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ABSTRACT
Verification of programs that use abstract data types (ADTs)
is an important piece of the grand challenge of verified soft-
ware. It is our position that an interactive proof assistant,
such as Isabelle, used in a fully automated mode, can be
an effective, extensible proof engine for use in the modular
verification of software. As technical justification for this
position, we describe the modular verification of two imple-
mentations of an extension to a queue ADT. One imple-
mentation is recursive, while the other is iterative and relies
on a stack ADT. The correctness of the implementations is
proved by Isabelle automatically, using specification theo-
ries from the Resolve mathematical library imported into
Isabelle. Isabelle’s viability as a general-purpose VC prover
is also discussed.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.4 [Software Engineering]:
Software/Program Verification—Correctness Proofs

General Terms
Languages, tools

Keywords
Verification, Isabelle, formal methods, reuse

1. INTRODUCTION
The grand challenge for computer scientists to produce a
verifying compiler, recently reissued by Hoare [18], has been
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Figure 1: Envisioned framework for verified software

a goal of the community since as early as 1967 [14]. A veri-
fying compiler parses and compiles code, generates verifica-
tion conditions (VCs) whose validity implies the correctness
of the code, and proves or refutes those VCs via automated
reasoning methods. Thus any object code generated by the
compiler is certified correct relative to a specification of the
intended behavior the code implements. Figure 1 diagrams
how such a process might work. Programmers write as-
sertive code in an attempt to meet the given specifications.
A VC generator then processes the code and the specifi-
cations, supplemented with relevant mathematical theories
and definitions. An automated theorem prover is fed the re-
sulting VCs, along with the theories, definitions and previ-
ously established mathematical results. The theorem prover
may rely on specialized decision procedures and/or general-
purpose reasoning methods. In the case that the VC is
proven, a proof checker can be invoked to confirm the proof
to rule out possible errors in the prover, which is both com-
plex and generally treated as a black box.

In this paper, we are concerned with the automatic proof
of VCs, focusing on the region delineated by the dotted line
in Fig. 1. More specifically, this paper focuses on an exten-
sion of an ADT, and does not investigate the verification
of ADT implementations themselves. The extension con-
tains the mathematical specification of a new operation for
the ADT, along with one of many possible implementations.
In accordance with the usual object-oriented design princi-



ples, the implementation does not use knowledge about the
internal data representation of the ADT. Therefore, the op-
eration can be verified by examining only the specifications
of any operations called in the code, and the specification
that the code purports to implement. Any verifying com-
piler should only have to perform the proof of the correct-
ness of this code once. This is the basic tenet of modular
verification [24].

It is our position that the proof assistant Isabelle [21] can
function as an effective, extensible tool to perform the auto-
mated verification of software, in a manner similar to SMT
solvers [11, 10]. Moreover, we can factor out the mathemat-
ical theories needed from the proof engine used for the VC
proofs.

In order to justify our position, we present two examples of
automated verification for extensions of abstract data types.
These examples are from a recently proposed set of bench-
marks for automated verification [29]. The mathematical
theory involved is that of strings. Next, the advantages of
our approach are discussed. Specifically, we illustrate how
the disciplined use of a small set of rich mathematical mod-
els used in model-based specifications permits the expression
of required loop invariants, even where two different ADTs
are involved (in this case, stacks and queues). Finally, we
turn our attention to the issues that naturally arise as we
continue to expand the power of the mathematical theories
to specify additional ADTs and extensions using the same
approach.

We use the interactive proof assistant Isabelle [21] to prove
the VCs. The choice to use an interactive proof assistant
rather than a specialized decision procedure for the relevant
mathematical theories was motivated by concerns about how
the approach scales upwards. The primary drawback to cus-
tomized decision procedures is that a new one needs to be
formulated and proven correct for every new mathematical
entity that the code can realize. Of course, interactive proof
assistants have their downsides as well, for example the ques-
tion of whether their failure to establish a result is due to an
actual deficiency in the code to be verified, or a limitation in
the prover itself. While, in the long term, a hybrid approach
may be used in practice, we are interested in the research
questions involved in comparing these two approaches.

Our choice of Isabelle, rather than another interactive proof
assistant such as PVS [23] or COQ [1], is motivated by sev-
eral factors. First, one of the members of our team is an
expert in Isabelle, which eases the learning curve to use Is-
abelle (similarly any interactive proof assistant). The sec-
ond is the popularity of Isabelle/HOL in the area of software
verification [2, 28, 5, 7]. Finally, Isabelle/HOL’s ability to
add new lemmas to the automated proof tactics was also a
consideration.

The language of the specifications and implementations is a
dialect of Resolve [12, 22, 4]. This language provides support
for the separation of component specification and implemen-
tations, with constructs admitted to the language only when
they allow proof rules that support modular verification.
The language provides a value semantics mental model of
ADTs. There are no references; aliasing cannot occur [27].

The specifications are model-based, and are manifested as
requires and ensures clauses on each of the operations,
thus creating “operation contracts.” Built-in to Resolve are
several fundamental mathematical theories that are power-
ful enough to specify most ADTs. When necessary, addi-
tional theories can be defined [12]. The number of theories
used is, however, intended and expected to remain small,
and Resolve includes the core theories of strings, integers,
real numbers, sets, multisets, trees, binary trees, tuples, and
booleans.

The specifications shown here are similar to those found
in other specification languages. The queue ADT exam-
ple presented here could be specified in a similar manner in
JML [20]. However, the presence of aliasing and other fea-
tures in Java significantly complicates the specifications; for
example, the specification of a Stack in JML [20] is far more
complex than the Resolve specification of Stack (presented
in the next section).

Section 2 describes the contracts and implementations of
the examples studied, along with the relevant mathemat-
ical theory. Section 3 discusses the most interesting VCs
necessary for the correctness of the implementations. Sec-
tion 4 summarizes our experiences with proving correctness
of VCs involving string models. Section 5 discusses related
work. Finally, Section 6 concludes with possible future di-
rections.

2. SPECIFICATION AND IMPLEMENTATION
OF THE QUEUE REVERSE PROCEDURE

2.1 Resolve String Theory
The contract specifications of the ADT for queue and its re-
verse extension are in terms of mathematical strings (Fig. 2).
These mathematical strings are used as a mathematical model
of the behavior of the queue ADT similar to what can be
done using sequences in JML [6]. We emphasize that spec-
ifications and code are two different entities; specifications
are statements in mathematics that may have multiple valid
realizations in code, and are not themselves executable. 1

Informally, strings over a given type obj are intended to have
a model that is exactly the elements of obj ∗, where ∗ is the
Kleene star. However, a theory such as the one in Fig. 2 is
self-contained and might have other models; that is, a theory
is defined not by exhibiting a particular model, but rather
by its axioms. Of course, it is important to know that such a
model exists and that we are not describing an inconsistent
theory. We briefly describe the process of ensuring that this
theory is consistent in Section 2.4.

A few functions are defined for strings: concatenation, length,
and reverse. In Fig. 2, we state some simple lemmas without
proofs. The proofs of these lemmas follow easily from the
axioms and definitions. Once proved, these lemmas can be
used in proofs of VCs, exactly like the axioms and defini-
tions.

1We write Resolve mathematical theories in a mathematical
notation, as shown here. Isabelle proof scripts are shown in
the ASCII equivalent. This choice explicitly delineates the
proofs from the underlying mathematical theories.



String Type Signature

string
def
≡ string(obj )

Λ : string
ext : string × obj −→ string

String Axioms

1. ext(s, x) 6= Λ

2. ext(s1, x1) = ext(s2, x2) ⇒ s1 = s2 ∧ x1 = x2

3. ∀S ∈ P(string) : (Λ ∈ S ∧ ∀x, s : (s ∈ S ⇒ ext(s, x) ∈ S)) ⇒
S = string

Function Definitions

1. 〈 〉 : obj −→ string
def
≡ 〈x〉 = ext(Λ, x)

2. | | : string −→ N
def
≡ |Λ| = 0 ∧ |ext(s, x)| = |s|+ 1

3. ∗ : string× string −→ string
def
≡ (s∗Λ = s)∧ (s1 ∗ ext(s2, x) =

ext(s1 ∗ s2, x))

4. reverse : string −→ string
def
≡ reverse(Λ) = Λ ∧

reverse(ext(s, x)) = 〈x〉 ∗ reverse(s)

Useful Lemmas

1. lemma EmptyNotSingle: Λ 6= 〈x〉

2. lemma IdofEmpty : Λ ∗ α = α

3. lemma LenofSingle : |〈x〉| = 1

4. lemma LenofCat : |α ∗ β| = |α|+ |β|

5. lemma AssocCat : α ∗ (β ∗ γ) = (α ∗ β) ∗ γ

6. lemma ReverseofReverse : reverse(reverse(α)) = α

7. lemma ReverseofCat : reverse(α ∗ β) = reverse(β) ∗ reverse(α)

8. lemma LenofReverse: |reverse(α)| = |α|

Figure 2: String Theory

2.2 Specifications
The queue reverse extension uses a queue ADT, which is
specified in the QueueTemplate component. Figure 3 shows
the contract with preconditions and postconditions on each
operation written via requires and ensures, respectively.
The mathematical model of a queue is a string of items,
and its initial value is Λ which is represented in ASCII as
empty_string. This component is parametrized by the type
of items in the queues. The usual queue operations are
all specified in terms of this string model. The parameter
modes used include updates, clears, replaces, and re-

stores. The updates mode indicates that the parameter
may be modified by the procedure in accordance with the
ensures clause. The clears mode means the parameter has
an initial value for its type upon return. The replaces mode
indicates that the corresponding argument may be modified
but that the incoming value of the parameter has no effect on
the behavior of the operation. Finally, the restores mode
means that the incoming and outgoing values of the param-
eter are equal. Note that the semantics of the clears and
restores parameter modes each induces a proof obligation
that must be discharged in order for an implementation to
be verified. In ensures clauses, the # indicates the old value
of a variable. In the Queue type declaration, the scope of
exemplar q is just the initialization ensures clause; it
introduces a name for an arbitrary object of the new type.

contract QueueTemplate (type Item)

math subtype QUEUE_MODEL is string of Item

type Queue is modeled by QUEUE_MODEL
exemplar q
initialization ensures

q = empty_string

procedure Enqueue ( updates q: Queue ,
clears x: Item)

ensures
q = #q * <#x>

procedure Dequeue ( updates q: Queue ,
replaces x: Item)

requires
q /= empty_string

ensures
#q = <x> * q

function IsEmpty ( restores q: Queue ): control
ensures

IsEmpty = (q = empty_string)

end QueueTemplate

Figure 3: Queue ADT Specification

Finally, the parameter passing for each of the operations is
performed via swapping [16]. In the absence of repeated
arguments which are ruled out by the syntax of Resolve in
this dialect, this method of parameter passing is equivalent
in behavior to pass by reference.

contract QueueReverse enhances QueueTemplate

procedure Reverse ( updates q: Queue)
ensures

q = reverse (#q)

end QueueReverse

Figure 4: Queue Reverse Specification

2.3 Recursive and Iterative Realizations
The functionality described in QueueTemplate is extended
by QueueReverse, which specifies a new procedure opera-
tion: Reverse. This is shown in Fig. 4. The specification
uses the mathematical function reverse, from the string the-
ory of Fig. 2.

An implementation of the Reverse procedure can be done in
at least two different ways: recursively, or iteratively using a
stack. The stack ADT is specified in a way similar to queue,
again using strings as the mathematical model. The Push

and Pop operations both work on the “left” end of the string
that models a stack. The stack provides LIFO behavior,
while the queue provides FIFO behavior. The contract of
the stack ADT is needed for the proof of correctness, of
course, and is shown in Fig. 5.

The iterative Reverse implementation performs the reversal
in two steps, as shown in Fig. 6. First, all of the elements of
the queue are moved from the queue to a local stack. Then
all of the elements of the stack are popped off and placed in
the queue. In this implementation, we must verify two loops.
A loop includes both a loop invariant (the maintains clause)
and a loop progress metric (the decreases clause, which is
used to prove termination). In a loop invariant, # denotes



contract StackTemplate (type Item)

math subtype STACK_MODEL is string of Item

type Stack is modeled by STACK_MODEL
exemplar s
initialization ensures

s = empty_string

procedure Push ( updates s: Stack , clears x: Item)
ensures

s = <#x > * #s

procedure Pop ( updates s: Stack , replaces x: Item)
requires

s /= empty_string
ensures

#s = <x> * s

function IsEmpty ( restores s: Stack ): control
ensures

IsEmpty = (s = empty_string)

end StackTemplate

Figure 5: Stack ADT Specification

the value of the variable just before execution encounters
the loop.

realization Iterative implements QueueReverse

facility StackFacility is StackTemplate (Item)

procedure Reverse ( updates q: Queue)
variable s: Stack
loop

maintains reverse (#s) * #q = reverse(s) * q
decreases |q|

while not IsEmpty (q) do
variable x: Item
Dequeue (q, x)
Push (s, x)

end loop
loop

maintains #q * #s = q * s
decreases |s|

while not IsEmpty (s) do
variable x : Item
Pop (s, x)
Enqueue (q, x)

end loop
end Reverse

end Iterative

Figure 6: Iterative Queue Reverse Implementation

The recursive implementation of the Reverse procedure is
demonstrated in Fig. 7. This implementation removes the
first element from the queue, recursively reverses the rest of
it, then enqueues the removed element. Since this procedure
is recursive, we must provide a metric that decreases in each
recursive call to Reverse in order to prove total correctness.

These implementations cover several of the standard fea-
tures of any imperative programming language: (recursive
and non-recursive) calls, loops and conditional control struc-
tures, and the use of ADTs. The examples show how our
tools and techniques for proving VCs process these common
language features.

The lemmas needed to prove the correctness of the two im-
plementations of Reverse are few, as seen in Fig. 2. We

realization Recursive implements QueueReverse

procedure Reverse ( updates q: Queue)
decreases |q|
if not IsEmpty (q) then

variable x: Item
Dequeue (q, x)
Reverse (q)
Enqueue (q, x)

end if
end Reverse

end Recursive

Figure 7: Recursive Queue Reverse Implementation

do not need to include two mathematical theories, one for
stacks and one for queues; string theory is rich enough for
both. This mathematical uniformity is especially advanta-
geous for the iterative version. It would be tricky to write
both loop invariants without it.

2.4 String Theory in Isabelle
Isabelle [21] is an automated proof assistant, meaning it is
capable of checking a proof that a user directs. Automated
proof assistants can also perform many of the tedious steps
needed to produce a proof; in some cases the proof assistant
can produce the proof outright, establishing the goal without
human guidance.

More specifically, Isabelle has a simplifier that can be in-
voked to simplify assumptions and goals of a theorem. Is-
abelle also includes a classical reasoner that can perform
many of the logical inference rules automatically. The proof
structure of Isabelle is set up in a manner that mimics
natural deduction. Assumptions and a goal are presented
and simplifications can apply to both. Rules for applying
already-proved lemmas and theorems dictate how the as-
sumptions and goals are modified. One can apply forward
reasoning and modify the assumptions, apply backward rea-
soning and modify the goals, or apply both at the same
time.

For convenience, many of the proof methods instantiated
with common lemmas are performed in Isabelle via the auto
and force commands, commonly referred to as “tactics.”
These tactics use both the simplifier and the classical rea-
soner, the difference being that the force method will only
succeed or fail, while the auto method will return a simpli-
fied goal (if possible).

New axiom systems, theories, and theorems can be entered
into Isabelle using a built-in meta-level logic. All other
axiom systems are implemented on top of this meta-logic.
For example, higher order logic (HOL) [21] and ZF set the-
ory [25] are available.

Since string theory is already developed in Resolve, we need
only to import that theory into Isabelle. The proofs of the
lemmas in string theory can then be factored off from the us-
age of those lemmas for proving the various VCs. Of course,
a theory must also have a witness to the existence of a model
that satisfies its axioms. Fortunately, such a model for string
theory is readily available, namely the Isabelle List type
in the HOL theory. More information about the process



used to import the Resolve String theory into Isabelle can
be found on the web at http://www.cse.ohio-state.edu/

~kirschen/rsrg/Isabelle.html

We do not use the plethora of theories available in Isabelle
for the automatic proof of VCs, but rather use Isabelle’s
proof engine along with only the theories already developed
for Resolve specifications. By doing so, we are not tied down
to any particular proof assistant or theorem proving tool. As
long as the tool has an expressive enough proof language,
and allows users to add new simplification and proof rules,
then it might be used for our purposes.

3. VERIFICATION AND RESULTS
theory RecursiveQueueReverse_Reverse

imports Main String

begin
...
lemma 4:

"[|
is_initial ((x_2::’obj )) ;
is_initial ((x_5::’obj )) ;
~<(x_3::’obj)> o (q_3::’obj string ) = empty_string

|]
==>

reverse(q_3) o <x_3 > = reverse((<x_3 > o q_3))"

apply ((( simp only: simp_thms),clarify ?)+)?

apply (force +)?

done
...
end

Figure 8: A key VC for the verification of the recursive
implementation of Reverse

The method of generating VCs [17, 27] is known to be both
sound and relatively complete (i.e., relative to the complete-
ness of the mathematics used in the specifications). This
method of generating VCs is quite similar to a method de-
scribed by Barnett et al. [3]. At a high level, the generation
of VCs involves processing the realization’s code (accumulat-
ing facts from the ensures clauses of each procedure used)
while taking control structure (conditionals and loops) into
account. A new VC is generated for each requires clause
of a called procedure or function that is not syntactically
“true,” at each loop invariant and recursive call, and at the
end of the operation body.

Lemma #4 (state index: 6, ensures clause)

is initial(x2)

∧ is initial(x5)

∧ 〈x3〉 ∗ q3 6= Λ

⇒ reverse(q3) ∗ 〈x3〉 = reverse(〈x3〉 ∗ q3)

Figure 9: Human readable version of Fig. 8

The VCs are intended not only to be mathematically pre-
cise, but also human-readable. At a high level, between
each pair of statements in the implementation’s code a new
subscript is created for each variable, and a mathematical
formula relates the new subscripted variables to the earlier

subscripted variables. Path conditions, facts, and obliga-
tions are accumulated and organized into VCs according to
the proof rules in [17]. For example, if a variable v is not
changed by a statement s and the subscript before s is i,
then the facts known after the statement include vi+1 = vi.
Control statements and loops introduce implications. For
each of the possible control paths (e.g., entering or skipping
a loop body), we generate a separate VC. This simplifies the
task for the prover, as it explicitly does the requisite case
analysis. We have found empirically that this format reduces
the complexity of the VCs and their proofs, and increases
the chance that Isabelle can prove the VCs automatically.

..
lemma 4:

"[|
~<(x_4::’obj)> o (q_4::’obj string ) = empty_string ;
reverse(empty_string ) o (q_0::’obj string)

= reverse ((s_2::’obj string )) o <x_4 > o q_4 ;
(length ((<x_4 > o q_4 ))) > 0 ;
is_initial ((x_3::’obj )) ;
is_initial ((x_5::’obj))

|]
==>

reverse(empty_string ) o q_0
= reverse((<x_4 > o s_2)) o q_4"

apply ((( simp only: simp_thms),clarify ?)+)?

apply (force +)?

done
...
end

Figure 10: A key VC for the verification of the iterative
implementation of Reverse

One VC that needs to be proved for the recursive imple-
mentation of Reverse is shown in the raw Isabelle output
in Fig. 92 and in a more human readable format in Fig. 8.
This VC comes from the ensures clause of the recursive call
to Reverse in Fig. 7, the satisfaction of which is the essence
of the correctness of the implementation. The VC is part of
an Isabelle theory file that includes all of the VCs. The ap-

ply(...) lines are instructions to Isabelle on how to prove
each VC. The first section directs Isabelle to perform basic
simplifications, such as propositional simplifications. The
second line, apply (force+)? directs Isabelle to perform
the automated reasoning methods. The done line indicates
to Isabelle that the person thinks the proof is finished. These
lines are all generated automatically by the VC generator.

Lemma #4 (state index: 5, loop invariant)

〈x4〉 ∗ q4 6= Λ

∧ reverse(Λ) ∗ q0 = reverse(s2) ∗ 〈x4〉 ∗ q4

∧ |〈x4〉 ∗ q4| > 0

∧ is initial(x3)

∧ is initial(x5)

⇒ reverse(Λ) ∗ q0 = reverse(〈x4〉 ∗ s2) ∗ q4

Figure 11: Human readable version of Fig. 10

2The Isabelle versions of the VCs use the o symbol for the
∗ concatenation symbol in Resolve’s string theory.



Generation Proofs
Recursive Time (sec) 0.9 .26
Iterative Time (sec) 1.8 1.37

Table 1: VC Generation and Proof Running Time

In the iterative implementation of Reverse, we use a stack
to reverse the queue using two loops. Figure 10 is a VC from
the loop invariant for the first loop expressed in the Isabelle
format; figure 11 expresses the VC in a human readable for-
mat. The main string theory lemmas involved here are the
associativity of concatenation and the property of concate-
nation within the reverse function.

Isabelle, with the help of the introduced string theory lem-
mas from Fig. 2, proves both sets of verification conditions
automatically. The generation of the VCs and the proofs of
the VCs in Isabelle each takes very little time, as seen in
Table 1. These timings do not take into account the time
for Isabelle to read the Resolve String theory file; the use
of Isabelle’s internal tools allow for String theory to be in-
corporated into an Isabelle executable and bypass the time
required for Isabelle to process String theory.

Both implementations of the queue Reverse code, string the-
ory in Isabelle, and all VCs are on the web at http://www.

cse.ohio-state.edu/~kirschen/rsrg/Isabelle.html.

4. LESSONS LEARNED
We have shown that the VCs generated for the reverse ex-
tension to a queue ADT are automatically provable by an
interactive proof assistant without human advice. While
these initial results are positive, there are of course many
more issues to address. We now describe several of the is-
sues that have come up as we have explored these and other
examples. In this section, we use the term “prover” to mean
any tool that attempts to prove VCs without the use of spe-
cialized decision procedures.

The first potential complication is the addition of quantifiers
in requires and ensures clauses. For a proof of a univer-
sally quantified statement in the conclusion of a VC (e.g.,
A ⇒ ∀x.P (x)), a prover can simply use a fixed (but arbi-
trary) element of the universe of the quantification for x,
and prove the statement true for that element.

However, when an assumption in a VC involves universal
quantification, the natural question is “what term should
be used to instantiate the quantified variables?” With this
issue, a general proof approach (without the use of a spe-
cialized decision procedure) must either never need to in-
stantiate a quantified variable (avoiding the issue), or use a
method that instantiates the quantifier “correctly” in many
cases (possibly tuned for the types of VCs that are likely to
occur). The dual of this is the use of existential quantifica-
tion. An existential quantification in the assumptions does
not cause any problems, whereas an existential quantifica-
tion in the goal does. Consequently, it is not desirable to
have existential quantification in the goal of a VC, although
it remains to be seen how often this may arise. One speci-
fication design approach is to demand that all requires and
ensures clauses and loop invariants be quantifier-free; quan-
tifiers would be introduced only in mathematical definitions.

This raises the issue of how to include new definitions in ex-
isting theories. One approach is to prove algebraic properties
(lemmas) involving those definitions. Using those proper-
ties, the automated prover would then attempt to verify the
VCs. Another approach is to instead unfold the definition
immediately and then let the prover verify the VCs using the
expanded version of the definition (exposing any quantifiers
in the definition to the prover). While the second approach
seems easier to achieve at first glance because the requisite
algebraic properties need not be identified and proved, the
first approach may have benefits by limiting the complexity
of the VCs that the prover works with.

For example, one might want to add the definition
IsPermutation(a,b) to denote that the string a is a permu-
tation of the string b. IsPermutation may be defined via the
number of occurrences of an item in a string.
IsPermutation(a * b, b * a) is a lemma that should—
and can—be proved once and then used to prove many
VCs. Fox example, VCs generated for a selection sort al-
gorithm essentially require the prover to deduce IsPermu-

tation(q1 * (a * <x>),q) from the assumptions IsPer-

mutation(q2 * a,q) and IsPermutation(q1 * <x>,q2). A
standard proof involves using lemmas about substitutions,
the symmetry of IsPermutation, and commutativity of con-
catenation within the arguments of IsPermutation.

5. RELATED WORK
Zee et al. [30] have used a hybrid approach of applying both
specialized decision procedures and a general proof assistant
to prove that code purporting to implement certain data
structure specifications is correct. However, the use of Java
as a starting language requires that the list specifications
use reference equality or comparison. Our approach proves
properties that depend on the values of the objects instead.

Zhang et al. [31] describe a decision procedure for queues.
Instead of using a special-purpose decision procedure, we use
a general-purpose automated proof assistant. The general
string theory used for our specifications is slightly simpler
than the queue theory developed with the decision proce-
dure, and it is also used to specify the stack ADT used in
one of our examples, as well as other Resolve components.

The Why methodology [13] involves a simplified program-
ming language, annotated with logical definitions, axioms,
preconditions, post conditions and loop invariants, for which
VCs can be generated. A subset of both C (with annota-
tions) and Java (with JML specifications) can be translated
into the simplified programming language, such that the
VCs generated are claimed to represent the correctness of
the original C or Java code. The translation process from
C or Java must explicitly capture the memory model of the
original source language (C or Java); as a result of using Re-
solve, we do not need an explicit memory model, simplifying
the generated VCs.

SMT solvers such as Yices [11] and Z3 [10] are designed
to search for a possible satisfying assignment to a first-order
formula by using a SAT solving algorithm (such as DPLL [9,
8]) to find possible satisfying assignments, confirming those
assignments via first-order theory-specific satisfiability pro-
cedures. SMT solvers are known not to perform well with



quantifiers and the reliance on strictly first-order logic en-
sures that some predicates may not be definable [19]. We
have not yet investigate the relative efficacy of Isabelle com-
pared to any of these SMT solvers.

The Resolve approach for the specifications of a queue ADT
is similar to what might be done in JML [20]. For example,
the JML specifications for lists use mathematical sequences,
similar to our use of strings as the mathematical model for
queues and stacks. But with Java, again, the reference/value
distinction introduces considerable added complexity.

Resolve superficially resembles the Larch [15] specification
and verification discipline. Both approaches employ a
programming-by-contract paradigm. Resolve and Larch dif-
fer in that Resolve was designed to be used with exactly one
programming language and one mathematical specification
language, while Larch uses the Larch Shared Language to ex-
press mathematical theories (traits) and the Larch Interface
Languages (LIL) to express specifications for a particular
programming language such as C. Resolve does not have this
distinction; the same mathematical language is used both
for the creation of mathematical theories and the specifica-
tion of programmatic operations. Resolve was also designed
with the idea of verifiability in mind, so the programming
language with its specification language must have a com-
mon semantics that allow for proof of soundness and relative
completeness of a proof system. Larch was meant to work
with several languages whose semantics may be completely
different and, indeed, not yet formalized. Also, a key idea of
Resolve is that it reuses mathematical theory units as much
as possible, while the Larch approach instead tends to reuse
a particular trait defined in the Larch Shared Language in
each of the interface languages. However, the examples pro-
vided for Larch do not show the traits themselves reused
within one LIL. For example, a queue and a stack each have
a different trait in Larch, while both are modeled by math-
ematical strings from String theory in Resolve.

6. CONCLUSION AND FUTURE WORK
We have described automated verification of two different
implementations of an extension of an ADT. We have also
discussed lessons learned about possible challenges to achiev-
ing verified software by using and automated proof assistant
to prove VCs.

In the future, we expect to create implementations that ex-
ercise different parts of the string theory development. For
example, the use of substring or permutation definitions in
the specifications would require the addition of more string
lemmas to continue the automated reasoning process. Fi-
nally, we expect to add other theories developed for Resolve
specifications into Isabelle, such as finite sets and trees.
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Why/Krakatoa/Caduceus platform for deductive
program verification. In 19th International Conference
on Computer Aided Verification, volume 4590/2007 of
LNCS, pages 173–177, Berlin, Germany, July 2007.
Springer-Verlag.

[14] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor, Mathematical Aspects of Computer
Science, volume 19 of Proceedings of Symposia in
Applied Mathematics, pages 19–32, Providence, Rhode
Island, 1967. American Mathematical Society.

[15] J. V. Guttag, J. J. Horning, S. J. Garl, K. D. Jones,
A. Modet, and J. M. Wing. Larch: Languages and
tools for formal specification. In Texts and Monographs
in Computer Science. Springer-Verlag, 1993.

[16] D. Harms and B. Weide. Copying and Swapping:
Influences on the Design of Reusable Software
Components. IEEE Transactions on Software
Engineering, 17(5):424–435, May 1991.



[17] W. D. Heym. Computer Program Verification:
Improvements for Human Reasoning. PhD thesis,
Department of Computer and Information Science,
The Ohio State University, Columbus, OH, December
1995.

[18] T. Hoare. The verifying compiler: A grand challenge
for computing research. J. ACM, 50(1):63–69, 2003.

[19] S. Lahiri and S. Qadeer. Back to the future: revisiting
precise program verification using smt solvers. In
POPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 171–182, New York,
NY, USA, 2008. ACM.

[20] G. Leavens. JML language. http://www.eecs.ucf.
edu/~leavens/JML-release/javadocs.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL—A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[22] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H.
Zweben. Part I: the RESOLVE framework and
discipline: a research synopsis. SIGSOFT Softw. Eng.
Notes, 19(4):23–28, 1994.

[23] S. Owre, J. Rushby, N. Shankar, and
D. Stringer-Calvert. PVS: an experience report. In
D. Hutter, W. Stephan, P. Traverso, and M. Ullman,
editors, Applied Formal Methods—FM-Trends 98,
volume 1641 of Lecture Notes in Computer Science,
pages 338–345, Boppard, Germany, oct 1998.
Springer-Verlag.

[24] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[25] L. Paulson. Set theory for verification: from
foundations to functions. Journal of Automatic
Reasoning, 11(2):353–389, 1993.

[26] N. Shankar and J. Woodcock, editors. Verified
Software: Theories, Tools, Experiments, Second
International Conference, VSTTE 2008, Toronto,
Canada, October 6-9, 2008. Proceedings, volume 5295
of Lecture Notes in Computer Science. Springer, 2008.

[27] M. Sitaraman, S. Atkinson, G. Kulczycki, B. W.
Weide, T. J. Long, P. Bucci, W. D. Heym, S. M. Pike,
and J. E. Hollingsworth. Reasoning about
software-component behavior. In ICSR-6: Proceedings
of the 6th International Conerence on Software Reuse,
pages 266–283, London, UK, 2000. Springer-Verlag.

[28] A. Starostin and A. Tsyban. Verified process-context
switch for c-programmed kernels. In Shankar and
Woodcock [26], pages 240–254.

[29] B. W. Weide, M. Sitaraman, H. K. Harton, B. Adcock,
P. Bucci, D. Bronish, W. D. Heym, J. Kirschenbaum,
and D. Frazier. Incremental Benchmarks for Software
Verification Tools and Techniques. In Proceedings of
VSTTE 2008 (Verified Software: Theories , Tools,
and Experiments). Springer-Verlag, 2008.

[30] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. SIGPLAN Not.,
43(6):349–361, 2008.

[31] T. Zhang, H. B. Sipma, and Z. Manna. Decision
procedures for term algebras with integer constraints.
Inf. Comput., 204(10):1526–1574, October 2006.


