
Using Analysis Patterns to Uncover Specification Errors

William Heaven Alessandra Russo
Department of Computing, Imperial College London

{william.heaven, ar3}@imperial.ac.uk

ABSTRACT
Developing or maintaining a formal software specification is a task
unfortunately prone to the accidental introduction of logical errors,
particularly inconsistencies. At worst, such errors can be danger-
ously misleading. For example, many software analysis tools that
require a formal specification as input produce false positives when
faced with inconsistency, making it more likely that developers
miss errors in the software. At the same time, most existing analy-
sis tools supporting specification development are not well suited to
the detection of inconsistencies without explicit direction from an
expert user. To address this shortcoming, this paper presents novel
analysis “patterns” that can automatically guide specifiers through
logical pitfalls of this kind by not only checking a given specifi-
cation formula, but recursively checking the subformulae of that
formula. By doing so, rather than present a specifier with poten-
tially misleading feedback, use of these patterns can automatically
ensure—without expert direction—that accidentally introduced in-
consistencies are uncovered.

1. INTRODUCTION
Formal software specification largely remains the exclusive and

sparsely-populated province of experts and enthusiasts due, in part,
to the demands placed on the practitioner. Formal (typically declar-
ative) specifications are prone to the accidental introduction of log-
ical errors, particularly inconsistencies, during their development.
Further, it is rarely the case that developing a specification is a
task done once, checked, and forgotten. In practice, as software
evolves, a specification must be extended with the addition of new
constituent formulae, making the introduction of logical error an
ongoing risk.

The difficulty is compounded by the fact that most specifications
of non-trivial software systems typically contain many logical in-
terdependencies and, therefore, the consistency of one part of a
specification is likely to be affected by changes to other parts. Cur-
rently popular specification languages for component-based soft-
ware (such as JML [15] and Spec� [1]) allow side-effect-free method
calls to be used as terms in specification formula. So, for example,
a side-effect-free method size() that returns an integer result could
be used in a specification formula such as size() < MAX. However,
while this specification-language feature has the great advantage of
affording a succinct and modular specification style, it exponen-
tially increases the number of dependencies between formulae in
a specification. For example, the consistency of any formula con-
taining the term size() will depend on the formulae in the method
specification for size(), which may in turn be expressed using side-
effect-free method calls and thus depend on the method specifica-
tions of those methods, and so on. Interdependencies of this sort,

where the specification for a method like size() may not be immedi-
ately visible from the contexts in which the term size() is used in a
formula, make it even harder to avoid introducing—and to notice—
logical errors.

There are many tools available for specification analysis ranging
from lightweight static- and runtime-checking tools to those that of-
fer the potential for more heavyweight verification [1, 3, 16]. How-
ever, most concentrate on analysis of the relation between spec-
ification and code and not on analysis of the specification itself.
Tools such as the SAT-based Alloy Analyzer [12] permit versa-
tile analyses of specifications but even the Alloy Analyzer provides
misleading feedback when analysing an inconsistent specification
unless expertly directed. This is because the results of a consis-
tency check will be positive (suggesting no inconsistency) when
the set of formulae in question are not only consistent but vacuously
consistent—“valid”—on account of inconsistent subformulae. For
example, a formula φ ⇒ ψ is valid if φ is inconsistent. In this
case, the logical error causing φ’s inconsistency is “hidden” by the
positive result of the consistency check.

What is needed are powerful automated tools to support the de-
velopers and maintainers of a specification. As a step towards this
goal, this paper presents a set of analysis “patterns” that guide spec-
ifiers through the pitfalls of logical analysis by not only checking
the consistency of a given specification formula but recursively
checking the subformulae of that formula. By doing so, rather
than present a specifier with potentially misleading feedback, use of
these patterns can automatically ensure—without expert direction—
that accidentally introduced inconsistencies are uncovered. An im-
plementation of these patterns, using the Alloy Analyzer as a back-
end, has also been developed [10].

The analysis patterns are presented in the context of satisfiability-
based analysis and, following a motivating example in Section 2,
some preliminaries to their presentation are set forth in Sections 3
and 4. Section 5 then presents the patterns themselves. An imple-
mentation is briefly discussed in Section 6 before briefly consider-
ing some related work in Section 7. Finally, Section 8 concludes.

2. MOTIVATING EXAMPLE
One problem in evolving software is that it is often possible to

adversely affect existing code by adding something new. Where
that new thing is a subtype, ensuring that the subtype is a behavioural
subtype [17] is a good way to avoid introducing undesirable be-
haviour. Behavioural subtyping effectively guarantees that the ad-
dition of a subtype does not affect the behaviour of the existing pro-
gram. A behavioural subtype can be substituted for its supertype
without observable difference in program behaviour. In specifica-
tion languages such as JML and Spec�, behavioural subtyping can
be enforced via specification inheritance whereby the specification



of a subtype implicitly includes that of its supertype [5].
Consider a Java class Queue with a boolean method insert(). If

entries is the data structure in Queue representing the queued el-
ements, a postcondition for insert() might be specified in JML as
follows (the JML specifications here are expressed using boolean
Java expressions plus the standard propositional operators and the
\old keyword denoting pre-state values; they appear between spe-
cial “/*@. . .@*/” comments):

/*@ ensures (result ==> contains(e))
&& (entries == \old(entries.add(e))); @*/

boolean insert(Entry e) { . . . }

This says two things. Firstly, that the boolean result of inserting
element e implies the boolean result of a call to contains() on the
same Queue object. Secondly, that entries after a call to insert() is
equal to entries before the call in all respects other than e’s addi-
tion. In other words, the only difference between post- and pre-state
entries is that e is added: all other elements in entries remain the
same.

Assume that an evolution of the software containing Queue in-
volves adding a subtype BoundedQueue which adds an extra method
size() and overrides insert(). These additions might be specified as
follows:

/*@ ensures size() == entries.size(); @*/
/*@ pure @*/ int size() { . . . }

/*@ also
ensures size() < \old(entries.size()) && size() <= MAX; @*/

boolean insert(Entry e) { . . . }

The specification for size() says that its integer result will always
equal the result of a call to the size() method of entries. Note also
that size() is specified to be side-effect free with the keyword pure.
This means that size() can be used as a term in the postcondition of
the overriding insert(). The also keyword highlights that this new
postcondition is considered in conjunction with the postcondition
of the overridden insert(). Thus, the postcondition of insert() in
BoundedQueue is the postcondition of the overridden method plus
the above, which says that the size of the queue after a call to in-
sert() is less than the pre-state value of entries.size() and less than
or equal to some given value MAX (it is assumed, without going
into detail, that when the queue is already full the insertion does
not take place and the size of the queue does not change).

For BoundedQueue to be a behavioural subtype of Queue, the
postcondition of insert() in BoundedQueue must imply the post-
condition of insert() in Queue. This should be enforced by the fact
that the overriding insert() includes the postcondition of the over-
ridden insert() and the implication can be checked in a tool such as
the Alloy Analyzer. As might be expected, the result given by the
Alloy Analyzer in this case is that the implication is valid.

However, this positive result is misleading because it hides a log-
ical error in the specification of insert() in BoundedQueue. This
postcondition says that following a call to insert(), the size of the
queue is less than the pre-state value of entries.size(), which is in-
consistent with the specification of size() and the existing insert()
postcondition. Following a call to insert() the size of the queue
cannot be less than the pre-state value of entries.size().

What is needed to uncover hidden specification errors in cases
such as this is a means to analyse not only the top-level formula
but also its subformulae. Specification errors are often not detected
explicitly through a consistency check of top-level formulae alone.

In this case, an automated analysis should detect not only that the
implication is valid (vacuously consistent) but further investigate
the subformulae of the analysed formula—the constituent formulae
not only of the insert() method specification but also of the size()
method specification—to uncover the source of the validity, which
for an implication is possibly an inconsistent antecedent.

3. SATISFIABILITY VALUES
Establishing the consistency of a specification formula can be

considered an instance of the Boolean Satisfiability Problem (SAT)
[18, 8]. A formula φ in a specification language with a well-defined
semantics is said to be satisfiable iff there is a possible assignment
of values in that semantics to the terms of φ (variables, constants,
and side-effect-free method calls) that makes φ true. Conversely, φ
is said to be unsatisfiable iff there is no such assignment, i.e., for
every possible assignment φ is false. Henceforth, s will denote the
value satisfiable and u will denote the value unsatisfiable.

Satisfiability analysis in practice has well known limitations and
automatic decision procedures for deciding satisfiability tend to be
incomplete. While these limitations will be touched on briefly in
Section 6, an ideal satisfiability procedure, or “oracle”, will be as-
sumed for clear and succinct presentation of the analysis patterns.
This oracle is deemed to be sound and complete.

Definition 1 (Satisfiability Oracle). Let Φ denote the set of formu-
lae in a specification language. An ideal satisfiability procedure, or
oracle, is represented by the function SAT : Φ → {s, u} such that,
for a given formula φ ∈ Φ, SAT (φ) = s iff φ is satisfiable and
SAT (φ) = u otherwise.

For a formula φ, s (φ) will denote that SAT (φ) = s and u (φ)
will denote that SAT (φ) = u.

The single query SAT (φ) is sufficient to decide whether s (φ)
or u (φ). Further, if a formula φ is unsatisfiable, i.e., false for all
assignments, then ¬φ must be true for all assignments. A formula
that is true for all assignments is said to be valid. Therefore, to
discover that φ is unsatisfiable is also to discover that ¬φ is valid.
On the other hand, if a formula is only true for some assignments
but not all, i.e., there are some assignments for which its negation
is true, then the formula is said to be contingent. Thus, discovering
that φ and ¬φ are both satisfiable is to discover that both are contin-
gent. Finally, if a formula φ is known to be satisfiable, ¬φ cannot
be valid because this would contradictorily require φ to be unsat-
isfiable. Therefore, a value of not valid can be established, dual to
satisfiable (satisfiable is of course equivalent to not unsatisfiable).
The values valid, contingent, and not valid can be defined in terms
of SAT.

Definition 2 (Valid, Contingent, and Not Valid). Given a formula
φ, φ is valid iff u (¬φ); φ is contingent iff both s (φ) and s (¬φ);
and φ is not valid if s (¬φ).

The values valid, contingent, and not valid will be denoted by v,
c, and v̄, respectively. Further, for a formula φ, v (φ) will denote
that φ is known to be valid, c (φ) will denote that φ is known to be
contingent, and v̄ (φ) will denote that φ is known to be not valid.

If knowing the satisfiability of both φ and ¬φ is to have full
information regarding the satisfiability of φ (and, symmetrically,
regarding the satisfiability of ¬φ) and knowing the satisfiability of
φ but not ¬φ (or, conversely, ¬φ but not φ) is to have partial in-
formation regarding the satisfiability of φ, then it can be said that
knowing neither the satisfiability of φ nor ¬φ is to have no informa-
tion regarding the satisfiability of φ. If nothing is known about the



〈v, u〉

���
��

��
��

〈s, s〉

��
���

��
��

���
��

��
��

〈u, v〉

��
���

��
��

〈s, ∼〉

��
��

���
��

〈∼, s〉

��
��

���
��

〈∼, ∼〉

(a) Pairs of formula and negation

v

��������� c

���������

��������� u

���������

s

��������� v̄

���������

∼

(b) Satisfiability values

Figure 1: Orderings for (a) pairs of formula and negation and
(b) satisfiability values

satisfiability of φ or ¬φ the value of both formulae can be given the
value not known. The value not known will be denoted by ∼ and,
for a formula φ, ∼ (φ) will denote that no value for φ or ¬φ is yet
known. Summing up, the set of satisfiability values can be defined.

Definition 3 (Satisfiability Values). The set of satisfiability val-
ues is the set SatVal = {v, c, u, s, v̄, ∼}. The satisfiability variable
ν ranges over SatVal. A satisfiability claim for a formula φ is an
expression ν (φ) in which ν is instantiated with one of the values
in SatVal.

For example, the satisfiability claim v (φ) is true iff φ is known
to be valid and the satisfiability claim ∼ (φ) is true iff no satisfia-
bility value for φ is known.

The three possibilities with respect to knowing the satisfiability
of a formula and its negation, viz., full information, partial infor-
mation, and no information, provide the basis for a partial ordering
of satisfiability values according to what might be called informa-
tion content. The partial ordering of satisfiability value pairs for
a formula φ and its negation is shown in Figure 1 (a). The more
information contained in a pair of values, the higher the pair is in
the ordering. For instance, the pair 〈∼,∼〉 represents having no in-
formation about the satisfiability of either φ or ¬φ, the pair 〈∼, s〉
represents the information that ¬φ is satisfiable, and the pair 〈s, s〉
represents the information that both φ or ¬φ are satisfiable.

Certain possible pairings are obviously omitted, some because
they are redundant. The four pairs 〈∼, v〉, 〈∼, u〉, 〈u,∼〉 and 〈v,∼〉
are omitted because in each case the value ∼ can trivially be re-
placed by v or u according to the value of the other element in the
pair. For example, the ∼ in 〈∼, v〉 can immediately be replaced by
u since if ¬φ is true for all assignments then φ is true for none.
Similarly, the two pairs 〈u, s〉 and 〈s, u〉 are omitted because in
each case the value s can be replaced by v. Finally, the four pairs
〈v, v〉, 〈u, u〉, 〈s, v〉 and 〈v, s〉 represent impossible situations. For
example, a formula cannot be valid if its negation is satisfiable.

The ordering of Figure 1 (a) can also be represented with respect
to the values of SatVal, as in Figure 1 (b). A partial ordering is thus
defined for SatVal .

Definition 4 (Ordering of Satisfiability Values). The set SatVal is
partially ordered according to information content as follows:

v > s, c > s, c > v̄, u > v̄, s > ∼, v̄ > ∼

For all values ν1, ν2 ∈ SatVal, ν1 is said to be more precise (resp.
less precise) if and only if ν1 > ν2 (resp. ν2 > ν1).

The ordering is assumed to have the usual concept of least up-
per bound, i.e., for two values ν1, ν2 ∈ SatVal, the least upper
bound of ν1 and ν2, written ν1 � ν2, if defined, is the unique value
ν3 ∈ SatVal such that ν3 ≥ ν1 and ν3 ≥ ν2 and for all other values
ν4 ∈ SatVal, if ν4 ≥ ν1 and ν4 ≥ ν2, then ν4 ≥ ν3. For example,
s � ∼ = s, s � v̄ = c and v � v = v, but v � c, v � u, and
c � u do not exist.

4. OBTAINING SATISFIABILITY VALUES
It was noted that the single query SAT (φ) decides only whether

s (φ) or u (φ). However, in certain cases satisfiability values other
than s and u can be obtained through inference. For example, if
the result s (φ) has been previously established, then a new result
s (¬φ) would allow both c (φ) and c (¬φ) to be inferred. Or, if
the new result is u (¬φ), then v (φ) can be inferred. A full al-
gebra defining the possible inferences for the values in SatVal is
documented in [10]. The patterns of analysis described in the next
section make use of a lookup table that records satisfiability values
for formulae as they are discovered during analysis. The lookup ta-
ble is a map from formulae to satisfiability values, obtained either
by satisfiability queries or inferred from previous results. Initially,
all formulae are mapped to the value ∼.

Definition 5 (Satisfiability Lookup Table). A satisfiability lookup
table is a map SATTable : Φ → SatVal from formulae to satisfiability
values.

The value of a formula φ can now be obtained by querying either
the satisfiability oracle or the lookup table. Either way, it is desir-
able to obtain the more precise value. For example, when querying
the satisfiability value of φ, if SAT (φ) = s but SATTable (φ) = v
(which would be the case when the more precise value v had been
previously inferred for φ), then the value v should be taken, since
v > s. Given two satisfiability values, ν1 and ν2, the most precise
value obtainable is the least upper bound of the two, i.e., ν1 � ν2.
Note that the most precise value need not in fact be either ν1 or ν2.
For example, if ν1 = s and ν2 = v̄, then the least upper bound,
and therefore most precise value obtainable, is c. A lookup table
is sound in the sense that the least upper bound always exists for a
given update. The following function gives the value of a formula.

Definition 6(Obtaining the Satisfiability Value of a Formula). Given
an oracle SAT and satisfiability lookup table SATTable, the function

GetVal : Φ → SatVal

gives a satisfiability value for a formula, such that, for all φ ∈ Φ

GetVal (φ) = SAT (φ) � SATTable (φ).

However, as new values are learnt for a formula φ, a lookup table
may need to be updated so that the value obtained through GetVal
is always the most precise value yet discovered in a given analysis.
Occasionally, a value may be inferred for a formula during analysis
that is less precise than that already recorded in the lookup table.
For example, if a conjunction φ1∧φ2 is found to be satisfiable, it is
implied that the conjuncts φ1 and φ2 are also satisfiable. However,



if lookup table already maps φ1 to v, then this entry should not be
updated with the value s. The lookup table mapping should never
be updated with a value for φ that is less precise than its existing
value. An appropriate update function is defined below.

Definition 7(Lookup Table Update). For a formula φ, satisfiabil-
ity value ν ∈ SatVal, and lookup table SATTable, an updated lookup
table SAT′

Table is given by the function Upd (SATTable, φ, ν) such that

Upd (SATTable, φ, ν) = SATTable ⊕ φ �→ ν

iff ν > SATTable (φ). Otherwise Upd (SATTable, φ, ν) = SATTable.

5. PATTERNS
Application of the analysis patterns starts with the analysis pat-

tern for the top-level formula being queried. As analysis moves
to the subformulae of the formula in question the patterns are ap-
plied recursively according to the top-level connective of whatever
subformula is currently being analysed. Each satisfiability query
for a formula φ is represented by ? (φ). Each satisfiability query
? (φ) is resolved by a corresponding call to GetVal (φ), the result
of which determines the next formula to be analysed as dictated
by the patterns. The progression of satisfiability queries from for-
mula to formula is not necessarily a linear sequence. It is often the
case that analysis of a formula branches into parallel analyses of its
subformulae.

There is an analysis pattern for each of the propositional connec-
tives common to most popular specification languages (e.g. JML,
Spec�, Alloy): Negation Pattern, Conjunction Pattern, Disjunction
Pattern, and Implication Pattern. While it may be possible to con-
sider only a basic set of patterns in which implication and either
conjunction or disjunction are reducible to the remaining connec-
tives, the full set is presented here for clarity. Analysis of an impli-
cation in particular is less straightforwardly presented without its
corresponding pattern.

Analysis of a given formula is guided step by step by repeated
application of the patterns, beginning with the pattern that matches
the root connective of that formula. For example, the pattern match-
ing formulae of the form φ1 ⇒ φ2 dictates that φ1 and ¬φ2 should
be checked for satisfiability if φ1 ⇒ φ2 is valid. Where applica-
tion of a pattern identifies that a formula is valid or unsatisfiable
due to a valid or unsatisfiable subformula, analysis terminates with
a warning accompanied by a reference to the subformulae in which
a potential error may reside. There is also a pattern for atomic
(connective-free) formulae known as the Base Pattern. Application
of the Base Pattern to a contingent atomic formula results in de-
fault (i.e., warning-free) termination of a decompositional analysis
process.

The patterns are represented as the decision diagrams shown in
Figures 3–7. In these diagrams, a non-terminal node represents a
satisfiability query, e.g., ? (φ), and, for two nodes A and B, a tran-
sition from A to B represents an application of GetVal (φ), where
φ is the formula contained in the satisfiability query of A. Transi-
tions are labelled with a satisfiability value in SatVal. A transition
labelled with satisfiability value ν is taken from a node represent-
ing the satisfiability query ? (φ) iff GetVal (φ) = ν. For example,
a transition labelled v is taken from a node representing the satis-
fiability query ? (φ) iff GetVal (φ) = v. Where there are multiple
transitions from node A to node B, a single transition is shown but
with multiple labels.

The notation used in the diagrams of Figures 4–7 is summarised
in Figure 2. Non-terminal nodes are depicted as shown in Fig-
ure 2 (a). The start node of each pattern is known as the pattern
root and depicted as shown in Figure 2 (b). A pattern root repre-

(a) ? (φ)
Node representing the satisfiabil-
ity query ? (φ).

(b) ? (φ)
Start Root node for the pattern matching

φ.

(c) !
ν (φ)

Terminating node signalling a
warning with diagnostic informa-
tion ν (φ).

(d) ? (φ)

Node representing application of
the pattern matching φ with no dis-
covered value, i.e., current lookup
table is not updated.

(e) ν (φ)

Node representing application of
the pattern matching φ with the dis-
covered satisfiability value ν, i.e.,
current lookup table is updated with
the mapping φ �→ ν.

(f) Default terminating node.

Figure 2: Summary of Pattern Notation

sents a satisfiability claim for a formula whose top-level connective
is matched by the pattern. For instance, the root of the Implication
Pattern (Figure 7) contains the satisfiability claim ? (φ1 ⇒ φ2).
A pattern is said to be applied to the formula in its root and the
formula in the root is known as the root formula of the pattern.

A terminal node in a pattern is known as a pattern leaf. There
are three kinds of pattern leaf:

• Leaf signalling a warning
• Leaf representing an application of a further pattern
• End leaf

A leaf that signals a warning is depicted as shown in Figure 2 (c).
If application of a pattern terminates with a warning, it signals a
potential specification error. A warning is issued in the following
cases:

• An atomic formula is valid
• An atomic formula is unsatisfiable
• An implication is valid due to an unsatisfiable antecedent
• An implication is valid due to a valid consequent

For example, if an atomic formula contains a pure method term it
will be unsatisfiable if the pure method term is undefined for all
program assignments. Further, an atomic formula can be valid if it
contains a pure method term whose precondition and postcondition
are valid. A warning node also contains diagnostic information in
the form of a satisfiability claim. For example, in the application
of an Implication Pattern to a formula φ1 ⇒ φ2, a warning may be
issued with the satisfiability claim u (φ1) indicating that the root
formula is possibly valid due to an error in the specification of φ.

A leaf that represents an application of a further pattern is de-
picted as shown in Figure 2 (d)-(e). Such a termination of a pattern
means that the pattern for the formula φ should be applied to in-
vestigate further. The node may contain a satisfiability query, as in
Figure 2 (d), indicating that the satisfiability value of φ may not be
known. However, in some cases, application of the pattern leading



!
v (φ)

? (¬φ)

? (φ)

!
u (φ)

Start

s

c

s, c

u

v

u

Figure 3: Base Pattern

to this leaf node may have provided a value for φ. In this case,
the leaf node may contain a satisfiability claim, e.g., v (φ), as in
Figure 2 (e). This indicates that the given satisfiability value, e.g.,
v, is entered into the satisfiability lookup table for φ, i.e., a new
mapping SATTable

′ = SATTable ⊕ φ �→ v is constructed. In this
way, information about the satisfiability of formula is accumulated
through recursive application of the patterns. Finally, an end leaf is
depicted as shown in Figure 2 (f). An end leaf appears only once,
in the representation of the Base Pattern, and represents default ter-
mination of an application of the patterns.

Base Pattern. The Base Pattern (Figure 3) is applied to atomic
formulae. If an atomic formula φ is unsatisfiable (i.e., GetVal (φ) =
u), the transition labelled u is taken from the pattern root and a
warning is issued signalling the unsatisfiability of φ. Similarly, if φ
is known to be valid (i.e., GetVal (φ) = v), the transition labelled
v is taken and a warning is issued signalling the validity of φ. If φ
is known to be contingent (i.e., GetVal (t) = c), the transition la-
belled c is taken and application of the pattern ends normally since
a term being true in some states and false in others is as expected.
Otherwise, φ is only known to be satisfiable (i.e., GetVal (t) = s),
and the transition labelled s is taken. In this case, the negation of
φ is then checked for satisfiability to determine whether or not φ
is valid. If ¬φ is satisfiable (or known to be contingent, as indi-
cated by the label s, c), then φ is contingent and no warning need
be issued: application of the pattern terminates normally. But if ¬φ
is unsatisfiable, then φ is valid and, as above, a warning signalling
the validity of φ is again issued. Note that the check for the sat-
isfiability of ¬φ is included in the Base Pattern and not treated as
an application of the Negation Pattern. This is to avoid cycling be-
tween the Base Pattern, which given φ checks ¬φ, and the Negation
Pattern, which given ¬φ checks φ.

Negation Pattern. The Negation Pattern (Figure 4) is applied
to formulae of the form ¬φ. Application of this pattern permits the
exploration of whether or not ¬φ is valid or unsatisfiable and hence,
conversely, whether or not φ is unsatisfiable or valid. If a formula
¬φ is unsatisfiable (i.e., GetVal (¬φ) = u), the transition labelled
u is taken from the pattern root. Since φ has been discovered to be
valid, the pattern matching the formula φ is applied to investigate
further. If ¬φ is known to be valid (i.e., GetVal (¬φ) = v), the
transition labelled v is taken and since φ is discovered to be unsat-
isfiable, the pattern matching the formula φ is applied to investigate
further. If ¬φ is known to be contingent (i.e., GetVal (¬φ) = c),
then φ must be contingent. Though a formula φ is expected to
be contingent, valid and unsatisfiable subformulae can still hide

u (φ) v̄ (φ)

? (¬φ) c (φ)

v (φ)

Start

v

c

s

u

Figure 4: Negation Pattern

v (φi)
1 ≤ i ≤ n

v̄ (¬(φ1 ∧ . . . ∧ φn))»
s (φi)

1 ≤ i ≤ n

–

? (φ1 ∧ . . . ∧ φn)
s (φi)

1 ≤ i ≤ n

? (φi ∧ . . . ∧ φj)
for all

{φi, . . . , φj}
⊂ {φ1, . . . , φn}

Start

s

c

u

v

Figure 5: Conjunction Pattern

beneath a contingent formula, so φ may be investigated further
through application of its pattern. Otherwise, ¬φ is known only
to be satisfiable (i.e., GetVal (¬φ) = s), implying that φ cannot
be valid (though possibly unsatisfiable), i.e., v̄ (φ). φ can again be
further investigated through application of its pattern. Note that the
Negation Pattern does not check the negation of its root formula
since analysing ¬¬φ is of course equivalent to analysing φ, which
would be redundant given that φ is always next analysed through
application of its pattern.

Conjunction Pattern. The Conjunction Pattern (Figure 5) is
applied to formulae of the form φ1 ∧ . . . ∧ φn. Application of
this pattern decomposes a conjunction into its conjuncts to identify
whether the conjunction is valid or, if it is unsatisfiable, which con-



? (φi ∨ . . . ∨ φj)
for all

{φi, . . . , φj}
⊂ {φ1, . . . , φn}

v̄(¬(φ1 ∨ . . . ∨ φn))

? (φ1 ∨ . . . ∨ φn)
v̄ (φi)

1 ≤ i ≤ n

u(φi)
1 ≤ i ≤ n

Start

s

c

u

v

Figure 6: Disjunction Pattern

juncts or combination of conjuncts are unsatisfiable. If φ1∧. . .∧φn

is unsatisfiable (i.e., GetVal (φ1 ∧ . . .∧ φn) = u), the transition la-
belled u is taken from the pattern root. However, it is not necessar-
ily the case that any single conjunct is unsatisfiable. Investigating
further by simply applying the pattern for each conjunct is insuf-
ficient since a conjunction can be unsatisfiable even though each
conjunct is satisfiable in isolation. This is because two conjuncts φi

and φj, say, may be inconsistent. In other words, φi may imply ¬φj

and vice versa. To investigate an unsatisfiable conjunction further,
the patterns for all arbitrary subsets of conjunct are applied. In this
case, no value for each combination is yet implied.

On the other hand, if φ1 ∧ . . . ∧ φn is known to be valid (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = v), the transition labelled v is taken.
This transition implies that each conjunct φi is valid and the va-
lidity of φi, for 1 ≤ i ≤ n is investigated through application
of its pattern. If φ1 ∧ . . . ∧ φn is known to be contingent (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = c), the transition labelled c is taken. For
the conjunction to be contingent, no conjunct can be unsatisfiable,
i.e., either v (φ) or c (φ) for each φi. Moreover, since it is known
that the conjunction is not valid, at least one conjunct (and possibly
all) must be contingent. However, which conjuncts are contingent
and which valid, if any, cannot be determined without further ap-
plication of the patterns for each φi. The most that can be stated at
this point about each φi is that it is not unsatisfiable, i.e., s (φi).

Finally, if φ1 ∧ . . . ∧ φn is known only to be satisfiable (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = s), the pattern for its negation is applied
to determine whether or not φ1∧ . . .∧φn is valid. The lookup table
can here be augmented in two ways. First, with the value v̄ (not
valid) for ¬(φ1 ∧ . . . ∧ φn) since the root formula is known to be
satisfiable, and second, with the value s for each φi since, if the
conjunction is satisfiable so are each of its conjuncts. In Figure 5,
this second update is shown in parenthesis.

Disjunction Pattern. The Disjunction Pattern (Figure 6) is ap-
plied to formulae of the form φ1∨ . . .∨φn. Application of this pat-
tern decomposes a disjunction into its disjuncts to identify whether
the disjunction is valid or unsatisfiable, and if valid, which disjuncts
or combination of disjuncts are valid. The Disjunction Pattern is
the dual of the Conjunction Pattern in that the valid (resp. unsatisfi-
able) case of the Disjunction Pattern is the dual of the unsatisfiable
(resp. valid) case of the Conjunction Pattern. Considering each case
in turn, if φ1∨. . .∨φn is unsatisfiable (i.e., GetVal (φ1∨. . .∨φn) =
u) the transition labelled u is taken from the pattern root. For the
disjunction to be unsatisfiable all disjuncts must be unsatisfiable
and the pattern for each φi, 1 ≤ i ≤ n is applied to investigate
further. The lookup table is updated to map each φi to the value u.

If φ1∨. . .∨φn is known to be valid (i.e., GetVal (φ1∨. . .∨φn) =
v) the transition labelled v is taken. Note that φ1 ∨ . . . ∨ φn may
be valid not only on account of a valid disjunct, but because two
disjuncts φi and φj, say, may be inconsistent such that φi implies
¬φj and vice versa. Therefore, to investigate a valid disjunction
further, the patterns for all arbitrary subsets of disjunct are applied.
No value for each combination is implied so the lookup table is not
updated for any φi ∨ . . . ∨ φj.

If φ1∨. . .∨φn is known to be contingent (i.e., GetVal (φ1∨. . .∨
φn) = c), the transition labelled c is taken. Since the disjunction
is not valid, no disjunct can be valid (i.e., v̄ (φi), for 1 ≤ i ≤
j ≤ n) and the lookup table is updated with the value v̄ for each
φi before applying the pattern for each φi to investigate further.
Finally, if it is known only that φ1 ∨ . . . ∨ φn is satisfiable (i.e.,
GetVal (φ1 ∨ . . . ∨ φn) = s) and the transition labelled s is taken.
To determine whether or not the root formula is valid the pattern
for ¬(φ1 ∨ . . . ∨ φn) is applied. Again, in this case, it is known
that no disjunct can be valid and the lookup table is updated to map
each φi to v̄. Note that this case is the dual of the unsatisfiable case
in the Conjunction Pattern.

Implication Pattern. The Implication Pattern (Figure 7) is ap-
plied to formulae of the form φ1 ⇒ φ2. Application of this pattern
investigates whether its root formula is valid because of an unsat-
isfiable antecedent or valid consequent or, if the root formula is
unsatisfiable, why the antecedent is valid and consequent unsatisfi-
able. If φ1 ⇒ φ2 is unsatisfiable (i.e., GetVal (φ1 ⇒ φ2) = u),
both transitions labelled u are taken from the pattern root. For the
implication to be unsatisfiable, φ1 must be valid and φ2 must be un-
satisfiable. The validity of φ1 and the unsatisfiability of φ2 can be
investigated further through application of the respective patterns
for each.

If φ1 ⇒ φ2 is known to be valid (i.e., GetVal (φ1 ⇒ φ2) = v),
both transitions labelled v are taken. The validity of the root for-
mula must be due either to the validity of φ1 or the unsatisfia-
bility of φ2 (or both). On one branch, the satisfiability of φ1 is
checked. If φ1 is unsatisfiable, a warning is issued indicating that
φ1 ⇒ φ2 is valid on account of an unsatisfiable antecedent. Other-
wise, if φ1 is found to be any of valid, contingent or satisfiable (i.e.,
GetVal (φ1) ∈ {s, v, c}), the formula can be investigated further
through application of its pattern. If new values for φ2 and ¬φ are
known, the lookup table is updated. On the second branch labelled
v, the satisfiability of ¬φ2 is checked. If ¬φ2 is unsatisfiable, a
warning is issued indicating that φ1 ⇒ φ2 is valid on account of a
valid consequent. Otherwise, if ¬φ2 is found to be any of any of
valid, contingent or satisfiable, i.e., GetVal (φ1) ∈ {s, val, c}, the
formula φ2 is not valid and it can be investigated further through
application of its pattern. Again, if new values for φ2 and ¬φ are
known, the lookup table is updated.

On the other hand, if φ1 ⇒ φ2 is known to be contingent, i.e.,
GetVal (φ1 ⇒ φ2) = c, the transition labelled c is taken from



!
u (φ1)

s (φ1) c (φ1)

v (φ1) ? (φ1)

? (φ1 ⇒ φ2) ? (¬(φ1 ⇒ φ2))

v (φ1) u (φ2)
∼ (φi)

i ∈ {1, 2}

u (φ2) ? (¬φ2)

!
v (φ2)

v̄ (φ2) c (φ2)

Start s

s, c
u

u

v

v

c

u

u

s
c

v

u

v

c
su

Figure 7: Implication Pattern

the pattern root. In this case, nothing is known about the values
of φ1 and φ2, further investigation may be carried out through ap-
plication of the patterns for these formulae. Finally, if φ1 ⇒ φ2

is known only to be satisfiable, i.e., GetVal (φ1 ⇒ φ2) = s, the
transition labelled s is taken and the satisfiability of the negation of
the root formula is checked. If the negation is satisfiable, the root
formula and its negation are contingent and the patterns for φ1 and
φ2 may be applied. If the negation is unsatisfiable, then φ1 ⇒ φ2

is discovered to be valid and the steps described above are taken.

6. IMPLEMENTATION AND EVALUATION
A prototype tool has been developed to evaluate the effectiveness

of the patterns in practice. The tool automatically analyses formu-
lae of a specification language called Loy, which is essentially a
subset of JML. Details of Loy and the tool are given in [10]. The
tool harnesses the SAT-solving capabilities of the Alloy Analyzer
by encoding Loy specifications into the Alloy input language and
then running satisfiability queries on this encoding. The results of
this analysis are then fed back to the user in terms of the original
Loy specification.

Returning to the example of Section 2, it is now possible to il-
lustrate how an automated pattern-driven analysis can uncover the
hidden inconsistency introduced during the evolution of the method
specification. For clarity, some of JML’s ascii syntax is ignored in
the following (e.g. ⇒ is written for ==> and ∧ for &&). The
top-level formula to be analysed is the implication to test that the
postcondition of insert in BoundedQueue implies that of insert in
Queue. The Implication Pattern is applied to this formula and the
first satisfiability query finds it to be satisfiable. The branch la-
belled s is taken from the start node and so the satisfiability of the
formula’s negation is queried next. The negation is found to be un-
satisfiable. At this point, the Implication Patten splits and analysis
of the antecedent and consequent continue in parallel. Satisfiability
of the antecedent is queried and it is found to be unsatisfiable:

u ((result ⇒ contains(e)) ∧ entries = \old(entries.add(e)
∧ size() < \old(entries.size()) ∧ size() ≤ MAX))

Here, the tool issues a warning to the user, with the information that
the original formula is valid, or vacuously satisfiable, on account of
its inconsistent antecedent. Along the other branch, satisfiability
of the negation of the consequent is queried, which is found to be
satisfiable:

s ((result ⇒ contains(e)) ∧ entries = \old(entries.add(e)

At this point, the Conjunction Pattern can be applied to both the
antecedent and the consequent to investigate the inconsistency of
the former and to check whether the latter is vacuously satisfiable
or contingent. In the prototype tool, automated analysis pauses
here and the user prompted for continuation. It is likely that a user
would be more interested in pursuing analysis of the inconsistent
antecedent. Automated application of the Conjunction Pattern finds
the inconsistent formulae to be size()< \old(entries.size()) and en-
tries = \old(entries.add(e)) (part of this step is the application of
the Base Pattern to ascertain that these formulae are not internally
inconsistent, i.e., that the method specifications of size() or add()
are not individually inconsistent). Further automated applications
of the Conjunction Pattern to the formulae in the specifications of
size() and add() identifies the inconsistency to be the following:

entries.size() > \old(entries.size()) ∧ size() < \old(entries.size())
∧ size() == entries.size())

The user should hopefully now see that the inconsistency is due
to a typo in the evolved specification of insert(): the new postcon-
dition from Section 2 should read

size() > \old(entries.size()) && size() <= MAX

with a > instead of < in the first conjunct.
The soundness and completeness of pattern-driven analysis in

practice of course depends on the soundness and completeness of
the SAT-solver used in a given implementation. The Alloy Anal-
yser is sound but not complete (the tool can run out of memory
while undertaking certain queries). Practical considerations aside,
pattern-driven analysis can be considered complete insofar as it ter-
minates and finds the satisfiability values for any propositional for-
mula and its subformulae. It will also issue a warning for any valid
or unsatisfiable formula. Further, pattern-driven analysis can be
considered sound insofar as the satisfiability values found for any
propositional formula and its subformulae are correct, since these
will come either from SAT or a sound inference from previous re-



sults [10].
Finally, the complexity of a pattern-driven analysis can be ex-

ponential. The worst case is the Conjunction Pattern, which may
direct analysis through an exhaustive querying of each combination
of conjunct in the root formula to determine a source of inconsis-
tency. However, application of the Conjunction Pattern does not
always take this branch and only does so when an inconsistency is
present.

7. RELATED WORK
The concept of patterns to support an activity is of course not

new. Design patterns [7] now provide handy templates for pro-
grammers across the world. Even in the area of formal specifica-
tion, the idea of providing patterns to support specifiers has been
considered before [6]. However, the patterns presented here are not
patterns to be used by programmers or specifiers but the founda-
tion of an automated analysis framework. They are templates for
sound decision procedures whose implementation can be hidden
from users.

Recent work on helping users of specification analysis tools avoid
being misled by feedback includes [4] and [13], both dealing with
JML. [4] presents an extension of an existing JML static checking
tool which warns a user whenever a term in a precondition formula
is undefined, thus avoiding cases where a method is spuriously re-
ported to meet its specification simply because its precondition is
unsatisfiable. The analysis patterns presented in this paper address
similar concerns but are far more general in their application, since
they check the satisfiability of arbitrary (propositional) formulae
rather than focus on a particular cause of unsatisfiability such as
undefinedness. [13] suggests including unsoundness and incom-
pleteness disclaimers in feedback from automated analysis tools so
that users are less likely to have misplaced confidence in feedback
from unsound or incomplete analyses. Similar in spirit to the use
of analysis patterns, this approach would be complementary to a
patterns-based analysis toolset.

The notion of checking for vacuity is not new. For example, [2]
addresses a form of vacuity checking in work on hardware verifica-
tion. In the broader software verification setting, work also exists
on catching vacuity in temporal model checking [14, 9].

Finally, the work in this paper is a greatly extended version of
that published in [11]. This earlier work introduced the idea of
analysis patterns but considered only cases of satisfiability and un-
satisfiability. A contribution of the present paper is the definition of
a lattice of six satisfiability values, which are used during pattern
application. The feedback available from an application of the new
analysis patterns therefore exceeds that provided by the previous
versions.

8. CONCLUSION
This paper presented a set of automatable analysis patterns that

constitute a framework for automated analysis of software specifi-
cations. The difficulties faced by developers and maintainers of a
specification could be greatly reduced by an automated specifica-
tion management environment. The analysis patterns and their pro-
totype implementation are a step towards the provision of such an
environment. In particular, the analysis patterns allow many hidden
logical errors to be uncovered automatically, without need for ex-
pert direction and without offering misleading feedback. Due to a
lack of space, two patterns for first order formulae (the Universal-
and the Existential Quantification Pattern [10]), which primarily
catch errors due to empty domains, have not been discussed here.

Further work will involve evaluating the approach with a full

specification language such as JML, perhaps by extending an ex-
isting toolset. This would allow the scalability of the approach to
be explored. Work in [10] on inference of satisfiability values from
previous results could also be extended to provide further support
for pattern-driven analysis. The more values that can be inferred,
the fewer calls to a SAT-solver and the quicker an analysis. In addi-
tion, a non-trivial case study must be undertaken to investigate the
limitations of the approach in application to industrial-scale speci-
fications in practice.

Acknowledgements The authors wish to thank Michael Huth for
his many comments on the work in this paper.

REFERENCES
[1] M Barnett, R Leino, and W Schulte. The Spec�

Programming System: An Overview. CASSIS, 2004.
[2] Derek L. Beatty and Randal E. Bryant. Formally Verifying a

Microprocessor Using a Simulation Methodology. DAC,
1994.

[3] L Burdy, Y Cheon, D Cok, M Ernst, J Kiniry, G Leavens,
K Leino, and E Poll. An Overview of JML Tools and
Applications. STTT, 2005.

[4] P Chalin. Early Detection of JML Specification Errors Using
ESC/Java2. SAVCBS, 2006.

[5] K Dhara and G Leavens. Forcing Behavioral Subtyping
Through Specifcation Inheritance. ICSE, 1996.

[6] M Dwyer, G Avrunin, and J Corbett. Property Specification
Patterns for Finite-State Verification. FMSP, 1998.

[7] E Gamma, R Helm, R Johnson, and J Vlissides. Design
Patterns: Abstraction and Reuse of Object-Oriented Design.
Lecture Notes in Computer Science, 707, 1993.

[8] J Gu, P Purdom, J Franco, and B Wah. Algorithms for the
Satisfiability (SAT) Problem: a Survey. Satisfiability
Problem: Theory and Applications, 1997.

[9] Arie Gurfinkel and Marsha Chechik. Extending Extended
Vacuity. FMCAD, 2004.

[10] W Heaven. Object-Oriented Specification: Analysable
Patterns and Change Management. PhD Thesis, Dept. of
Computing, Imperial College London, 2007.

[11] W Heaven and A Russo. Enhancing the Alloy Analyzer with
Patterns of Analysis. WLPE, 2005.

[12] D Jackson. Software Abstractions. The MIT Press, 2006.
[13] J Kiniry, A Morkan, and B Denby. Soundness and

Completeness Warnings in ESC/Java. SAVCBS, 2006.
[14] Orna Kupferman and Moshe Y. Vardi. Vacuity Detection in

Temporal Model Checking. STTT, 1999.
[15] G Leavens, A Baker, and C Ruby. Preliminary Design of

JML: A Behavioral Interface Specification Language for
Java. Software Engineering Notes, 31(3), 2006.

[16] LIFC. JML-Testing-Tools. http://lifc.univ-fcomte.fr/jmltt/.
[17] B Liskov and J Wing. A Behavioral Notion of Subtyping.

TOPLAS, 1994.
[18] M Prasad, A Biere, and A Gupta. A Survey of Recent

Advances in SAT-Based Formal Verification. STTT, 7(2),
2005.


