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Abstract

Extended Static Checking (ESC) is a fully automated formal
verification technique and is generally quite efficient, as far as
verification tools go, but it is still orders of magnitude slower than
simple compilation. Verification in ESC is achieved by translat-
ing programs and their specifications into verification conditions
(VCs). Proof of a VC establishes the correctness of the program.
As can be imagined, proving VCs is computationally expensive:
While small classes can be verified in seconds, verifying larger
programs of 50 KLOC can take hours. To help address this lack of
scalability, we present the multi-threaded version of ESC4 and its
distributed prover back-end.

1. Introduction

Extended Static Checking (ESC) [14] is a fully automatic form
of static analysis that provides more checks than are available from
standard type checking but less than from Full Static Program Ver-
ification (FSPV) [11]. It does this by translating source code that
has been annotated with specifications to Verification Conditions
(VCs), which are boolean expressions in first-order logic. If the
VC corresponding to a given method can be discharged then the
method is correct with respect to its specification. In ESC, VCs are
discharged with the help of Automated Theorem Provers (ATPs).

Technology has progressed incredibly since the first ESC tools
were developed. We can formally verify non-trivial applications.
While small classes can be verified in seconds, larger programs of
50 KLOC can sometimes take hours to verify. We believe that this
is an impediment to widespread adoption of ESC: used to modern
incremental software development models, developers have come
to expect that the compilation (and ESC) cycles are very quick.
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In this paper we describe how ESC4 [11] is able alleviate this
problem. ESC4 is the ESC component of JML4 [10], a next-
generation research platform that provides an Eclipse-based In-
tegrated Verification Environment (IVE) for JML-annotated Java
[18]. It offers a full range of verification techniques, including
Runtime Assertion Checking (RAC), ESC, and FSPV. More back-
ground information is given in Section 2, and an overview of ESC4
is given in Section 3.

ESC4 [11] is able to verify programs faster than its predecessor,
ESC/Java2 [12], and other ESC tools such as Boogie [7]. Our
contributions are as follows:

• We take advantage of the modular nature of the verification
techniques underlying ESC [19] to analyze the methods in a
given compilation unit in parallel. This is possible because
the ESC analysis done for a given method is independent of
that for any others. (Section 4.1)

• We take advantage of ESC4’s proof strategies to develop
distributed discharging so that non-local resources can be
used to reduce the time to verify a set of classes. (Sec-
tion 4.2)

• The previous two points are achieved by means of OS inde-
pendent “proof services”: If an executable version of a given
prover is not available for a given platform, that prover can
be exposed through a service and used remotely as if it were
local. (Section 4.3)

While tools exist for verifying distributed and multi-threaded
code, we have not found another verifier that makes use of these
techniques to speed up its own analysis. We believe that ESC4 is
the first fully automatic static-verification tool to do so.

2. Background

ESC4 is a from-scratch rewrite that builds on the lessons learned
from earlier projects, principally ESC/Java2. It is part of the JML4
project.



2.1 ESC/Java and ESC/Java2

ESC/Java2 [12] is the successor to the earlier ESC/Java project
[14], the first ESC tool for Java. ESC/Java’s goal was to provide
a fully automated tool to point out common programming errors.
The cost of being fully automated and user friendly required that it
be—by design—neither sound nor complete. Soundness was lost
by not checking for some kinds of errors (e.g., arithmetic overflow
of the integral types is not modeled because it would have required
what was felt to be an excessive annotation burden on its users).
ESC/Java provides a compiler-like interface, but instead of trans-
lating the source code to an executable form, it transforms each
method in a Java class to a VC that is checked by an ATP. Re-
ported errors indicate potential runtime exceptions or violations of
the code’s specification. “The front end produces abstract syntax
trees (ASTs) as well as a type-specific background predicate for
each class whose routines are to be checked. The type-specific
background predicate is a formula in first-order logic encoding
information about the types and fields that routines in that class
use” [14]. The ESC/Java2 project first unified the original pro-
gram’s input language with JML before becoming the platform
developed by many research groups.

2.2 JML4

First-generation tools such as ESC/Java and ESC/Java2 are stand-
alone command-line applications that use their own custom Java-
compiler front ends to produce an AST. Since the research interest
of the maintainers of these tools is JML, and not the underlying
Java font end, these tools have not kept up with the latest develop-
ments of the Java language.

After much discussion, both within our own research group and
with other members of the JML community, it was decided that
basing a next-generation JML tooling framework on the Eclipse
JDT was the most promising approach.

The result is JML4 [10], a Integrated Verification Environment
(IVE) for JML-annotated Java that is built atop the Eclipse Java
Development Tooling (JDT).

JML4’s first feature set enhanced Eclipse with scanning and
parsing of nullity modifiers (nullable and non-null), enforcement
of JML’s non-null type system (both statically and at runtime) [9]
and the ability to read and make use of the extensive JML API
library specifications. These include

• recognizing and processing JML syntax inside specially marked
comments, both in .java files as well as .jml files,

• storing JML-specific nodes in an extended AST hierarchy,

• statically enforcing a non-null type system, and

• generating runtime assertion checking (RAC) code.

Since then, work has been underway by several research groups
to flesh out JML4 so that it can process all of JML language-level
0 [18].

Figure 1. Compiler phases for JML4

The framework has also been enhanced to support static analy-
sis [11], including both ESC and Full Static Program Verification
(FSPV). The main compiler phases can be seen in Figure 1.

3. Overview of ESC4

ESC4 [11, 16] is the ESC component of JML4 and is a ground-
up rewrite of ESC. Its VC generation is based on Barnett and
Leino’s innovative and improved approach to a weakest-precondition
semantics for ESC [8]. One of the most significant results of this
approach is that the size of the VCs produced are linear in the size
of the method being analyzed, where earlier approaches generate
VCs whose size can be exponential in the worst case.

Figure 2 shows the data flow in ESC4. The fully resolved and
analyzed AST produced by the JDT’s front end is taken as input.
Only those with no front-end-reported errors are processed fur-
ther by ESC4. The source AST is first converted to a control-flow
graph (CFG) as described in [8]. This CFG is similar to Dijkstra’s
Guarded Command Language [13], except that the guards have
been replaced with assume statements and the choice operator has



Figure 2. Data flow in ESC4

been replaced with gotos. A VC for each source method is gen-
erated from this intermediate form. ESC4’s Proof Coordinator is
responsible for discharging the VC or reporting why it cannot be
discharged. A post-processor reports unprovable VCs to the user
through the IVE as failed assertions and attaches the results of the
analysis to the original AST. Depending on the compiler options
in effect, the code-generation phase may make use of these results
to optimize runtime checks.

3.1 Prover back-end

A class diagram for the Prover back-end is shown in Figure 3.
A Prover Coordinator is used to discharge VCs. It obtains a proof
strategy from a factory whose behavior is governed by compiler
options. The default strategy is a sequence of two strategies: The
first tries to prove the entire VC using a single ATP. If it fails, the
second, ProveVcPiecewise, is used. Both use adapters to access
the theorem provers. These adapters hide the mechanism used to
communicate with the provers. They use visitors to pretty print the
VC to produce input for each ATP’s native language. To eliminate
wasting time re-discharging a previously discharged VC (or sub-
VC), the strategies can make use of a VC cache, which is persisted.

ProveVcPiecewise implements 2D VC Cascading: VCs are
broken down into sub-VCs, giving one axis of this 2D technique,
and proofs are attempted for each sub-VC using each of the sup-
ported ATPs, giving the second axis.

The conjunction of the set of sub-VCs is equivalent to the orig-
inal VC. Discharging all of the sub-VCs shows that the method is
correct with respect to its specification. Any sub-VCs that cannot

Figure 3. ESC4’s prover back-end

be discharged reflect either limitations of the provers or faults in
the source.

Currently, three ATPs are used: Simplify, CVC3, and Isabelle/HOL.
The first two of these are much faster than Isabelle, but Isabelle is
able to discharge VCs containing many constructs that the others
are not. After trying both Simplify and CVC3 on a sub-VC, we
try to prove its negation before resorting to Isabelle. Only after all
other attempts fail is Isabelle invoked.

4. Faster ESC

Applying ESC to industrial-scale applications has been diffi-
cult because of the time existing tools require. In this section we
highlight the enhancements that have been added to ESC4 that re-
duce the time needed to verify JML-annotated Java code.

4.1 Multi-threading

Using the arguments in Leino’s thesis, Toward Reliable Mod-
ular Programs [19], it can be shown that each JML-annotated
method in a system can be verified independently of the others.
Where there are no dependencies, it is easy to introduce concur-
rency.

First-generation tools such as ESC/Java [14] and ESC/Java2 [12]
were written before multi-threaded and multi-core computers were
commonplace. Multi-threading operating systems were already
available then, but writing the code to use them would have only
increased its complexity without making the processing any faster.
This encouraged a serialized approach to the problem, even though
the modular nature of ESC is inherently parallelizable. Today,



however, multiple-core machines are becoming the norm. Each
thread could, in theory, run on its own core and thus reduce the
time needed to verify a system to the most time needed to verify
a single method. While the number of cores needed to achieve
this level of speedup will not be available in the foreseeable fu-
ture, having such small-grained units of work should make effi-
cient scheduling easier for the operating system and/or virtual ma-
chine.

Modifying ESC4 to take advantage of ESC’s inherent concur-
rency simply required adding a thread pool: Instead of processing
each method sequentially, we packaged the processing (the body
of an inner loop) as a work item and added it to the thread pool’s
task list. Finally, we added a join point to wait until all of the work
for a compilation unit’s methods finished before ending the ESC
phase for it. This last step is necessary because the results of ESC
may be used during code generation.

Version 3.4 of the Eclipse Java compiler added the ability to use
separate threads to compile individual source files concurrently
[3]. Since ESC4 and JML4 are built on top of this compiler, all
we had to do to gain this benefit was to ensure that JML4 is thread
safe.

The vast majority of the time doing ESC is spent discharging
VCs. Specifically, it is the underlying theorem provers that use the
most time. For this reason, most ESC tools only make use of a
single ATP per verification session. As mentioned above, ESC4
uses 3 by default, and 2D VC Cascading can cause those 3 to be
invoked multiple times for each method. Just as the methods in a
class can be verified in parallel, the sub-VCs for a method can be
discharged in parallel. We just need to put a join point so that we
know when the processing of a method’s VC has finished.

This gives ESC4 3 layers of parallelism: source files, methods
within those files, and sub-VCs for those methods.

4.2 Distributed VC Processing

Once we were able to take advantage of all of the CPU re-
sources on a local machine, it became interesting to ask if we could
make use of resources on remote machines. The design of ESC4’s
Prover Coordinator led to quick discovery of a few deployment
scenarios for the distributed discharging of VCs. It was easy to
support distributed provers by adding new strategy communica-
tion infrastructure, as shown in Figure 4.

1. Prove whole VC remotely. The first deployment scenario
offloads the work of the Prover Coordinator for an entire
method. This was done by developing a new subclass of
IProverStrategy that sends the VC generated for a method
to a remote server for processing. (see Figure 5). A Proof
Coordinator is instantiated on the remote server along with
its strategies. We initially had it behave like a local Prover
Coordinator and discharge the VC itself with its own local
provers.

2. Prove sub-VCs remotely. A second deployment scenario
was to split the VC into sub-VCs and send each of them
off for remote discharging. This was done by extending

Figure 5. Deployment

the ProveVcPiecewise strategy discussed in Section 3.1 and
having it use remote services to discharge the sub-VCs in
parallel.

3. Doubly Remote Prover Coordinator. Combining the two
previous approaches, so that the remote Prover Coordinator
itself delegates the responsibility for discharging the sub-
VCs to remote services by using the ProveVcPiecewiseDis-

tributed strategy, provides yet another alternative. A de-
ployment view can be seen in Figure 5.

Scenario 1 uses the least bandwidth, since only the original VC
is transmitted. Scenario 2 uses the next least, although it can be
exponentially more than 1. Scenario 3 uses the most, the sum of 1
and 2, but it is split into two groups: the same is used between the
the local machine and the remote Prover Coordinator as in 1, and
between the remote Prover Coordinator and its servers as in 2.

Splitting a VC into sub-VCs can cause exponential growth in
size, since these sub-VCs each represent a single acyclic path from
the method’s precondition, through its implementation to an asser-
tion.

As a result, scenarios 1 and 3 would be preferred over 2 when
the remote machines are not on the same local area network. Sce-
nario 3 can be thought of as providing the best parts of the other
two: low bandwidth requirements to reach the prover service, and
2D VC Cascading.

In addition, scenario 3 is the most likely to be used when a large
farm of servers is available or when the Prover Coordinator service
provides a façade that hides load balancing and other details from
ESC4.

4.3 Prover service

Independent of the strategy used, the proving resources may be
local or remote. The initial prover adapters communicated with lo-
cal resources using Java’s Process mechanism. After facing some
difficulties installing some provers on all of our development plat-
forms, we hit on the idea of Prover Services.



Figure 4. ESC4’s distributed back-end

The adapters that use the provers locally can be taken as base
classes to subclasses that access them remotely. Part of the purpose
of the adapter classes is to hide the interface with the provers. Ap-
plying the same concept lets us hide whether the prover is hosted
locally or on a remote machine.

This has the advantage of making the provers OS independent.
If a prover is needed on an OS for which there is no executable, it
can be hosted on another machine with the appropriate OS and an
adapter can hide the extra communication needed to access it.

5. Validation

To confirm that our approach produces speedups, we performed
some preliminary timing tests. The source tested was a single
Java class with 51 methods. For this code, ESC4 produced 235
VCs. Table 1 shows the number of times each of provers was in-
voked. Simplify was able to discharge over 80% of the VCs. It
was also able to show as false almost 80% of those that were in-
deed false (23 + 6). In this sample, CVC3 was not able to prove
any of the VCs that Simplify was also unable to prove, and Isabelle
was needed for just over 5% of the original VCs.

We ran the test with two deployment scenarios, both based on
the Doubly Remote Prover Coordinator described in Section 4.2.
In the first, the Prover Coordinator was hosted on the same PC as
ESC4. In the second, it was hosted on a faster remote machine.

ESC4 was run on a 2.4 GHz Pentium 4. The Prover Coordina-
tor was hosted either locally to the ESC4 machine or on a 3.0 GHz
Pentium 4. Neither of these machines’ CPUs is hyperthreaded.

The provers were hosted on servers, each with a 2.4 GHz Quad-
core Xeon processor. The timing results are shown in Table 2 and
Figure 6. Each entry in the last two columns is the average of
three test runs, which were made after an initial run with the con-
figuration being tested to remove initialization costs. Even so, the
timings varied from 0.5 s to 1.6 s. Network usage may account for
some of this variation.

For comparison, running the test with the Prover Coordinator
and provers were all on the same PC as ESC4 took 72 s. It should
be noted that when using remote provers, the CPU of the local ma-
chine stayed at 100% during the first few seconds and then dropped
to below 20% while gathering the results. When the Prover Coor-
dinator was on a separate machine, that machine’s CPU was never
went above 50%.

The data gathered indicate that there is little difference be-
tween hosting the Prover Coordinator locally or remotely. We had
thought that hosting it remotely would allow the VCs to reach the
provers faster, thus giving a greater speedup. Surprisingly, as more
processing cores were made available, it was actually faster to send
the VCs directly. Further testing will have to be done to confirm
this. For the sample shown, the timing difference between the two
scenarios is within the range of error.

A function from the number of processors used to the time
taken to analyze a given piece of code can be derived by apply-
ing simple algebra to Amdahl’s law [6, 17]. It should have the
form

t = C1 +
C2

n
,



Table 1. VCs discharged with provers
Prover No. VCs No. Proved (%)
Simplify 235 193 82
CVC3 42 0 0
Negationa 42 23 55b

Isabelle 19 13 68
failed 6

where C1 is the time taken to complete the portion that cannot be
serialized and C2 is the time for the portion that can. Replacing
n with 4 and 8 cores and t with the times for the remote Prover
Coordinators gives a system of 2 linear equation with 2 unknowns.
Solving this system gives

t = 7.4+
76.0

n
The experimental result of 13.3 s for 12 cores is within the error
range of the predicted time of 13.7 s.

These initial results with up to 12 cores suggest that over 90%
of the ESC analysis is amenable to parallelization. One question
that future study will have to address is, “Can the 7.4 s that was
not parallelized by using distributed provers be made paralleliz-
able by hosting ESC4 on a multi-core machine?” Contained in
the serial part is the JDT’s front-end generation of the AST and
ESC4’s generation of VCs from it.

After adding 12 cores, the serial portion takes longer than the
portion that is parallelized. We did not test the generation of VCs
on a multi-core system. Doing so may show that at least part, and
maybe even most, of this segment is parallizable.

6. Related Work

As noted in the introduction, we have not been able to find other
existing tools that make use of distributed or parallel processing to
enhance fully automatic program verification. Two related aspects
of the work presented here have been previously examined: multi-
threaded, distributed compilation and interactive, distributed theo-
rem proving for program verification. These are discussed in the
following subsections.

6.1 Compilation

As mentioned in Section 4.1, Eclipse 3.4 supports mutithreaded
compilation of Java programs. The Gnu make command gmake has
a -jobs[==n] option that executes up to n build tasks concurrently.
If an integer n is not supplied then as many tasks are started as
possible [2]. Microsoft’s Visual C++ compiler has the “Build with
Multiple Processes” option (/MP) that launches multiple compiler
processes. If no argument is given, the number of effective pro-
cessors is used. The number of effective processors is the number
of threads that can be executed simultaneously and considers the
number of processors, cores per processor and any hyperthreading
capabilities.

Several open-source projects and commercial products are avail-
able that can distribute the tasks in a build process to networked

Table 2. Timing results
Time (s) with

No. No. Prover Coordinator
servers cores local remote

1 4 26.6 26.4
2 8 16.9 16.2
3 12 12.8 13.3

machines. These only launch a process on a remote machine and
do not make use of a service-based approach. Open-source projects
include distcc [4] and Icecream [1]. Xoreax sells a product called
IncrediBuild [5] that coordinates distributed builds from within
with Microsoft’s VisualStudio.

6.2 Interactive, distributed theorem prov-
ing for program verification

Vandevoorde and Kapur describe the Distributed Larch Prover
(DLP), “a distributed and parallel version of LP, an interactive
prover” [20]. Like LP, DLP is not an ATP, as users must guide
the proof-discovery process. It achieves parallelism by allowing
users to simultaneously try several techniques to prove a subgoal.
This is done by distributing the attempts among computers on a
network. Some automation is provided by heuristics that chose
the inference methods to be launched in parallel.

Hunter et al. attempt to use distributed provers to increase the
adoption of formal techniques in industry [15]. Like the DLP, their
approach requires interaction, but their goal is to reduce that in-
teraction. Reducing the amount of user interaction would reduce
the cost of using formal tools to prove software correct and thus
remove one of the impediments to its more widespread use. A
user interacts with software agents that try to automatically prove
a goal. User interaction is needed when one of these agents is
unable to automatically prove subgoals.

7. Conclusion

Applying ESC to industrial-scale applications has been diffi-
cult because of the time required. Invoking a theorem prover for
every method in a system is computationally expensive.

We attacked this by applying the “divide and conquer” strategy
to allow processing by multiple computing resources, both local
and remote. Generating and discharging the VC for Java methods
is a problem that can be easily decomposed into many indepen-
dent tasks. This makes it very amenable to multi-threading and
distributed processing.

Given the power of today’s desktop PCs, most of an organi-
zation’s desktop computers’ CPUs are under-utilized. Installing
a distributed proving service on these machines would allow the
organization’s developers to tap into existing resources without re-
quiring the acquisition of additional hardware.



Figure 6. Time (s) vs. Cores

The Eclipse JDT compiler is able to process multiple source
files in parallel. We showed how we modified ESC4 to support
verifying multiple methods in parallel. Similarly, a method’s sub-
VCs are discharged in parallel. Because of the potential reduction
in time to verify a system, it became useful to explore distributed
prover resources. This in turn led to exposing individual provers as
distributed resources. All of these combined make the verification
of Java programs scalable: The time ESC4 needs to verify a sys-
tem should be inversely proportional to the CPU resources made
available to it.

7.1 Next steps

We modified ESC4 to take advantage of many local and non-
local computing resources. The implementation was done to quickly
get a usable and stable framework in place, without much regard
for optimization. While we are pleased with the initial results,
there are ample opportunities for improvement. These include us-
ing more efficient communication mechanisms to interact with re-
mote resources. Load balancing and other techniques from service-
oriented architectures are obvious candidates for consideration.

Proof-status caching, as described in [11], would also improve
performance during iterative development since only methods that
were changed would need to be re-verified.

After making the obvious enhancements, we plan to conduct
timing studies to evaluate the deployment scenarios mentioned in
this paper, varying the number and kinds of local and remote re-
sources as well as the characteristics (speed and reliability) of the
network.
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