Observational Purity in JML

David R. Cok, Eastman Kodak
Gary Leavens, UCF

9 November 2008

SAVCBSO08 workshop

Method calls in specifications

class List<E> {

//@ ensures last().equals(element);
void add(/*@ non_null*/ E element);

I/@ pure
//@ non_null

E last();

Runtime checking:

How do we know last() and
equals() do not change
something?

Static checking:
What does a method call mean
In a specification?

Kodak

Basic questions

Under what conditions will using a method call in an
assertion not affect the execution of a program in a
way that invalidates its correctness?

- In runtime checking, will evaluating an assertion
change the behavior of the program at all?

- what semantics should be used for method calls in
assertions in static checking?

: Kodak

Methods may have side effects

o fields written to
— values computed and cached, singleton objects
» elapsed time
e garbage collection
e stack space consumed and released
* new objects allocated
 monitors locked
 log files (or the standard output stream) written to
o file system changes

We would like to ignore side effects in specifications if we
‘know’ that the program does not depend on them

4 Kodak

Purity

e Strong purity

— time, stack changes, garbage collection

— In practice: file system changes, output
 Weak purity (JML’s @Pure)

— allocation and modification of new objects
* Observational purity

— modifying fields that are ‘secret’

| locking ignored for now — single threaded JML]

5 Kodak

Importance

* Object.equals is used ubiquitously in specifications;
Implementations in subclasses are not pure —some
use caching

* Plenty of examples in user code

* No practical solution implemented as yet

6 Kodak

Classic example — a cache

class Cache{
//@ public invariant isCached -> (cachedValue == expensive());
//@ public JIMLDatagroup value;
private boolean isCached = false; //@ in value;
private int cachedValue; //@ in value,

/[@ modifies value;
//@ ensures \result == expensive();
public int value() {
if (YisCached) {
cachedValue = expensive();
iIsCached =true;

}
return cachedValue;
}

boolean isCached() { return isCached; }

public int expensive(){ ... }

! Kodak

Other examples

e caching in a shared database

e reading from a structure (e.g. hash table) that
reorganizes itself for better performance

8 Kodak

Previous theoretical work

* Problem has been noted and discussed informally

e Theoretical treatment in

— D. A. Naumann, Observational Purity and
Encapsulation, Theoretical Computer Science,
2007

— Barnett, Naumann, Schulte, Sun. Allowing state
changes in specifications, ETRICS, 2006.

° Kodak

Summary

e Allow a portion of
the program state
to be modified In
assertions — but then
not accessed by
the rest of the
program

State to be hidden
(“secret state”)

10 Kodak

Proof idea

* Proof is carried out by simulation:

— showing that assert Q
IS equivalent to skip
even if Q contains query calls

* Requires

— that open methods are restricted in accessing
secret state

— that query methods, which can access secret
state, may not use query methods in specs

— that the values returned by query methods could
be calculated from open state

1 Kodak

« Cannot mix access to @Query

secret fields and int m() {

calling of query

methods ... isCached ...
/@ assert value() == 0;
... IsCached ...

e Query method might
modify secret fields in
unknown ways }

12 Kodak

Summary — current theory

Java:

Open methods
- read/write open state
- call open methods
- call query methods
- NOT read/write hidden state

Query methods
- read(only) open state
- call pure methods
- call query methods
- read/write hidden state

- guery methods must maintain
hidden state invariants

JML (assertions):

Open methods
- read open state
- call pure open methods
- call query methods
- NOT read/write hidden state

Query methods
- read open state
- call pure open methods
- NOT call query methods
- may read hidden state

- since method specs are visible to
open methods, they do not reference
secret state

13 Kodak

Practical Issues

 Encapsulation boundary is a class

* Real programs have multiple independent pieces of
secret state

* Not calling query methods within assertions in
guery methods is too restrictive (e.g. in the
specifications of query methods)

 No semantics for static checking is defined
 Need methods to manipulate secret state

14 Kodak

Encapsulation boundary

e Straightforward to use a smaller unit than class

 We use JML datagroups and a @Secret annotation
to define content of secret state

e Datagroups enable the secret state to be open to
extension in subclasses

e Associating secret state with datagroups allows
distinguishing multiple subsets of the secret state

15 Kodak

Encapsulating secret state

» Group secret fields using a datagroup
 Associate query methods with a secret datagroup

class X {
@Secret private JMLDatagroup cacheGroup;
@Secret private boolean isCached; /@ in cacheGroup;
@Secret private int cachedValue; /@ in cacheGroup;

@Query(“cacheGroup”)
public int value() {
if (lisCached) {
cachedValue = expensive();
isCached = true;

}

return cachedValue;

16

Kodak

Encapsulating secret state - defaults

class X {
Il @Secret protected JMLDatagroup value; - implicitly defined
@Secret private boolean isCached; //@ in value;
@Secret private int cachedValue; /@ in value;

@Query
public int value() {
if (lisCached) {
cachedValue = expensive();
iIsCached = true;

}

return cachedValue;

o Kodak

Encapsulating secret state - defaults

class Object {
Il @Secret protected JMLDatagroup equals; - implicitly defined

@Query

public boolean equals(Object 0);

}

Do need to plan ahead: in super classes, methods
which might not be pure but are wanted to be used
In assertions must be declared @Query

18 Kodak

Secret methods

* Also does not invalidate theory/proofs to have
secret methods:

— may manipulate secret state

— never called by open methods

— may be used as helpers by query methods
— conceptually private

19 Kodak

Multiple pieces of secret state

« Can treat each piece
of secret state
Independently

e Datagroups allow
naming and identifying
each piece

* But, need to be sure
that the various
guery methods do
not interfere with
each other

20 Kodak

Multiple pieces of secret state — use restrictions

e Could treat the union of all of the pieces as one glob
of secret state:

— would restrict assertions in one query method
from calling query methods for unrelated secret
state

e Better to treat them as distinct — so long as the
pieces of secret state are disjoint

« KEY INGREDIENT: associate secret state with
object instances, not with classes

21 Kodak

Interference more closely

e The presence of the //@ invariant isCached -> |
(cachedValue == expensive());
assert statement alters
the SUbsequent control [I@ ensures isCached; /[???7?77?
flow in runtime /@ ensures \result == expensive();
checking. public int value() {

: //@ assert value2() == 0;
What semantics should (lisCached) {

we us_e for static cachedValue = expensive();
checking? isCached = true;

} else {

}
}

22 Kodak

Static checking

* Only assume the invariant
remains valid.

* No further assumptions

— corresponds to a
weakly pure semantics

— soundly approximates
(via underspecification)
the runtime semantics

e Static check checks all
permissible runtime paths

//@ invariant isCached ->
(cachedValue == expensive());

I/@ ensures isCached; //? NO
//@ ensures \result == expensive();
public int value() {

//@ assert value2() == 0;

if (lisCached) {
cachedValue = expensive();
IsCached =true;

} else {

2% Kodak

Summary

Java. JML (assertions):
Open methods Open methods
- read/write open state - read open state
- call open methods - call pure open methods
- call query methods - call query methods

- NOT read/write hidden state directly - NOT read/write hidden state directly

Query methods Query methods
- read(only) open state - read open state
- call pure methods - call pure open methods
- call query methods - call query methods, but these calls
- read/write own hidden state ‘havoc’ the secret state
- NOT read/write other hidden state - may read/write own hidden state directly,
- query methods must maintain but not for other datagroups

hidden state invariants

24 Kodak

Summary - caveat

Using query methods in specs or assertions within
gquery methods:

— query methods may be used in method specs
and in in-line assertions

— do affect the runtime control flow
— In static checking:

» Do not allow pre- and post-conditions to
depend on secret state (other than invariant)

» equivalent to loss of knowledge (a havoc)
about secret state, other than invariant

» soundly approximates the runtime behavior

»would be helpful to compartmentalize query
methods for different secret state

2% Kodak

Issue — frame conditions

The issue of interference has an analogy in frame
conditions:

« What frame condition should be used for a query

method?
//@ assignable value; // for the appropriate datagroup

@Query
public int value(){ ... }

e But what about callers of value()?
— datagroup abstracts the implementation

— does every caller have to list the secret
datagroups of every query method (recursively)
that it calls???

26 Kodak

class X {
Il @Secret protected JMLDatagroup value; - implicitly defined
@Secret private boolean isCached; //@ in value;
@Secret private int cachedValue; /@ in value;

@Query
//@ assignable value; // implicitly defined?
public int value() {
if (lisCached) {
cachedValue = expensive();
isCached = true;

}

return cachedValue;

21 Kodak

Issue — frame conditions

e Suppose we allow omitting references to secret
state in frame conditions?

— then any query method call might change any
secret state (including your own)

— workable for disjoint bits of secret state

— unclear whether this is workable for nested,
hierarchical information hiding

28 Kodak

Conclusions

 Integration of an initial design for observational purity in JML

 Extension to accommodate multiple disjoint islands of secret
state, inheritance, invariants and frame conditions

* Relaxation of the restrictions on obs. purity to allow query
methods within the specs of query methods

e Work to be done:

— formalization
— usability of frame conditions in complex designs

29 Kodak

31

Kodak

