
Observational Purity in JML

David R. Cok, Eastman Kodak
Gary Leavens, UCF
9 November 2008
SAVCBS08 workshop

2

Method calls in specifications

class List<E> {

//@ ensures last().equals(element);
void add(/*@ non_null*/ E element);

//@ pure
//@ non_null
E last();

}

Runtime checking:
How do we know last() and
equals() do not change
something?

Static checking:
What does a method call mean
in a specification?

3

Basic questions

Under what conditions will using a method call in an
assertion not affect the execution of a program in a
way that invalidates its correctness?

- in runtime checking, will evaluating an assertion
change the behavior of the program at all?

- what semantics should be used for method calls in
assertions in static checking?

4

Methods may have side effects

• fields written to
– values computed and cached, singleton objects

• elapsed time
• garbage collection
• stack space consumed and released
• new objects allocated
• monitors locked
• log files (or the standard output stream) written to
• file system changes

We would like to ignore side effects in specifications if we
‘know’ that the program does not depend on them

5

Purity

• Strong purity
– time, stack changes, garbage collection
– in practice: file system changes, output

• Weak purity (JML’s @Pure)
– allocation and modification of new objects

• Observational purity
– modifying fields that are ‘secret’

[locking ignored for now – single threaded JML]

6

Importance

• Object.equals is used ubiquitously in specifications;
implementations in subclasses are not pure – some
use caching

• Plenty of examples in user code

• No practical solution implemented as yet

7

Classic example – a cache

class Cache {
//@ public invariant isCached -> (cachedValue == expensive());
//@ public JMLDatagroup value;
private boolean isCached = false; //@ in value;
private int cachedValue; //@ in value;

//@ modifies value;
//@ ensures \result == expensive();
public int value() {

if (!isCached) {
cachedValue = expensive();
isCached = true;

}
return cachedValue;

}

boolean isCached() { return isCached; }

public int expensive() { ... }
}

8

Other examples

• caching in a shared database

• reading from a structure (e.g. hash table) that
reorganizes itself for better performance

9

Previous theoretical work

• Problem has been noted and discussed informally

• Theoretical treatment in
– D. A. Naumann, Observational Purity and

Encapsulation, Theoretical Computer Science,
2007

– Barnett, Naumann, Schulte, Sun. Allowing state
changes in specifications, ETRICS, 2006.

10

Summary

• Allow a portion of
the program state
to be modified in
assertions – but then
not accessed by
the rest of the
program

Program state
(“open state”)

State to be hidden
(“secret state”)

11

Proof idea

• Proof is carried out by simulation:
– showing that assert Q

is equivalent to skip
even if Q contains query calls

• Requires
– that open methods are restricted in accessing

secret state
– that query methods, which can access secret

state, may not use query methods in specs
– that the values returned by query methods could

be calculated from open state

12

• Cannot mix access to
secret fields and
calling of query
methods

• Query method might
modify secret fields in
unknown ways

@Query
int m() {

... isCached ...
//@ assert value() == 0;
... isCached ...

}

13

Summary – current theory

Java:

Open methods
- read/write open state
- call open methods
- call query methods
- NOT read/write hidden state

Query methods
- read(only) open state
- call pure methods
- call query methods
- read/write hidden state
- query methods must maintain
hidden state invariants

JML (assertions):

Open methods
- read open state
- call pure open methods
- call query methods
- NOT read/write hidden state

Query methods
- read open state
- call pure open methods
- NOT call query methods
- may read hidden state
- since method specs are visible to
open methods, they do not reference
secret state

14

Practical Issues

• Encapsulation boundary is a class
• Real programs have multiple independent pieces of

secret state
• Not calling query methods within assertions in

query methods is too restrictive (e.g. in the
specifications of query methods)

• No semantics for static checking is defined
• Need methods to manipulate secret state

15

Encapsulation boundary

• Straightforward to use a smaller unit than class

• We use JML datagroups and a @Secret annotation
to define content of secret state

• Datagroups enable the secret state to be open to
extension in subclasses

• Associating secret state with datagroups allows
distinguishing multiple subsets of the secret state

16

Encapsulating secret state

• Group secret fields using a datagroup
• Associate query methods with a secret datagroup

class X {
@Secret private JMLDatagroup cacheGroup;
@Secret private boolean isCached; //@ in cacheGroup;
@Secret private int cachedValue; //@ in cacheGroup;

@Query(“cacheGroup”)
public int value() {

if (!isCached) {
cachedValue = expensive();
isCached = true;

}
return cachedValue;

}
}

17

Encapsulating secret state - defaults

class X {
////// @Secret protected JMLDatagroup value; - implicitly defined
@Secret private boolean isCached; //@ in value;
@Secret private int cachedValue; //@ in value;

@Query
public int value() {

if (!isCached) {
cachedValue = expensive();
isCached = true;

}
return cachedValue;

}
}

18

Encapsulating secret state - defaults

class Object {
////// @Secret protected JMLDatagroup equals; - implicitly defined

@Query
public boolean equals(Object o);

}

Do need to plan ahead: in super classes, methods
which might not be pure but are wanted to be used
in assertions must be declared @Query

19

Secret methods

• Also does not invalidate theory/proofs to have
secret methods:
– may manipulate secret state
– never called by open methods
– may be used as helpers by query methods
– conceptually private

20

Multiple pieces of secret state

• Can treat each piece
of secret state
independently

• Datagroups allow
naming and identifying
each piece

• But, need to be sure
that the various
query methods do
not interfere with
each other

Program state
(“open state”)

21

Multiple pieces of secret state – use restrictions

• Could treat the union of all of the pieces as one glob
of secret state:
– would restrict assertions in one query method

from calling query methods for unrelated secret
state

• Better to treat them as distinct – so long as the
pieces of secret state are disjoint

• KEY INGREDIENT: associate secret state with
object instances, not with classes

22

Interference more closely

• The presence of the
assert statement alters
the subsequent control
flow in runtime
checking.

• What semantics should
we use for static
checking?

//@ invariant isCached ->
(cachedValue == expensive());

//@ ensures isCached; //??????
//@ ensures \result == expensive();
public int value() {

...
//@ assert value2() == 0;
if (!isCached) {

cachedValue = expensive();
isCached = true;

} else {
...

}
}

23

Static checking

• Only assume the invariant
remains valid.

• No further assumptions
– corresponds to a

weakly pure semantics
– soundly approximates

(via underspecification)
the runtime semantics

• Static check checks all
permissible runtime paths

//@ invariant isCached ->
(cachedValue == expensive());

//@ ensures isCached; //? NO
//@ ensures \result == expensive();
public int value() {

...
//@ assert value2() == 0;
if (!isCached) {

cachedValue = expensive();
isCached = true;

} else {
...

}
}

24

Summary

Java:

Open methods
- read/write open state
- call open methods
- call query methods
- NOT read/write hidden state directly

Query methods
- read(only) open state
- call pure methods
- call query methods
- read/write own hidden state
- NOT read/write other hidden state
- query methods must maintain
hidden state invariants

JML (assertions):

Open methods
- read open state
- call pure open methods
- call query methods
- NOT read/write hidden state directly

Query methods
- read open state
- call pure open methods
- call query methods, but these calls
‘havoc’ the secret state
- may read/write own hidden state directly,

but not for other datagroups

25

Summary - caveat

Using query methods in specs or assertions within
query methods:
– query methods may be used in method specs

and in in-line assertions
– do affect the runtime control flow
– in static checking:

» Do not allow pre- and post-conditions to
depend on secret state (other than invariant)

» equivalent to loss of knowledge (a havoc)
about secret state, other than invariant

» soundly approximates the runtime behavior
» would be helpful to compartmentalize query

methods for different secret state

26

Issue – frame conditions

The issue of interference has an analogy in frame
conditions:

• What frame condition should be used for a query
method?
//@ assignable value; // for the appropriate datagroup
@Query
public int value() { ... }

• But what about callers of value()?
– datagroup abstracts the implementation
– does every caller have to list the secret

datagroups of every query method (recursively)
that it calls???

27

class X {
////// @Secret protected JMLDatagroup value; - implicitly defined
@Secret private boolean isCached; //@ in value;
@Secret private int cachedValue; //@ in value;

@Query
//@ assignable value; // implicitly defined?
public int value() {

if (!isCached) {
cachedValue = expensive();
isCached = true;

}
return cachedValue;

}
}

28

Issue – frame conditions

• Suppose we allow omitting references to secret
state in frame conditions?
– then any query method call might change any

secret state (including your own)
– workable for disjoint bits of secret state
– unclear whether this is workable for nested,

hierarchical information hiding

29

Conclusions

• Integration of an initial design for observational purity in JML

• Extension to accommodate multiple disjoint islands of secret
state, inheritance, invariants and frame conditions

• Relaxation of the restrictions on obs. purity to allow query
methods within the specs of query methods

• Work to be done:
– formalization
– usability of frame conditions in complex designs

31

