@ assert sum == N * (N - 1) /2;

15

Enhanced for loop

An enhanced for loop has no loop variable to use in the loop
invariants. Compare

int[] array = ...
int sum = 0;
for (int element: array) {

sum += element;
}

with

int[] array = ...
int sum = 0;
//@ loop_invariant sum == (\sum int j; 0<=j && j<i; array[j]);
for (int i=0; i< array.length; i++) {

sum += element;
}

16

Enhanced for loop

Introduce (readonly) ghost variables \values (cf.
Spec#) and \index
– int \index

» the index in the array of the current element
» the number of complete iterations so far

– JMLList<T> \values
» a list of values obtained so far

17

Enhanced for loop

int sum = 0;
//@ loop_invariant sum == (\sum int k; 0<=k && k < \index; array[k]);
//@ loop_invariant 0 <= \index && \index <= array.length; // implicit
//@ decreasing array.length - \index; // implicit
for (int e: array) {

sum += e;
//@ assert e == array[\index];

}

18

Enhanced for loop

Using \values:

Set<Integer> set = ...
int max = Integer.MIN_VALUE;
/*@ maintains max == \values.size() == 0 ? Integer.MIN_VALUE :

(max int k; \values.contains(k); k); */
for (Integer i: set) {

if (max < i) max = i;
}

19

Enhanced for loop – a design option

for (int element: array) {
... body...

}

is

int \index = 0;
JMLList<Integer> \values = new ...
while (\index<array.length) {

int element = array[\index];
... body ...
\index ++;
\values.add(element);

}

in ... body...:

\index == \values.size()

but

element is not in \values
(it is in \values in the invariant)

20

Enhanced for loop – a design option

or

int \index = 0;
JMLList<Integer> \values = new ...
while (\index<array.length) {

int element = array[\index];
\values.add(element);
... body ...
\index ++;

}

\index != \values.size() in the body
(but it is equal in the invariants)

element is in \values in the body

21

Type manipulation in JML

JML Java 1.4

\TYPE Class
\type(T) T.class
\typeof(e) e.getClass(); (e has ref type)
\typeof(p) P.class (primitive type P)
t1 <: t2 t2.isAssignableFrom(t1)
\elemtype(at) at.getComponentType();

22

Types – problems in Java 1.5+

Java does not keep type parameter information at
runtime:
– Cannot write, e.g., List<Integer>.class

– The Class<?> value does not keep type parameter
information

– isAssignableFrom does not reflect inheritance
Collection<Integer> ci = new LinkedList<Integer>();
Collection<Boolean> cb = new LinkedList<Boolean>();
boolean bb = ci.getClass().isAssignableFrom(cb.getClass()); // true
ci = cb; // syntax error

– Cannot write, e.g., o instanceof LinkedList<Integer>

Limits what can be stated in JML about types

23

elementType idiom

Pre-generics, JML tracked a collection’s element type with a
ghost field:

class LinkedList {
//@ public ghost \TYPE elementType;

}

However, we cannot write

class LinkedList<T> {
//@ public ghost \TYPE elementType;
public LinkedList() {

//@ set elementType = T.class;
}

}

24

elementType idiom

• We should not need the elementType idiom
anymore – use the class’s type parameter instead

• But Java syntax limitations do not allow treating the
type parameter in the same way as a type name

25

Types – possible solutions for JML

• Wait until Java incorporates full type information at
runtime

• Represent \TYPE as a class that incorporates Java
type information and type parameter information
(so \type, \typeof, <:, \elemtype would all act on \TYPE objects, with
autoconversion from Class objects)

– dedicated implementation, OR
– use javax annotation api for types

» designed to represent existing source
» not as convenient for arbitrary types

26

Annotations

• JML provides nowarn (lexical)
• Java provides java.lang.SuppressWarnings

– an annotation on classes, methods, declarations
– not on statements
– not as flexible as JML’s nowarn at present
– much more standard

» but needs standard names for specification
failures

27

Using annotations for specification

• JML has used special comments: //@ ...

• Qualifiers such as @Pure are easily enabled

• Possibility of using annotations: e.g.
@Requires(“o != oo”)

[cf. Boysen, ISU TR 08-03]
- varying degrees of usability
- need to be able to parse and typecheck the

strings inside the annotations in the correct
scope

28

Using annotations for specification

• Many different tools proposing various qualifiers, e.g. @Pure,
@NonNull, @Positive, ...
– JML: @Nullable, @NonNull
– JSR-308: @Nullable, @NonNull
– IntelliJ: @Nullable, @NotNull
– JSR-305: @Nullable, @CheckForNull, @NonNull

(and all in different packages)

• Need some cooperation and standardization of annotation names
and packages

• Prefer a general mechanism rather than a plethora of
specification names

29

Specifications

•JML provides model classes
• these need to be converted to generic classes
• they need specifications vetted for efficient proving

•JDK classes need extensive specifications

30

New APIs (Java 1.6)

• syntax tree API
– readonly
– still need extensions for JML features
– provides type information

• annotation processing
– perhaps recast runtime checking as an

annotation processor that rewrites the source
– perhaps recast static checking as an annotation

processor, using the syntax tree API and type
mirrors

31

Others

• \bigint, \real, java.lang.BigInteger,
org.jmlspecs.lang.JMLReal

• generic axioms etc.

• \nonnullelements
– make the signature \nonnullelements(Object[] t)

• set comprehension

• \lockset, \max, JMLSetType

32

Conclusions

• JML needs to evolve along with Java, particularly in
handling type information as first-class objects

• Other more minor adjustments

• Need collaboration on names and semantics of
annotations

• Need writing and experimentation with library
specifications

